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On international trade marketplaces, copper prices fluctuate a lot. Since copper is a valuable material, 

changes in its price may have an impact on certain nations' economies' ability to grow sustainably. The 

price of copper is a major issue for investors, policymakers, and futures traders. Governments and 

businesses that rely on copper mining must be able to forecast copper prices to make critical choices. This 

price is predicted in this article using an artificial intelligence technique. This paper proposes a hybrid 

forecasting model using the Adaptive Boosting model and the Northern Goshawk Optimization algorithm 

to enhance copper price predictions in terms of accuracy and reliability. A hybrid NGO-AdaBoost model 

was created to benefit from both the efficacy of ensemble learning and the exploratory potential of 

metaheuristic optimization. For this reason, time series datasets of copper prices from January 2014 to 

October 2023 were created using historical data, including open, high, low, and close prices and volume. 

Key metrics were used to assess the predictive accuracy of the model, and the results demonstrated high 

predictive accuracy with an R-squared (R²) value of 0.9919, a Mean Absolute Percentage Error (MAPE) 

of 0.6733, and a Mean Absolute Error (MAE) of 0.0268 on the test dataset. Additionally, comparative 

analysis shows that the suggested NGO-AdaBoost model outperforms other benchmark techniques and 

traditional forecasting models like Autoregressive Integrated Moving Average and Support Vector 

Regression in terms of prediction, accuracy, and stability. This confirms the model's capacity to capture 

the intricate dynamics of copper price volatility. The results demonstrated that the proposed hybrid scheme 

could more reliably and accurately forecast the price of copper than the other schemes used in this study. 

The research presented in this paper provides a reliable source for predicting future changes in copper 

prices.   

Povzetek: Podan je pregled in nato opisan izviren hibridni NGO-AdaBoost model za napoved cene bakra, 

ki združuje metahevristično optimizacijo in ansambelsko učenje ter dosega bolj kvalitetno napovedovanje 

kot ARIMA, SVR in LSTM. 

1 Introduction 
Copper is a valuable metal for many industries and plays 

a significant role in many financial sector enterprises. 

Copper is the third in the global consumed metal after iron 

and aluminum because of its malleability and 

conductivity. For evaluating the cost, availability, and 

demand of copper, the futures markets of renowned 

futures trading exchanges serve as the principal trading 

platforms, like LME (London Metal Exchange), COMEX 

(New York Commodity Exchange), and SHFE (Shanghai 

Futures Exchange) [1,2]. It is important to mention that 

these factors are greatly impacted by investment flows and 

currency exchange rates [3]. The financial success of 

several sectors is directly contingent upon the fluctuation 

in metal prices, including the price of copper. Copper 

production exerts a significant reliance on developing 

economies, influencing their trajectory both domestically 

and strategically [4]. Price fluctuations for copper have a 

big effect on the fiscal or financial income of a nation or a 

corporation, making it a crucial aspect to consider. The  

 

cost of copper is predominantly influenced by the  

efficiency of copper providers in extracting as well as 

transporting the metal, together with the demand for  

products and services that rely on copper. Regulators, 

investors, and companies that manufacture copper must all 

be able to predict supply and demand shocks and market 

patterns with precision [5]. Accurate pricing projections 

enable policymakers to manage the market with more 

effectiveness. Copper producers can enhance the 

efficiency and responsiveness of their production 

processes. As a result, investors may more effectively 

develop lucrative investing plans for both the short and 

long term. One of the biggest obstacles to successful 

forecasting is determining the precise traits of a time series 

[6]. Because financial time series are nonlinear, volatile, 

and regime-shifting, forecasting copper prices remains 

extremely challenging despite its significance. 

Particularly in times of market turbulence, traditional 

statistical models frequently fail to capture these intricate 

dynamics, producing forecasts that are unstable or 

erroneous. Numerous econometric schemes, including 
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wavelet-ARIMA [7], generalized autoregressive 

conditional heteroscedastic (GARCH) schemes [8,9], as 

well as ARIMA (autoregressive integrated moving 

average) [3,8], have been created to predict copper prices. 

These time series model; however, are unable to 

adequately represent the time series' nonlinear nature. As 

a result, advances in computational intelligence, machine 

learning (ML)[10][11][12], and AI tactics have been 

thoroughly researched and employed to determine and 

document diverse traits of the investigated time series of 

copper prices [1–4,8]. 

To address the issue of modeling the nonlinear and 

unstable nature of copper prices, this study proposes a 

hybrid artificial intelligence (AI) model that integrates 

ensemble learning and metaheuristic optimization. The 

main goal is to create a strong model that performs better 

than traditional machine learning techniques and can 

better represent the dynamic behavior of copper prices. 

This study provides the assumption that by utilizing the 

global optimization power of the Northern Goshawk 

Optimization algorithm and the adaptive learning 

capability of AdaBoost, the suggested NGO-AdaBoost 

hybrid model will outperform conventional models in 

forecasting accuracy. Metaheuristic algorithms 

are generic search strategies used to 

efficiently explore big and complicated solution 

spaces, which is thereby extremely appropriate for 

optimization issues. To this extent, an NGO is employed 

to optimize the individual base learners within the 

AdaBoost algorithm to achieve maximum accuracy 

and stability against evolving market conditions. This 

study helps bridge the gap by presenting a more precise 

and reliable approach for predicting copper prices, serving 

as a helpful tool for investors, policymakers, and futures 

traders to analyze upcoming changes in copper prices and 

make well-informed choices. 

Ensemble classifiers are a popular AI technique for 

data categorization. Many weak classifiers, or those with 

a lower classification accuracy, are utilized in the 

ensemble classifiers approach. Every classifier has a 

weight that influences the classification outcome. The 

process of applying these weights to determine the 

categorization outcome is known as "weight voting." One 

of the most popular ensemble classifier tactics that takes 

advantage of the weight-voting process is AdaBoost. The 

proposal was made by Freund and Schapire in 1997 [13]. 

The AdaBoost technique may improve classification 

accuracy and is simple to use. It may be used for many 

classifiers as well. 

The Northern Goshawk Optimization (NGO) offers 

highly desirable quasi-optimal solutions for optimization 

problems. It excels in addressing real-world scenarios and 

exhibits impressive performance in solving optimization 

issues. Moreover, it outperforms comparable algorithms 

by effectively balancing the exploration and exploitation 

processes to identify ideal resolutions. Fewer input 

parameters are needed for the recommended optimizer. 

