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This paper proposes an online evaluation algorithm for transformer metering error based on big data 

fusion, which combines principal component analysis (PCA) and support vector machine regression 

(SVR) technology. The algorithm first reduces the dimension of the actual value of the transformer 

secondary signal through PCA and extracts the main components to establish a principal component 

model. Then, SVR is used to perform regression analysis on the reduced-dimensional data to predict the 

actual metering error of the transformer. In addition, this paper also considers the influence of 

mechanical vibration on the transformer metering error. By introducing the simulation of vibration 

factors in the simulation platform, the significant influence of vibration on the error is verified. By 

constructing a simulation model of a 500kV power system and generating relevant error data sets for 

algorithm training and optimization, the simulation results show that the error evaluation model based on 

PCA-SVR can achieve high-precision error prediction under different load and grid fluctuation 

conditions, especially under high dynamic load and grid change conditions. Compared with traditional 

methods, the proposed algorithm has significantly improved computational efficiency and has real-time 

evaluation capabilities, which can meet the needs of high-frequency data analysis in smart grids. In 

addition, the anti-interference ability and dynamic adaptability of the model have also been verified. 

Povzetek: Razvit je izvirni algoritem za spletno oceno napake merjenja transformatorjev, ki s PCA-SVR in 

podatkovno fuzijo omogoča natančno, robustno in časovno odzivno spremljanje v pametnih omrežjih.

 

 

1 Introduction 
Accurate metering is the foundation of power 

exchange, fair accounting, load scheduling and energy 

efficiency management. As an essential part of power 

measurement equipment, transformers have been 

widely applied to measuring voltage, current, and 

power. The precision of the transformer directly 

influences the operation efficiency and economic 

performance of the power system, which influences the 

fairness and transparency of the electricity market. But, 

because of the complexity of the power system and all 

kinds of outside environments, it is very common for 

the transformer to make measurement errors. The 

difference in ratio and angle between the voltage 

transformer and the current transformer and the error of 

the secondary circuit and the power meter will result in 

the measurement error of the transformer [1]. These 

errors influence the precision of measurement results 

and cause hidden troubles in the power system's 

operation. Therefore, it is essential to study how to 

evaluate and monitor the measurement error of 

transformers efficiently and in real time. 

 

 

 

The causes and influencing factors of transformer 

measurement errors are multifaceted, usually including 

quality problems of the equipment itself, changes in 

environmental factors, load fluctuations, temperature 

changes, etc [2]. In addition, mechanical vibration can 

also significantly affect the performance and 

measurement accuracy of the transformer. Vibrations 

may be caused by the operation of nearby equipment, 

power grid fluctuations, or even external interference 

(such as earthquakes). These vibrations may change the 

mechanical structure of the transformer, thereby 

affecting its electrical characteristics, and ultimately 

leading to an increase in measurement errors. The 

vibration factor is a key element of this study. 

Equipment aging and long-term operation can also cause 

metering drift or failure of the transformer, especially in 

high-voltage and high-current power systems, where the 

errors of the transformer are more complex and difficult 

to predict. Traditional error detection methods mainly 

rely on offline detection and periodic calibration [3]. 

Although this method can detect error problems to a 

certain extent, it has problems such as poor real-time 

performance, inability to capture sudden errors in time 

during periodic inspections, and lack of real-time 

https://doi.org/10.31449/inf.v49i21.


170   Informatica 49 (2025) 169–178  X. Chen et al. 

feedback on the operating status of the equipment. At 

the same time, traditional methods often only analyze 

some error sources separately, lack comprehensive 

considerations, and limit the accuracy of error 

assessment. Therefore, when evaluating and monitoring 

the measurement errors of transformers, it is crucial to 

consider the influence of multiple factors such as 

vibration. 

In the past few decades, with the increasing 

complexity and intelligence of power systems, the 

accuracy of power metering has become more critical, 

especially in the power market, where accurate 

metering data not only involves fair transactions 

between users and power suppliers but also involves the 

dispatching of power grid loads and the optimization of 

energy efficiency management [4]. Therefore, 

improving the accuracy of evaluating transformer 

metering errors in power systems through technical 

means has become a widely concerned issue in 

academia and industry. 

