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To improve the efficiency of shipping logistics, reduce transportation costs, and minimize energy 

consumption, this study introduces a dual population mechanism to improve the conventional ant colony 

algorithm and applies it to optimizing shipping logistics paths. Firstly, the shipping logistics network is 

abstracted as a set of nodes and edges in graph theory, simplifying the complex logistics network structure 

and providing a framework and theoretical basis for subsequent ant colony algorithm applications. Then, 

objective functions are set from four aspects: minimizing logistics transportation expenses, minimizing 

logistics transportation time, minimizing carbon emissions, and maximizing path reliability to guide the 

algorithm in searching for the optimal solution. Finally, a dual population mechanism is introduced, 

utilizing two independent ant populations for parallel search. Population 1 adopts an elite ant strategy to 

achieve fast convergence, while Population 2 uses an enhanced sub path evaluation mechanism to explore 

new solution spaces and help the population escape from local optima. By using the path contribution 

evaluation mechanism, better paths can be selected to obtain the optimal shipping logistics path. 

According to the simulation results, it can be seen that the total transportation time of this method is 41 

days throughout the entire experimental cycle, saving 9 days and 7 days respectively compared to the two 

existing methods; The total transportation expenses of this method is 1250000 USD, saving 170000 USD 

and 130000 USD respectively compared to the two existing methods; The total carbon emissions of this 

method are 11800 tons, saving 1700 tons and 1400 tons respectively compared to the two existing 

methods. It can be seen that this method outperforms existing methods in terms of total transportation time, 

total transportation expenses and total carbon emissions, indicating that this method effectively achieves 

the design expectations. 

Povzetek: Prispevek uvaja izboljšan evolucijski algoritem dveh populacij mravelj za optimizacijo 

pomorskih logističnih poti, ki zmanjša stroške, čas in emisije ter poveča zanesljivost poti. 

 

1   Introduction 
In today’s globalized economic landscape, shipping 

and logistics play a crucial role. The vast majority of 

global trade relies on shipping for the transportation of 

goods, which connects major economies and trade centers 

around the world [1]. According to statistics, over 80% of 

global trade goods are transported by sea, which indicates 

the core position of shipping logistics in international 

trade. Therefore, the efficiency of shipping logistics 

directly affects the operational efficiency of the global 

economy and trade costs. 

However, traditional shipping logistics path planning 

has many problems. On the one hand, due to the lack of 

precise data analysis and real-time information, route 

selection is often fixed and conservative [2]. This may 

result in ships encountering unnecessary detours, 

congestion, or adverse weather conditions during 

navigation, thereby increasing transportation time and 

costs. On the other hand, traditional path planning takes 

less into account environmental factors, and the 

high-energy consumption of navigation not only increases 

operating costs, but also puts significant pressure on the 

marine environment. 

Given the shortcomings of traditional shipping logistics 

paths, researching optimization methods for shipping 

logistics paths has important practical significance. By 

utilizing advanced information technology, big data 

analysis, and intelligent algorithms, dynamic planning and 

real-time adjustment of shipping routes can be achieved 

[3]. This can not only improve the efficiency of shipping 

logistics, reduce transportation costs, but also reduce 

energy consumption and environmental pollution. 

Therefore, based on the consideration of fuel supply 

strategy in reference [4], a transportation fleet path 

optimization method was designed. After in-depth 

research on the uniqueness of grain shipping and the 

characteristics of changes in oil prices at fuel supply ports 

over time and place, this method explores the relationship 
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between oil prices and supply quantities at fuel supply 

ports, as well as the interaction between average oil prices 

at fuel supply ports and port service fees. Then, based on 

the transportation characteristics of the grain fleet, the 

selection of fuel supply ports, specific fuel supply 

quantities, and ship navigation routes were selected as key 

decision-making factors, and a path model integrating 

integer programming was constructed accordingly. 

However, although this method considers fuel supply 

strategies, it may be conservative in path selection and 

may not fully consider time efficiency. In order to reduce 

fuel costs or port service fees, longer shipping routes or 

more transit ports may be chosen, thereby increasing the 

total transportation time. In reference [5], a navigation 

vessel diversion path planning method was designed for 

peak maritime traffic periods. This method first sets a 

comprehensive objective function aimed at minimizing 

the length of the voyage, improving navigation safety, and 

ensuring smooth navigation. Then, the grid method is 

used to reproduce the ship operation status during the peak 

period of maritime traffic. Finally, using an improved 

genetic algorithm, the optimal ship diversion path 

planning scheme was searched globally. With the help of 

nonlinear programming techniques, the local optimal 

solution of the model was further solved, thereby 

accurately determining the optimal ship diversion path. 

Although this method aims to minimize the length of the 

voyage, it may not have taken into account other cost 

factors such as fuel costs, port charges, etc. In addition, 

due to the relatively single objective function, it may not 

be possible to achieve optimal total transportation 

expenses. On the basis of considering carbon emissions, a 

method for optimizing oil tanker route scheduling was 

designed in reference [6]. A green scheduling 

optimization model for shuttle oil tankers was designed in 

this method, with the core objective of minimizing the 

overall cost of shipping. This cost structure includes both 

traditional fixed transportation costs and variable costs 

closely related to carbon emissions, reflecting 

considerations for environmental benefits. In addition, the 

model not only focuses on optimizing the navigation route 

planning of shuttle oil tankers, but also finely adjusts the 

composition and configuration of shuttle oil tanker fleets, 

thus achieving dual optimization from fleet design to 

navigation paths. Although this method has included 

carbon emission costs as part of variable costs, there may 

still be other cost factors that have not been fully 

considered or the weighting settings are unreasonable. In 

addition, with changes in market conditions such as 

fluctuations in fuel prices, port fee adjustments, etc., this 

method may need to be continuously updated and adjusted 

to adapt to new cost structures. 

Based on the above analysis, with the goal of improving 

shipping logistics efficiency, reducing transportation 

costs, and decreasing energy consumption, this study 

designs a shipping logistics path optimization method 

based on evolutionary ant colony algorithm. The design 

concept of this method is as follows: 

(1) Abstracting the shipping logistics network as a 

directed weighted graph in graph theory, where nodes 

represent ports, edges represent transportation paths, and 

weights include distance, time, cost, etc. Build a 

mathematical model based on the Traveling Salesman 

Problem (TSP) to adapt to the dynamic changes in 

shipping logistics demand. 

(2) Design objective functions from four aspects: 

minimizing logistics transportation expenses, minimizing 

logistics transportation time, minimizing carbon 

emissions, and maximizing path reliability. Set port 

capacity constraints, time window constraints, fuel 

consumption constraints, port congestion constraints, etc. 

to ensure the feasibility and practical operability of the 

path. 

(3) To improve the search efficiency and global 

optimization ability of the algorithm, and avoid getting 

stuck in local optima, a dual population mechanism is 

introduced. For population 1, the elite ant strategy is 

adopted to quickly converge to the local optimal solution; 

For population 2, a strengthened sub path evaluation 

mechanism is adopted to explore new solution spaces and 

escape from local optima. On this basis, a path 

contribution evaluation mechanism is designed to 

compare the optimal paths of two populations and select 

the path with higher contribution as the global optimal 

solution. The dual population mechanism increases the 

diversity and comprehensiveness of the search, and the 

path contribution evaluation mechanism further improves 

the quality of the global optimal solution. 

(4) Use the improved ant colony algorithm to solve the 

objective function. Initialize ant colony algorithm 

parameters, construct a directed weighted graph, and 

perform parallel search to generate two candidate paths. 

Update pheromones based on elite ant strategy and 

strengthened sub path evaluation mechanism, calculate 

path contribution, and screen for better paths. Iterate the 

search until the global optimal path is no longer updated, 

and output the optimal path that satisfies the 

multi-objective function. This process achieves efficient 

and accurate path optimization through parallel search and 

pheromone update mechanisms, significantly improving 

the convergence speed and solution quality of the 

algorithm. 

