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The problem of inventory demand forecasting is an urgent issue in the development of
warehouse-distribution integrated small and medium-sized enterprises (SMEs), which is of great
importance to meet the sales demand of customers and significantly reduce distribution costs. The study
describes the inventory demand problem of small and medium-sized enterprises. Based on the analysis
of compressive sensing denoising methods and manual prediction methods, a prediction model is
constructed using LSSVR and CSD algorithms. The study conducts an experiment using real order
demand data of seafood customers from a small and medium-sized enterprise integrating warehouse
and distribution in Sichuan Province from April 3, 2019 to September 9, 2023, with a total of 775
records. The training and testing sets are divided in a 4:1 ratio. Data preprocessing includes filling
missing values using linear interpolation, detecting and correcting outliers using Z-score method, and
normalizing the data to the [-1,1] interval. The experimental results show that on the test set, the
relative error (RE) of the CSD-LSSVR model is 0.0701, the mean absolute error (MAE) is 58.258, the
mean square error (MSE) is 70.12, and the directional statistic (DS) is 0.688; The RE of the traditional
SVR model is 0.1214, MAE is 106.25, MSE is 112.25, and DS is 0.435. This indicates that the
CSD-LSSVR model significantly improves prediction accuracy and stability. The above results indicate
that the CSD-SVR prediction model performs better in inventory demand forecasting. This model can be
applied to predict inventory demand for small and medium-sized enterprises, providing more
possibilities for the efficient development of e-commerce enterprises.

Povzetek: Za inteligentno napovedovanje potreb po zalogah in zmanjSanje stroskov distribucije v MSP
e-trgovine je razvit CSD-LSSVR. Zdruzuje kompresijsko zaznavanje in odstranitev Suma z metodo
najmanjsih kvadratov podpornih vektorjev (LSSVR).

1 Introduction

The emerging new e-commerce model in recent
years promotes the transformation and upgrading of the
logistics industry. With the advantages of service quality,
efficiency and cost, the warehouse-distribution
integration mode has become the innovation mode of
traditional logistics enterprises. It is critical for logistics
enterprises to realize the refined management of
warehousing and distribution. There are some solution
models on warehouse and distribution models at home
and abroad. However, the research is still preliminary
exploration stage, and has not formed a scientific system
[1-2]. Meanwhile, for the prediction of enterprise
inventory demand, the research direction of most
researchers can be divided into two types: artificial
intelligence model and traditional model. While a few
scholars mix the two models for analysis. The relatively
mature research direction is mixed back propagation (BP)
neural network and other artificial intelligence prediction
models [3-4]. Compared with data processing methods
such as Kalman filtering and wavelet transformations,
denoising algorithms can prevent the loss of data
information through sparse basis transformation.

Meanwhile, Support Vector Regression (SVR) has more
apparent advantages than BP neural network in data
sample classification. The current research has the
following problems. Firstly, traditional inventory demand
forecasting methods such as exponential smoothing and
moving average often have significant prediction errors
when dealing with data with large demand fluctuations
and obvious seasonality, which makes it difficult to meet
the needs of enterprises for refined inventory
management. Secondly, in practical applications,
inventory demand data is often affected by various
factors such as market fluctuations, promotional
activities, seasonal changes, etc., resulting in a large
amount of noise in the data. Thirdly, existing artificial
intelligence prediction models, such as BP neural
networks and standard SVR, are prone to overfitting or
underfitting when dealing with small sample and
nonlinear  problems,  resulting in  insufficient
generalization ability of the model and difficulty in
adapting to the actual needs of different enterprises.
Therefore, this study constructs a novel compressed
sensing denoising least squares support vector regression
(CSD-LSSVR) model to improve the accuracy of
inventory demand prediction for warehouse and
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distribution  integrated  logistics enterprises. The
integration of warehousing and distribution represents a
supply-chain operation model that achieves a seamless
connection among warehousing management, order
processing, transportation, and distribution. This is made
possible through in-depth collaboration between
information systems and operational processes, ensuring
a highly coordinated and efficient supply-chain flow.

2 Related work

Warehouse management in integrated small and
medium-sized enterprises plays a crucial role in the
long-term development of e-commerce enterprises. In the
case of unknown demand, accurately predict the
inventory demand of enterprises and make timely
replenishment to prevent inventory shortage or overstock,
which is the key for enterprises to control costs and
improve efficiency. Doszyn compared the primary
exponential smoothing method, the moving average
method and the traditional inventory forecasting methods
such as the correction method and the sampling method
respectively. The results showed that the primary
exponential smoothing method and the moving average
method have many shortcomings in forecasting
compared to other forecasting methods. The exponential
smoothing and moving average methods have many
shortcomings in forecasting compared to other
forecasting methods [5]. The study payed special
attention to the phenomenon of "smoothing bias" and
discovered that traditional methods systematically
underestimated peak demand by 18-22%, which
prompted the adoption of the CSD-LSSVR model to
enhance the ability to capture sudden demand changes.
Lukinskiy et al. found that existing clustering methods
cannot identify consumption process dynamics, and
therefore cannot be wused for classification and
improvement of inventory consumption prediction
models. In response to this issue, they proposed an
integrated time series prediction model and an algorithm
for estimating inventory prediction parameters, and
confirmed the effectiveness of this study in reducing
supply chain costs through experiments [6]. Through
sensitivity analysis, Shariff et al. improved parameters
such as inventory reconciliation cycle, distribution time,
demand forecast weights and safety stock days to obtain
an optimised chain retail multi-level inventory system
dynamics model. The experimental results showed that
the model effectively reduced the amount of inventory in
the enterprise, improved inventory turnover efficiency
and reduced inventory costs [7]. Rumetna et al. designed
an inventory prediction information system based on
waterfall and exponential smoothing methods for a
mobile phone manufacturer's inventory flow and
management issues. The system will be used to predict
the appropriate inventory quantity ordered by the
company to meet customer needs [8].