The northern goshawk is the sole member of the Accipiter 

genus that preys on a diverse range of animals [14]. Males 

in this species are somewhat more widespread than 

females, and they are spread in both Eurasia and North 

America. The northern goshawk divides its hunting 

process into two stages: the first involves it moving swiftly 

in the direction of its target when it spots it, and the second 

involves a brief tail chase to catch up with the victim [15]. 

This article examines the NGO algorithm's capacity to 

predict the price of copper as a consequence. This work's 

contribution is broken down as follows:  

• Acknowledged the influence that copper price 

volatility has on economies and the international trade 

markets, emphasizing the significance of precise 

copper price prediction for investors, policymakers, 

and futures traders. 

• This study contributes to the field by showcasing the 

potential of metaheuristic optimization in ensemble 

learning models and proposing the first integration of 

an NGO with AdaBoost for copper price forecasting. 

Furthermore, it offers a comprehensive examination 

of multiple metaheuristic optimization algorithms 

concerning the prediction of copper prices, offering 

valuable insights into how different optimization 

techniques impact forecasting accuracy. By 

emphasizing the benefits of incorporating advanced 

optimization algorithms, this study paves the way for 

more reliable and efficient predictive models in 

commodity price forecasting. The study also 

contributes to the literature by demonstrating how 

hyperparameter tuning enhances model performance 

and provides a framework for additional research in 

this field. 

• Nine years and 10 months’ worth of copper price time 

series datasets, including volume and the open, high, 

low, and close values, were gathered from historical 

data.  

• Developed the NGO-AdaBoost model and showed 

that, with a coefficient of determination (R2) of 

0.9919, it performed better in forecasting copper 

prices when compared to other ML tactics.  

This article is organized in the following manner: A 

comprehensive examination of the data source and all of 

its components is provided in Section 2. The scheme, 

optimizers, and other elements utilized in this paper are 

analyzed in the third part. In the fourth and fifth parts, the 

outcomes of the schemes utilized in this article are 

compared. After evaluating the chosen schemes in this 

article, the conclusion is covered in the next section, and 

the last section discusses potential future projects that 

might build on the scheme employed in this article. 

2 Literature review  
Esperanza García-Gonzalo et al. [16] concentrated on 

predicting copper spot prices from COMEX by using 

support vector regression (SVR) and several model 

architectures. The accuracy of three-time series analyses 

was examined, and the hybrid direct-recursive approach 

emerged as the most accurate in terms of numerical 

outputs. Jiahao Chen et al. [17] utilized an LSTM (Long 

Short-Term Memory) AI model to make forecasts about 

the pricing of copper. The effectiveness of the LSTM 

model was improved by using a simulated annealing 

approach to tune hyperparameters. Relationship 
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assessment was utilized to address feature engineering. 

The scheme used economic factors that have a strong 

correlation with copper prices, such as the West Texas 

Intermediate Oil Price, Gold Price, and Silver Price.  

In a study by Gabriel Astudillo et al. [18], SVR was 

specifically used to predict the closing prices of copper at 

LME over multiple periods, with grid search and balanced 

cross-validation being used to select the best model for 

each forecast timeframe. The experimental results 

demonstrate that the parameters of SVR remain constant 

over prediction intervals and the prior values used for 

estimations. 

A novel forecasting model that blends interval and 

point forecasting is presented by Yifei Zhao et al. [19]. 

The interval forecasting model was validated by gathering 

the interval forecasting results and using the copper and 

aluminum pricing data. The evaluation results show that 

the accuracy of the LSTM model is 0.099021. 

Hongyuan Luo et al. [20] introduce a novel multi-

step-ahead forecasting model of copper price with an error 

correction scheme-based and genetic algorithm-enhanced 

long short-term memory (GA-LSTM) structure. The 

predictive efficacy of the introduced framework is 

supported by a 30-year real copper price time series. A 30-

year real iron ore price time series is also utilized to show 

the robustness and generalization capability of the 

introduced design. The outcomes demonstrated that the F-

TS-GA-LSTM-EC hybrid model was effective and more 

accurate in copper price prediction. 

Table 1: Summary of literature review on copper price forecasting. 

Authors Method  Dataset Description Performance Metrics Year 

García-Gonzalo et 

al. [16] 

SVR (Support Vector 

Regression) 

COMEX monthly copper 

spot prices (1960-2019) 

MAE: 144.21 

RMSE: 170.15 

MAPE: 2.36% 

2023 

Jiahao Chen et al. 

[17] 

LSTM + Simulated 

Annealing 

Daily copper + 

macroeconomic indicators 

(1990-2009), from 

Investing.com 

MSE: 0.000569 (test set) 2023 

Gabriel Astudillo 

et al. [18] 

SVR + Grid Search + 

Cross-Validation 

Daily copper prices from 

LME (2006-2018) 

RMSE: 0.0177 (5-day) 

R = 0.9582 
2020 

Yifei Zhao et al. 

[19] 

VMD-SSA-LSTM + 

Interval Forecasting 

Daily copper and 

aluminum prices (2012-

2022), Shanghai Futures 

Exchange 

𝑅2 = 0.99827 

RMSE = 763.01 

MAE = 543.20 

MAPE = 0.8789% 

2023 

Hongyuan Luo et 

al. [20] 

F-TS-GA-LSTM-EC 

(Factor + Time Series + 

GA-LSTM + Error 

Correction) 

Monthly copper prices + 8 

factors (1991-2021), 360 

records, IndexMundi 

𝑅2 = 0.920 

MAE = 257.26 

RMSE = 330.04 

MAPE = 4.03% 

2022 

Hasel Amini 

Khoshalan et al. 

[21] 

GEP, ANN, ANFIS, 

ANFIS-ACO 

Monthly copper + 8 

influencing factors (1990-

2020), IndexMundi 

𝑅2= 0.981 

RMSE = 356.51 

MAE = 239.11 

2021 

Note: SVR=Support Vector Regression, LSTM= 

Long Short-Term Memory, SA= Simulated Annealing, 

VMD= Variational Mode Decomposition, SSA= Sparrow 

Search Algorithm, GA= Genetic Algorithm, F-TS-GA-

LSTM-EC= Factor + Time Series + Genetic Algorithm-

optimized LSTM + Error Correction, GEP= Gene 

Expression Programming, ANN= Artificial Neural 

Network, ANFIS= Adaptive Neuro-Fuzzy Inference 

System, ACO= Ant Colony Optimization, R²= Coefficient 

of Determination, MAE= Mean Absolute Error, RMSE= 

Root Mean Square Error, MAPE= Mean Absolute 

Percentage Error, COMEX= Commodity Exchange (New 

York), LME= London Metal Exchange. 