 

2   Design of optimization methods for 

shipping logistics paths 

2.1 Analysis of TSP problems in shipping 

logistics 

In the field of path selection and planning, TSP is a 

classic combinatorial optimization problem [7], which can 

be described as: given a series of cities and the distance 

between each pair of cities, solving the shortest path to 

visit each city once and return to the starting city. 
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Therefore, this study first abstracts the shipping 

logistics network as a set of nodes and edges in graph 

theory. Use nodes to represent key locations of logistics 

ports, edges to represent transportation paths, and analyze 

their TSP mathematical models. This step not only 

simplifies the structure of complex logistics networks, but 

also provides a clear framework and theoretical basis for 

the subsequent application of ant colony algorithms, 

making path optimization problems easier to analyze, 

solve, and verify. At the same time, this abstract method 

has high flexibility and scalability, and can adapt to the 

dynamic changes and multi-objective optimization 

requirements in shipping logistics. 

Set up a directed weighted graph ( ),G V D , as shown 

in Fig. 1. 
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Figure 1: Structure diagram of directed weighted graph 

(taking a directed weighted graph with 5 vertices as an 

example) 

 

Among them: 

Using different cities (logistics ports) as vertices, obtain 

a vertex set  1,2, , , , , ,V i j n= ; 

Take the line connecting city i  and city j  as the 

weighted edge, and the set of edges is  ,ijD d i j n=  . 

Shipping logistics networks typically involve multiple 

ports, multiple modes of transportation, and complex 

constraints [8]. Through graph theory abstraction, they 

can be simplified into a computable mathematical model 

for subsequent analysis and optimization. 

Then, assuming the existence of 

1,     is directly connected to 

0, others
ij

i j
s


= 


, TSP mathematical 

model of shipping logistics can be expressed in the 

following form: 
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



 



 (1) 

In Equation (1), S  represents a subgraph of G ; S  

represents the number of cities in S . 

The TSP problem requires finding a path that passes 

through all nodes and has the minimum total cost, which is 

highly consistent with the goal of optimizing shipping 

logistics paths. In shipping logistics, it is usually 

necessary to plan a path from the starting point to the 

destination, passing through multiple ports, while 

minimizing transportation costs, time, or carbon 

emissions. The above TSP model can well describe this 

requirement. 

On this basis, due to the complexity of logistics in 

reality, the application of TSP needs to fully consider 

travel time and cost. Therefore, this study extended the 

dynamic TSP model. Set up rolling time-domain 

optimization in TSP problem, decompose global path 

planning into multiple time windows, re optimize local 

paths based on the latest data within each window, adjust 

subsequent paths every 3 hours according to updated 

weather and port status, and enhance dynamic response 

capability. 

2.2 Objective function and constraint setting 

for optimizing shipping logistics paths 

In the research of optimizing shipping logistics paths, 

the design of the objective function is crucial. The 

objective function aims to quantify the performance 

indicators of the optimized path to guide the algorithm in 

searching for the optimal solution. Therefore, based on the 

characteristics of optimizing shipping logistics paths, this 

study sets objective functions from four aspects: 

minimizing logistics transportation expenses, minimizing 

logistics transportation time, minimizing carbon 

emissions, and maximizing path reliability. 

(A) Minimizing logistics and transportation expenses 

Reducing transportation expenses is one of the core 

goals of shipping and logistics enterprises, which directly 

affects their profitability and market competitiveness [9]. 

The objective function aims to minimize the total 

transportation expenses in shipping logistics, including 

fuel costs, port costs, ship maintenance costs, labor costs, 

etc. By optimizing the route and selecting the lowest cost 

route and transit port, the operating expenses of shipping 

and logistics enterprises can be reduced. 

Shipping and logistics transportation expenses mainly 

include five parts: fuel expenses, port fees, loading and 

unloading fees, carbon emission expenses, and 

surcharges. Therefore, the objective function is 

established as follows: 
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In Equation (2), 

1,  if Choose the

route from port  to 

0,  otherwise

ijC i j




= 



 represents 

the path selection coefficient; 

1,  if select port  as the port of call

0,  otherwise
j

 j
C


= 


 represents the 

port selection coefficient; The meanings of the remaining 

parameters are as follows: 1 2 3 4 5, , , ,A A A A A  respectively 

represent fuel expenses, port fees, loading and unloading 

fees, carbon emission expenses, and surcharges; V  

represents a collection of shipping networks, ,i j V ; 1f  

and 2f  respectively represent the daily fuel consumption 

of shipping vessels in sailing and berthing states; P  

represents fuel price; N  represents the set of n  ports (i.e. 

cities in the directed weighted graph) that can be docked 

in the entire shipping network; jt  represents the berthing 

time of shipping vessels at port j ; s  represents the 

number of times fuel is replenished; jO  represents the 

operational cost incurred by the shipping vessel for 

refueling at port j ; jL  and jU  respectively represent the 

allowable container loading and unloading capacity at 

port j ; ijt  represents the transportation time from Port i  

to Port j ; k  represents the carbon emission tax rate; c  

represents the carbon emission factor; j  represents the 

additional fee for shipping vessels at port j . 

Set the following constraints for the objective function 

of minimizing logistics transportation expenses: 

 

(1) The actual cargo volume of containers between 

ports shall not exceed the maximum loading capacity of 

the sea vessel, that is: 

 

 maxs.t. , ,ijQ H i j V    (3) 

In Equation (3), ijQ  represents the container freight 

volume between ports i  and j ; maxH  represents the 

maximum container capacity of the shipping vessel. 

(2) Ensure that the total container load at all ports 

matches the total unloading volume, that is: 

 

  
1 1

s.t. , , 0,1,2, ,
n n

i ij i ij

i i

L C U C i j n
= =

=     (4) 

(3) The maximum number of times a port can be visited 

is once, that is: 

 

 s.t. 0 1jC   (5) 

(4) The number of ports of call selected shall not exceed 

the required total, that is: 

 

 
1

s.t. 
n

j V

j

C 
=

  (6) 

In Equation (6), V  represents the maximum number 

of ports that can be docked. 

 

(5) Ensure the conservation of container loading and 

unloading volume at each dock [10], that is: 
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1

s.t. 

n

ij j

i

n
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j
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=





 (7) 

(6) Ensure that the total freight volume meets the 

minimum required freight volume, that is: 

 1 1

1

s.t. 

n n

ij

i j

n

ij i

j

Q Q

Q U

= =

=



=





 (8) 

In Equation (8), Q  represents the minimum container 

freight volume required to achieve the predetermined 

revenue. 

 

(7) The decision variable conforms to the 0-1 

constraint, that is: 

 

  ,

s.t. 

0,1ij jC C 
 (9) 

(8) Minimize logistics transportation time 

Shortening transportation time can meet customers’ 

demand for timeliness, reduce the uncertainty of goods in 

transit, and improve the turnover rate of ships [11]. 

Therefore, the objective function aims to minimize the 

total transportation time in shipping logistics, including 

sailing time, port waiting time, loading and unloading 

time, etc. By optimizing the route and selecting the 

shortest route and transit port, logistics efficiency can be 

improved. 

Based on the above analysis, the objective function for 

minimizing logistics transportation time is established as 

follows: 

 

 2 , , / ,

1 1 1

min
A n K

sail a wait j load unload k

a j k

F t t t
= = =

 
= + + 

 
    (10) 

In Equation (10), ,sail at  represents the sailing time of 

segment a ; ,wait jt  represents the waiting time at port j ; 

/ ,load unload kt  represents the time of the k -th loading and 

unloading; A , K  represent the number of flight 

segments and the number of loading and unloading times. 

To minimize the objective function of logistics 

transportation time, the following constraints are set: 

 

(1) Port capacity constraints: 
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,

s.t. 

