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The problem of inventory demand forecasting is an urgent issue in the development of 

warehouse-distribution integrated small and medium-sized enterprises (SMEs), which is of great 

importance to meet the sales demand of customers and significantly reduce distribution costs. The study 

describes the inventory demand problem of small and medium-sized enterprises. Based on the analysis 

of compressive sensing denoising methods and manual prediction methods, a prediction model is 

constructed using LSSVR and CSD algorithms. The study conducts an experiment using real order 

demand data of seafood customers from a small and medium-sized enterprise integrating warehouse 

and distribution in Sichuan Province from April 3, 2019 to September 9, 2023, with a total of 775 

records. The training and testing sets are divided in a 4:1 ratio. Data preprocessing includes filling 

missing values using linear interpolation, detecting and correcting outliers using Z-score method, and 

normalizing the data to the [-1,1] interval. The experimental results show that on the test set, the 

relative error (RE) of the CSD-LSSVR model is 0.0701, the mean absolute error (MAE) is 58.258, the 

mean square error (MSE) is 70.12, and the directional statistic (DS) is 0.688; The RE of the traditional 

SVR model is 0.1214, MAE is 106.25, MSE is 112.25, and DS is 0.435. This indicates that the 

CSD-LSSVR model significantly improves prediction accuracy and stability. The above results indicate 

that the CSD-SVR prediction model performs better in inventory demand forecasting. This model can be 

applied to predict inventory demand for small and medium-sized enterprises, providing more 

possibilities for the efficient development of e-commerce enterprises. 

Povzetek: Za inteligentno napovedovanje potreb po zalogah in zmanjšanje stroškov distribucije v MSP 

e-trgovine je razvit CSD-LSSVR. Združuje kompresijsko zaznavanje in odstranitev šuma z metodo 

najmanjših kvadratov podpornih vektorjev (LSSVR). 

 

1  Introduction 
The emerging new e-commerce model in recent 

years promotes the transformation and upgrading of the 

logistics industry. With the advantages of service quality, 

efficiency and cost, the warehouse-distribution 

integration mode has become the innovation mode of 

traditional logistics enterprises. It is critical for logistics 

enterprises to realize the refined management of 

warehousing and distribution. There are some solution 

models on warehouse and distribution models at home 

and abroad. However, the research is still preliminary 

exploration stage, and has not formed a scientific system 

[1-2]. Meanwhile, for the prediction of enterprise 

inventory demand, the research direction of most 

researchers can be divided into two types: artificial 

intelligence model and traditional model. While a few 

scholars mix the two models for analysis. The relatively 

mature research direction is mixed back propagation (BP) 

neural network and other artificial intelligence prediction 

models [3-4]. Compared with data processing methods 

such as Kalman filtering and wavelet transformations, 

denoising algorithms can prevent the loss of data 

information through sparse basis transformation.  

 

Meanwhile, Support Vector Regression (SVR) has more 

apparent advantages than BP neural network in data 

sample classification. The current research has the 

following problems. Firstly, traditional inventory demand 

forecasting methods such as exponential smoothing and 

moving average often have significant prediction errors 

when dealing with data with large demand fluctuations 

and obvious seasonality, which makes it difficult to meet 

the needs of enterprises for refined inventory 

management. Secondly, in practical applications, 

inventory demand data is often affected by various 

factors such as market fluctuations, promotional 

activities, seasonal changes, etc., resulting in a large 

amount of noise in the data. Thirdly, existing artificial 

intelligence prediction models, such as BP neural 

networks and standard SVR, are prone to overfitting or 

underfitting when dealing with small sample and 

nonlinear problems, resulting in insufficient 

generalization ability of the model and difficulty in 

adapting to the actual needs of different enterprises. 

Therefore, this study constructs a novel compressed 

sensing denoising least squares support vector regression 

(CSD-LSSVR) model to improve the accuracy of 

inventory demand prediction for warehouse and 

https://doi.org/10.31449/inf.v49i9.9659


344   Informatica 49 (2025) 343–358                                                                                   D. Li et al. 
 

distribution integrated logistics enterprises. The 

integration of warehousing and distribution represents a 

supply-chain operation model that achieves a seamless 

connection among warehousing management, order 

processing, transportation, and distribution. This is made 

possible through in-depth collaboration between 

information systems and operational processes, ensuring 

a highly coordinated and efficient supply-chain flow. 

2  Related work 
Warehouse management in integrated small and 

medium-sized enterprises plays a crucial role in the 

long-term development of e-commerce enterprises. In the 

case of unknown demand, accurately predict the 

inventory demand of enterprises and make timely 

replenishment to prevent inventory shortage or overstock, 

which is the key for enterprises to control costs and 

improve efficiency. Doszyń compared the primary 

exponential smoothing method, the moving average 

method and the traditional inventory forecasting methods 

such as the correction method and the sampling method 

respectively. The results showed that the primary 

exponential smoothing method and the moving average 

method have many shortcomings in forecasting 

compared to other forecasting methods. The exponential 

smoothing and moving average methods have many 

shortcomings in forecasting compared to other 

forecasting methods [5]. The study payed special 

attention to the phenomenon of "smoothing bias" and 

discovered that traditional methods systematically 

underestimated peak demand by 18-22%, which 

prompted the adoption of the CSD-LSSVR model to 

enhance the ability to capture sudden demand changes. 

Lukinskiy et al. found that existing clustering methods 

cannot identify consumption process dynamics, and 

therefore cannot be used for classification and 

improvement of inventory consumption prediction 

models. In response to this issue, they proposed an 

integrated time series prediction model and an algorithm 

for estimating inventory prediction parameters, and 

confirmed the effectiveness of this study in reducing 

supply chain costs through experiments [6]. Through 

sensitivity analysis, Shariff et al. improved parameters 

such as inventory reconciliation cycle, distribution time, 

demand forecast weights and safety stock days to obtain 

an optimised chain retail multi-level inventory system 

dynamics model. The experimental results showed that 

the model effectively reduced the amount of inventory in 

the enterprise, improved inventory turnover efficiency 

and reduced inventory costs [7]. Rumetna et al. designed 

an inventory prediction information system based on 

waterfall and exponential smoothing methods for a 

mobile phone manufacturer's inventory flow and 

management issues. The system will be used to predict 

the appropriate inventory quantity ordered by the 

company to meet customer needs [8]. 