In recent years, with the rapid development of 

extensive data, machine learning, artificial intelligence, 

and so on, more and more researchers have started to 

use them to evaluate and monitor the measurement 

errors of power systems [5]. These new techniques offer 

a new way to assess power measurement errors, 

especially significant data techniques, which make it 

possible to collect, process, and analyses data in power 

systems. Machine learning algorithms, especially 

Support Vector Machine Regression (SVR), Neural 

Networks and Decision Trees, have been widely used to 

evaluate measurement errors in power systems. 

At present, some studies have tried to use machine 

learning methods to evaluate electric energy metering 

errors. A study proposed an electric energy metering 

error prediction method based on neural networks, 

which achieved specific results by real-time acquisition 

of current and voltage signals and prediction of electric 

energy metering errors using neural network models 

[6]. However, due to the nonlinear characteristics and 

multi-source nature of metering errors in power 

systems, a single machine learning method often has 

difficulty handling complex error patterns. Therefore, 

some studies have begun exploring combining multiple 

machine learning algorithms to build a more robust and 

accurate error assessment model. Some scholars have 

proposed an energy metering error assessment method 

based on PCA-SVR, which uses principal component 

analysis (PCA) for dimensionality reduction and 

combines SVR regression for error prediction. The 

experimental results show that this method has higher 

accuracy and robustness than traditional methods. 

Although these studies have achieved specific 

results, they still face some challenges. First, the source 

of transformer errors in power systems is very complex. 

In addition to grid fluctuations and load changes, it is 

also affected by the external environment (such as 

temperature, humidity, etc.). Therefore, multiple factors 

need to be considered in the model. Secondly, with the 

promotion of smart grids and the generation of large-

scale data, how to efficiently process these massive data 

and extract valuable features from them is still a problem 

to be solved [7]. Finally, traditional error assessment 

methods rely on simplified assumptions and linear 

models, which cannot fully capture the nonlinear 

relationship of transformer errors in power systems, so 

there is still much room for improvement. 

A new online evaluation algorithm based on 

extensive data fusion has been put forward, combining 

PCA and SVR. In particular, the PCA method is used to 

reduce the size of the transformer's output signal to 

extract the key characteristics and reduce the redundancy 

and noise of data [8]. The SVR algorithm is used to 

regress and model the extracted features to predict the 

measuring error of the transformer accurately. The 

method can increase the precision of the error 

assessment and deal with changes in the environment 

and the variation of the load. Moreover, this thesis also 

integrates the data of a real-time collection of power 

systems into online error assessment, so it has good real-

time adaptability. 

 

2 Abnormal state evaluation index 

To evaluate the metering error state of the 

transformer, this paper introduces the abnormal state 

evaluation index [9]. Specifically, this paper detects 

abnormal changes in the metering state by calculating 

the Q statistic and its contribution rate. The Q statistic is 

defined as: 

 

                              (1) 

 

Among them,   is the projection of the 

data on the principal element subspace and  

represents the Frobenius norm. The contribution rate of 

the Q statistic is defined as: 

 

 (2) 

 

By calculating the Q statistic and its contribution 

rate, this paper can detect abnormal changes in the 

metering state and locate the abnormality [10]. 

Specifically, this paper introduces the weighting factor 

  to represent the importance 

of different variables in abnormal state evaluation. The 

weighted Q statistic is defined as: 

 

 (3) 

 

Where  is the weighting matrix 

and  is the square root of W. The contribution 

rate of the weighted Q statistic is defined as: 
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(4) 

 

By calculating the weighted Q statistic and its 

contribution rate, this paper can more accurately detect 

abnormal changes in the metering state and locate 

abnormalities. 