Capacity port wait j

j

t j  (11) 

In Equation (11), Capacity port k  represents the 

maximum processing capacity or capacity of port j . This 

constraint ensures that the cumulative waiting time for 

each port does not exceed its processing capacity. 

 

(2) Time window constraint: The goods need to arrive 

at a certain port within a specific time window [12], that 

is: 

 

 
,

s.t. 

TimeWindowStart ,TimeWindowEndarrival j j jt    
(12) 

In Equation (12), TimeWindowStart j  and 

TimeWindowEnd j  represent the start and end times of 

the time window for port j , respectively. This constraint 

requires that the goods arrive at port j  within the 

specified time window. 

 

2.3   Minimize carbon emissions 
Reducing carbon emissions is an important goal of 

green logistics, and this objective function aims to 

minimize the total carbon emissions in shipping logistics 

to reduce the impact on the environment. Carbon 

emissions are usually related to fuel consumption and 

route distance. By optimizing routes and selecting routes 

and transit ports with the lowest carbon emissions, green 

logistics can be achieved [13]. 

Based on the above analysis, the objective function for 

minimizing carbon emissions is established as follows: 

 

 3 ,

, 1 , 1 1

min min
n n A

ij ij fuel a a ij

i j i j a

F e C c d C
= = =

   
= =   

   
   (13) 

In Equation (13), ije  represents the carbon emissions 

from port i  to port j , which are usually related to fuel 

consumption and route distance; ,fuel ac  represents the 

carbon emission coefficient per unit distance of the 

segment route a ; ad  represents the distance of the 

segment route a . 

For the objective function of minimizing carbon 

emissions, fuel consumption constraints are set, requiring 

that fuel consumption cannot exceed the fuel reserve of 

the vessel, that is: 

 

 ( ),

1

s.t. 

FuelConsumption , TotalFuelReserve
A

a fuel a

a

d c
=



 (14) 

In Equation (14), ( ),FuelConsumption ,a fuel ad c  

represents the fuel consumption of route segment a ; 

TotalFuelReserve  represents the total fuel reserve of the 

vessel. This constraint ensures that the total fuel 

consumption does not exceed the vessel’s fuel reserve 

[14]. 

 

2.4   Maximizing path reliability 
Improving path reliability can ensure timely arrival of 

goods, reduce unexpected losses during transportation, 

and enhance customer trust [15]. Therefore, the objective 

function aims to maximize the reliability of the shipping 

logistics path, that is, the probability that the path can be 

smoothly executed in practical operations. Reliability is 

usually affected by factors such as weather, port 

congestion, and route safety. By optimizing the route and 

selecting the most reliable route and transit port, 

transportation risks can be reduced. 

Based on the above analysis, the objective function for 

maximizing path reliability is established as follows: 

 

 4

, 1

max ij

n
C

ij

i j

F r
=

 
=  

 
  (15) 

In Equation (15), ijr  represents the path reliability from 

port i  to port j . 

Set the following constraints for the objective function 

of maximizing path reliability: 

(1) Considering the impact of port congestion on 

reliability, the port congestion constraints are set as 

follows [16]: 

 

 
reliable congestion,

s.t. 

, j jP P
 (16) 

In Equation (16), reliable , jP  represents the reliability 

probability of port j ; congestion, jP  represents the reliability 

probability of port j  being affected by congestion. This 

constraint ensures that the reliability probability of port 

operations is not lower than the probability allowed by 

congestion conditions. 

(2) No sub loop constraint: 

 

 
s.t. 

1i j iju u nC n+  −
 (17) 

In Equation (17), iu  and ju  represent auxiliary 

variables used to eliminate sub loops. 

In summary, the objective function for optimizing 

shipping logistics routes is as follows: 

 

 
1 1 2 2 3 3 4 4F F F F F   = + + +  (18) 

In Equation (18), 1 , 2 , 3  and 4  are the weight 

values of the four objective functions respectively. 

The process of setting weight factors is as follows: 

Firstly, due to the different units and magnitudes of each 

target, normalization is required first. Map each target 
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value to the interval of 0, 10, and 1 through linear 

transformation to eliminate dimensional differences. Then, 

based on the actual needs of shipping companies and 

external constraints, initial weights are assigned as 0.4, 

0.3, 0.2, and 0.1, respectively. On this basis, the Analytic 

Hierarchy Process (AHP) and expert evaluation are 

combined to construct a matrix for comparing the 

importance of objectives. For example, expenses are more 

important than time (2:1 ratio), time is more important 

than carbon emissions (1.5:1 ratio), and carbon emissions 

are more important than reliability (1.2:1 ratio). Finally, 

through matrix consistency testing (consistency ratio 

CR<0.1), the weights of each target were calculated, and 

the final weights were obtained as 0.30, 0.30, 0.20, and 

0.20 respectively. 

 

2.5 Optimization for shipping logistics routes 

based on evolutionary ant colony 

algorithm 

Based on the objective function obtained above, the 

improved ant colony algorithm is used to solve and obtain 

the optimal shipping logistics path. 

 

Evolutionary design and application of ant colony 

algorithm 

In the context of shipping logistics, each logistics port 

is like a city in TSP. Shipping vessels need to visit 

different ports in sequence for cargo loading and 

unloading operations, and usually hope to complete all 

port visits with the optimal path [17, 18]. 

However, as the number of cities increases, the search 

space of TSP grows exponentially, which makes it 

difficult for ant colony algorithms to traverse all possible 

paths in a limited time, and is susceptible to the 

accumulation of pheromones during the search process, 

leading to premature convergence to local optimal 

solutions. In response to this issue, this study proposes 

improvements to the ant colony algorithm. The 

improvement ideas are as follows: 

(1) Introduce the idea of dual population and use two 

independent ant populations for parallel search. 

Population 1 adopts the elite ant strategy to update 

pheromones, quickly converges using existing 

information, and obtains the shortest path of TSP; 

Population 2 adopts a strengthened sub path evaluation 

mechanism to update pheromones, and jumps out of local 

optimal solutions by exploring new solution spaces to 

obtain the shortest path of TSP; 

(2) Comparing the two shortest paths obtained above, 

using the path contribution evaluation mechanism to 

update the pheromones of the two populations again, the 

final TSP solution is obtained, which is the optimal 

shipping logistics path. 

 

Dual population ant colony algorithm based on path 

contribution evaluation 

Based on the TSP mathematical model established in 

Section 2.1, the ant colony algorithm is used to solve for 

the shortest path that traverses all cities (logistics ports) 

and returns to the starting point. The process is as follows: 

Assuming the number of ants is m . At time t , the 

probability of state transition for ant a  moving from city 

i  to city j  is ( )a

ijq t : 

 

 ( )

( ) ( )

( ) ( )
,   if  

0,   if  

a

ij ij

a
a

ik ik
ij

k V

a

p t t
j V

p t tq t

j V

 

 


        
    =    

 

  (19) 

In Equation (19), aV  represents the set of cities that ant 

a  can select in the future; ( )ijp t  represents pheromone; 

( )ij t  represents the visibility of the path;   and   

respectively represent the heuristic factors of ( )ijp t  and 

( )ij t  ; k  represents any other city except for cities i  

and j  [19]. 

The update equation for pheromones is: 

 

 ( ) ( ) ( )
1

1 1
m

a

ij ij ij

a

p t p p t 
=

+ =  + − +  

 (20) 

In Equation (20), in the current loop, 
a

ijp  represents 

the pheromone left by ant a  on path i j→ ;   represents 

the residual factor of ( )ijh t  [20];   represents the 

pheromone decay rate. 

Usually,  ,  , and   significantly affect the 

performance of algorithms. Therefore, this study 

conducted empirical research. This study set three sets of 

experimental parameters: 

The first set of parameters: 1.5 2.0, 0.3  = = =, . 

Under this setting, the algorithm is more inclined to 

explore new paths in the early stages (due to the larger 

value of  ), but the pheromone decay is relatively slow, 

which helps maintain the pheromone concentration of the 

better paths explored in the early stages. 