Nambiar et al. proposed a demand forecasting
framework that facilitates dynamic inventory allocation
for multi cycle inventory allocation in both single
warehouse and multi-retailer environments. It ultimately
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confirmed the asymptotic optimality of the method by
using Lagrange relaxation technique [9]. Han et al.
constructed an enterprise logistics inventory prediction
model, using BP neural network to analyze the
relationship between inventory demand and various
influencing factors. The model testing results verified the
effectiveness of the model and provided appropriate
theoretical guidance for predicting the actual demand of
logistics inventory. The influencing factors included
market demand, seasonal changes, promotional activities,
etc. [10]. Kosenko et al. systematically analysed models
of supply logistics in the context of demand fluctuations,
including models of supply logistics processes, models of
product demand forecasting and models for calculating
the optimal order quantity for various demand options.
The proposed information technology was able to
analyses and forecast changes of major market factors,
and effectively solve the inventory management tasks
according to the results obtained [11]. Aktepe et al.
compared the application of SVR, artificial neural
networks, multiple linear regression, and multiple
nonlinear regression methods in inventory demand
forecasting. The input variables of the model included
the company's sales revenue in the past few years, global
sales volume of construction machinery, US dollar
exchange rate, and monthly impact rate. The prediction
accuracy was estimated through the system parameter
design of artificial intelligence methods. The prediction
results showed that compared with traditional regression
methods, SVR and artificial neural networks had better
prediction results [12]. Kmiecik et al. studied the
logistics problem of enterprise distribution networks
based on machine learning algorithms and artificial
neural networks, taking into account manufacturer
demand planning and traffic network characteristics. The
results showed that the improved algorithm could
effectively predict the demand of the distribution
network, and the prediction error value was small [13].
Xu G proposed an inventory production material
planning model driven by customer demand and
combined it with the demand planning concept of grey
wolf optimization algorithm. The results indicated that
this optimization method could effectively achieve
capacity allocation, optimize inventory levels, and
improve production levels in resource constrained
situations. This model paid special attention to the
dynamic changes in customer demand and used it as a
key input for prediction and planning [14]. The summary
table of the relevant works mentioned above is shown in
Table 1.

According to the relevant analysis of inventory
demand prediction by most scholars both domestically
and internationally, it can be found that with the rise of
artificial intelligence algorithms, many scholars have
proposed inventory demand prediction models for
different environments. However, although these
prediction models can achieve predictions to a certain
extent, their prediction accuracy is not ideal. Meanwhile,
the hybrid model of artificial intelligence and traditional
models for predicting inventory demand has not received
a large number of scholars' argumentation. Therefore, the
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study aims to combine least squares SVR and
compressed perception denoising technology to construct
a small and medium-sized enterprise inventory demand
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warehouse and distribution integration, providing a
guarantee for intelligent inventory management in
e-commerce enterprises in the future.

prediction model

CSD-LSSVR with the goal of

Table 1: Summary table of related works

Author Data set Main indicators Limitation Applicable scenarios
: Systematically
Doszyn Intermltgezg;demand Average error 22% underestimating peak Stable demand mode
demand

Lukinskiy et Low demand product Inventory cost Ignore the dynamic Low frequency

al. data reduced by 18 process of consumption demand commodity
Inventory turnover . sl . .
Shariff et al. Retail Chain Data rate increased by High sensitivity of Multi level inventory
2504 parameters system

Rumetna et al. _I\/Iobﬂe phone Accuracy rate of 82% Not considering EIecFronlc product
inventory data external factors inventory
Nambiar et al. Multi retailer data Out of stock rate | Accgrat(_e dema_nd Dlstrlbutgd
30% learning is required warehousing
Han et al. Commercial logistics MSE 89 4 Unstable training Multiple factorg affect
data the scenario
Fluctuating demand Prediction error of Dependent on market Large demand
Kosenko et al. . ; .
data 15% factor analysis fluctuation scenario
Aktepe et al. Engineering machinery MAET76.5 High comput_atlonal Multivariate prediction
data complexity
- Distribution network 40% reduction in Need transportation logistics network
Sareminia !
data error network data planning
. Production material Inventory level | Sensitive to resource Capacity limited
Kmiecik . .
data 35% constraints environment

3 Inventory demand forecasting

model construction for integrated
warehouse and distribution
enterprises

3.1 Inventory demand forecasts for
integrated warehouse and distribution
SMEs

Logistics service enterprises must constantly
improve their own warehouse and distribution
management to enhance the service experience of
e-commerce and consumers. Meanwhile, to improve the
efficiency of logistics operation on the existing
management level, it is necessary to increase the
inventory, resulting in an increase in logistics costs
[15-16]. Increasing inventory on the basis of existing
logistics facilities leads to inventory pressure of logistics
enterprises, thus affecting the efficiency of logistics
services. The overall goal is to realize the integrated
operation of multiple links of "warehousing +
distribution”, so as to maximize the core competitiveness
and maximize the interests of e-commerce and logistics
enterprises. Figure 1 refers to the overall objective of the
integrated  warehouse-distribution enterprise, which
includes resource integration, process, management and
information. The realization of inventory demand
forecasting  requires  seamless integration  and

standardization, visualization and systematization of
information data. The processes of the

warehouse-distribution integration enterprise are order
pre-processing,  goods  management,  warehouse
management and operations, sending and distribution,
rejection and return and account clearing for upstream
and downstream. The models of the enterprise include
third-party ~ warehouse distribution, third-party
distribution seller warehousing and self-built warehouse
distribution.

The study analyses the inventory demand forecast
for warehouse distribution integration SMEs, i.e. the
third-party warehouse distribution inventory F demand
forecast. At this stage, SMEs are characterized by tight
and low utilization of warehouse resources, a wide range
of logistics services and many difficulties in integration
and collaboration. The principles of the inventory
demand forecasting model are simplicity, applicability
and accuracy. The influencing factors are consumers,
logistics enterprises and e-commerce enterprises.
However, there are large differences between inventory
demand  forecasting and actual demand in
warehouse-distribution integration SMEs. Artificial
intelligence forecasting models have excessive influence
of parameter changes and are prone to fitting. The
influence of market, seasonality and consumer demand
on inventory demand can lead to high noise causing large
forecasting errors. This study applies CSD-LSSVR to
achieve the efficiency and accuracy of inventory demand
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prediction for small and medium-sized enterprises with
integrated warehouse and distribution [17]. The study
selects a warehouse and distribution integration small
and medium-sized enterprise in Sichuan a seafood
customer daily order demand data as an example for
analysis. A total of 775 experimental data were collected
from April 3, 2019 to September 9, 2023. The selection
of the above time period is based on a comprehensive
consideration of industry characteristics and enterprise
operational needs, which fully covers key business stages
and ensures that the model can learn demand patterns in
different market environments. Previous studies have
shown that when the ratio of the training set to the test
set is 4:1, the efficiency of inventory demand prediction
is higher [18]. The research content includes comparing
the performance of various machine learning models at
different ratios, and the results show that a 4:1 ratio can
ensure sufficient model training while leaving enough
data for testing the model's generalization ability.
Therefore, the study set the data ratio between the
training set and the test set to be 4:1. The training set and
test set obtain the learning machine model by training the
training set data. The test set can be used to test the
accuracy of the learning machine model. Table 2 refers to
the raw data of the enterprise segment. The following
factors should be considered for the selection of the
sample data: the order quantity reflects the actual
inventory demand of SMEs, and the daily data has more
complex data characteristics than the weekly and
monthly data, but also contains a large amount of noisy
data. The training set data length is 2" , then an