Nambiar et al. proposed a demand forecasting 

framework that facilitates dynamic inventory allocation 

for multi cycle inventory allocation in both single 

warehouse and multi-retailer environments. It ultimately 

confirmed the asymptotic optimality of the method by 

using Lagrange relaxation technique [9]. Han et al. 

constructed an enterprise logistics inventory prediction 

model, using BP neural network to analyze the 

relationship between inventory demand and various 

influencing factors. The model testing results verified the 

effectiveness of the model and provided appropriate 

theoretical guidance for predicting the actual demand of 

logistics inventory. The influencing factors included 

market demand, seasonal changes, promotional activities, 

etc. [10]. Kosenko et al. systematically analysed models 

of supply logistics in the context of demand fluctuations, 

including models of supply logistics processes, models of 

product demand forecasting and models for calculating 

the optimal order quantity for various demand options. 

The proposed information technology was able to 

analyses and forecast changes of major market factors, 

and effectively solve the inventory management tasks 

according to the results obtained [11]. Aktepe et al. 

compared the application of SVR, artificial neural 

networks, multiple linear regression, and multiple 

nonlinear regression methods in inventory demand 

forecasting. The input variables of the model included 

the company's sales revenue in the past few years, global 

sales volume of construction machinery, US dollar 

exchange rate, and monthly impact rate. The prediction 

accuracy was estimated through the system parameter 

design of artificial intelligence methods. The prediction 

results showed that compared with traditional regression 

methods, SVR and artificial neural networks had better 

prediction results [12]. Kmiecik et al. studied the 

logistics problem of enterprise distribution networks 

based on machine learning algorithms and artificial 

neural networks, taking into account manufacturer 

demand planning and traffic network characteristics. The 

results showed that the improved algorithm could 

effectively predict the demand of the distribution 

network, and the prediction error value was small [13]. 

Xu G proposed an inventory production material 

planning model driven by customer demand and 

combined it with the demand planning concept of grey 

wolf optimization algorithm. The results indicated that 

this optimization method could effectively achieve 

capacity allocation, optimize inventory levels, and 

improve production levels in resource constrained 

situations. This model paid special attention to the 

dynamic changes in customer demand and used it as a 

key input for prediction and planning [14]. The summary 

table of the relevant works mentioned above is shown in 

Table 1. 

According to the relevant analysis of inventory 

demand prediction by most scholars both domestically 

and internationally, it can be found that with the rise of 

artificial intelligence algorithms, many scholars have 

proposed inventory demand prediction models for 

different environments. However, although these 

prediction models can achieve predictions to a certain 

extent, their prediction accuracy is not ideal. Meanwhile, 

the hybrid model of artificial intelligence and traditional 

models for predicting inventory demand has not received 

a large number of scholars' argumentation. Therefore, the 
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study aims to combine least squares SVR and 

compressed perception denoising technology to construct 

a small and medium-sized enterprise inventory demand 

prediction model CSD-LSSVR with the goal of 

warehouse and distribution integration, providing a 

guarantee for intelligent inventory management in 

e-commerce enterprises in the future. 

 

Table 1: Summary table of related works 

Author Data set Main indicators Limitation Applicable scenarios 

Doszyń  
Intermittent demand 

data 
Average error 22% 

Systematically 

underestimating peak 

demand 

Stable demand mode 

Lukinskiy et 

al. 

Low demand product 

data 

Inventory cost 

reduced by 18 

Ignore the dynamic 

process of consumption 

Low frequency 

demand commodity 

Shariff et al. Retail Chain Data 

Inventory turnover 

rate increased by 

25% 

High sensitivity of 

parameters 

Multi level inventory 

system 

Rumetna et al. 
Mobile phone 

inventory data 
Accuracy rate of 82% 

Not considering 

external factors 

Electronic product 

inventory 

Nambiar et al. Multi retailer data 
Out of stock rate ↓ 

30% 

Accurate demand 

learning is required 

Distributed 

warehousing 

Han et al. 
Commercial logistics 

data 
MSE 89.4 Unstable training 

Multiple factors affect 

the scenario 

Kosenko et al. 
Fluctuating demand 

data 

Prediction error of 

15% 

Dependent on market 

factor analysis 

Large demand 

fluctuation scenario 

Aktepe et al. 
Engineering machinery 

data 
MAE76.5 

High computational 

complexity 
Multivariate prediction 

Sareminia 
Distribution network 

data 

40% reduction in 

error 

Need transportation 

network data 

logistics network 

planning 

Kmiecik 
Production material 

data 

Inventory level ↓ 

35% 

Sensitive to resource 

constraints 

Capacity limited 

environment 

3  Inventory demand forecasting 

model construction for integrated 

warehouse and distribution 

enterprises 

3.1 Inventory demand forecasts for 

integrated warehouse and distribution 

SMEs 

Logistics service enterprises must constantly 

improve their own warehouse and distribution 

management to enhance the service experience of 

e-commerce and consumers. Meanwhile, to improve the 

efficiency of logistics operation on the existing 

management level, it is necessary to increase the 

inventory, resulting in an increase in logistics costs 

[15-16]. Increasing inventory on the basis of existing 

logistics facilities leads to inventory pressure of logistics 

enterprises, thus affecting the efficiency of logistics 

services. The overall goal is to realize the integrated 

operation of multiple links of "warehousing + 

distribution", so as to maximize the core competitiveness 

and maximize the interests of e-commerce and logistics 

enterprises. Figure 1 refers to the overall objective of the 

integrated warehouse-distribution enterprise, which 

includes resource integration, process, management and 

information. The realization of inventory demand 

forecasting requires seamless integration and 

standardization, visualization and systematization of 

information data. The processes of the  

 

warehouse-distribution integration enterprise are order  

pre-processing, goods management, warehouse 

management and operations, sending and distribution, 

rejection and return and account clearing for upstream 

and downstream. The models of the enterprise include 

third-party warehouse distribution, third-party 

distribution seller warehousing and self-built warehouse 

distribution. 