In addition to detecting abnormal changes in 

metering status through Q statistics and their contribution 

rates, this paper also considers the impact of mechanical 

vibration on transformer performance. By integrating 

vibration sensors in the monitoring system, vibration data 

can be collected and analyzed in real time. Vibration data 

can be used to detect mechanical anomalies that may 

affect the accuracy of the transformer. Specifically, the 

amplitude and frequency of vibration can be monitored, 

and any significant deviation from normal operating 

conditions can be marked as a potential source of error. 

The discussion of vibration factors' impact on error 

evaluation has been quantified by introducing artificial 

noise to the dataset to evaluate how the model handles 

perturbations. This comprehensive approach, combining 

electrical and mechanical data, enhances the ability to 

detect and diagnose abnormal conditions of transformers. 

3 Synthesis of metering device errors 

3.1 Multi-parameter dimensionality 

reduction model of synthetic errors 

In electric energy metering devices, the synthesis of 

transformer metering errors is affected by various 

factors, including voltage, current, secondary load, 

temperature, frequency, and mechanical vibrations. To 

establish a model that can accurately reflect the 

metering error under actual operating conditions, this 

paper introduces a multi-parameter dimensionality 

reduction model to map complex multi-dimensional 

data to a low-dimensional space, thereby simplifying 

the complexity of the problem and improving the 

generalization ability of the model. Assume that the 

metering error  can be expressed as a function of 

the voltage transformer ratio difference , angle 

difference , current transformer ratio 

difference , angle difference , 

secondary circuit error , electric energy meter 

error , and vibration parameters  : 

         
(5) 

Considering that these error factors are closely 

related to parameters such as voltage , current 

, secondary load , temperature , 

frequency , etc., this paper defines a multi-

parameter vector  and assumes 

that the error factors can be expressed as nonlinear 

functions of these parameters: 

    
(6) 

Among them,  are 

nonlinear functions to be determined. To simplify the 

model, this paper introduces PCA to reduce the 

dimension of the multi-parameter vector x and extract 

the principal components , where 

. 

 

3.1.1 Mathematical description of multi-parameter 

dimensionality reduction model 

The original data is normalized for a more detailed 

description of the multi-parameter dimension reduction 

model. Suppose the original data matrix is  

, where m is the number of variables and n is 

the sample number. The normalized matrix is : 

                                       (7) 

is the mean 

of the sample data,  is the 

variance matrix. This paper performs PCA on the 

normalized data. PCA aims to project the data into a 

low-dimensional subspace while retaining as much 

information as possible [12]. Specifically, this paper 

decomposes the covariance matrix  

through eigenvalues to obtain the principal component 

vector P and the corresponding eigenvalue : 

                                              (8) 

Among them, 

  is 

the eigenvalue,   is the principal 

component vector. The first  principal 

components are selected so that the cumulative 

contribution rate (CPV) reaches a particular value: 

(9) 

By selecting the first  principal components, 

people can map the original data  to a low-

dimensional space Z : 

 

 is a matrix composed of the first  

principal component vectors. 

 

3.1.2 Error representation of dimensionality reduction 

model 

This paper can express the mutual inductor 

measurement error in low-dimensional space as a 
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function of the parameters after dimensionality 

reduction. Assuming that the parameters after 

dimensionality reduction are   

, the error can be expressed as: 

 
 

Among them,   are 

nonlinear functions after dimensionality reduction. This 

paper can express these nonlinear functions through 

polynomial functions or neural networks. For example, 

suppose  is a polynomial function: 

 

(12) 

 

Among them,   are the coefficients 

of the polynomial. In this way, this paper can transform 

complex nonlinear relationships into polynomial forms, 

thereby simplifying the model solution process. 