orthogonal sparse transformation matrix can be
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constructed. Orthogonal sparse transformation matrix can
reduce high-dimensional raw data to lower dimensions,
and make the reduced features orthogonal or uncorrelated
with each other [19]. The choice of data length is 2"

because data of this length can be efficiently processed
by algorithms such as fast Fourier transform. It is crucial
to retain most of the information of the original data.
Therefore, it is an important tool that can extract key
information and simplify the analysis process. By
utilizing the orthogonal sparse transformation matrix,
complex data features can be transformed into a form
that is easier to understand and analyze, thereby more
accurately reflecting the actual inventory needs of small
and medium-sized enterprises. In addition, during the
data preprocessing stage, the original data was first
checked for integrity and a small number of missing
values were found, accounting for approximately 2.1% of
the total data. For missing values, linear interpolation is
used to fill them in order to ensure the continuity and
integrity of the time series. Subsequently, outlier
detection was performed on the data, and the Z-score
method was used to identify and correct obvious outliers.
Finally, to eliminate the influence of dimensionality and
improve model training efficiency, we normalized the
data to the [-1,1] interval.

Given that the data of inventory demand forecast for
SMEs in warehouse-distribution integration is a time
series, a smoothness test can be performed at the
beginning of the time series forecast. If the original series
is found to be non-stationary during the stationarity test,
the original inventory demand sequence of the enterprise
needs to be differenced.
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Figure 1: The overall goal of warehouse distribution integration enterprise
Table 2; Some original data of the enterprise

. Actual quality/kg . Actual quality/kg
Time Fresh eggs seafood Time Fresh eggs seafood
2019-4-3 1152 536 2021-7-3 625 1025
2019-5-3 854 625 2021-8-3 1225 1136
2019-6-3 954 833 2021-9-3 608 764
2019-7-3 889 1035 2022-4-3 708 702
2019-8-3 1025 1243 2022-5-3 698 764
2019-9-3 929 1012 2022-6-3 735 806
2020-4-3 854 496 2022-7-3 1025 968
2020-5-3 1258 634 2022-8-3 1658 1035
2020-6-3 865 625 2022-9-3 815 883
2020-7-3 925 867 2023-4-3 684 721
2020-8-3 1048 1016 2023-5-3 1078 825
2020-9-3 772 753 2023-6-3 824 936
2021-4-3 758 621 2023-7-3 824 1462
2021-5-3 948 705 2023-8-3 758 1273
2021-6-3 650 876 2023-9-3 687 928

3.2 CSD method and SVR

According to the Nyquist sampling theorem, in
order to avoid information loss, it is necessary to sample
at least twice the highest frequency of the sampled signal.
If the sampling frequency falls below this threshold,
so-called aliasing phenomenon will occur, and the
original signal cannot be accurately reconstructed.
However, it is worth noting that CSD can directly obtain
effective M measurement values without the need to
comply with the N sampling values (pq (] N ) in the

Nyquist sampling theorem. In the context of inventory
demand forecasting, time series data are typically
processed, which may contain significant cyclical
changes such as seasonal demand fluctuations.
Accurately sampling these data is crucial for capturing
these periodic changes and avoiding information loss. If
the sampling frequency is insufficient, key changes may
be missed, resulting in the prediction model's inability to
accurately reflect the actual inventory demand. The CSD
method mainly includes three parts: sparse representation,
random sampling, and signal recovery. For the sparse
representation, the signal can be referred to by some
basis function. From a mathematical point of view, the
effective long substantial signal vector is X R" and
an orthogonal basis of R" is set
tO\I’ :{‘I’}?:l,i _12..n Then the signal X e R" can

be linearly represented by equation (1).
X=32s¥ ()
i=1

In equation (1), the i coefficient of X iss,, which
is calculated by equation (2).
S = <X J ‘Pi> (2

By sparse representation, X can be expressed

by ¥,. ¥ isa matrix whose column vector isNxN. The

sparse coefficient S can be considered as sparse when
most elements of s, are zero. If the signal X eR" is

sparse under an orthogonal basis, the sparse
coefficient S can be expressed as in equation (3).

S=¥"X ®)

For random sampling, # is a one-dimensional
observation matrix, which is different from the
transformation base ¥ . The matrix is set up to measure
the sparse coefficients and also to obtain the observation
vector #S . The observation vector is obtained by
transforming sparse coefficients with a random sampling
matrix, representing randomly selected samples from the
original signal. It contains key information of the original
signal, but may also contain noise. The sparse
transformation basis used in the study is the Discrete
Cosine Transform (DCT)-II. The core idea of DCT-1I is
to fit and represent existing data or signals through a
series of cosine functions (which are selected basis
functions). These cosine functions have different
frequencies and can be represented one by one from low
to high frequencies [20-21]. In research, using DCT-II as
a sparse transformation basis helps to capture and
analyze key information in the data. The observation
matrix is a random Gaussian observation matrix.
Equation (4) is the calculation formula of the whole
perception process.

min[¥TX| A =A¥TX  (a)

According to equation (4), it reflects the application
of compressive sensing theory in inventory demand
forecasting, which transforms complex business demands
into computable optimization problems through
mathematical modeling; The model can fully preserve
the core business cycle that affects inventory decisions
during data compression, providing a concise and
semantically rich feature representation for subsequent




348  Informatica 49 (2025) 343-358

predictions. The signal recovery during the perception
process is achieved through the commonly used
reconstruction algorithm - orthogonal matching tracking.
The Orthogonal Matching Tracking (OMP) algorithm is a
greedy algorithm that selects the atom that best matches
the residual residue from the perception matrix A during
each iteration to construct a sparse signal and calculate a
new residual residue [22]. The atomic selection criteria
are as follows: Firstly, in each iteration, the algorithm
searches for the dictionary atom that is most relevant to
the current residual vector. The second is that once an
atom is selected, the algorithm updates the residual by
projecting it onto the selected atom and subtracting this
projection from the residual. Thirdly, in each iteration,
the algorithm only adds one atom to the solution until a
certain stopping criterion is met, such as reaching the
predetermined number of iterations or having a
sufficiently small residual. The estimation of the
reconstructed signal s by OMP is shown in equation

St
).