The study analyses the inventory demand forecast 

for warehouse distribution integration SMEs, i.e. the 

third-party warehouse distribution inventory F demand 

forecast. At this stage, SMEs are characterized by tight 

and low utilization of warehouse resources, a wide range 

of logistics services and many difficulties in integration 

and collaboration. The principles of the inventory 

demand forecasting model are simplicity, applicability 

and accuracy. The influencing factors are consumers, 

logistics enterprises and e-commerce enterprises. 

However, there are large differences between inventory 

demand forecasting and actual demand in 

warehouse-distribution integration SMEs. Artificial 

intelligence forecasting models have excessive influence 

of parameter changes and are prone to fitting. The 

influence of market, seasonality and consumer demand 

on inventory demand can lead to high noise causing large 

forecasting errors. This study applies CSD-LSSVR to 

achieve the efficiency and accuracy of inventory demand 
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prediction for small and medium-sized enterprises with 

integrated warehouse and distribution [17]. The study 

selects a warehouse and distribution integration small 

and medium-sized enterprise in Sichuan a seafood 

customer daily order demand data as an example for 

analysis. A total of 775 experimental data were collected 

from April 3, 2019 to September 9, 2023. The selection 

of the above time period is based on a comprehensive 

consideration of industry characteristics and enterprise 

operational needs, which fully covers key business stages 

and ensures that the model can learn demand patterns in 

different market environments. Previous studies have 

shown that when the ratio of the training set to the test 

set is 4:1, the efficiency of inventory demand prediction 

is higher [18]. The research content includes comparing 

the performance of various machine learning models at 

different ratios, and the results show that a 4:1 ratio can 

ensure sufficient model training while leaving enough 

data for testing the model's generalization ability. 

Therefore, the study set the data ratio between the 

training set and the test set to be 4:1. The training set and 

test set obtain the learning machine model by training the 

training set data. The test set can be used to test the 

accuracy of the learning machine model. Table 2 refers to 

the raw data of the enterprise segment. The following 

factors should be considered for the selection of the 

sample data: the order quantity reflects the actual 

inventory demand of SMEs, and the daily data has more 

complex data characteristics than the weekly and 

monthly data, but also contains a large amount of noisy 

data. The training set data length is 2n , then an 

orthogonal sparse transformation matrix can be 

constructed. Orthogonal sparse transformation matrix can 

reduce high-dimensional raw data to lower dimensions, 

and make the reduced features orthogonal or uncorrelated 

with each other [19]. The choice of data length is 2n  

because data of this length can be efficiently processed 

by algorithms such as fast Fourier transform. It is crucial 

to retain most of the information of the original data. 

Therefore, it is an important tool that can extract key 

information and simplify the analysis process. By 

utilizing the orthogonal sparse transformation matrix, 

complex data features can be transformed into a form 

that is easier to understand and analyze, thereby more 

accurately reflecting the actual inventory needs of small 

and medium-sized enterprises. In addition, during the 

data preprocessing stage, the original data was first 

checked for integrity and a small number of missing 

values were found, accounting for approximately 2.1% of 

the total data. For missing values, linear interpolation is 

used to fill them in order to ensure the continuity and 

integrity of the time series. Subsequently, outlier 

detection was performed on the data, and the Z-score 

method was used to identify and correct obvious outliers. 

Finally, to eliminate the influence of dimensionality and 

improve model training efficiency, we normalized the 

data to the [-1,1] interval. 

Given that the data of inventory demand forecast for 

SMEs in warehouse-distribution integration is a time 

series, a smoothness test can be performed at the 

beginning of the time series forecast. If the original series 

is found to be non-stationary during the stationarity test, 

the original inventory demand sequence of the enterprise 

needs to be differenced. 
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Figure 1: The overall goal of warehouse distribution integration enterprise 

Table 2: Some original data of the enterprise 

Time 
Actual quality/kg 

Time 
Actual quality/kg 

Fresh eggs seafood Fresh eggs seafood 

2019-4-3 1152 536 2021-7-3 625 1025 

2019-5-3 854 625 2021-8-3 1225 1136 

2019-6-3 954 833 2021-9-3 608 764 

2019-7-3 889 1035 2022-4-3 708 702 

2019-8-3 1025 1243 2022-5-3 698 764 

2019-9-3 929 1012 2022-6-3 735 806 

2020-4-3 854 496 2022-7-3 1025 968 

2020-5-3 1258 634 2022-8-3 1658 1035 

2020-6-3 865 625 2022-9-3 815 883 

2020-7-3 925 867 2023-4-3 684 721 

2020-8-3 1048 1016 2023-5-3 1078 825 

2020-9-3 772 753 2023-6-3 824 936 

2021-4-3 758 621 2023-7-3 824 1462 

2021-5-3 948 705 2023-8-3 758 1273 

2021-6-3 650 876 2023-9-3 687 928 

 

3.2 CSD method and SVR 

According to the Nyquist sampling theorem, in 

order to avoid information loss, it is necessary to sample 

at least twice the highest frequency of the sampled signal. 

If the sampling frequency falls below this threshold, 

so-called aliasing phenomenon will occur, and the 

original signal cannot be accurately reconstructed. 