Statistical models such as ARIMA and GARCH, 

while simple, often do not capture the non-stationary and 

non-linear commodity price dynamics. They are incapable 

of responding well to the incidence of structural breaks 

and abrupt changes that are common in metals markets. 

Machine learning models such as SVR and standalone 

LSTM have done better than statistical models but still fail 

to capture the short- and long-term dependencies 

simultaneously. SVR, in particular, does not produce 

consistent performance for varying forecast horizons due 

to its sensitivity to kernels. More sophisticated hybrids, 

such as GA-LSTM and ANFIS-ACO, have high 

improvement, but they can be vulnerable to parameter 

tuning sensitivity, local optima, or low robustness to 

unforeseen volatility patterns. These drawbacks motivated 

the design of the NGO-AdaBoost hybrid model, which 

combines. 

• The discoverability of NGOs to correct model 

parameters and break out of local minima 

• AdaBoost's adaptive ensemble learning 

capability to strengthen weak learners and 

counteract overfitting, especially in noisy or 

unstable data conditions 
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•  A strong design tested with a 9 years and 10 

months’ time series, ensuring its durability, 

accuracy, and reactivity to complex patterns in 

copper price dynamics. 

3 Dataset 
This research examines the prediction of copper prices. 

From January 2014 to October 2023, pricing data was 

collected for the input parameters reviewed and changes 

in copper prices. The prices in this article are expressed in 

US dollars per pound (in USD/LBS). Various variables 

may affect copper price fluctuations. The variables used in 

this article are volume and open, high, low, and close 

prices. 

3.1 Data Pre-processing 

Historical copper prices based on global trends were 

obtained from Yahoo Finance and TradingView. Data 

cleaning was done intensively to handle any possible 

missing or inconsistent values in the data to ensure that the 

data input into the machine learning models is accurate 

and clean. Data cleaning involves the detection and fixing 

of errors, inconsistencies, or missing values in the dataset 

so that data input into the machine learning models is clean 

and accurate. Because missing or erroneous data could 

lead to faulty predictions and stop the model from 

functioning, this process is imperative. Following data 

cleaning, feature normalization was conducted so that all 

input features, like open, high, low, volume, and close 

prices, were normalized and values were between 0 and 1. 

Standardizing features enhances machine learning models 

because it allows them to learn from features of different 

scales. To test the model, the data was split into training 

and test sets, where 80% was used for training and 20% 

for testing. This split enables the generalization of the 

model to unseen data to be tested by preventing overfitting 

and ensuring that the performance of the model can be 

properly measured. This 80/20 ratio is common in 

machine learning to achieve a balance between training 

the model sufficiently and testing it on a big enough 

sample of unseen data. 

3.2 Historical data 

The opening price is the price of a share at the start of 

trading and is a reliable indicator of the daily volatility of 

the financial market. Because the financial market is like 

an auction where buyers and sellers compete to find the 

highest bidder, the opening price does not necessarily have 

to match the closing price of the day before. 

The previous day's highest and lowest prices are 

captured, which gives data about the average volatility of 

the market on a trading day and how it impacts the final 

closing price. The adjusted closing price is the final price 

of a property after adjustment for any dividends or 

corporate activity that has happened before the opening of 

the subsequent market day. 

Adjusted closing price is generally employed for 

analyzing the current returns or carrying out a detailed 

analysis of past returns. 

Volume is the total number of contracts or shares that 

are transferred in a security or the entire market within a 

definite time frame. 

To build an efficient input space for prediction, the 

five important features of the copper price data—open, 

high, low, close, and volume (OHLCV)—were utilized. 

These are widely employed in financial time series 

analysis because both indicate the direction of price as 

well as activity in the market during a period. Before 

training, all variables were normalized using min-max 

scaling to achieve consistency across different ranges. 

With all five variables, the highest prediction and stability 

among the models under test were obtained, confirming 

their individual and combined roles in the forecasting 

model. 

3.3 Statistical values 

The dataset is thoroughly examined in the report, which is 

shown in Table 2. A comprehensive statistical 

representation of the data pertaining to the input and 

output attributes is given in the following table. This 

process guarantees that all of the information can be 

understood completely. The table contains a large number 

of statistical measures, including the mean, variance, 

count, 25%, 50%, 75%, minimum (min), maximum (max), 

and standard deviation (Std.). By using these 

measurements, a thorough and accurate analysis of the 

data can be accomplished. 

Table 2: A statistical summary of the dataset 

 count mean std. min 25% 50% 75% max variance 

Open 

price 

2467 3.103505 0.699136 1.9385 2.617 2.95 3.5855 4.92 0.488791 

High 

price 

2467 3.132707 0.707937 1.98 2.64175 2.977 3.63 5.0395 0.501175 

Low 

price 

2467 3.073633 0.690216 1.9355 2.5975 2.9225 3.556 4.81 0.476399 

Volume 2467 31651.08 38277.74 10 290 1500 61380 230070 1.47E+09 

Close 

price 

2467 3.103989 0.6999 1.9435 2.62025 2.951 3.58725 4.9375 0.48986 
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4 Methodology 
This work presents the design of an FOA-AdaBoost, SSA-

AdaBoost, and NGO-AdaBoost model for predicting 

copper prices. These schemes are described in a general 

sense in this section. The AdaBoost model and the FOA, 

SSA, and NGO algorithms are initially proposed as 

follows: 

4.1 Adaptive boosting 

One of the most powerful recognition strategies is 

AdaBoost, which blends many weak predictors to create 

an effective predictor [22] [23] . AdaBoost training, by Lu 

et al. [24], has greater dispersion weights in the case of 

greater errors and smaller dispersion weights when errors 

are lesser. To improve the expected outcome, the samples 

are subsequently trained using the revised weight 

dispersion [25]. The following are the AdaBoost 

computation stages [26] [27]. 