The second set of parameters: 2.5 1.5, 0.5  = = =, . 

At this point, the algorithm focuses more on utilizing 

existing information (with a larger value of  ), but the 

pheromone decay is faster, which may lead to premature 

convergence to the local optimal solution. 

The third set of parameters: 2.0 2.0, 0.4  = = =, . 

This is a compromise setting aimed at balancing 

exploration and utilization while maintaining a moderate 

rate of pheromone decay. Therefore, this set of values was 

adopted in this study. 

However, as analyzed earlier, the search space of TSP 
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is positively correlated with the number of cities, which 

makes it difficult for ant colony algorithm to traverse all 

paths in a limited time, and the convenient process is 

easily affected by the accumulation of pheromones, 

resulting in premature convergence of the algorithm and 

difficulty in obtaining the optimal path for the entire site. 

To address this issue, this study introduces the dual ant 

colony algorithm, which utilizes two independent ant 

populations for parallel search when solving the TSP 

mathematical model. Population 1 adopts the elite ant 

strategy, focusing on utilizing existing information to 

quickly converge. Population 2 adopts a strengthened sub 

path evaluation mechanism, focusing on exploring new 

solution spaces. This dual population mechanism 

increases the diversity and comprehensiveness of the 

search, helping the population to escape from local optima 

and obtain an optimal path that traverses all cities and 

returns to the starting point. 

For population 1, adopting the elite ant strategy and 

improving the updating method of pheromones, the 

equation is as follows: 

 

 ( ) ( ) *

1

1
m

a

ij ij ij ij

a

p t p t p p
=

+ = + +   (21) 

In Equation (21), 
*

ijp  represents the pheromone 

increment of elite ants on path i j→ . 

The calculation equations for 
a

ijp  and 
*

ijp  are as 

follows: 

 

 

     

*

*

,   if  passes through path  in the current loop

0,      if  does not pass through path  in the current loop

,if path  belongs to the optimal solution

0, if path 

a

aij

bestij

a i j
dp

a i j

m i j
dp






→

 = 
 →

 →
 =

 does not belong to the optimal solutioni j




 →

(2

2) 

In Equation (22), *m  represents the number of elite 

ants;   represents the strength of pheromones; ad  

represents the length of the movement path of ant a ; bestd  

represents the path length of the optimal solution for TSP. 

For population 2, a strengthened sub path evaluation 

mechanism is used to update pheromones, ensuring 

accurate partitioning of the contribution of different sub 

paths when solving TSP and improving the quality of TSP 

solutions. 

After introducing the enhanced negative feedback 

mechanism, the equation for calculating the state 

transition probability of population 2 is: 

 

 ( )
( ) ( ) ( )( )
( ) ( ) ( )( )

1

1
a

ij ij ija

ij

ij ij ij

k V

p t t I t
q t

p t t I t





  

  


  −
=

  −
 (23) 

In Equation (23), ( )ij t  represents a negative feedback 

pheromone; I  represents the heuristic factor of ( )ij t . 

In the enhanced negative feedback mechanism, the 

increment of sub path length pheromone is introduced to 

obtain the enhanced sub path evaluation mechanism. The 

updated values ( )ijp t  and ( )ij t  of positive and 

negative feedback pheromones are improved, and the 

improvement amounts of both are as follows: 
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1

1
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best best
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w w

d
p' t
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d
t

d d





 

  
 =  −   
  


   =  +  
 

 (24) 

In Equation (24),   represents the amplification factor 

of the path factor; wd  represents the worst path within the 

current loop;   represents the path magnification factor. 

 

Optimization Solution of TSP 

In order to enable two ant populations to discover more 

potential high-quality solutions and ultimately find higher 

quality TSP solutions, two paths are obtained for the two 

populations, and a path contribution evaluation 

mechanism is introduced to screen for the better path. 

The calculation equation for path contribution degree 

C  is as follows: 

 

 
a

best

d
C

d
=  (25) 

Analyzing the complexity of pheromone updates in the 

above process, it is mainly reflected in the following 

aspects: Firstly, the mechanism introduces a dual 

population strategy, where population 1 adopts the elite 

ant strategy and population 2 adopts the enhanced sub 

path evaluation mechanism. This parallel search method 

significantly increases the exploration space of the 

algorithm, but also brings about the complexity of 

pheromone updates. Population 1 and Population 2 need 

to maintain their respective pheromone matrices and 

update them according to their respective strategies during 

the iteration process, which increases the consumption of 

computing resources; Secondly, the update of 

pheromones not only depends on the path length of the 

current ant, but also considers parameters such as the 

proportion of elite ants and the amplification factor of path 

factors. The introduction of these parameters makes the 

pheromone update formula more complex, but also 

improves the algorithm's global search ability and ability 

to escape from local optima; In addition, the real-time 

data-driven pheromone reset mechanism enables the 

algorithm to dynamically adjust the distribution of 

pheromones according to changes in the external 

environment, further increasing the complexity and 

adaptability of the algorithm. However, it also puts higher 

demands on the real-time performance and data accuracy 
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of the algorithm. 

In summary, using the dual population ant colony 

algorithm based on path contribution evaluation to solve 

the mathematical model of TSP, the specific steps are as 

follows: 

Step 1: Parameter initialization; 

Step 2: In the directed weighted graph, randomly select 

two cities as the starting points for populations A  and B ; 

Step 3: For groups 1 and 2, calculate the state transition 

probability of ant a  using Equations (19) and (23) 

respectively, and store the unselected cities in the set of 

candidate cities; 

Step 4: Improve population 1 through elite ant strategy 

and improve population 2 through strengthened sub path 

evaluation mechanism. Store the optimal solutions and 

corresponding path lengths 1d  and 2d  for the two 

populations in the current loop separately; 

Step 5: Update pheromones for two populations using 

Equations (21) and (24) respectively; 

Step 6: By collecting port congestion index (number of 

waiting ships in anchorage, utilization rate of loading and 

unloading equipment), meteorological and sea condition 

data (wind speed, wave height), and fuel price fluctuation 

data, a dynamic factor matrix is formed. When the 

dynamic factor of a certain flight segment exceeds the 

preset threshold, the local pheromone reset is immediately 

triggered, and the pheromone is updated again using 

Equations (21) and (24); 

Step 7: Using the evaluation criteria for path 

contribution, compare and analyze 1d  and 2d , and select 

the path with higher contribution as the global optimal 

path length bestd ; 

Step 8: Analyze whether bestd  continues to update. 

Continue updating, jump back to step 2; If no longer 

updated, output the optimal solution of TSP. bestd  is the 

shortest path connecting all cities in the directed weighted 

graph. 

The specific way in which the improved ant colony 

algorithm jumps out of local optima is as follows: 

(1) Parallel search and independent evolution: The dual 

population mechanism introduces two independent ant 

populations for parallel search. This parallelism enables 

the algorithm to simultaneously explore multiple potential 

optimal solutions in the solution space, thereby increasing 

the likelihood of discovering the global optimal solution. 

Two populations adopt different strategies for evolution. 

Population 1 adopts the elite ant strategy, focusing on 

utilizing existing information to quickly converge; And 

population 2 adopts a strengthened sub path evaluation 

mechanism, focusing on exploring new solution spaces. 

This independence ensures that each population can 

explore deeply within its specific search area, reducing 

dependence on the search process of other populations. 

(2) Elite Ant Strategy and Rapid Convergence: 

Population 1 adopts the Elite Ant Strategy, which updates 

pheromones by retaining and utilizing the optimal 

solution (Elite Ant) in each iteration. This strategy helps 

Population 1 to quickly converge to a local optimal 

solution, especially when there are clearly advantageous 

regions in the solution space. Meanwhile, the continuous 

exploration of population 2 provides an opportunity for 

the algorithm to escape from local optima. 