However, it is worth noting that CSD can directly obtain 

effective M  measurement values without the need to 

comply with the N  sampling values ( M N ) in the 

Nyquist sampling theorem. In the context of inventory 

demand forecasting, time series data are typically 

processed, which may contain significant cyclical 

changes such as seasonal demand fluctuations. 

Accurately sampling these data is crucial for capturing 

these periodic changes and avoiding information loss. If 

the sampling frequency is insufficient, key changes may 

be missed, resulting in the prediction model's inability to 

accurately reflect the actual inventory demand. The CSD 

method mainly includes three parts: sparse representation, 

random sampling, and signal recovery. For the sparse 

representation, the signal can be referred to by some 

basis function. From a mathematical point of view, the 

effective long substantial signal vector is ''X R  and 

an orthogonal basis of ''R  is set 

to
 

1
, 1,2,...,

n

i
i n

=
 =  =

. Then the signal ''X R  can 

be linearly represented by equation (1). 

1

n

i i

i

X s
=

=      (1) 

In equation (1), the i coefficient of X is is , which 

is calculated by equation (2). 

,i is X=      (2) 

By sparse representation, X can be expressed 

by i .  is a matrix whose column vector is n n . The  

 

 

sparse coefficient S can be considered as sparse when 

most elements of is are zero. If the signal ''X R  is 

sparse under an orthogonal basis, the sparse 

coefficient S can be expressed as in equation (3). 
TS X=      (3) 

For random sampling, is a one-dimensional 

observation matrix, which is different from the 

transformation base . The matrix is set up to measure 

the sparse coefficients and also to obtain the observation 

vector S . The observation vector is obtained by 

transforming sparse coefficients with a random sampling 

matrix, representing randomly selected samples from the 

original signal. It contains key information of the original 

signal, but may also contain noise. The sparse 

transformation basis used in the study is the Discrete 

Cosine Transform (DCT)-II. The core idea of DCT-II is 

to fit and represent existing data or signals through a 

series of cosine functions (which are selected basis 

functions). These cosine functions have different 

frequencies and can be represented one by one from low 

to high frequencies [20-21]. In research, using DCT-II as 

a sparse transformation basis helps to capture and 

analyze key information in the data. The observation 

matrix is a random Gaussian observation matrix. 

Equation (4) is the calculation formula of the whole 

perception process. 

0
min ,T TX S X =      (4) 

According to equation (4), it reflects the application 

of compressive sensing theory in inventory demand 

forecasting, which transforms complex business demands 

into computable optimization problems through 

mathematical modeling; The model can fully preserve 

the core business cycle that affects inventory decisions 

during data compression, providing a concise and 

semantically rich feature representation for subsequent 
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predictions. The signal recovery during the perception 

process is achieved through the commonly used 

reconstruction algorithm - orthogonal matching tracking. 

The Orthogonal Matching Tracking (OMP) algorithm is a 

greedy algorithm that selects the atom that best matches 

the residual residue from the perception matrix A during 

each iteration to construct a sparse signal and calculate a 

new residual residue [22]. The atomic selection criteria 

are as follows: Firstly, in each iteration, the algorithm 

searches for the dictionary atom that is most relevant to 

the current residual vector. The second is that once an 

atom is selected, the algorithm updates the residual by 

projecting it onto the selected atom and subtracting this 

projection from the residual. Thirdly, in each iteration, 

the algorithm only adds one atom to the solution until a 

certain stopping criterion is met, such as reaching the 

predetermined number of iterations or having a 

sufficiently small residual. The estimation of the 

reconstructed signal ˆ
tS  

by OMP is shown in equation 

(5). 

( )
1ˆ arg min

t

T T

t t t t t tS y S y


−

= − =A A A A       

(5) 

In equation (5), A  is the perception matrix and y  

is the observation vector. The research proposes a model 

based on the combination of compressed perception 

denoising and artificial intelligence algorithms, namely 

the compressed perception denoising artificial 

intelligence prediction model. It is planned to use SVR, a 

typical artificial intelligence prediction algorithm and its 

variant algorithm, for inventory demand prediction. SVR 

is an application of Support Vector Machine (SVM) to 

regression problems. SVM was proposed to solve the 

problems of small sample, nonlinear, and 

high-dimensional pattern recognition [23]. In machine 

learning, it is mainly applied to classification and pattern 

recognition. The use of  −  insensitive loss function in 

SVR algorithm has better performance than SVM in 

regression problems. The core idea of the insensitive loss 

function is that only when the error between the 

predicted value and the actual value exceeds a preset 

threshold  , will the error be penalized. This design has 

the following advantages: Firstly, it can filter out data 

points with small differences in erroneous inventory 

demand forecasting, avoiding overfitting of the model to 

these small errors. The second advantage is to simplify 

the complexity of the model, which is only considered 

when the error exceeds  . This allows the model to 

process data more efficiently during training, reducing 

unnecessary computational overhead. The study chooses 

the orthogonal matching tracking algorithm to complete 

signal recovery. Insensitive loss function   is used in 

SVR, which has better results than SVM in regression 

problems. SVM maximizes the distance to the nearest 

sample point by constructing a hyperplane; SVR 

minimizes the distance to the farthest sample point by 

constructing a hyperplane. The SVR constructs a 

hyperplane to minimize the distance from the farthest 

sample point to the hyperplane. Figure 2(a) and Figure 

2(b) show the diagrams of SVM and SVR respectively. It 

can be observed that the goal of SVM is to find a 

hyperplane that can separate data points of different 

categories and keep them as far away as possible from 

support vectors of any category. This hyperplane is called 

the optimal segmentation hyperplane, which maximizes 

the boundary between two types of data points. For SVR, 

the goal is to find a hyperplane that best fits the data 

points while maintaining the boundaries between the 

hyperplane and the data points. The system should allow 

data points to fluctuate within a certain range of the 

hyperplane without them being considered as errors. The 

error will only be calculated when the distance between 

the data point and the hyperplane exceeds the threshold. 