. _ ] 5)
$, :arg€m|n||y—AtSt||:(AtTAt) "Aly

In equation (5), A is the perception matrix and y

is the observation vector. The research proposes a model
based on the combination of compressed perception
denoising and artificial intelligence algorithms, namely
the compressed perception  denoising artificial
intelligence prediction model. It is planned to use SVR, a
typical artificial intelligence prediction algorithm and its
variant algorithm, for inventory demand prediction. SVR
is an application of Support Vector Machine (SVM) to
regression problems. SVM was proposed to solve the
problems of small sample, nonlinear, and
high-dimensional pattern recognition [23]. In machine
learning, it is mainly applied to classification and pattern
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threshold €, will the error be penalized. This design has
the following advantages: Firstly, it can filter out data
points with small differences in erroneous inventory
demand forecasting, avoiding overfitting of the model to
these small errors. The second advantage is to simplify
the complexity of the model, which is only considered
when the error exceeds &. This allows the model to
process data more efficiently during training, reducing
unnecessary computational overhead. The study chooses
the orthogonal matching tracking algorithm to complete
signal recovery. Insensitive loss function & is used in
SVR, which has better results than SVM in regression
problems. SVM maximizes the distance to the nearest
sample point by constructing a hyperplane; SVR
minimizes the distance to the farthest sample point by
constructing a hyperplane. The SVR constructs a
hyperplane to minimize the distance from the farthest
sample point to the hyperplane. Figure 2(a) and Figure
2(b) show the diagrams of SVM and SVR respectively. It
can be observed that the goal of SVM is to find a
hyperplane that can separate data points of different
categories and keep them as far away as possible from
support vectors of any category. This hyperplane is called
the optimal segmentation hyperplane, which maximizes
the boundary between two types of data points. For SVR,
the goal is to find a hyperplane that best fits the data
points while maintaining the boundaries between the
hyperplane and the data points. The system should allow
data points to fluctuate within a certain range of the
hyperplane without them being considered as errors. The
error will only be calculated when the distance between
the data point and the hyperplane exceeds the threshold.
This method allows SVR to have some flexibility in
fitting data, thereby improving the model's generalization
ability.
The basic principle of SVM is equation (6).

recognition. The use of ¢ — insensitive loss function in 1y o
SVR algorithm has better performance than SVM in m|n§||w|| (6)
regression problems. The core idea of the insensitive loss o1 i
function is that only when the error between the LY, (Wxi+b)‘1v'
predicted value and the actual value exceeds a preset
A
X
X
X
X o O
X R ,
b ” >
F‘ O O

Support Support

Voctor W Support Voctor Support

X N Voctor Voctor

o) @)
WX:b:_ 0] wx+b=-1 0
wx+b=0 0 0] 0 Wwx+b=0
wx+b=1 o wx+b=1

(a) SVM

(b) SVR
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Figure 2: Schematic diagram of SVM and SVR

In equation (6), X, and y, refer to an input and a
category in the sample data set respectively, i refers to a

sample data, W=(W1,---,Wp) represents the normal

vector of the hyperplane, b refers to the offset,
andi=1,---,1. The basic principle of SVR is equation
(7).

A

min = |w|

2 (7
st]y, —(wx +b)| <& Vi

The SVM is approved by the kernel function to
solve multi-dimensional problems through non-linear
transformation to minimize the obstacles arising from
dimensionality problems to the greatest extent. It can also
prevent local extremes and over-learning problems of
neural network methods. However, the method is more
difficult for situations such as large-scale samples or
small sample conditions and signals with rich frequency
information [24]. The SVR algorithm is chosen as the Al
prediction algorithm in the study. The basic process of
the SVR algorithm is as follows. First, a linear regression
function is constructed in the high latitude space. The
study sets the training set

n I n
as T:{(Xllyl),...,(xi'yi)}e(R ><Y) , X eR" ,
y; €Y =R . Equation (8) refers to the calculation
formula of the linear regression function.

f (X)=wd(x)+b ®)

In equation (8), ®(X)is the nonlinear mapping

function. Then, appropriate parameters are selected,
including the kernel function K(X,X,),accuracy £>0>

and the penalty parameter ¢ 5 . The specific selection

process is as follows: First, it establishes a
three-dimensional parameter space containing Gaussian
kernel function bandwidth of [0.1,10], regularization
parameter of [0.01100], and insensitive loss function
threshold of [0.05,0.2], and it evaluates the performance
of each parameter combination on the training set
through 5-fold cross validation. The optimization
objective function is the weighted sum of MSE and the
number of support vectors (weight ratio 7:3) to ensure a
balance between prediction accuracy and computational
efficiency of the model. The final selected parameter
combination is as follows: Gaussian kernel bandwidth of
1.2, regularization parameter of 0.3, and insensitive loss
function threshold of 0.1. Secondly, construct and solve
convex quadratic programming problems, as shown in
equation (9).

mnZlof +CY(5+¢) @

In equation (9), £ and £ are relaxation
i i

variables. £ is the difference between the projection of

the sample point above the upper edge of the isolation
strip and the value of the sample point, while £ is the

I
difference between the projection of the sample point
below the lower edge of the isolation strip and the value
of the sample point. Then, calculate the deviation vector
b . Finally, a regression function is constructed. The

commonly-used kernel functions in SVR include
polynomial kernel functions and Gaussian radial basis
kernel functions. The calculation formula for polynomial

function K (X, X') of order d is given by equation (10).

K(x,x'):(x,x')d (10)
The formula for anon-flush polynomial function
of d order is equation (11).

K (x,x")=((xx")+1)’ (11)

Homogeneous polynomial functions exhibit better
stability, but their performance may be limited when
dealing  with complex  data. In contrast,
non-homogeneous polynomial functions can handle
complex mathematical models more flexibly, thus
exhibiting certain advantages when dealing with highly
nonlinear data. However, non-homogeneous polynomial
functions may introduce higher computational costs and
overfitting risks.

3.3 CSD-LSSVR model construction

The SVM model has strong non-linear capability,
which can be better applied to inventory demand
forecasting for  warehouse-distribution  integration
compared with other methods. The study selects the SVR
model for inventory demand forecasting. To overcome its
limitation of long training time, the compressed sensing
denoising method is used to denoise the original data.
The processed data are input the SVR model for training
and learning and output the forecasting results. The
LSSVR regression model consists of an input layer, an
implicit layer and an output layer. The LSSVR regression
model converts complex convex quadratic programming
problems into linear equations for solution, thus reducing
the modelling parameters and also improving the
computational efficiency [25-26]. The study sets the
training sample set for the LSSVR algorithm

to ;(:{(\/i,yi)|\/i =R"y e R} The optimization

problem mgyg‘](wigi) in equation (12) needs to be
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solved.

|
mind (w,&) =2l + 2y Y &7 sty
e i=1

=w-g(V,)+b+¢

(12)

In equation (12), the regularization parameter is 7/ ;
the fit error of the regression hyperplane is & . To

facilitate the solution, equation (12) can be converted
into a pairwise problem and constructed as a Lagrange
function in equation (13).

L(w,b,&a)=J(w,¢)
_ 11 a {w.¢(Vi)+b+§i —yi} 43)

In equation (13), g, refers to the Lagrange multiplier.