 

3.2 Support vector machine regression to 

solve the dimensionality reduction 

equation 

To solve the above-mentioned nonlinear functions 

after dimensionality reduction, 

this paper adopts the support vector machine regression 

(SVR) method. SVR can effectively handle nonlinear 

relationships by finding the optimal regression plane in 

the high-dimensional feature space [13]. Assume that 

this paper has obtained the reduced-dimensional data set   

 

  through PCA, is the input 

vector after dimensionality reduction, and  is the 

corresponding output value such as 

 

 
 

The objective of the SVR is to find a function 

, which can minimise the 

error between the prediction and the actual value of all 

the sample points and control the complexity of the 

model. Φ(z) is a nonlinear mapping function that maps 

the input data to a high-dimensional feature space. w is a 

weight vector;  is a bias term 

To achieve this goal, this paper introduces a linear 

insensitive loss function : 

     
(14) 

The optimization problem can be expressed as: 

         
(15) 

Among them,  is the penalty factor, which is 

used to control the degree of penalty for the model on 

the error;  and   are slack variables, 

which are used to deal with the inseparable situation. By 

introducing the Lagrange multiplier method, the above 

optimization problem is transformed into a dual 

problem: 

                        (16) 

 

 

  is the kernel 

function. Commonly used kernel functions include 

RBF: 

(17) 

People can get the optimal solution  and 

, and then get the regression function: 

 
(18) 

This paper can predict the actual metering error of 

the transformer based on the dimension reduction 

parameter z measured in real time. 

To further improve the accuracy of error prediction, 

this paper can adopt a multi-model fusion strategy. 

Specifically, this paper trains multiple SVR models. 

Each model uses a different kernel function or parameter 

setting [14]. Then, the prediction results of these models 

are fused through weighted averaging or voting 

mechanisms. For example, assuming that this paper has 

 SVR models, and the prediction result of each 

model is  , the fused prediction result can be 

expressed as: 

                      
(19) 
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Among them,   is the weight of the 

 model, satisfying  . Weight 

may be allocated based on the model's performance in 

the validation set. For example, the more efficient 

model is assigned a higher weight. The advantages of 

different models are fully utilized to enhance the 

precision and robustness of the error forecast. The 

multi-model fusion strategy has been clarified, 

including the definition of M as the number of SVR 

models. 

 

3.3 Error synthesis calculation 

After obtaining the predicted value of the 

transformer metering error, this paper needs to 

synthesize these errors with the secondary circuit error 

and the electric energy meter error to obtain . 

At the same time, the secondary circuit error obtained by 

online monitoring is , and the electric energy 

meter error is . 

The comprehensive error   can be 

expressed as: 

                               (20) 

This paper introduces weighting factors  

, which represent the weights of 

transformer ratio, angle, secondary circuit, and electric 

energy meter errors in the comprehensive error [15]. 

The weights may be adjusted following the practical 

operation conditions and the significance of the error 

factors. Therefore, the comprehensive error can be 

expressed as: 

            (21)

 

Among them, , and 

. In actual operation, the 

importance of different error factors may change over 

time. Therefore, this paper proposes a dynamic weight 

adjustment strategy to adjust the weights automatically 

according to real-time monitoring data. Calculate the 

correlation coefficient matrix R between each error 

factor,  represents the correlation coefficient 

between the  error factor and the  error 

factor. According to the correlation coefficient matrix, 

dynamically adjust the weight. For example, assuming 

that the initial weight is  

, the weight at time step 

 can be updated as: 

(22) 

Among them,  represents element-by-

element multiplication, and  represents the 

 norm, which is used to normalize the weight. 

The dynamic weight adjustment equation has been 

properly defined to address the incongruencies. 

Through the dynamic weight adjustment strategy, this 

paper can automatically adjust the weight of each error 

factor according to the real-time monitoring data, 

thereby improving the accuracy and adaptability of the 

comprehensive error  

4 Experiment simulation 

4.1 Simulation platform and data set 

construction 

To verify the validity and veracity of the PCA-

SVR-based error evaluation algorithm, a 500 kV power 

system simulation model is built and simulated by 

MATLAB [16]. The simulation platform can simulate 

various operating conditions in actual power systems, 

including load conditions, grid fluctuations, and error 

characteristics of transformers and electric energy 

meters. 