This method allows SVR to have some flexibility in 

fitting data, thereby improving the model's generalization 

ability. 

The basic principle of SVM is equation (6). 

 

( )

21
min

2

. . 1i i

w

s t y wx b i




 +  

    (6) 

 

b

wx+b=-

1
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Support 
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Voctor
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Figure 2: Schematic diagram of SVM and SVR 

In equation (6), ix and iy refer to an input and a 

category in the sample data set respectively, i  refers to a 

sample data, ( )1, , pw w w= represents the normal 

vector of the hyperplane, b refers to the offset, 

and 1, ,i l= . The basic principle of SVR is equation 

(7). 

 

( )

21
min

2

. . i i

w

s t y wx b i




 − +  

       (7) 

 

The SVM is approved by the kernel function to 

solve multi-dimensional problems through non-linear 

transformation to minimize the obstacles arising from 

dimensionality problems to the greatest extent. It can also 

prevent local extremes and over-learning problems of 

neural network methods. However, the method is more 

difficult for situations such as large-scale samples or 

small sample conditions and signals with rich frequency 

information [24]. The SVR algorithm is chosen as the AI 

prediction algorithm in the study. The basic process of 

the SVR algorithm is as follows. First, a linear regression 

function is constructed in the high latitude space. The 

study sets the training set 

as ( ) ( )  ( )1 1, , , ,
l

n

i iT x y x y R Y=   , n

ix R ,

iy Y R = . Equation (8) refers to the calculation 

formula of the linear regression function. 

 

( ) ( )f x w x b=  +
      (8) 

 

In equation (8), ( )x is the nonlinear mapping 

function. Then, appropriate parameters are selected, 

including the kernel function ( ),K x x
,accuracy 0  , 

and the penalty parameter 0C  . The specific selection 

process is as follows: First, it establishes a 

three-dimensional parameter space containing Gaussian 

kernel function bandwidth of [0.1,10], regularization 

parameter of [0.01100], and insensitive loss function 

threshold of [0.05,0.2], and it evaluates the performance 

of each parameter combination on the training set 

through 5-fold cross validation. The optimization 

objective function is the weighted sum of MSE and the 

number of support vectors (weight ratio 7:3) to ensure a 

balance between prediction accuracy and computational 

efficiency of the model. The final selected parameter 

combination is as follows: Gaussian kernel bandwidth of 

1.2, regularization parameter of 0.3, and insensitive loss 

function threshold of 0.1. Secondly, construct and solve 

convex quadratic programming problems, as shown in 

equation (9). 

 

( )
2 *

1

1
min

2

l

i i

i

w C  
=

+ +       (9) 

 

In equation (9), 
i

 and *

i
 are relaxation 

variables. 
i  

is the difference between the projection of 

the sample point above the upper edge of the isolation 

strip and the value of the sample point, while *

i
 is the 

difference between the projection of the sample point 

below the lower edge of the isolation strip and the value 

of the sample point. Then, calculate the deviation vector 

b . Finally, a regression function is constructed. The 

commonly-used kernel functions in SVR include 

polynomial kernel functions and Gaussian radial basis 

kernel functions. The calculation formula for polynomial 

function ( ), 'K x x of order d is given by equation (10). 

 

( ) ( ), ' , '
d

K x x x x=         (10) 

 

The formula for anon-flush polynomial function 

of d order is equation (11). 

 

( ) ( )( ), ' , ' 1
d

K x x x x= +         (11) 

 

Homogeneous polynomial functions exhibit better 

stability, but their performance may be limited when 

dealing with complex data. In contrast, 

non-homogeneous polynomial functions can handle 

complex mathematical models more flexibly, thus 

exhibiting certain advantages when dealing with highly 

nonlinear data. However, non-homogeneous polynomial 

functions may introduce higher computational costs and 

overfitting risks. 

3.3 CSD-LSSVR model construction 

The SVM model has strong non-linear capability, 

which can be better applied to inventory demand 

forecasting for warehouse-distribution integration 

compared with other methods. The study selects the SVR 

model for inventory demand forecasting. To overcome its 

limitation of long training time, the compressed sensing 

denoising method is used to denoise the original data. 

The processed data are input the SVR model for training 

and learning and output the forecasting results. The 

LSSVR regression model consists of an input layer, an 

implicit layer and an output layer. The LSSVR regression 

model converts complex convex quadratic programming 

problems into linear equations for solution, thus reducing 

the modelling parameters and also improving the 

computational efficiency [25-26]. The study sets the 

training sample set for the LSSVR algorithm 

to ( ) , '',i i i iV y V R y R = =  . The optimization 

problem ( )
, ,

min , i
w b

J w


 in equation (12) needs to be 



350   Informatica 49 (2025) 343–358                                                                                   D. Li et al. 
 

solved. 

 

( )

( )

2 2

, ,
1

1 1
min , . .

2 2

l

i i
w b

i

i i

J w w s t y

w V b


  

 

=

= +

=  + +


     (12) 

 

In equation (12), the regularization parameter is  ; 

the fit error of the regression hyperplane is i . To 

facilitate the solution, equation (12) can be converted 

into a pairwise problem and constructed as a Lagrange 

function in equation (13). 

 

( ) ( )

( ) 
1

, , , ,

l

i i i i

i

L w b a J w

a w V b y

 

 
=

=

−  + + −
  (13) 

 

In equation (13), ia refers to the Lagrange multiplier. 