(3) Enhanced sub path evaluation mechanism and 

global exploration: Population 2 adopts an enhanced sub 

path evaluation mechanism to update pheromones by 

calculating the contribution of sub paths. This mechanism 

enables population 2 to explore unknown regions in the 

solution space more deeply, thereby discovering new 

potential optimal solutions. When population 1 falls into a 

local optimum, population 2 uses its global exploration 

ability to discover a new path to the global optimum. This 

ability is achieved through a strengthened sub path 

evaluation mechanism, which can accurately assess the 

contribution of different sub paths and update pheromones 

accordingly, guiding ants to evolve towards a better path. 

(4) Path contribution evaluation mechanism and global 

optimal selection: By comparing the path contribution of 

two populations, the algorithm selects the path with higher 

contribution as the global optimal solution. This 

mechanism ensures that the algorithm always evolves 

towards the global optimal solution during the 

convergence process, rather than staying at a local optimal 

solution. 

(5) Real time data-driven pheromone reset mechanism: 

The algorithm also introduces a real-time data-driven 

pheromone reset mechanism. When real-time data (such 

as port congestion index, meteorological and sea 

condition data, fuel price fluctuation data, etc.) undergoes 

significant changes, this mechanism can adjust the 

distribution of pheromones in a timely manner, guiding 

ants to explore new paths. This dynamic adaptability 

enables the algorithm to quickly respond to changes in the 

external environment, thereby avoiding getting stuck in 

local optima caused by environmental changes. 

 

2.6   Optimization of shipping logistics routes 
Using the improved ant colony algorithm mentioned 

above, solve the objective function in Equation (18) to 

obtain the optimal shipping logistics path. The solving 

process is as follows: 

 

Step 1: Parameter initialization. 

Initialize various parameters in ant colony algorithm, 

including ant count, initial pheromone value, pheromone 

residual factor, pheromone volatilization factor, heuristic 

factor, elite ant count, amplification factor of path factor, 

maximum iteration times, etc. 

 

Step 2: Build a directed weighted graph ( ),G V D . 

Construct a directed weighting graph based on the 

actual situation of the shipping logistics network. Using 
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nodes in the graph to represent key locations of logistics 

ports, edges to represent transportation paths, and the 

weights of edges to be quantified based on factors such as 

distance, time, and cost. Due to the focus on factors such 

as distance, time, cost, and carbon emissions in this study, 

these factors were comprehensively considered and used 

as weights for the edges. 

 

Step 3: Build a solution space. 

Based on the characteristics of the shipping logistics 

network, considering factors such as the location of 

logistics ports, transportation distance, transportation 

time, transportation expenses, carbon emissions, and path 

reliability, a solution space is constructed that includes all 

possible paths. This solution space will serve as the search 

range for ant colony algorithm. 

 

Step 4: Select the starting point. 

In the directed weighted graph ( ),G V D , arbitrarily 

select two cities (logistics ports) as the starting points for 

population 1 and population 2. 

 

Step 5: Calculate the state transition probability of ants. 

For each ant in population 1 and population 2, calculate 

the state transition probability ( )a

ijq t  using Equations 

(19) and (23) based on the current port and the set of 

candidate ports. 

 

Step 6: Calculate the objective function value. 

For each path generated by an ant in the current 

iteration, calculate its corresponding objective function 

value F  according to Equation (18). 

 

Step 7: Update the pheromone. 

After each iteration, update the pheromone 

concentration on the path based on the ant’s movement 

path and objective function value [21]. For population 1, 

according to Equation (21), the elite ant strategy is 

adopted to improve the updating method of pheromones, 

resulting in ( )1ijp t + ; For population 2, according to 

Equation (24), a strengthened sub path evaluation 

mechanism is used to update the pheromones, obtaining 

the updated values ( )ijp t  and ( )ij t  of positive and 

negative feedback pheromones, in order to ensure 

accurate division of the contribution of different sub paths 

in the solving process. 

 

Step 8: Calculate the path contribution degree. 

After each iteration, calculate the path contribution C  

of the two paths obtained from the two populations 

according to Equation (25), select the better path, and 

further adjust the pheromone concentration accordingly. 

 

Step 9: Update the global best path. 

Compare the contribution of two paths obtained from 

two populations, select the path with higher contribution 

as the global best path, and update the length of the global 

best path. 

Step 10: Iterative search. 

Repeat steps 3 to 7 for multiple iterations of the search. 

In each iteration, ants are guided to find a better path in the 

directed weighted graph based on the current pheromone 

concentration and state transition probability. 

 

Step 11: Determine the termination condition. 

Determine whether the global optimal path length bestd  

has been updated. If no longer updated, the shortest path 

connecting all cities within ( ),G V E ; Otherwise, return to 

step 3 to continue iterating. 

 

Step 12: Output the optimal path. 

After the algorithm stops, output the optimal shipping 

logistics path. The path should meet the objective function 

requirements of minimizing logistics transportation 

expenses, minimizing logistics transportation time, 

minimizing carbon emissions, and maximizing path 

reliability. At the same time, the path can be further 

optimized and adjusted according to actual needs. 

 

3   Simulation experiment and result 

analysis 
To verify the feasibility of the optimization method for 

shipping logistics paths based on evolutionary ant colony 

algorithm designed above, the following simulation 

experiments are designed. 

3.1 Simulation experiment design 

Before the experiment, the following designs were 

developed for two populations: 

Population 1 uses the Elite Ant System for pheromone 

updates. In this population, the number of ants is 100, the 

proportion of elite ants is 0.3, the pheromone importance 

factor is 2.5, the heuristic function importance factor is 

5.0, the pheromone intensity is 100, the proportion of elite 

ants is 0.3, and the pheromone volatilization rate is 0.25. 

The sub path length threshold for population 2 is 5, the 

sub path contribution weight is 0.75, the negative 

feedback heuristic factor is 1.2, and all other parameters 

are the same as population 1. 

The parameter difference between the two populations 

is not randomly set, but a targeted design to meet their 

division of labor goals: Population 1 achieves rapid 

convergence through high heuristic weights, elite 

retention, and low pheromone volatilization; Population 2 

achieves global search through sub path evaluation, 

negative feedback mechanism, and local exploration 

weights. Therefore, in addition to sampling the same 

parameter settings as population 1, additional sub path 

length thresholds and sub path contribution weights were 

set for population 2. 
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Assuming there are 50 cities (logistics ports), construct 

a directed weighted graph based on their geographical 

locations and transportation conditions. 

Using the method of this paper for solution analysis, the 

solution path analysis results are shown in Fig. 2. 

From the analysis of Fig. 2, it can be seen that although 

both population 1 and population 2 can be used to solve 

the path scheme, after using the dual population ant 

colony algorithm, the path does not overlap or repeat. The 

solution path lengths for different algorithms are shown in 

Table Ⅰ. 

Based on the comprehensive analysis of Fig. 2 and 

Table Ⅰ, it can be seen that the path length obtained by 

using only Population 1 or Population 2 is relatively long, 

while the path length obtained by using the dual 

population ant colony algorithm is significantly shorter, 

indicating the effectiveness of the improved ant colony 

algorithm proposed in this paper. 
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(a) Analysis results of solving population 1 
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(b) Analysis results of solving population 2 
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(c) Analysis and solution results of dual population ant 

colony algorithm 

 

Figure 2: The solution result of the algorithm 

 

Table 1: The path length for solving different algorithms 

Algorithm 
The length of the 

path/×106 nautical mile 
Pheromone level 

Population 1 468 85.0 

Population 2 523 70.2 
Dual population ant 

colony algorithm 
407 95.3 

 

On this basis, the convergence curves of using only 

population 1, only population 2, and the dual population 

ant colony algorithm are shown in Fig. 3. By comparing 

the optimal path cost during the iteration process of 

different algorithms, the efficiency of different algorithms 

is compared. 
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Figure 3: Comparison of optimal path costs in different 

algorithm iterations 
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Observing Fig. 3, it can be seen that the dual population 

algorithm has the advantage of parallel search, and its 

initial value is similar to that of population 1. Population 1 

rapidly declines (first 30 iterations) but subsequently falls 

into local optima; Population 2 has a slow convergence 

rate, but continues to explore new solutions and has not 

reached the global optimum. The dual population 

algorithm combines fast convergence and continuous 

exploration to ultimately achieve the optimal value, and 

the convergence speed is significantly faster than that of a 

single population. After 50 iterations, the dual population 

algorithm is approaching the final solution, while there is 

still a significant gap between the individual populations. 