The Lagrange function can be derived based on the
Karush-Kuhn-Tuchker condition and simplified by
expressing it as a linear system of equations. Below, a
simple optimization problem is used as an example to
explain the KKT condition. Suppose there is a linear
programming problem with the goal of minimizing a
function while satisfying some linear constraints. Under
certain conditions, some solutions may satisfy all
constraints, but not the optimal solution. However, if a
solution not only satisfies all constraints but also satisfies
the KKT condition, then it can be concluded that the
solution is the optimal solution. In the current problem,
the study uses KKT conditions to obtain the optimal
solution of LSSVR. The goal of the solution is to find a
set of Lagrange multipliers that minimize the Lagrange
function in equation (11). Due to the fact that the
Lagrangian function satisfies the KKT condition, when
this function is minimized, the optimal solution to the
problem is found. Figure 3 is a schematic diagram of the
CSD-LSSVR model applied to warehouse-distribution
integration SMEs inventory demand forecasting. Firstly,
the raw data with noise characteristics is input, while the
data is denoised by the CSD method to obtain the
denoised data. Then, the denoised data are entered into
the LSSVR algorithm and solved by MATLAB 2014a
and LIBSVM-3.23 to obtain the final prediction results
[27-28]. The CSD LSSVR model is fitted using the
LIBSVM toolkit, and the optimal parameters are
determined using grid search method. Then, the entire
training set is trained with the optimal parameters to
obtain the model and tested and predicted. The grid
search method can be directly performed by cross
validating the parameters of the estimation function in
LIBSVM software. The study adopts a direct prediction
strategy. Given a time series, the values are calculated to
predict several steps forward. Next, the model
forecasting results are evaluated using evaluation
indicators. Based on the forecasting of inventory demand
in the e-commerce environment, the evaluation indicators
chosen for the study are the relative error RE , the mean
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absolute error (MAE), the mean squared error estimate
and the directional statistic [29]. The formula for
calculating the relative error RE is equation (14).

RE =|x; - x| /% (14)

In equation (14), X;is the other sample data. The
formula for calculating MAD is equation (15).

MAD=3" [x~%|/n (15

In equation (13),N is the number of samples; X;
is the mean of the sample data. The mean squared error
estimate Ry, is equation (16).

EZ:inzl(xi —% )2

n

(16)

Ruse =

The directional statistic D,.., calculation method is

stat
equation (17).

Dstat = lz a, x 100% (17)
N

In equation (17), when (X.; —X)(X,; —X)=0
thena, =1. Otherwise, the value of a,is 0. Finally, the

evaluation results are fed back to the LSSVR prediction
model to identify the limitations of the model and make
targeted improvements to the model.

Raw data
J" Bt LSSVR
Sparse
representation v
+ Forecast results Evalua
tion
CSD Random
sampling * feedba
Output hand eye ck
relationship matrix
Signal recovery
i §

v End
Data after noise
removal

Figure 3: Schematic diagram of the CSD-LSSVR model
applied to the demand forecast of SMEs inventory in
warehouse distribution integration

4 Results of the CSD-LSSVR model
inventory demand forecasting for
SMEs

To better analyse the inventory demand forecasting
results of the CSD-LSSVR model for SMEs, the research
analyzed the stationary demand sequence, LSSVR model
preprocessing results and algorithm performance
respectively. The LSSVR model adopted a direct
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prediction strategy to process time series data, as follows.
Firstly, it performed stationarity testing and differencing
on the original inventory demand data, and then
normalized the data to the range of (-1,1) to improve
model training efficiency and prediction accuracy.
During training, the model minimized prediction error
based on input-output data and learned the mapping
relationship between the two. After training, new input
data were predicted to obtain future demand forecast
values. The hardware environment used for the study was
Intel 17-4790, NVDIA GTX1050TI. Operating system
was Windows 10 64-bit; framework was Django; server
was Nginx; database was SQLite; language was Python.
The process of preprocessing inventory demand data
using CSD method was as follows: First, the original
signal was represented as a linear combination of some
orthogonal basis function, where most of the coefficients
were zero or close to zero, in order to capture the main
features of the data and ignore noise components.
Subsequently, by sampling the sparse signal with a
random Gaussian matrix, effective measurement values
were directly obtained without violating the Nyquist
sampling theorem, reducing data dimensionality while
preserving key information. Finally, the orthogonal
matching tracking algorithm was used to reconstruct the
sampled signal, and the original signal was gradually
restored by iteratively selecting the atom that best
matches the residual. By setting an appropriate sparsity
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threshold to remove noise components, a more accurate
inventory demand signal was restored. Figure 4(a) and
figure 4(b) refer to the original inventory demand
sequence and the differentially processed smooth demand
sequences. The raw data represented in Figure 4(a) can
only represent the actual demand booked by the customer.
The change of these raw data is not directly related to the
time, and cannot infer the customer's actual demand.
Compared with Figure 4(a) and Figure 4(b), after the
original inventory demand sequence of the enterprise is
processed by the stability test, the value range of
inventory demand is (-1,1), which can be used to forecast
the inventory demand of SMEs with higher accuracy.
Normalizing inventory demand data to the range of (-1,1)
is to ensure the stationarity and consistency of the data.
Through standardization, inventory demand data at
different time points can be converted to the same scale,
thereby improving the prediction accuracy of the model.
Table 3 shows some processing results under the
direct prediction strategy of LSSVR model. There is no
obvious rule between the positive and negative values of

input and output. The value range of X, is -0.2847-0.5461;
the value range of X, is -0.5214-0.4125; the value range
of X, is -0.5471-0.4148; the X, is -0.5417-0.4015; the Y is
-0.4658-0.4015.

2021/4/3 2021/5/12

1.000
0.600
0.200 r
-0.200 r

-0.600 r

Inventory demand after score checking

-1.000

2021/7/22
_ Data
(a) Actual inventory demand

2021/8/01 2021/9/10

72021/4/3 2021/5/12

2021/7/22

2021/8/01 2021/9/10

Data .
(b) Inventory demand after score checking

Figure 4: The original inventory demand sequence and the stable demand sequence after difference processing

Figure 5(a) shows the relationship between the
signal recovery error and the number of samples. There

was a direct correlation between the size of the number
of samples and the signal recovery error of the
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compressed sensing algorithm. If the number of samples
is too small, the signal recovery will take longer, which
will result in a higher error. When the number of samples
is too large, the time required for signal recovery will
increase, which will reduce the efficiency of the
algorithm. The increase in error may be due to the
inherent characteristics of the data, such as noise and
nonlinearity, which interfere with the recovery process of
the algorithm. Figure 5(b) shows the performance of the
orthogonal matching tracking algorithm for different
numbers of iterations. The accuracy of the algorithm
gradually increased with the number of iterations. When
the number of iterations was about 100, the highest
accuracy value was 99.85%. After the number of
iterations exceeded 100, the performance of the
orthogonal matching tracking algorithm no longer
fluctuated to a large extent, but gradually tended to a
stable state. The optimal number of iterations for the
orthogonal matching tracking algorithm was 100, and the
maximum iteration number could be set to 150 during the
experiment, so as to improve the operational efficiency
of the algorithm. This was because the orthogonal
matching tracking algorithm is a greedy algorithm that
constructs sparse signals by gradually selecting the atoms
that best match the residuals. As the number of iterations
increased, the algorithm gradually approached the
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optimal solution. When the number of iterations reached
100, the algorithm found a sparse representation that was
close enough to the real signal, balancing computational
efficiency and reconstruction accuracy, and avoiding
unnecessary resource consumption.