The Lagrange function can be derived based on the 

Karush-Kuhn-Tuchker condition and simplified by 

expressing it as a linear system of equations. Below, a 

simple optimization problem is used as an example to 

explain the KKT condition. Suppose there is a linear 

programming problem with the goal of minimizing a 

function while satisfying some linear constraints. Under 

certain conditions, some solutions may satisfy all 

constraints, but not the optimal solution. However, if a 

solution not only satisfies all constraints but also satisfies 

the KKT condition, then it can be concluded that the 

solution is the optimal solution. In the current problem, 

the study uses KKT conditions to obtain the optimal 

solution of LSSVR. The goal of the solution is to find a 

set of Lagrange multipliers that minimize the Lagrange 

function in equation (11). Due to the fact that the 

Lagrangian function satisfies the KKT condition, when 

this function is minimized, the optimal solution to the 

problem is found. Figure 3 is a schematic diagram of the 

CSD-LSSVR model applied to warehouse-distribution 

integration SMEs inventory demand forecasting. Firstly, 

the raw data with noise characteristics is input, while the 

data is denoised by the CSD method to obtain the 

denoised data. Then, the denoised data are entered into 

the LSSVR algorithm and solved by MATLAB 2014a 

and LIBSVM-3.23 to obtain the final prediction results 

[27-28]. The CSD LSSVR model is fitted using the 

LIBSVM toolkit, and the optimal parameters are 

determined using grid search method. Then, the entire 

training set is trained with the optimal parameters to 

obtain the model and tested and predicted. The grid 

search method can be directly performed by cross 

validating the parameters of the estimation function in 

LIBSVM software. The study adopts a direct prediction 

strategy. Given a time series, the values are calculated to 

predict several steps forward. Next, the model 

forecasting results are evaluated using evaluation 

indicators. Based on the forecasting of inventory demand 

in the e-commerce environment, the evaluation indicators 

chosen for the study are the relative error RE , the mean 

absolute error (MAE), the mean squared error estimate 

and the directional statistic [29]. The formula for 

calculating the relative error RE is equation (14). 

 

j i iRE x x x= −       (14) 

 

In equation (14), jx is the other sample data. The 

formula for calculating MAD is equation (15). 

1
ˆ

n

i ii
MAD x x n

=
= −      (15) 

 

In equation (13), n  is the number of samples; ˆ
ix  

is the mean of the sample data. The mean squared error 

estimate MSER is equation (16). 

 

( )
2

1

1
ˆ

n

MSE i ii
R x x

n =
= −      (16) 

 

The directional statistic statD calculation method is 

equation (17). 

 

1

1
100%

n

stat t

i

D a
n =

=       (17) 

 

In equation (17), when ( )( )1 1 0i i ix x x x+ +− −  , 

then 1ta = . Otherwise, the value of ta is 0. Finally, the 

evaluation results are fed back to the LSSVR prediction 

model to identify the limitations of the model and make 

targeted improvements to the model. 
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Figure 3: Schematic diagram of the CSD-LSSVR model 

applied to the demand forecast of SMEs inventory in 

warehouse distribution integration 

4  Results of the CSD-LSSVR model 

inventory demand forecasting for 

SMEs 
To better analyse the inventory demand forecasting 

results of the CSD-LSSVR model for SMEs, the research 

analyzed the stationary demand sequence, LSSVR model 

preprocessing results and algorithm performance 

respectively. The LSSVR model adopted a direct 
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prediction strategy to process time series data, as follows. 

Firstly, it performed stationarity testing and differencing 

on the original inventory demand data, and then 

normalized the data to the range of (-1,1) to improve 

model training efficiency and prediction accuracy. 

During training, the model minimized prediction error 

based on input-output data and learned the mapping 

relationship between the two. After training, new input 

data were predicted to obtain future demand forecast 

values. The hardware environment used for the study was 

Intel I7-4790, NVDIA GTX1050TI. Operating system 

was Windows 10 64-bit; framework was Django; server 

was Nginx; database was SQLite; language was Python. 

The process of preprocessing inventory demand data 

using CSD method was as follows: First, the original 

signal was represented as a linear combination of some 

orthogonal basis function, where most of the coefficients 

were zero or close to zero, in order to capture the main 

features of the data and ignore noise components. 

Subsequently, by sampling the sparse signal with a 

random Gaussian matrix, effective measurement values 

were directly obtained without violating the Nyquist 

sampling theorem, reducing data dimensionality while 

preserving key information. Finally, the orthogonal 

matching tracking algorithm was used to reconstruct the 

sampled signal, and the original signal was gradually 

restored by iteratively selecting the atom that best 

matches the residual. By setting an appropriate sparsity 

threshold to remove noise components, a more accurate 

inventory demand signal was restored. Figure 4(a) and 

figure 4(b) refer to the original inventory demand 

sequence and the differentially processed smooth demand 

sequences. The raw data represented in Figure 4(a) can 

only represent the actual demand booked by the customer. 

The change of these raw data is not directly related to the 

time, and cannot infer the customer's actual demand. 

Compared with Figure 4(a) and Figure 4(b), after the 

original inventory demand sequence of the enterprise is 

processed by the stability test, the value range of 

inventory demand is (-1,1), which can be used to forecast 

the inventory demand of SMEs with higher accuracy. 

Normalizing inventory demand data to the range of (-1,1) 

is to ensure the stationarity and consistency of the data. 

Through standardization, inventory demand data at 

different time points can be converted to the same scale, 

thereby improving the prediction accuracy of the model. 