𝑈 = {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑁 , 𝑦𝑖 ∈ {−1, +1} (1) 

Step 1: Initialize weights 

Set sample weights as uniform: 

𝐷1(𝑖) =
1

𝑁
,  for 𝑖 = 1,2, … , 𝑁 (2) 

Step 2: Train weak learner error: 

𝜀𝑡 = ∑  

𝑁

𝑖=1

𝐷𝑡(𝑖) ⋅ 𝕀(𝑓𝑡(𝑥𝑖) ≠ 𝑦𝑖) (3) 

Step 3: Calculate learner weight 

The importance weight of the learner is computed as: 

𝛼𝑡 =
1

2
log (

1 − 𝜀𝑡

𝜀𝑡

) (4) 

Step 4: Update sample weights 

Update the weight distribution: 

𝐷𝑡+1(𝑖) =
𝐷𝑡(𝑖) ⋅ 𝑒−𝛼𝑡𝑦𝑖𝑓𝑡(𝑥𝑖)

𝑍𝑡

 (5) 

where 𝑍𝑡 is a normalization factor ensuring that 

∑  𝑖 𝐷𝑡+1(𝑖) = 1. 

Step 5: Final hypothesis 

Following T rounds, the terminal strong 

classifier consists of a weighted ensemble of the weak 

learners: 

𝐹(𝑥) = sign (∑  

𝑇

𝑡=1

 𝛼𝑡𝑓𝑡(𝑥)) (6) 

Loss Function: 

AdaBoost attempts to minimize the exponential loss 

function over the training data: 

ℒ(𝐹) = ∑  

𝑁

𝑖=1

𝑒−𝑣𝑖𝐹(𝑥𝑖) (7) 

This loss function is convex and imposes a larger penalty 

on misclassified samples, forcing the model to focus on 

hard-to-classify points. 

The steps above define AdaBoost's internal training logic, 

but the choice of hyperparameters such as n_estimators, 

learning_rate, and random_state significantly affects the 

algorithm's performance. Before the boosting process 

begins, this research optimizes these parameters using the 

NGO algorithm. NGO is employed as a pre-training 

hyperparameter tuning technique to ascertain the ideal 

configuration of AdaBoost's hyperparameters through a 

two-phase bio-inspired search strategy (local exploitation 

and global exploration). This optimization lowers 

validation loss while increasing the final model's accuracy 

and generalization. Therefore, without altering 

AdaBoost's internal processes, the NGO strategically 

improves its conditions. 

4.2 Metaheuristic optimization of adaboost 

hyperparameters 

Five metaheuristic algorithms were utilized to fine-tune 

the most important hyperparameters of the AdaBoost 

model to maximize its predictive performance: GA, PSO, 

FOA, SSA, and NGO. These include the learning rate, 

number of estimators (n_estimators), and random state 

initialization.  

To minimize AdaBoost's exponential loss on a validation 

set, each metaheuristic investigated this search space. 

Table 3 displays the outcomes of the optimization 

procedure. Remarkably, the NGO algorithm produced the 

best overall performance across all evaluation metrics (R², 

MAPE, MAE, and RSE) with 800 estimators, a learning 

rate of 0.25, and a random state of 64. These results show 

that different algorithms converge on different parameter 

configurations. For example, GA and PSO favored higher 

estimator counts (1500 and 1200, respectively), while 

FOA and SSA selected somewhat lower values (700 and 

1000). The higher learning rate (0.25) selected by NGO in 

comparison to GA and PSO (0.1) may have allowed for 

faster convergence and more responsive adaptation to data 

variations, especially in volatile financial time series like 

copper prices. The success of the NGO algorithm can be 

attributed to its two-phase hunting approach, which 

successfully balances global exploration (by identifying 

prey at random) with local exploitation (by pursuing and 

adjusting). This dual mechanism ensures more stable 

parameter tuning and helps avoid premature convergence, 

which is common in simpler algorithms like FOA, in 

contrast to SSA, which can lead to unpredictable updates 

in noisy datasets. Overall, this test demonstrates that an 

NGO is appropriate as the primary optimizer in the 

proposed framework for forecasting copper prices because 

it provides the most effective hyperparameter 

configuration for AdaBoost in addition to a dependable 

search procedure. 
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Table 3: AdaBoost hyperparameter optimization with five metaheuristic algorithms. 

Ada Boost Upper and lower band GA PSO FOA SSA NGO 

n_estimators [100, 2000] 1500 1200 700 1000 800 

learning_rate [0.0001, 1] 0.1 0.1 0.2 0.2 0.25 

random_state [2, 100] 32 28 64 74 64 

Take note that Figure 1 shows the pseudocode for 

integrating the AdaBoost model with Northern Goshawk 

Optimization (NGO). The figure demonstrates how the 

NGO optimizes the AdaBoost algorithm's primary 

hyperparameters, including the number of estimators, 

learning rate, and random state. AdaBoost performs better 

and is better able to handle the intricacies of the copper 

price prediction task thanks to this optimization process. 

 
Figure 1: Pseudocode for the integration of northern goshawk optimization with adaboost. 

 

4.3 Optimizer 

4.3.1 Fruit fly optimization algorithm 

The entrapment behavior exhibited by fruit flies served as 

the impetus for the formulation of FOA according to Fig. 

2, a novel global optimization technique [28]. To 

determine the optimal solution to an issue with 

optimization, fruit flies are simulated by the FOA model. 

A specific flavor in the air is detected by employing 

sensitive olfactory organs, after which the target location 

is located by using the acute sight organs that have been 

retained. Vision, Osphresis foraging, population 

assessment, and initiation comprise the initial FOA. 

The replies are first generated within a range defined 

by lower and upper borders. Here, 𝑎𝑥,𝑦 displays the x-th 

resolution and the y subscript indicates the position of the 

element inside the x-th resolution, as defined by Equation 

(8). 

𝑎𝑥,𝑦 = rand (ℎ𝑏𝑦 − 𝑙𝑏𝑦) + 𝑙𝑏𝑦 (8) 

Inputs and initializations: 
    - Input Training data (x_train, y_train)
    - Input Validation data (x_val, y_val)
    - Initialize searching boundaries for AdaBoost parameters
    - Initialize NGO parameters: population_size, max_iterations.

1. Initialize NGO:
    - Set individual s parameters as a vector.
    - Parameters: [n_estimators, learning_rate, max_depth]

2. Initial population assessment:
    For each individual:
        - Train AdaBoost model using the encoded parameters.
        - Compute fitness.