Figure 6 refers to the influence of different
parameters of the CSD-LSSVR model on the prediction
results. Figure 6(a) and Figure 6(b) refer to the
performance of the model when the regularization
parameter 7 was taken as 0.3 and 0.5 respectively. From
the figures, the errors of both LSSVR and CSD-LSSVR
models kept decreasing as the data size increased. When
the data size reached about 25, the model tended to be
stable. However, the accuracy showed the opposite
pattern of change. The convergence errors of the LSSVR
and CSD-LSSVR models were 0.156 and 0.278
when 7 was taken as 0.3; the accuracy was 97.58% and
95.21% respectively. When 7 was taken as 0.5, the
convergence errors for the LSSVR and CSD-LSSVR
models were 0.215 and 0.498 respectively; the accuracy
was 96.12% and 93.21% respectively. Therefore, the best
performance of both LSSVR and CSD-LSSVR models
was achieved when the regularization parameter 7 was
taken as 0.3.

Table 3: Partial processing results under LSSVR model direct prediction strategy

Input value (X,) Input value (X, ) Input value (X;) Input value (X,) Output Value (Y)
-0.2847 -0.2871 -0.5471 0.3214 -0.0877
-0.0526 -0.5214 0.3214 -0.0908 0.1758
0.5461 0.1756 -0.0874 0.1741 -0.4658
0.2514 0.1658 0.1745 -0.4658 -0.2248
0.4120 -0.5241 -0.4655 -0.5417 0.4015
-0.098 0.4125 0.4148 0.4015 -0.0958
0.0089 -0.0958 0.3457 -0.0948 0.3546
0.1742 -0.1925 0.0014 0.3457 0.0087
0.3258 -0.1324 -0.1948 0.0087 -0.1958
0.4987 0.0087 0.1231 -0.1985 -0.1314
0.4015 0.3247 -0.2451 -0.1324 -0.2245
9% 184
8
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Figure 5: Signal recovery error and performance of orthogonal matching pursuit algorithm with different iterations
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Table 4 shows the evaluation results of the SMEs
inventory forecasting model, covering both the training
and test sets. The results of the test set showed that

the RE , MAD , Ry and D, of the CSD-LSSVR

forecasting model outperformed the other forecasting
models, with values of 0.0687, 58.651, 72.16 and 0.712
respectively. Next one was the CSD-SVR forecasting
model, with corresponding values of 0.0897, 76.587,
87.02 and 0.685 respectively. The SVR forecasting
model had the worst performance with corresponding
values of 0.1214, 107.37, 112.21 and 0.435 respectively.
The results of the validation set were similar to those of
the test set. The CSD-LSSVR prediction model had

better RE , MAD , Ry and D, , followed by the

CSD-SVR prediction model, and the SVR prediction
model had the worst performance. Predicting inventory
and demand markets plays an important role in the
sustained development and improvement of the supply
chain [30]. The research results in reference [31] indicate
that using machine learning algorithms for predicting
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future demand of enterprises is relatively advanced,
which coincides with the research results. Reference [32]
also indicates that BP neural networks have poorer
prediction efficiency compared to SVR models due to
their own shortcomings. In addition, according to
statistical results, the confidence interval of the test set
reflected the stable performance of the model on
unknown data, and the CSD-LSSVR model exhibited
significantly superior performance. The 95% CI upper
limit of CSD-LSSVR in all indicators of the test set was
still better than the lower limits of other models
(p<0.001). The MSE interval width showed that
CSD-LSSVR was 28% more stable than SVR.
Meanwhile, although the running time of the research
method was slightly longer, the inventory cost savings
brought by its improved prediction accuracy could offset
the computational costs, and it still met the real-time
requirements of enterprises with a prediction delay
threshold of less than<5ms/time.
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Figure 6: Performance of the model when the regularization parameters are 0.3 and 0.5
Table 4: Prediction results of training set and test set
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Figure 7: Prediction results of different prediction models in the test set

Figure 7(a) refers to the forecasting results of
different forecasting models in the test set. Compared
with other forecasting models, the CSD-LSSVR
forecasting model was closer to the actual inventory
demand. The difference range between the predicted
inventory demand of CSD-LSSVR and the actual
inventory demand was 6-47kg. Figure 7(b) shows the
forecasting results of the different forecasting models in
the training set. The difference range between the
predicted inventory demand of the CSD-SVR model and
the actual inventory demand was 11-43kg; The difference
between the predicted inventory demand of the LSSVR
model and the actual inventory demand ranged from
28-98kg; The difference between the inventory demand
predicted by the SVR model and the actual inventory
demand ranged from 28-98kg; The difference between
the inventory demand predicted by the SVR model and
the actual inventory demand ranged from 35-325kg.
From the prediction results of the training and testing sets,
the CSD-SVR model had a smaller gap between the
predicted inventory demand and the actual demand, and
its prediction effect was better. In the context of
integrated e-commerce warehousing, enterprises can
make reasonable replenishment based on the predicted
inventory demand results of the model, avoiding
inventory backlog or shortage, and providing inventory

guarantee for real-time delivery.

5 Discussion

The CSD-LSSVR model proposed in the study
demonstrated significant advantages in the field of
inventory demand forecasting, and its performance
improvement was attributed to various technological
innovations and rigorous data processing. Firstly, in
terms of model scalability, this method demonstrated
good computational efficiency. When the data volume
increased from 775 to 5000, the training time only
increased from 382ms to 1.8s, and the memory usage
increased from 124MB to 512MB. This sublinear growth
characteristic made it suitable for the actual needs of
most small and medium-sized enterprises. It is worth
noting that the improvement in model performance was
not only reflected in computational efficiency, but also in
its systematic handling of data bias. In response to the
2.1% missing values and 3.7% outliers in the original
data, the study adopted time series linear interpolation
and Z-score correction methods. Especially for the
seasonal imbalance problem in demand, the study
innovatively introduced seasonal weight factors in the
loss function, which significantly improved the
robustness of the model.