Table 3 shows some processing results under the 

direct prediction strategy of LSSVR model. There is no 

obvious rule between the positive and negative values of 

input and output. The value range of 1
x is -0.2847-0.5461; 

the value range of 2
x is -0.5214-0.4125; the value range 

of 3
x is -0.5471-0.4148; the 4

x is -0.5417-0.4015; the y is 

-0.4658-0.4015.
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Figure 4: The original inventory demand sequence and the stable demand sequence after difference processing 

 

Figure 5(a) shows the relationship between the 

signal recovery error and the number of samples. There 

was a direct correlation between the size of the number 

of samples and the signal recovery error of the 
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compressed sensing algorithm. If the number of samples 

is too small, the signal recovery will take longer, which 

will result in a higher error. When the number of samples 

is too large, the time required for signal recovery will 

increase, which will reduce the efficiency of the 

algorithm. The increase in error may be due to the 

inherent characteristics of the data, such as noise and 

nonlinearity, which interfere with the recovery process of 

the algorithm. Figure 5(b) shows the performance of the 

orthogonal matching tracking algorithm for different 

numbers of iterations. The accuracy of the algorithm 

gradually increased with the number of iterations. When 

the number of iterations was about 100, the highest 

accuracy value was 99.85%. After the number of 

iterations exceeded 100, the performance of the 

orthogonal matching tracking algorithm no longer 

fluctuated to a large extent, but gradually tended to a 

stable state. The optimal number of iterations for the 

orthogonal matching tracking algorithm was 100, and the 

maximum iteration number could be set to 150 during the 

experiment, so as to improve the operational efficiency 

of the algorithm. This was because the orthogonal 

matching tracking algorithm is a greedy algorithm that 

constructs sparse signals by gradually selecting the atoms 

that best match the residuals. As the number of iterations 

increased, the algorithm gradually approached the 

optimal solution. When the number of iterations reached 

100, the algorithm found a sparse representation that was 

close enough to the real signal, balancing computational 

efficiency and reconstruction accuracy, and avoiding 

unnecessary resource consumption. 

Figure 6 refers to the influence of different 

parameters of the CSD-LSSVR model on the prediction 

results. Figure 6(a) and Figure 6(b) refer to the 

performance of the model when the regularization 

parameter was taken as 0.3 and 0.5 respectively. From 

the figures, the errors of both LSSVR and CSD-LSSVR 

models kept decreasing as the data size increased. When 

the data size reached about 25, the model tended to be 

stable. However, the accuracy showed the opposite 

pattern of change. The convergence errors of the LSSVR 

and CSD-LSSVR models were 0.156 and 0.278 

when  was taken as 0.3; the accuracy was 97.58% and 

95.21% respectively. When  was taken as 0.5, the 

convergence errors for the LSSVR and CSD-LSSVR 

models were 0.215 and 0.498 respectively; the accuracy 

was 96.12% and 93.21% respectively. Therefore, the best 

performance of both LSSVR and CSD-LSSVR models 

was achieved when the regularization parameter  was 

taken as 0.3. 

 

Table 3: Partial processing results under LSSVR model direct prediction strategy 

Input value ( 1
x ) Input value ( 2

x ) Input value ( 3
x ) Input value ( 4

x ) Output Value ( y ) 

-0.2847 -0.2871 -0.5471 0.3214 -0.0877 

-0.0526 -0.5214 0.3214 -0.0908 0.1758 

0.5461 0.1756 -0.0874 0.1741 -0.4658 

0.2514 0.1658 0.1745 -0.4658 -0.2248 

0.4120 -0.5241 -0.4655 -0.5417 0.4015 

-0.098 0.4125 0.4148 0.4015 -0.0958 

0.0089 -0.0958 0.3457 -0.0948 0.3546 

0.1742 -0.1925 0.0014 0.3457 0.0087 

0.3258 -0.1324 -0.1948 0.0087 -0.1958 

0.4987 0.0087 0.1231 -0.1985 -0.1314 

0.4015 0.3247 -0.2451 -0.1324 -0.2245 
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Figure 5: Signal recovery error and performance of orthogonal matching pursuit algorithm with different iterations 
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Table 4 shows the evaluation results of the SMEs 

inventory forecasting model, covering both the training 

and test sets. The results of the test set showed that 

the RE , MAD , MSER and statD of the CSD-LSSVR 

forecasting model outperformed the other forecasting 

models, with values of 0.0687, 58.651, 72.16 and 0.712 

respectively. Next one was the CSD-SVR forecasting 

model, with corresponding values of 0.0897, 76.587, 

87.02 and 0.685 respectively. The SVR forecasting 

model had the worst performance with corresponding 

values of 0.1214, 107.37, 112.21 and 0.435 respectively. 

The results of the validation set were similar to those of 

the test set. The CSD-LSSVR prediction model had 

better RE , MAD , MSER and statD , followed by the 

CSD-SVR prediction model, and the SVR prediction 

model had the worst performance. Predicting inventory 

and demand markets plays an important role in the 

sustained development and improvement of the supply 

chain [30]. The research results in reference [31] indicate 

that using machine learning algorithms for predicting 

future demand of enterprises is relatively advanced, 

which coincides with the research results. Reference [32] 

also indicates that BP neural networks have poorer 

prediction efficiency compared to SVR models due to 

their own shortcomings. In addition, according to 

statistical results, the confidence interval of the test set 

reflected the stable performance of the model on 

unknown data, and the CSD-LSSVR model exhibited 

significantly superior performance. The 95% CI upper 

limit of CSD-LSSVR in all indicators of the test set was 

still better than the lower limits of other models 

(p<0.001). The MSE interval width showed that 

CSD-LSSVR was 28% more stable than SVR. 

Meanwhile, although the running time of the research 

method was slightly longer, the inventory cost savings 

brought by its improved prediction accuracy could offset 

the computational costs, and it still met the real-time 

requirements of enterprises with a prediction delay 

threshold of less than<5ms/time. 
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Figure 7: Prediction results of different prediction models in the test set 

 

Figure 7(a) refers to the forecasting results of 

different forecasting models in the test set. Compared 

with other forecasting models, the CSD-LSSVR 

forecasting model was closer to the actual inventory 

demand. The difference range between the predicted 

inventory demand of CSD-LSSVR and the actual 

inventory demand was 6-47kg. Figure 7(b) shows the 

forecasting results of the different forecasting models in 

the training set. The difference range between the 

predicted inventory demand of the CSD-SVR model and 

the actual inventory demand was 11-43kg; The difference 

between the predicted inventory demand of the LSSVR 

model and the actual inventory demand ranged from 

28-98kg; The difference between the inventory demand 

predicted by the SVR model and the actual inventory 

demand ranged from 28-98kg; The difference between 

the inventory demand predicted by the SVR model and 

the actual inventory demand ranged from 35-325kg. 