3. Do while i < max_iterations:
    a. For each individual:
        - Update current individual position:
            - Exploration and exploitation (Goshawk behavior).
        - Bound the found position to allowed boundaries.
    
    b. Evaluate New Individuals:
        - Build AdaBoost with new found hyperparameters.
        - Get new fitness value.

    c. Keep best results:
        - Keep best found individuals based on their fitness.
        - Update global best solution.

4. Return the best found individual as the optimal solution.

5. Train AdaBoost with optimal parameters found by NGO.
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The lower limit is depicted as lb, whereas the upper 

bound is depicted as hb. The term "rand" refers to a 

haphazardly selected integer from a uniform distribution. 

Launching the population during the Osphresis foraging 

phase intensifies the alignment of each option, in which 

the solution is displaced a random distance from its 

existing position. The arithmetical expression is 

represented by Equation (9). 

𝑎𝑥,𝑦
(r+1)

= 𝑎𝑥,𝑦
(r)

∓  rand 0 (9) 

The current response is represented by 𝑎𝑥,𝑦
(𝑡)

, while the 

fresh alignment is displayed by 𝑎𝑥,𝑦
(𝑡+1)

. Additionally, a 

random value is selected from the range 𝑂[2, 2]. The letter 

"t" displays the count of cycles. After the relocation, the 

fitness value is computed for each solution, and the 

avaricious selection procedure selects whether to keep the 

new position or the previous one. If the most recent 

response possesses a higher fitness value than the one 

before it, it will substitute the old answer. Alternatively, if 

the previous response remains within the population, the 

new solution will be declined. The algorithm halts and 

generates the best possible outcome when it reaches the 

specified termination condition. Fig. 3 illustrates the 

method. 

 

Figure 2: The trapping conduct shown by fruit flies 

 

Figure 3: Flowchart of the Fruit Fly Optimization Algorithm to optimize the proposed model hyperparameters
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4.3.2 Sparrow search algorithm 

The SSA is a swarm enhancement technique that derives 

from the behavioral patterns of sparrows, shown in Fig. 4 

[29]. The program categorizes the sparrow population into 

two distinct groups: producers and scroungers. Obtaining 

food and controlling population mobility fall within the 

purview of the producers. Producers can get a greater 

amount of food when the fitness value improves. The 

scroungers, however, actively seek out the producers and 

endeavor to enhance the solutions offered by them. Within 

each cycle of the method, the producer's position updates 

are computed using a particular formula, which is not 

specified in the provided paragraph. In essence, the SSA 

algorithm attempts to discover the most advantageous 

solution for an optimization issue by emulating the 

collective intelligence, foraging, and defense mechanisms 

shown by sparrows. The updated locations of the 

producers are as follows: 

𝑋𝑖𝑗
𝑖+1 = {

𝑋𝑖𝑗
𝑡 ∙ exp (

−𝑖

𝑎 ∙  iter 
)   if 𝑅2 < 𝑆𝑇

𝑋𝑖𝑗
𝑡 + 𝑄 ∙ 𝐿 if 𝑅2 > 𝑆𝑇

 (10) 

The provided equation has several variables and 

constants. The variable 𝑖 ranges from 1 to 𝑁, with 𝑁 being 

the size of the swarm. The variable 𝑡 depicts the existing 

cycle. The variable j ranges from 1 to 𝑑, where 𝑑 specifies 

the count of dimensions. The notation 𝑋1𝑗
𝑡  displays the 

value of the 𝑗-th dimension of the 𝑖-th sparrow at cycle 𝑡. 

The variable itermax  specifies the top range for the count 

of cycles. The constant 𝛼 is a stochastic variable that takes 

on values between 0 and 1 with equal probability. The 

variable 𝑄 is a stochastic quantity that conforms to a 

Gaussian distribution. The matrix 𝐿 is a 1 × 𝑑 matrix 

where all members are identical and equal to 1. The 

variables 𝑅2 and ST indicate the alert value and the 

security cutoff, accordingly. The range of 𝑅2  is from 0 to 

1, whereas the range of ST is from 0.5 to 1.0. Regarding 

the scroungers, they observe the producers, and when they 

find a better source of food, they quickly abandon their 

existing location to compete intensely for the new 

resource. The equation dictating the adjustment of the 

scroungers' position is presented as follows: 

𝑋𝑖𝑗
𝑖+1

= {
𝑄 ∙ exp (

𝑋monta
𝑡 − 𝑋𝑖𝑗

𝑖

𝑖2
)  if 𝑖 > 𝑛/2

𝑋𝑝
𝑖+1 + |𝑋𝑖𝑗

𝑡 − 𝑋𝑝
𝑡+1| ∙ 𝐴+ ∙ 𝐿  otherwise 

 
(11) 

𝑋𝑝 was defined as the ideal position held by 

producers. The current worldwide worst location is 

considered to be the most unfavorable. The expression 

𝐴+ = 𝐴𝑇(𝐴𝐴𝑇)−1 describes the pseudo-inverse of matrix 

A, where A is a 1 × 𝑑 matrix with elements of 1 or -1 

assigned at random. 

When sparrows on the outside of the group feel 

danger, they quickly move to a safe region. Their conduct 

is driven by their desire to acquire a higher viewpoint. 

Conversely, sparrows positioned in the middle of the 

group exhibit a more unpredictable behavior, marked by 

aimless roaming, to get closer to surrounding sparrows. 

The mathematical model that governs this behavior may 

be formulated as follows: 

𝑋𝑖𝑗
𝑡+1

= {

𝑋best 
𝑡 + 𝛽 ∙ |𝑋𝑖𝑗

𝑡 − 𝑋𝑏𝑟𝑠𝑡
𝑡 |  if 𝑓𝑖 > 𝑓𝑔

𝑋𝑖𝑗
𝑡 + 𝐾 ∙ (

|𝑋𝑖𝑗
𝑡 − 𝑋worrt 

𝑡 |

(𝑓𝑖 − 𝑓𝑤) + 𝜀
 if 𝑓𝑖 = 𝑓𝑔

 
(12) 

The above equation illustrates a mathematical 

formula for the Sum of Squared Differences (SSA) used 

in optimization situations. In this equation, 𝑋ber 
𝑡 depicts the 

current global optimum position, whereas 𝑋wors indicates 

the existing global worst situation. The parameter 𝛽 is a 

control variable that establishes the step size. It exhibits a 

normal dispersion with a mean of 0 and a variance of 1. K 

is a stochastic variable that falls inside the interval [-1,1]. 

The variables 𝑓𝑖 and 𝑓𝑤 represent the current sparrow's 

fitness values and the lowest fitness value, respectively. 