After 80 iterations, all algorithms tend to stabilize, and the 

dual population mechanism exhibits global optimality. 

 

3.2 Comparative analysis of application 

effects 

 

Design of simulation experiment environment 

The experimental simulation starts from port A in 

China and ends at port R in the United States, passing 

through 16 dockable ports from B to Q. These ports are 

distributed in different countries and regions, representing 

key nodes in the shipping logistics path. Among them, C, 

H, M, and P are ports that must be stopped. 

By optimizing the path, we aim to minimize 

transportation costs, minimize transportation time, 

minimize carbon emissions, and maximize path 

reliability. 

 

Design of simulation experiment parameters 

The ship and navigation parameters are set as follows: 

the ship type is a Cape of Good Hope container ship, the 

ship load is 150000 tons, the ship speed is 15 nautical 

miles per hour, and the daily navigation distance is 360 

nautical miles. 

The fuel consumption parameters are set as follows: the 

container ship used for simulation belongs to the Cape of 

Good Hope ship type, with an average load of 150000 

tons. The daily fuel consumption during ship navigation is 

48.5 tons/day, and the daily fuel consumption during 

berthing is 3.81 tons/day. Calculate $965 per ton of fuel 

based on the average fuel cost in 2024. In the simulation 

experiment, the ship is set to refuel at least once, with 

priority given to docking or anchoring for refueling. 

The container and port operation parameters are set as 

follows: the maximum container capacity is 15000 TEU, 

and the ratio of 20 size to 40 size containers is 1:1. Due to 

the inconsistent operating cost standards of various ports, 

for the convenience of calculation, the simulation 

experiment is estimated using the average value. The 

individual operating cost for a 20-size container is $45, 

and for a 40-size container it is $65 

The carbon emissions and environmental parameters 

are set as follows: the carbon tax rate is set at an estimated 

intermediate value of $42.75/ton, and the carbon 

conversion factor for ship navigation fuel consumption is 

determined to be 3.25, which is used to calculate carbon 

emissions. 

The environmental parameters are set as follows: In 

order to simulate the impact of maritime weather on 

shipping logistics, the experiment introduced weather 

condition parameters. Assuming there are varying degrees 

of sea conditions during the experiment, such as light 

waves, medium waves, large waves, etc., each sea 

condition will have different impacts on the vessel's 

sailing speed, fuel consumption, and safety reliability. The 

specific parameter settings are as follows: 

Light waves: reduced sailing speed by 5%, increased 

fuel consumption by 2%, and reduced path reliability by 

1%. 

Mid wave: reduced sailing speed by 10%, increased 

fuel consumption by 5%, and reduced path reliability by 

3%. 

Big waves: reduced sailing speed by 15%, increased 

fuel consumption by 10%, and reduced path reliability by 

5%. 

The weather conditions will be randomly assigned to 

different flight segments to simulate the changes in sea 

conditions that may be encountered during actual 

navigation. 

The additional fee and other parameter settings are as 

follows: The simulation experiment simulation additional 

fee mainly includes security fees, text fees, etc. There is 

not much difference in charges among major ports, so the 

standard is set at $102 per port. When constructing a 

directed weighting graph, distance, time, and cost 

(including fuel costs, port operation fees, carbon emission 

reductions, etc.) are comprehensively considered as the 

weights of edges. In addition, port loading and unloading 

delays are common uncontrollable factors in shipping 

logistics. To simulate this situation, the experiment set 

loading and unloading delay parameters. The specific 

parameter settings are as follows: 

Normal loading and unloading: Complete loading and 

unloading operations according to the scheduled time. 

Minor delay: loading and unloading time extended by 

10%. 

Serious delay: loading and unloading time extended by 

30%. 

Loading and unloading delays will be randomly 

assigned to different ports to simulate the delay situations 

that may be encountered in actual port operations. The 

setting of these parameters will help to more accurately 

evaluate the feasibility and reliability of different paths in 

actual shipping. 

 

Path description 

To avoid the singularity of experimental results, 

method of reference [4] and method of reference [5] were 

compared and validated against method of this paper in 

the same environment. Below are three methods for 
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generating shipping logistics paths. 

(A) The shipping logistics path generated by the 

method of this paper is as follows: 

Path description: 

Port A (starting point) → Port B (short stay) → Port C 

(stop, supply) → Port D (no stay) → Port E (short stay) → 

Port F (no stay) → Port G (no stay) → Port H (stop, 

supply) → Port I (short stay) → Port J (no stay) → Port K 

(short stay for equipment inspection) → Port L (no stay) 

→ Port M (stop, supply) → Port N (no stay) → Port O 

(short stay) → Port P (stop, supply) → Port Q (no stay) → 

Port R (end point) 

The duration of stay at each port is shown in Table Ⅱ. 

 

Table 2: Duration of stay at each port (method of this 

paper) 
Port Duration of stay 

C 
The vessel stays for 24 hours for cargo loading, 
unloading, and replenishment. 

H 
The vessel stays for 48 hours for deep replenishment and 

equipment maintenance. 

M 
The vessel stays for 36 hours for cargo transfer and 

necessary inspections. 

P 
The ship stays for 24 hours for final replenishment and 
cargo sorting. 

Other ports The average stay time does not exceed 12 hours. 

 

Supply situation: Fuel, fresh water, and food supplies 

are provided at the four stopover ports of C, H, M, and P. 

Partial supply will be provided as needed at some 

temporary ports of stay (such as B, E, I, K, O). 

(B) The shipping logistics path generated by method of 

reference [4] is as follows: 

Path description:  

Port A (starting point) → Port C (stopover, supply) → 

Port D (short stay) → Port E (no stay) → Port F (short 

stay) → Port G (no stay) → Port H (stopover, supply) → 

Port I (short stay) → Port J (stopover, unplanned supply) 

→ Port K (no stay) → Port L (short stay) → Port M 

(stopover, supply) → Port N (no stay) → Port P (stopover, 

supply) → Port Q (no stay) → Port R (end point). 

The duration of stay at each port is shown in Table Ⅲ. 

 

Table 3: Duration of stay at each port (method of 

reference [4]) 
Port Duration of stay 

C The ship stays for 24 hours. 

H The ship stays for 36 hours. 

J 

The vessel is not scheduled to stay for 24 hours for 

replenishment (due to the inability to dock at the original 
planned port). 

M The ship stays for 24 hours. 
P The ship stays for 36 hours. 

Other ports The average stay time does not exceed 12 hours. 

 

Supply situation: Supply will be conducted at ports C, 

H, M, and P. Due to unplanned stops at J port, supply costs 

have increased. 

(C) The shipping logistics path generated by method of 

reference [5] is as follows: 

Path description: 

Port A (starting point) → Port B (short stop) → Port C 

(stop, supply) → Port D (no stop) → Port E (short stop) → 

Port F (stop, non essential supply) → Port G (no stop) → 

Port H (stop, supply) → Port I (no stop) → Port J (short 

stop) → Port K (stop, supply) → Port L (no stop) → Port 

M (stop, supply) → Port N (short stop) → Port O (no stop) 

→ Port P (stop, supply) → Port R (end point). 

The duration of stay at each port is shown in Table Ⅳ. 

 

Table 4: Duration of stay at each port (method of 

reference [5]) 
Port Duration of stay 

C The ship stays for 36 hours. 