Compared with existing methods, the MAE of



CSD-LSSVR-Based Inventory Demand Forecasting for Warehouse. ..

CSD-LSSVR on the test set was significantly better at
58.65 compared to traditional SVR at 107.37 and BP
neural network at 89.42. This advantage was mainly due
to two key designs. Firstly, CSD denoising technology
effectively improved the signal-to-noise ratio and
preserves key frequency domain features; Secondly,
LSSVR transformed quadratic programming problems
into linear solutions, effectively improving computational
efficiency. Of particular note is that the model exhibited a
characteristic of decreasing error with increasing data
volume, and tended to stabilize when the sample size
exceeded 25, which perfectly confirmed the Vapnik
Chervonenkis theory. In terms of parameter optimization,
the research found that y=03 Was the optimal choice.

A value that is too small can lead to underfitting, while a
value that is too large can lead to overfitting. This finding
provided important guidance for modeling inventory
data.

Although deep learning models such as LSTM
performed well in the field of time series prediction,
there were three key constraints in the application
scenario of this study. Firstly, the average historical data
of the target enterprise were less than 1000, which made
it difficult to meet the training needs of deep learning
models. Secondly, the actual deployment environment
usually only had CPU computing resources. Thirdly,
there was a high requirement for the interpretability of
the model. Experimental data showed that under the
same amount of data, the MAE of LSTM was 15%
higher than that of CSD-LSSVR, and the training time
was six times longer.

In summary, the CSD-LSSVR model performed
well on small and medium-sized datasets and could
effectively solve the problems of data noise and
prediction accuracy in inventory demand forecasting for
small and medium-sized enterprises in warehouse and
distribution integration. Future research can further
explore the scalability of the model on large-scale
datasets and introduce more feature variables to enhance
the model's generalization ability.

6 Conclusion

To achieve inventory demand prediction for small
and medium-sized enterprises with integrated warehouse
and distribution, this study constructed a CSD-LSSVR
prediction model and used instance data for simulation
and analysis. As the number of samples increased, signal
recovery error varied from unstable to gradually
decreasing and finally reached a convergence value of
0.458 when the number of samples was 60. The accuracy
of the orthogonal matching tracking algorithm increased
slowly with the number of iterations. When the number
of iterations was about 100, the accuracy was about
99.85%. The convergence errors of the LSSVR and
CSD-LSSVR models were 0.156 and 0.278 when 7 was
set to 0.3; the accuracy was 97.58% and 95.21%
respectively. When 7 was taken as 0.5, the convergence
errors of the LSSVR and CSD-LSSVR models were
0.215 and 0.498 respectively; the accuracy was 96.12%

Informatica 49 (2025) 343-358 355

and 93.21% respectively. Testing the training and test set
results showed that the CSD-LSSVR forecasting model
was closer to the actual inventory demand. The training
set results showed that the inventory demand prediction
error range was 6-47 kg. The inventory demand error for
the CSD-SVR prediction model was 8-36 kg; the error
value range of inventory demand of LSSVR forecast
model was 19-54kg. The error range of inventory
demand for SVR prediction model was 28-274 kg. The
above results indicated that the research method could
effectively address the common problems of limited data
samples and high noise in small and medium-sized
enterprises, providing feasible technical solutions for
resource constrained enterprises. In summary, the
research method could provide reliable inventory
demand forecasting for small and medium-sized
enterprises, which was suitable for those engaged in
e-commerce operations, especially those enterprises that
rely on integrated warehousing and distribution models,
such as small and medium-sized enterprises in industries
such as fresh food and daily necessities. The
CSD-LSSVR prediction model used the grid search
method for parameter optimization, but due to the
limitations of the grid search method itself, it was easy to
cause the LSSVR algorithm to "over learn" and "under
learn™, resulting in poor prediction accuracy of the model.
To address the above issues, further research in the future
could consider improving the direction by introducing
deep learning techniques to better handle complex
patterns and long-term dependencies in time series data,
thereby further enhancing prediction accuracy. The
second is to optimize computational efficiency, such as
through parallelization and other methods, to shorten the
training and prediction time of the model, making it more
suitable for large-scale datasets and real-time prediction
scenarios. These improvements will provide stronger
technical support for inventory management of small and
medium-sized enterprises in an integrated warehouse and
distribution environment.

References

[1] Rafati, E. The bullwhip effect in supply chains:
Review of recent development. Journal of Future
Sustainability, 2022, 2(3), 81-84.
https://doi.org/10.5267/j.jfs.2022.9.007

[2] Chen, J., Gusikhin, O., Finkenstaedt, W., & Liu, Y.
N. Maintenance, repair, and operations parts
inventory management in the era of industry 4.0.
IFAC-PapersOnLine, 2019, 52(13), 171-176.
https://doi.org/10.1016/j.ifacol.2019.11.171

[3] Mulandi, C. M., & Ismail, N. Effect of inventory
management  practices on  performance of
commercial  state  corporations in  Kenya.
International Academic Journal of Procurement and
Supply Chain Management, 2019, 3(1), 180-197.

[4] Mejia, S., Aguilar, J. A demand forecasting system
of product categories defined by their time series
using a hybrid approach of ensemble learning with
feature engineering. Computing, 2024,
106(12):3945-3965.



356  Informatica 49 (2025) 343-358

https://doi.org/10.1007/s00607-024-01320-y

[5] Doszyn, M. Intermittent demand forecasting in the
Enterprise; Empirical verification. Journal of
Forecasting, 2019, 38(5), 459-469.
https://doi.org/10.1002/for.2575

[6] Lukinskiy V, Lukinskiy V, Sokolov B. Control of
inventory dynamics: A survey of special cases for
products with low demand. Annual Reviews in
Control, 2020, 49: 306-320.
https://doi.org/10.1016/j.arcontrol.2020.04.005

[7] Shariff, S. S. R., Halim, N. N. A., Zahari, S. M., &
Derasit, Z. Fuzzy time series forecasting in
determining inventory policy for a small medium
enterprise (SME) company. Indonesian Journal of
Electrical Engineering and Computer Science, 2020,
19(3), 1654-1660.
https://doi.org/10.11591/ijeecs.v19.i3.ppl654-1660

[8] Rumetna M, Renny E E, Lina T N. Designing an
Information System for Inventory Forecasting:(Case
Study: Samsung Partner Plaza, Sorong City).
International Journal of Advances in Data and
Information ~ Systems, 2020, 1(2): 80-88.
https://doi.org/10.25008/ijadis.v1i2.187

[91 Nambiar M, Simchi-Levi D, Wang H. Dynamic
inventory allocation with demand learning for
seasonal goods. Production and Operations
Management, 2021, 30(3): 750-765.
https://doi.org/10.1111/poms.13315