On the other hand, 𝑓𝑔 displays the current global 

maximum fitness value. Furthermore, ε is the most 

minimal constant. The SSA utilizes this equation to 

choose the most favorable solution for an optimization 

issue. 

 

Figure 4: Behavioral diagram of the Sparrow Search Algorithm 



A Comparative Analysis of Ensemble–Metaheuristic Algorithms…                                             Informatica 49 (2025) 107–126   115 

4.3.3. Genetic algorithm 

The genetic algorithm is a computational technique that 

mimics natural selection to solve optimization and search 

problems [30].  GA is composed of three fundamental 

components [31]. A set of textual or numeric symbols that 

each individual is assigned by the encoding entity is called 

a chromosome. The best encoding technique depends on 

the specific issue that needs to be resolved. The fitness 

function is also used to evaluate how accurately each 

person represented the answer. The fitness function was 

created specially to address the current problem. The 

evolutionary operators generate new individuals from 

preexisting ones through the processes of crossover, 

mutation, and selection. Crossover is a genetic process 

that combines the chromosomes of two distinct 

individuals to produce a new offspring. On the other hand, 

mutation causes random alterations to an individual's 

chromosomes. Selection is used to identify the individuals 

that reproduce the best. 

 

4.3.4. Particle swarm optimization 

Kennedy and Eberhart developed the PSO technique to 

address optimization issues.  This method is based on the 

collective behavior observed in a swarm of particles [32].  

Because the PSO technique tends to converge quickly and 

requires fewer parameters, it lowers computational 

overhead.  Additionally, the likelihood of coming across a 

local solution that is not ideal is decreased by the thorough 

exploration carried out by several particles in pursuit of an 

ideal solution.  Additionally, the algorithm features an 

efficient global search mechanism and is independent of 

derivatives.  Each particle in the PSO searches a large 

search space for the optimal response. The search process 

begins with the random generation of candidate solutions, 

often called particles, in the search space. Particle 

velocities and fitness scores are often computed using a 

weighted mean of the number of features in the feature 

subset and the classification accuracy. This computation 

aids in updating the heading and velocity of their 

trajectories following the initial iteration, and the 

procedure is repeated until the stopping criterion is 

satisfied. 

 

4.3.5. Northern goshawk optimization 

NGO is a population-based metaheuristic inspired by the 

hunting mode of the northern goshawk (Accipiter 

gentilis), a very agile and efficient bird in hunting prey. 

The NGO algorithm replicates two principal stages of the 

goshawk's hunting process [33]. 

Major stages of the goshawk's hunting sequence: 

(1) Prey identification and attack, and 

(2) Pursuing and capturing prey through evasive flights. 

Every agent (goshawk) of the population is a candidate 

solution to the optimization problem. The solutions are 

evaluated by an objective function and iteratively updated 

to converge to the optimum. 

• Identifying and attacking prey. 

As seen in Fig. 5, the northern goshawk haphazardly 

selects a victim during the first hunting phase and then 

quickly attacks it. This step improves the NGO's capability 

to explore by haphazardly selecting prey in the search 

domain. To choose the best site, this stage involves 

conducting a thorough search of the entire search domain. 

One way to articulate this is: 

𝑃𝑖 = 𝑋𝑘 , 𝑖 = 1,2, … , 𝑁, 𝑘
= 1,2, … … , 𝑖 − 1, 𝑖
+ 1, … … , 𝑁 

(13) 

𝑥𝑖,𝑗
new ,𝑃1 = {

𝑥𝑖,𝑗 + 𝑟(𝑃𝑖,𝑗 − 𝐼𝑥𝑖,𝑗), 𝐹𝑃𝑖
< 𝐹𝑖

𝑥𝑖,𝑗 + 𝑟(𝑥𝑖,𝑗 − 𝑃𝑖,𝑗), 𝐹𝑃𝑖
≥ 𝐹𝑖

 
(14) 

𝑋𝑖 = {
𝑋𝑖

new ,𝑃1, 𝐹𝑖
new, 𝑃1 < 𝐹𝑖

𝑋𝑖 , 𝐹𝑖
new ,𝑃1 ≥ 𝐹𝑖

 
(15) 

where: 𝑃𝑖  displays the prey location of the 𝑖th Northern 

goshawk, 𝐹𝑃𝑖
 is the value of its objective function, k is a 

haphazardly selected natural number from the range 

[1, N], 𝑋𝑖
new ,𝑃1

depicts the updated status of the 

𝑖th recommended resolution, with its 𝑖 th dimension being  

𝑥𝑖,𝑗
new, 𝑃1

, 𝐹𝑖
new ,𝑃1 indicates the value of the goal function 

based on the NGO's starting stage, and 𝑟 and I are random 

numbers utilized to generate random behavior for the 

NGO during search and update. The variable (r) displays 

a haphazardly created number within [0, 1], whereas the 

variable (I) displays a haphazardly generated number 

within [1, 2]. 

 

Figure 5: Prey identification and attack mechanism in Northern Goshawk Optimization

Phase (2): Engaging in pursuit and evasive 

maneuvers. 

Following the attack, the goshawk pursues its 

escaping prey. This behavior is mimicked to make use of 

the search space locally to improve convergence. The 

mathematical representation of the ideas communicated in 

the second step may be expressed as Equations (16) - (18) 

in the following manner: 

𝑥𝑖,𝑗
new ,𝑃2 = 𝑥𝑖,𝑗 + 𝑅(2𝑟 − 1)𝑥𝑖,𝑗 (16) 
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𝑅 = 0.02 (1 −
𝑡

𝑇
) (17) 

𝑋𝑖 = {
𝑋𝑖

new ,𝑃2, 𝐹𝑖
new ,𝑃2 < 𝐹𝑖

𝑋𝑖 , 𝐹𝑖
new ,𝑃2 ≥ 𝐹𝑖

 (18) 

The maximum cycle number is depicted as T, whereas 

the cycle counter is depicted as t. The parameter 𝑋𝑖
new, 𝑃2

 

depicts the updated value of the 𝑖th  solution, and its 

dimension is 𝑥𝑖,𝑗
new 𝑃2. The objective function derived from 

the second phase is depicted as 𝐹𝑖
new,P2 

. Fig. 6 illustrates 

the whole procedure of this optimizer. 