F 
The vessel is not required to stay for 12 hours for 

replenishment. 

H The ship stays for 24 hours. 
K The ship stays for 24 hours for equipment inspection. 

M The ship stays for 36 hours. 

P The ship stays for 24 hours. 
Other ports The average stay time does not exceed 12 hours. 

 

Supply situation: Supply will be conducted at ports C, 

H, K, M, and P. The non essential stay at Port F increases 

the cost and time of supply. 

The difference between the necessity and non necessity 

of different methods for port stay in the above results is 

due to their optimization objectives and dynamic response 

capabilities. The necessary stops (C, H, M, P ports) are set 

as mandatory constraints by the experiment, and all 

methods must be followed. Non essential stops may arise 

due to different algorithm designs: this method 

dynamically avoids inefficient ports and reduces 

redundant stops through multi-objective optimization 

(minimizing expenses, time, carbon emissions, and 

maximizing reliability) and real-time pheromone reset 

mechanism; Reference [4] focuses on fuel cost as the core 

objective and relies on static models. When the original 

planned port is unavailable, it is forced to detour (such as J 

port) and increase non essential stops; Reference [5] 

focuses on the shortest distance and safety, ignoring the 

overall cost, resulting in suboptimal path selection (such 

as non essential supplies at F port). The method of this 

paper significantly reduces unnecessary stops due to its 

ability to balance multiple objectives and dynamic 

adjustments, while the comparative method performs 

poorly in terms of transportation efficiency, cost, and 

environmental friendliness due to its single objective or 

rigid model, making it difficult to balance complex 

constraints. 

 

Comparative analysis 

According to the above generated path optimization 

scheme, the total transportation time, total transportation 

expenses, and total carbon emissions after applying 

different methods were compared, and the results are 

shown in Table Ⅴ. 
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Table 5: Comparison table of results 

 
Total 

transportation 

time/day 

Total 
transportation 

expenses/USD 

Total carbon 

emissions/ton 

Method of this paper 41 1250000 11800 
Method of reference 

[4] 
50 1420000 13500 

Method of reference 
[5] 

48 1380000 13200 

 

By comparing the paths generated by the three 

methods, it can be seen that the total transportation time of 

this method is 41 days throughout the entire experimental 

cycle, saving 9 days and 7 days respectively compared to 

the two existing methods; The total transportation 

expenses of this method is 1250000 USD, saving 170000 

USD and 130000 USD respectively compared to the two 

existing methods; The total carbon emissions of this 

method are 11800 tons, saving 1700 tons and 1400 tons 

respectively compared to the two existing methods. It can 

be seen that Method of this paper outperforms Method of 

Reference [4] and Method of Reference [5] in terms of 

total transportation time, total transportation expenses, 

and total carbon emissions. The method of this paper 

effectively improves the global optimization capability of 

path optimization by introducing a dual population 

mechanism and a path contribution evaluation 

mechanism. Although the method of reference [4] 

considers fuel supply strategies, its path selection is 

relatively conservative, resulting in higher total 

transportation time and expenses. The method of 

reference [5] is designed for peak periods of maritime 

traffic, but its path optimization objective is relatively 

single and fails to comprehensively consider factors such 

as transportation costs and carbon emissions, resulting in 

slightly inferior performance compared to the method of 

this paper. 

On this basis, 30 independent experiments were 

conducted on different methods in the same simulation 

environment, and the following indicators were recorded 

for each experiment: total transportation time, total 

transportation expenses, and total carbon emissions. 

Calculate the mean and 95% confidence interval (CI) of 

each method indicator, as shown in Table ⅤI. 

 

Table 6: Confidence interval validation 

 

Total 

transportation 
time (Mean ± 

CI)/day 

Total 

transportation 
expenses (Mean ± 

CI)/USD 

Total carbon 

emissions 
(Mean ± 

CI)/ton 

Method of 

this paper 
41±1.2 1,250,000±25,000  11,800±300 

Method of 

reference 

[4] 

50±2.1 1,420,000±35,000  13,500±450 

Method of 

reference 

[5] 

48±1.8 1,380,000±30,000  13,200±400 

 

Compare the mean difference between the method 

proposed in this study and two comparison methods, and 

verify its significance (with a significance level of α

=0.05). 

Total transportation time: t=6.34, p<0.001 

(significantly better than both methods) 

Total transportation expenses: t=5.89, p<0.001 

(significantly better than both methods) 

Total carbon emissions: t=4.76, p<0.001 (significantly 

better than both methods) 

Statistical tests show that the improvement of the 

method of this study in transportation time, cost, and 

carbon emissions is statistically significant (p<0.001). 

The confidence intervals are non overlapping, further 

supporting the stable advantage of our method on multiple 

objectives. 

 

4   Discussion 
An in-depth analysis of the experimental results is 

conducted, and the advantages and disadvantages of the 

two traditional methods are shown in Table ⅤII. 

 

 

Table 7: The advantages and disadvantages of traditional methods 

Method Method of reference [4] Method of reference [5] 

Advantage 

Consider fuel supply strategy: Conduct in-depth 

research on the characteristics of grain shipping and 

the changes in fuel supply port oil prices over time and 

place, explore the relationship between fuel supply 

port oil prices and supply quantities, average oil prices 
and port service fees, and make fuel supply strategies 

more in line with actual operational situations, which 

can help reduce fuel costs. 
Constructing a path model that integrates integer 

programming: selecting fuel supply port selection, fuel 

supply quantity, and ship navigation route as key 
decision-making elements, the constructed model can 

comprehensively consider multiple factors and provide 
more comprehensive decision-making basis for path 

optimization. 

Setting a comprehensive objective function: aimed at 

minimizing the length of the voyage, improving 

navigation safety, and ensuring smooth navigation, it 
helps to find relatively good ship diversion paths in 

complex maritime traffic peak environments, ensuring 

safe and smooth shipping operations. 
Multiple algorithms are used to solve the problem: the 

grid method is used to reproduce the ship operation 

status during peak maritime traffic hours, the improved 
genetic algorithm searches for the optimal ship 

diversion path planning scheme on a global scale, and 

the nonlinear programming technique further solves the 
local optimal solution, improving the accuracy and 

effectiveness of the solution. 

Disadvantage Disadvantages Conservative route selection: In order to reduce fuel Single objective function: The objective function mainly 
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in total 

transportation 

time 

costs or port service fees, longer routes or more transit 

ports may be chosen, which increases the total 

transportation time. 
Lack of consideration for time efficiency: Insufficient 

consideration of time efficiency has resulted in an 

inability to effectively balance transportation time and 
cost during path optimization. 

focuses on the length of the voyage, navigation safety, 

and stability, without fully considering time efficiency, 

which may result in longer transportation time. 
Unbalanced transportation time and other factors: 

During the optimization process, transportation time 

was not well balanced with other factors that may affect 
transportation efficiency. 

Disadvantages 
in total 

transportation 

expenses 

Incomplete consideration of cost factors: Although 

fuel supply strategies have been considered, excessive 
emphasis on fuel and port service fees in route 

selection may overlook other potential cost factors, 

resulting in suboptimal total transportation expenses. 
Failure to conduct comprehensive cost optimization: 

Failure to conduct comprehensive optimization from 

the perspective of overall transportation costs may 
result in higher costs in certain situations. 

Not considering cost factors comprehensively: The 

objective function is relatively single and does not take 
into account other cost factors such as fuel costs and port 

charges, which may result in suboptimal total 

transportation expenses. 
Lack of cost optimization mechanism: There is no 

effective cost optimization mechanism established in the 

method, which cannot reduce transportation costs as a 
whole. 

Disadvantages 

in total carbon 

emissions 

The impact of route selection: longer routes will 
increase the distance traveled by ships, thereby 

increasing fuel consumption and leading to an increase 

in total carbon emissions. 
Lack of carbon emission considerations: The methods 

did not specifically optimize for carbon emissions, and 

carbon emission factors were not fully considered in 
path selection and transportation decisions. 