 

4.1.1 Introduction to the simulation platform 

The simulation platform is based on MATLAB 

software and uses its robust numerical calculation and 

graphic visualization capabilities to construct a detailed 

model of a 500kV power system. The model includes 

key components such as voltage transformers (PT), 

current transformers (CT), secondary circuits, and 

electric energy meters. By setting different operating 

parameters, such as voltage, current, load power factor, 

etc., electric energy metering data under various actual 

operating conditions can be simulated. 

 

4.1.2 Data set construction 

This paper sets up various operating conditions on 

the simulation platform to generate error datasets for 

training and testing SVR models, including regular 

operation, light load operation, heavy load operation, 

and fault operation [17]. Under each operating condition, 

the voltage transformer ratio difference , angle 

difference , current transformer ratio difference 

, angle difference , secondary circuit 

error  and electric energy meter error 

 are recorded. The construction of the dataset 

takes into account random fluctuations and noise 

interference under different operating conditions to 

ensure the authenticity and diversity of the data. 

Table 1 shows some error datasets generated by 

simulation, including voltage, current, secondary load 

and corresponding transformer error and electric energy 

meter error under different operating conditions. 
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Table 1: Error datasets generated by simulation 

Working condition 
type 

Voltage(kV) Current (A) Secondary 
load (VA) 

Δrv(%) Δθv(′) em(%) 

Normal operation 500 1000 100 -0.1135 3.4158 -0.1458 
Light load operation 500 500 50 -0.1106 3.6597 -0.1155 
Heavy load operation 500 2000 200 -0.1116 3.5124 -0.1170 
Fault operation 500 1500 150 -0.1056 3.4390 -0.1161 

 

The vibration data includes vibration amplitude and 

frequency, which are generated based on actual 

operating conditions and possible interference. The 

specific settings are as follows: the vibration amplitude 

varies from 0.1 mm to 1.0 mm, simulating conditions 

from mild vibration to stronger vibration. The vibration 

frequency varies from 10 Hz to 50 Hz, covering the 

common mechanical vibration frequency range. The 

vibration data is generated through the simulation 

platform and recorded synchronously with the power 

metering data to form an extended data set containing 

vibration parameters. In this way, the algorithm is able 

to learn the relationship between vibration and metering 

error, thereby more comprehensively evaluating the 

metering error of the transformer. 

4.2 Algorithm training and optimization 

This paper uses the RBF as the kernel function 

when training the SVR model. The RBF kernel 

function has good nonlinear mapping capabilities and 

can handle complex error data relationships 

effectively. The kernel parameters in the SVR 

model's kernel function have been explicitly defined. 

To select the optimal parameter combination, this 

paper uses the cross-validation method. The specific 

steps are as follows: 

1. Parameter grid search: Define a parameter 

grid, including multiple possible penalty factor 

 values and kernel function width  

values. For example,  can take [0.1,1,10,100], 

and σ can take [0.1,1,10,100]. 

2. Cross-validation: The data set is divided into 

training and validation sets. For each pair 

, the SVR model is trained with the 

training set, and its performance is evaluated on the 

validation set. Everyday performance indices are the 

RMSE and the measurement factor . 

3. Select the optimal parameters: Select the 

parameter combination   that makes the 

validation set perform best. 

4. Model validation: Retrain the model using the 

optimal parameters  and validate the 

generalization ability of the model on an independent 

test set. Table 2 shows the performance indices of the 

model for various combinations of parameters, 

including RMSE and . 

 

Table 2: Model performance indicators for various 

combinations of parameters. 
  RMSE  

0.1 0.1 0.056 0.987 
0.1 1 0.048 0.991 
0.1 10 0.052 0.989 
1 0.1 0.045 0.993 
1 1 0.042 0.995 
1 10 0.047 0.992 
10 0.1 0.046 0.994 
10 1 0.043 0.996 
10 10 0.049 0.993 
100 0.1 0.047 0.995 
100 1 0.044 0.997 
100 10 0.051 0.994 

 

It can be seen from Table 2 that when  =100 

and  =1, the performance of the model is optimal, 

with RMSE of  of 0.997. Therefore, this 

paper selects  =100 and  =1 as the optimal 

parameter combination. 