From the prediction results of the training and testing sets, 

the CSD-SVR model had a smaller gap between the 

predicted inventory demand and the actual demand, and 

its prediction effect was better. In the context of 

integrated e-commerce warehousing, enterprises can 

make reasonable replenishment based on the predicted 

inventory demand results of the model, avoiding 

inventory backlog or shortage, and providing inventory 

guarantee for real-time delivery. 

5  Discussion 
The CSD-LSSVR model proposed in the study 

demonstrated significant advantages in the field of 

inventory demand forecasting, and its performance 

improvement was attributed to various technological 

innovations and rigorous data processing. Firstly, in 

terms of model scalability, this method demonstrated 

good computational efficiency. When the data volume 

increased from 775 to 5000, the training time only 

increased from 382ms to 1.8s, and the memory usage 

increased from 124MB to 512MB. This sublinear growth 

characteristic made it suitable for the actual needs of 

most small and medium-sized enterprises. It is worth 

noting that the improvement in model performance was 

not only reflected in computational efficiency, but also in 

its systematic handling of data bias. In response to the 

2.1% missing values and 3.7% outliers in the original 

data, the study adopted time series linear interpolation 

and Z-score correction methods. Especially for the 

seasonal imbalance problem in demand, the study 

innovatively introduced seasonal weight factors in the 

loss function, which significantly improved the 

robustness of the model. 

Compared with existing methods, the MAE of 
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CSD-LSSVR on the test set was significantly better at 

58.65 compared to traditional SVR at 107.37 and BP 

neural network at 89.42. This advantage was mainly due 

to two key designs. Firstly, CSD denoising technology 

effectively improved the signal-to-noise ratio and 

preserves key frequency domain features; Secondly, 

LSSVR transformed quadratic programming problems 

into linear solutions, effectively improving computational 

efficiency. Of particular note is that the model exhibited a 

characteristic of decreasing error with increasing data 

volume, and tended to stabilize when the sample size 

exceeded 25, which perfectly confirmed the Vapnik 

Chervonenkis theory. In terms of parameter optimization, 

the research found that 0.3 =  was the optimal choice. 

A value that is too small can lead to underfitting, while a 

value that is too large can lead to overfitting. This finding 

provided important guidance for modeling inventory 

data. 

Although deep learning models such as LSTM 

performed well in the field of time series prediction, 

there were three key constraints in the application 

scenario of this study. Firstly, the average historical data 

of the target enterprise were less than 1000, which made 

it difficult to meet the training needs of deep learning 

models. Secondly, the actual deployment environment 

usually only had CPU computing resources. Thirdly, 

there was a high requirement for the interpretability of 

the model. Experimental data showed that under the 

same amount of data, the MAE of LSTM was 15% 

higher than that of CSD-LSSVR, and the training time 

was six times longer. 

In summary, the CSD-LSSVR model performed 

well on small and medium-sized datasets and could 

effectively solve the problems of data noise and 

prediction accuracy in inventory demand forecasting for 

small and medium-sized enterprises in warehouse and 

distribution integration. Future research can further 

explore the scalability of the model on large-scale 

datasets and introduce more feature variables to enhance 

the model's generalization ability. 

6  Conclusion 
To achieve inventory demand prediction for small 

and medium-sized enterprises with integrated warehouse 

and distribution, this study constructed a CSD-LSSVR 

prediction model and used instance data for simulation 

and analysis. As the number of samples increased, signal 

recovery error varied from unstable to gradually 

decreasing and finally reached a convergence value of 

0.458 when the number of samples was 60. The accuracy 

of the orthogonal matching tracking algorithm increased 

slowly with the number of iterations. When the number 

of iterations was about 100, the accuracy was about 

99.85%. The convergence errors of the LSSVR and 

CSD-LSSVR models were 0.156 and 0.278 when  was 

set to 0.3; the accuracy was 97.58% and 95.21% 

respectively. When  was taken as 0.5, the convergence 

errors of the LSSVR and CSD-LSSVR models were 

0.215 and 0.498 respectively; the accuracy was 96.12% 

and 93.21% respectively. Testing the training and test set 

results showed that the CSD-LSSVR forecasting model 

was closer to the actual inventory demand. The training 

set results showed that the inventory demand prediction 

error range was 6-47 kg. The inventory demand error for 

the CSD-SVR prediction model was 8-36 kg; the error 

value range of inventory demand of LSSVR forecast 

model was 19-54kg. The error range of inventory 

demand for SVR prediction model was 28-274 kg. The 

above results indicated that the research method could 

effectively address the common problems of limited data 

samples and high noise in small and medium-sized 

enterprises, providing feasible technical solutions for 

resource constrained enterprises. In summary, the 

research method could provide reliable inventory 

demand forecasting for small and medium-sized 

enterprises, which was suitable for those engaged in 

e-commerce operations, especially those enterprises that 

rely on integrated warehousing and distribution models, 

such as small and medium-sized enterprises in industries 

such as fresh food and daily necessities. The 

CSD-LSSVR prediction model used the grid search 

method for parameter optimization, but due to the 

limitations of the grid search method itself, it was easy to 

cause the LSSVR algorithm to "over learn" and "under 

learn", resulting in poor prediction accuracy of the model. 

To address the above issues, further research in the future 

could consider improving the direction by introducing 

deep learning techniques to better handle complex 

patterns and long-term dependencies in time series data, 

thereby further enhancing prediction accuracy. The 

second is to optimize computational efficiency, such as 

through parallelization and other methods, to shorten the 

training and prediction time of the model, making it more 

suitable for large-scale datasets and real-time prediction 

scenarios. These improvements will provide stronger 

technical support for inventory management of small and 

medium-sized enterprises in an integrated warehouse and 

distribution environment. 
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