The impact of route length: Although minimizing the 

length of the route can reduce certain costs, longer 
routes will increase the distance traveled by ships, 

increase fuel consumption, and lead to an increase in 

total carbon emissions. 
Lack of carbon emission optimization objectives: 

Carbon emissions were not included as one of the 

optimization objectives in the method, and carbon 
emission factors were not fully considered in path 

planning. 

 

The method of this paper introduces a dual population 

mechanism to improve the conventional ant colony 

algorithm and applies it to optimize shipping logistics 

paths, effectively solving multiple key problems of 

traditional methods. On the one hand, conventional ant 

colony algorithms are prone to getting stuck in local 

optima in complex shipping networks and are sensitive to 

initial parameters. The improved algorithm enhances 

global search capability and parameter robustness through 

a dual population mechanism, reducing the risk of getting 

stuck in local optima and improving the adaptability and 

stability of the algorithm. On the other hand, traditional 

algorithms usually focus on single objective optimization, 

which makes it difficult to balance multiple objectives 

such as logistics transportation expenses, transportation 

time, carbon emissions, and path reliability. The improved 

algorithm sets up a multi-objective function to achieve 

trade-offs and coordination between various objectives, 

and can generate multiple Pareto optimal solutions, 

providing decision-makers with more comprehensive path 

selection and meeting the needs of different scenarios. In 

addition, the shipping logistics network structure is 

complex, and the improved ant colony algorithm abstracts 

it as a set of nodes and edges in graph theory, simplifying 

the network structure and providing a clear search 

framework for the algorithm, improving its efficiency and 

feasibility. 

However, although the method of this paper has shown 

significant advantages in transportation time, cost, and 

carbon emissions, there are still significant bottlenecks in 

its computational complexity. As the number of port 

nodes increases, the algorithm needs to maintain 

pheromone matrices and parallel search mechanisms for 

two independent populations, resulting in exponential 

growth in memory usage and computational complexity. 

Especially when dealing with multi-objective 

optimization involving time window constraints, port 

capacity limitations, etc., the algorithm requires a large 

number of iterations to balance the weight relationships 

between different objective functions, which reduces the 

feasibility of real-time dynamic path adjustment. In 

addition, algorithms are sensitive to parameter settings, 

such as pheromone volatilization factor, elite ant ratio, 

and other key parameters that need to be finely tuned for 

different shipping scenarios, otherwise it may lead to 

premature convergence of population 1 or low exploration 

efficiency of population 2. The setting of threshold 

parameters in the path contribution evaluation mechanism 

also lacks universal standards, which may lead to path 

evaluation bias in extreme weather or sudden port 

closures and other abnormal situations. 

Another potential issue is that the improved ant colony 

algorithm based on the method of this paper has a strong 

dependence on the quality of input data. When there is 

noise or update delay in basic data such as distance 

between ports and fuel prices, the "optimal path" 

generated by the algorithm may have significant 

deviations in actual execution. For example, in the 

experiment, it is assumed that the operating costs of each 

port are estimated using the average value, but in reality, 

the difference in charging standards between different 

ports may be as high as 30%, which will directly affect the 

accuracy of achieving the goal of minimizing 

transportation costs. In addition, although the dual 

population mechanism improves the global search 

capability, the pheromone synchronization mechanism 

between the two populations may cause unstable 

convergence speed of the algorithm, especially when 

dealing with ultra large scale networks with more than 100 

nodes, the computation time may exceed the time window 

limit of shipping scheduling. These limitations indicate 

that this method is more suitable as an offline planning 
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tool, leveraging its advantages in scenarios with high data 

quality and sufficient computing resources. 

In addition, in the real-time data fluctuation 

environment, the method based on evolutionary ant 

colony algorithm adopted in this study demonstrates 

certain dynamic adaptability by introducing real-time 

data-driven pheromone reset mechanism and path 

contribution evaluation mechanism. When real-time data 

(such as port congestion index, meteorological and sea 

condition data, fuel price fluctuation data, etc.) undergoes 

significant changes, these pheromones reset mechanisms 

can adjust the distribution of pheromones in a timely 

manner, guide ants to explore new paths, and to some 

extent cope with the uncertainty brought by data 

fluctuations. However, excessive or frequent fluctuations 

in real-time data may also have a negative impact on the 

performance of this method. For example, sudden changes 

in extreme weather conditions may lead to a significant 

increase in port loading and unloading delays or forced 

route adjustments, requiring algorithms to respond 

quickly and re plan their routes. In this case, the 

convergence speed and solution quality of the algorithm 

may be affected to some extent. However, overall, this 

method exhibits certain dynamic adaptability and 

robustness under real-time data fluctuations, but further 

optimization and testing are still needed to improve its 

stability and performance under extreme or frequent 

fluctuations. In addition, continuous monitoring and 

adjustment of algorithm parameters can also help improve 

its performance under real-time data fluctuations. 

 

5   Conclusion 
This study used an improved ant colony algorithm to 

solve the optimization problem for shipping logistics 

paths. The method designed in this study not only 

considers the advantages of traditional ant colony 

algorithm, but also improves the search efficiency and 

global optimization ability of the algorithm by introducing 

dual population mechanism and path contribution 

evaluation mechanism. The final optimal shipping 

logistics path can effectively reduce transportation costs, 

shorten transportation time, reduce carbon emissions, and 

improve the reliability of the path in practical 

applications, providing a scientific and efficient path 

planning solution for shipping logistics enterprises. 

In the next stage of research, it may be considered to 

integrate the results of this study with AIS data. AIS data 

can provide real-time information on route congestion, 

weather, and sea conditions. However, in integration, AIS 

data streams require low latency processing, which 

requires algorithms to support incremental updates rather 

than full iteration. Based on your experience, it is 

necessary to further optimize the algorithm iteration 

frequency (such as reducing it from hourly level to minute 

level) and enhance noise robustness. 
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Appendix 
 

Pseudocode for the iterative process of 

the evolutionary ant colony algorithm 
Input: Directed weighted graph G, parameters 

Output: Global optimal path P_global 

 

Initialize: 

    - Pheromone matrices for Population 1 and 2 

    - Heuristic matrix based on edge weights (distance, cost, 

etc.) 

    - Global best path P_global ← null 

    - Dynamic data monitoring module (port congestion, 

weather, fuel prices) 

 

For iter in 1 to max_iter: 

    // Parallel search for two populations 

    For each population k in {1, 2}: 

        For each ant m in population k: 

            P_m ← ConstructPath 

            Calculate objective function using Eq. (18) 

        End For 

         

        // Update pheromones for each population 

        If k == 1: 

            Update using Elite Strategy (Eq. 21-22): 

           Else: 

            Update using Enhanced Subpath Evaluation (Eq. 

24): 

        End If 

         

        // Store local best paths 

        P_k_best ← SelectBestPath(population k) 

    End For 

     

    // Path Contribution Evaluation (Eq. 25) 

    For each path in {P_1_best, P_2_best}: 

        Calculate contribution_score 

    End For 

     

    // Update global best path 

    P_candidate ← argmax(contribution_score(P_1_best), 

contribution_score(P_2_best)) 

    If F(P_candidate) < F(P_global) or P_global == null: 

        P_global ← P_candidate 

    End If 

     

    // Real-time Data-Driven Pheromone Reset 
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    For each edge (i, j) in G: 

        If dynamic_factor(i, j) > threshold (e.g., congestion, 

weather risk): 

            Reset to initial values 

        End If 

    End For 

     

    // Termination Check 

    If no improvement for 10 consecutive iterations: 

        Break 

    End If 

End For 

 

Return P_global 

 

Function ConstructPath: 

    Initialize path P with random start node 

    While not all nodes visited: 

        Next node selection using state transition probability: 

            

        Add next node to P 

    End While 

    Return P 
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