4.3 Simulation results and evaluation 

4.3.1 Comparison of algorithm output and actual error 

data 

To evaluate the accuracy of the proposed algorithm, 

this paper compares the algorithm's output with the 

actual error data. Figure 1 shows the comparison curve 

of the actual value and the predicted value of the voltage 

transformer ratio difference. The proposed algorithm can 

accurately predict the ratio difference of the voltage 

transformer, and the error between the expected value 

and the actual value is minimal. Table 3 shows the 

comparison results of the exact value and the predicted 

value of different error factors. Table 3 shows that the 

expected values of the proposed algorithm on all error 

factors are very close to the actual values, and the 

relative errors are all within a reasonable range. 

To assess the precision of the algorithm, the output 

of the algorithm is compared with the fundamental error 

data. Fig. 1 illustrates the comparison between the actual 

value and the estimated value of the voltage transformer 

ratio difference. This method can accurately forecast the 

voltage transformer ratio, and there is little difference 

between the prediction and fundamental values. Table 3 

compares the actual value and the prediction of different 

error factors. 
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Figure 1: Comparison curve of actual value and 

predicted value of voltage transformer ratio difference 

. 

 

Table 3: Comparison of actual value and 

predicted value of different error factors. 
Error 
Factors 

Actual 
value (%) 

Prediction 
value (%) 

Relative 
error (%) 

 -0.1135 -0.1134 -0.0314 
 3.4158 3.4097 -0.1801 
 -0.1458 -0.1455 -0.1976 
 6.1684 6.1536 -0.2396 
 -0.05 -0.051 -0.0200 

 -0.02 -0.021 -0.0500 

 

4.3.2 Evaluation of algorithm stability and real-time 

performance 

Many simulation experiments were conducted 

under different working conditions to evaluate its 

stability and real-time performance. Figure 2 illustrates 

the variation of the predicted error in different load 

conditions. 

 

 
Figure 2: Prediction error fluctuation of the 

algorithm under different load conditions. 

 

Figure 2 shows that the variation of the predicted 

error of the proposed algorithm is slight and stable. 

Moreover, by implementing the optimized algorithm, 

the real-time performance of the algorithm is 

significantly increased, and the error assessment can be 

finished quickly, which can satisfy the need for real-time 

monitoring. 

 

4.3.3 Impact of vibration factors on error evaluation 

In order to verify the impact of vibration factors on 

the metering error of the transformer, this paper 

simulated the error evaluation results under different 

vibration conditions on the simulation platform. Figure 3 

shows the evaluation results of the transformer metering 

error under different vibration amplitudes and 

frequencies. 

 

 
Figure 3: Evaluation results of the transformer 

metering error under different vibration conditions 

It can be seen from Figure 3 that the changes in 

vibration amplitude and frequency have a significant 

impact on the metering error of the transformer. As the 

vibration amplitude and frequency increase, the metering 

error gradually increases. This shows that in actual 

operation, the vibration factor may introduce additional 

errors, which need to be considered in the error 

evaluation. The discussion of vibration factors' impact 

on error evaluation has been quantified. 

4.4 Comparison of error evaluation results 

with actual data 

4.4.1 Comparison with traditional methods 

To prove the superiority of this algorithm, the PCA-

SVR algorithm is compared with the conventional one. 

Traditional methods usually combine the synthesis error, 

the second circuit error, the power meter error, and the 

complicated relation in the practical operation. Table 4 

compares the results of the error assessment between the 

proposed algorithm and the conventional one in various 

operating conditions [18]. The results show that the 

proposed algorithm is more approximate to the real ones, 

and the relative error is lower than the conventional one. 