 

 

Figure 6: The NGO flowchart 

The selection of the NGO was ultimately based on its 

biologically inspired two-phase optimization strategy, 

which successfully traverses the solution space by 

combining local exploitation (pursuit and attack) and 

global exploration (prey identification). This structure 

helps NGOs avoid overfitting and premature convergence, 

which are common issues in high-dimensional 

optimization. A scalable and suitable optimizer for 

nonlinear financial forecasting tasks that necessitate 

prompt decisions, like predicting the price of copper, an 

NGO can also benefit from its lightweight design, fewer 

control parameters, and fast convergence. 

4.4  Model performance metrics 

Metrics, or measurements, are utilized to review the 

productivity of a scheme, system, or process. The 

accuracy of the future estimates was evaluated based on 

many performance factors. Following a comprehensive 

investigation, these criteria were created to offer a 

thorough assessment of the estimates' dependability and 

correctness. Holdout data is required for trained machine 

learning schemes to perform properly to assess the 

difference between predicted and observed labels using 

various metrics. The metrics utilized to appraise the 

recommended scheme's prediction execution include R2, 

relative square error (RSE), MAE, and MAPE. 

MAE =
∑ |yi − ŷi|

n
i=1

n
 (19) 

MAPE = (
1

n
∑ |

yi − ŷi

yi

|

n

i=1

) × 100 (20) 

RSE =
∑ (yi − ŷi)

n
i=1

∑ (y̅n
i=1 − ŷi) 

 (21) 

R2 = 1 −
∑ (yi − ŷi)

2n
i=1  

∑ (yi − y̅)2n
i=1

 (22) 

5 Outcomes 
The primary goal of this study is to create and assess the 

best hybrid algorithm currently in use for precise copper 
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price prediction. The objective of this endeavor was to 

provide dependable data to analysts and investors, 

empowering them to make knowledgeable financial 

assessments. This paper combined AdaBoost and 

optimizers like FOA, SSA, and NGO to review the 

volatility traits of international copper futures prices and 

the flexible link of influencing factor variables. The goal 

of this combo is to identify an algorithm that predicts 

copper prices more accurately and efficiently. This article 

uses daily international copper futures price data from 

January 2014 to October 2023. The data set used in this 

article was gathered utilizing an OHLC price and volume. 

Included in the assessment criteria are RSE, MAE, MAPE, 

and 𝑅2. An Intel Core i7-10700KF processor operating at 

3.80 GHz, paired with an NVIDIA GeForce GTX 3080ti 

graphics processing unit and 32 GB of RAM access 

memory, was used to implement the model in an advanced 

computing environment. Complex financial forecasting 

tasks can be handled efficiently with this setup. To 

improve computational efficiency and model 

performance, Python version 3.12.3 was used for the 

implementation, along with sophisticated libraries like 

NumPy (1.26.4), Pandas (2.2.3), Scikit-learn (1.5.2), and 

TensorFlow (2.17.0). Table 4 showcases the numerical 

assessment of the scheme's predictive precision. 

Table 4: The outcomes of the proposed models' evaluation criteria. 

Schemes/Metrics AdaBoost 
GA-

Adaboost 

PSO-

Adaboost 

FOA-

AdaBoost 

SSA-

AdaBoost 

NGO-

AdaBoost 

Train 

 𝑅2 0.9857 0.9864 0.9873 0.9893 0.9925 0.9978 

MAPE 1.6457 1.6261 1.5868 1.6860 1.2753 0.7138 

MAE 0.0519 0.0504 0.0498 0.0480 0.0371 0.0209 

RSE 0.1014 0.0984 0.0952 0.0872 0.0730 0.0400 

Test 

 𝑅2 0.9836 0.9843 0.9856 0.9865 0.9906 0.9919 

MAPE 0.9655 0.9541 0.9468 0.9426 0.8124 0.6733 

MAE 0.0381 0.0376 0.0370 0.0368 0.0298 0.0268 

RSE 0.0702 0.0687 0.0659 0.0633 0.0542 0.0494 

6 Discussion 
Positive outcomes are obtained by using the recommended 

NGO-AdaBoost model in this work. Metaheuristic 

optimization is crucial for improving the performance of 

ensemble learning models, especially for financial time 

series forecasting, where data is often nonlinear, volatile, 

and prone to sudden regime changes. Five hybrid models 

that integrated AdaBoost with various metaheuristic 

optimization algorithms were assessed in this study: 

Particle Swarm Optimization (PSO), FOA, SSA, Genetic 

Algorithm (GA), and the proposed NGO. A detailed 

comparison of these hybrid models across training and 

testing datasets using four standard performance metrics 

R², MAPE, MAE, and RSE is given in Table 4 and fig. 7. 

The results show that, although with differing degrees of 

success, all optimizers enhanced AdaBoost's performance 

by modifying its hyperparameters. Though their 

optimization dynamics were less stable in high-

dimensional search spaces, GA-AdaBoost, PSO-

AdaBoost, and FOA-AdaBoost all achieved moderate 

gains, particularly in lowering MAE and RSE values. 

SSA-AdaBoost demonstrated superior exploration and 

convergence capabilities compared to the previously 

mentioned models, resulting in significantly better 

generalization on the test set. On the other hand, NGO-

AdaBoost was the most dependable and effective. It 

achieved the best R² scores (0.9978 on training and 0.9919 

on testing) and the lowest error values across all metrics. 

By combining local exploitation (pursuit and attack) with  

 

global exploration (prey identification), the NGO's 

biologically inspired two-phase optimization process 

successfully traverses the solution space, as evidenced by 

these results. This dynamic allows for precise adjustment 

of AdaBoost's parameters, resulting in dependable 

forecasting even in highly variable and noisy market 

conditions. In conclusion, the NGO-AdaBoost hybrid 

model exhibits remarkable predictive accuracy, stability, 

and efficiency in addition to outperforming conventional 

optimization-enhanced AdaBoost variants. Because of 

these characteristics, it is an extremely useful and 

appropriate tool for strategic decision-making in 

industries that rely heavily on commodities.  

Having a distinct AdaBoost model incorporated allows for 

the separation and measurement of the unique contribution 

of each optimizer to enhancing model accuracy. 