[10] Han, C., & Wang, Q. Research on commercial
logistics inventory forecasting system based on
neural network. Neural Computing and Applications,
2021, 33(2), 691-706.
https://doi.org/10.1007/s00521-020-05090-4

[11] Kosenko, V., Gopejenko, V., Persiyanova, E. Models
and applied information technology for supply
logistics in the context of demand swings.
Innovative technologies and scientific solutions for
industries, 2019, (1 (M), 59-68.
https://doi.org/10.30837/2522-9818.2019.7.059

[12] Aktepe, A., Yanik, E., & Ersoz, S. Demand
forecasting application with regression and artificial
intelligence methods in a construction machinery
company. Journal of Intelligent Manufacturing,
2021, 32(6), 1587-1604.
https://doi.org/10.1007/s10845-021-01737-8

[13] Sareminia, S. A support vector-based hybrid
forecasting model for chaotic time series: Spare part
consumption prediction. Neural Processing Letters,
2023, 55(3): 2825-2841.
https://doi.org/10.1007/s11063-022-10986-4

[14] Kmiecik, M. Supporting of manufacturer's demand
plans as an element of logistics coordination in the
distribution  network. Production Engineering
Archives, 2023, 29(2): 69-82.
https://doi.org/10.30657/pea.2023.29.9

[15] Taiwo, G. A., Saraee, M., & Fatai, J. CRIME
PREDICTION USING TWITTER SENTIMENTS
AND CRIME DATA. Informatica, 2024,
48(6):35-42. https://doi.org/10.31449/inf.v48i6.4749

[16] Haner, E., Bardamova, M., Hodashinsky, I., Sarin,
K., Slezkin, A., & Svetlakov, M. Binary PSO

D. Lietal.

in  Handwritten
Informatica, 2022,

Variants for Feature Selection
Signature  Authentication.
33(3):523-543.
https://doi.org/10.15388/21-INFOR472

[17] Xu G, Guan Z, Yue L, Mumtaz J. An efficient
production planning approach based demand driven
MRP under resource constraints. International
Journal of Industrial Engineering Computations,
2023, 14(3): 451-466.
https://doi.org/10.5267/j.ijiec.2023.5.003

[18] Seyedan, M., & Mafakheri, F. Predictive big data
analytics for supply chain demand forecasting:
methods, applications, and research opportunities.
Journal of Big Data, 2020, 7(1), 1-22.
https://doi.org/10.1186/s40537-020-00329-2

[19] Bialas, C., Revanoglou, A., & Manthou, V.
Improving hospital pharmacy inventory
management using data segmentation. American
Journal of Health-System Pharmacy, 2020, 77(5),
371-377. https://doi.org/10.1093/ajhp/zxz264

[20] Tasdemir, C., & Hiziroglu, S. Achieving cost
efficiency through increased inventory leanness:
Evidences from oriented strand board (OSB)
industry. International Journal of Production
Economics, 2019, 208, 412-433.
https://doi.org/10.1016/j.ijpe.2018.12.017

[21] Majid H, Anuar S, Hassan N H. TPOT-MTR: A
Multiple Target Regression Based on Genetic
Algorithm of Automated Machine Learning Systems.
Journal of Advanced Research in Applied Sciences
and Engineering Technology, 2023, 30(3): 104-126.
https://doi.org/10.37934/araset.30.3.104126

[22] Chen Y, Chang Z. Intelligent forecasting method of
distributed energy load based on least squares
support vector machine. International Journal of
Global Energy Issues, 2023, 45(4-5): 383-394.
https://doi.org/10.1504/1JGEI.2023.132013

[23] Arunkumar M, Kumar K A. GOSVM: Gannet
optimization-based support vector machine for
malicious attack detection in cloud environment.
International Journal of Information Technology,
2023, 15(3): 1653-1660.
https://doi.org/10.1007/s41870-023-01192-z

[24] Majid H, Anuar S, Hassan N H. TPOT-MTR: A
Multiple Target Regression Based on Genetic
Algorithm of Automated Machine Learning Systems.
Journal of Advanced Research in Applied Sciences
and Engineering Technology, 2023, 30(3): 104-126.
https://doi.org/10.37934/araset.30.3.104126

[25] Odera D, Odiaga G. A comparative analysis of
recurrent neural network and support vector
machine for binary classification of spam short
message service. World Journal of Advanced
Engineering Technology and Sciences, 2023, 9(1):
127-152.
https://doi.org/10.30574/wjaets.2023.9.1.0142

[26] Chien, C. F, Lin, Y. S, & Lin, S. K. Deep
reinforcement learning for selecting demand
forecast models to empower Industry 3.5 and an
empirical study for a semiconductor component
distributor. International Journal of Production



CSD-LSSVR-Based Inventory Demand Forecasting for Warehouse. .. Informatica 49 (2025) 343-358 357

Research, 2020, 58(9), 2784-2804.
https://doi.org/10.1080/00207543.2020.1733125
[27] Ren, S., Chan, H. L., & Sigin, T. Demand
forecasting in retail operations for fashionable
products: methods, practices, and real case study.
Annals of Operations Research, 2020, 291(1),

761-777.
https://doi.org/10.1007/s10479-019-03148-8

[28] Chen, J., & Jin, C. Y. A study on the collaborative
inventory management of big data supply chain:
case of China's beer industry. Journal of the Korea
Society of Computer and Information, 2021, 26(3),
77-88.

[29] Afentoulis, C., & Zikopoulos, C. Analytical and
simulation methods for the configuration of an
efficient inventory management system in the
wholesale industry: a case study. International
Journal of Business and Systems Research, 2021,
15(6), 770-785.
https://doi.org/10.1504/1JBSR.2021.118777

[30] Lukinskiy, V., Lukinskiy, V., & Sokolov, B. Control
of inventory dynamics: A survey of special cases for
products with low demand. Annual Reviews in
Control, 2020, 49, 306-320.
https://doi.org/10.1016/j.arcontrol.2020.04.005

[31] Khan, M. A., Saqib, S., Alyas, T., Rehman, A. U.,
Saeed, Y., Zeb, A., Mohamed, E. M. Effective
demand forecasting model using business
intelligence empowered with machine learning.
IEEE  Access, 2020, 8, 116013-116023.
https://doi.org/10.1109/ACCESS.2020.3003790

[32] Shi, Y., Wang, T., & Alwan, L. C. Analytics for

cross-border  e-commerce: inventory  risk
management of an online fashion retailer. Decision
Sciences, 2020, 51(6), 1347-1376.

https://doi.org/10.1111/deci.12429.



358 Informatica 49 (2025) 343-358 D. Lietal.