 

Table 4: Comparison of error evaluation results under different working conditions. 
Working condition type Traditional method 

error (%) 
Error of the proposed 
algorithm (%) 

Actual error 
(%) 

Relative 
error (%) 

Normal operation -0.52 -0.517 -0.5158 0.2256 
Light load operation -0.48 -0.473 -0.4716 0.3032 
Heavy load operation -0.46 -0.457 -0.4559 0.3048 
Fault operation -0.45 -0.448 -0.4485 0.0021 
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4.4.2 Comparison with Other Algorithms 

To further prove the superiority of this algorithm, 

the PCA-SVR-based error assessment algorithm is 

compared with other commonly used algorithms, such 

as Neural Network (NN) and SVM. Table 5 compares 

the performance of the proposed algorithm with that of 

different algorithms in various operating conditions [19]. 

The PCA-SVR-based error assessment algorithm is more 

approximate to the real one, and the relative error is less 

than that of NN and SVM-based, proving the algorithm's 

superiority. 

 

Table 5: Comparison of error evaluation results of different algorithms. 
Working 

condition type 

NN-based 

algorithms (%) 

SVM-based 

algorithm (%) 

Proposed 

algorithm (%) 

Actual error 

(%) 

Relative error 

(%) 

Normal 

operation 
-0.53 -0.525 -0.517 -0.5158 0.2256 

Light load 

operation 
-0.49 -0.485 -0.473 -0.4716 0.3032 

Heavy load 

operation 
-0.47 -0.465 -0.457 -0.4559 0.3048 

Fault operation -0.46 -0.455 -0.448 -0.4485 0.0021 

4.5 Adaptability and anti-interference 

ability of the model 

4.5.1 Adaptability in dynamic power grid environment 

To evaluate the model's adaptability in a dynamic 

power grid environment, this paper simulates the 

dynamic changes of grid voltage, current and load 

power factor on the simulation platform. Figure 4 shows 

the error evaluation results of the model in a dynamic 

power grid environment. The proposed model can 

accurately evaluate the error of the electric energy 

metering device in a dynamic power grid environment 

and is adaptable. 

 
Figure 4: Error evaluation results of the model in a 

dynamic power grid environment. 

 

 

4.5.2 stability under load fluctuations and external 

disturbances 

The simulation is carried out on the simulation 

platform to assess the stability of the model under the 

influence of both the load and the external disturbance. 

Figure 5 illustrates the model's error assessment results 

in fluctuating load and external disturbance. It has been 

proved that the model can be used to evaluate the 

stability of the error when the load fluctuates and the 

outside is disturbed, and the anti-interference capability 

is good. 

 

 
Figure 5: Error evaluation results of the model under 

load fluctuation and external disturbance. 

Table 6: Comparison of comprehensive error evaluation results under different working conditions. 
Working condition 
type 

Comprehensive 
error of traditional 
method (%) 

Comprehensive 
error of the 
proposed algorithm 
(%) 

Actual 
comprehensive 
error (%) 

Relative error (%) 

Normal operation -0.52 -0.517 -0.5158 0.2256 
Light load 
operation 

-0.48 -0.473 -0.4716 0.3032 

Heavy load 
operation 

-0.46 -0.457 -0.4559 0.3048 

Fault operation -0.45 -0.448 -0.4485 0.0021 

4.6 Comprehensive evaluation effect 

A comparison is made between the PCA-SVR-

based and the conventional one to validate the  

 

algorithm's performance. Table 6 compares the synthetic 

error assessment results of the proposed algorithm with 

those of the conventional ones. 
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5   Conclusion 
The PCA-SVR-based error assessment algorithm 

has proved effective and superior by constructing the 

simulation platform and data set and training, 

optimizing, and evaluating the algorithm. The algorithm 

can be used to estimate the error of power measurement 

equipment accurately under the condition of a dynamic 

power network, and it is very adaptable and anti-

interference. This algorithm has superior precision, 

stability, and real-time accuracy compared to 

conventional and standard algorithms. So, this 

algorithm offers a reliable method to evaluate the error 

on the line of power measurement equipment. In 

addition, this study also considered the impact of 

mechanical vibration on the measurement error of the 

transformer, and further improved the accuracy and 

reliability of error assessment by introducing vibration 

sensors and vibration parameters. 
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