AdaBoost, as strong alone, was found to have limitations 

when hyperparameter tuning was performed, and its 

relatively lower prediction accuracy on all the metrics—

R², MAE, MAPE, and RSE—was the outcome. The 

hybrid models did their work with observable gains, and 

NGO-AdaBoost achieved the best result, which indicated 

that blending NGO facilitated a more efficient search of 

the hyperparameter space. The performance table 

demonstrates that NGO-AdaBoost outperforms all other 

hybrid variants in terms of accuracy in both training and 

testing. FOA's search mechanism, based primarily on 

sensory flight, lacks adaptive ways to avoid being trapped 

in local minima and so is not suited for complicated 

parameter tuning tasks.  SSA, with higher competitiveness 



118   Informatica 49 (2025) 107–126                                                                                                                                           X. Liu 

compared to FOA, possessed stronger exploration but 

weaker exploitation. SSA exhibited a lower convergence 

rate and a more erratic search path, which led to poor 

tuning of ensemble components in noisy or highly 

nonlinear environments. Such inconsistency undermined 

its capacity for exploration-exploitation trade-off to 

achieve a balance between generalization and fit. 

Compared to it, the NGO, however, maintained a finer 

exploration-exploitation trade-off through its utilization of 

its two-stage (attack and pursuit) approach to both explore 

potential spots in the solution space and also optimize 

them in great detail. With this capacity, the NGO-

AdaBoost hybrid model became a better generalizer and 

could perform more consistently as a price-predicting 

machine for copper prices. In conclusion, the NGO-

AdaBoost hybrid model possesses excellent prediction 

accuracy, stability, and efficiency, as well as outperforms 

conventional optimization-augmented AdaBoost models. 

Because of these characteristics, it is an extremely 

practical and appropriate tool for strategic decision-

making in highly commodity-reliant sectors. Additionally, 

an NGO's simple structure and fewer control parameters, 

which accelerate convergence and reduce computational 

complexity, make it more effective for real-time 

forecasting applications.  

 

Figure 7: The model evaluation criteria's outcomes.

 

Figs. 8 and 9 show the actual and predicted value plots 

of NGO-AdaBoost on the training set and test set, 

respectively. The plots highlight the capacity of the model 

to accurately trace trends and ensure stability for learning  

 

as well as generalization purposes. The tight 

correspondence between predicted and actual curves, 

particularly on unseen test data, highlights the power of 

the model and its predictive accuracy.  

 

Figure 1: The train data prediction curve for NGO-AdaBoost 
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Figure 2: The test data prediction curve for NGO-AdaBoost 

This research suggests many schemes such as 

AdaBoost, FOA-AdaBoost, SSA-AdaBoost, and FOA-

AdaBoost to predict future copper prices. The findings 

reveal that NGO-AdaBoost surpasses other schemes 

regarding MAPE, RSE, MAE, and 𝑅2 scores. 

Optimization of the NGO algorithm in connection with 

AdaBoost seems to be a better approach for copper price 

prediction. Because of the NGO-AdaBoost model's 

stability and computational efficiency, the model is well-

suited for forecasting, which improves decision-making in 

sectors of the economy that depend heavily on copper; its 

precise prediction of copper prices gives investors and 

policymakers useful information that enables them to 

make informed decisions in a volatile market; and for 

copper producers, the model offers a useful tool for 

scheduling production and setting prices. 

The individual models (ARIMA, SVR, GRU, Bi-

LSTM, and XGBoost) have a relatively lower complexity 

as seen in Table 5. For example, models with relatively 

lower computational costs, like AdaBoost and ARIMA, 

are faster and more effective during training, but they 

usually perform worse for complex tasks where volatility 

and non-linearity are important considerations, like 

forecasting the price of copper. The AdaBoost model was 

chosen because of its robust ensemble learning feature, 

which can greatly enhance prediction quality and 

resilience when combined with optimization algorithms 

such as NGO. The hybrid models (GA-AdaBoost, PSO-

AdaBoost, FOA-AdaBoost, SSA-AdaBoost, and NGO-

AdaBoost) all show increased computational complexity 

as a result of the optimization step integrated with 

AdaBoost. Metaheuristic optimizers used to adjust the 

hyperparameters of the AdaBoost model also increase and 

improve training time significantly. Particularly, with 

greater training complexity than less complex models, 

NGO-AdaBoost achieves improved performance in 

recognizing complex copper price prediction patterns. 

Improved accuracy, reduced error rates, and overall NGO-

AdaBoost model performance in copper price prediction 

compensated for the increased complexity of hybrid 

models. In short, the NGO-AdaBoost model provides a 

trade-off between precision and computational expense. 

Though more computationally expensive than 

conventional models, it is a very potent model for 

forecasting copper prices because of its superior predictive 

power, reduced error margins, and enhanced performance 

on unforeseen data. Its computational expense is justified 

in terms of the more accurate and stable performance of 

the model in an extremely volatile market. 

Table 5. Training complexity of various models. 

Training 

complexity 

(FLOPs*) 

ARIMA SVR GRU 
Bi-

LSTM 
XGBoost AdaBoost 

GA-

Adaboost 

PSO-

Adaboost 

FOA-

AdaBoost 

SSA-

AdaBoost 

NGO-

AdaBoost 

4.03E+11 4.15E+11 4.86E+11 7.67E+11 5.55E+11 4.61E+11 1.87E+12 1.42E+12 2.68E+12 2.63E+12 1.49E+12 

6.1  Comparative evaluation of the proposed 

model with state-of-the-art techniques 

To confirm the performance of the proposed AdaBoost 

model, this paper compared it with five current state-of-

the-art prediction methods: Autoregressive Integrated  

 

 

Moving Average (ARIMA), Support Vector Regression 

(SVR), Gated Recurrent Unit (GRU), Bidirectional Long 

Short-Term Memory (Bi-LSTM), and Extreme Gradient 

Boosting (XGBoost). Table 6 and fig 10 show the 

summarization results using four traditional evaluation 

metrics: R², MAPE, MAE, and RSE, for training and test 

sets.
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Table 6: Comparing the outcomes of the proposed Adaboost model's evaluation criteria with the state-of-the-art 

methods. 

Schemes/Metrics ARIMA SVR GRU Bi-LSTM XGBoost AdaBoost 

Train 

 𝑅2 0.9399 0.9534 0.9703 0.9766 0.9805 0.9857 

MAPE 4.4475 3.6715 2.7182 2.4089 1.9231 1.6457 

MAE 0.1314 0.0919 0.0778 0.0714 0.0620 0.0519 

RSE 0.2080 0.1825 0.1455 0.1293 0.1185 0.1014 

Test 

 𝑅2 0.9372 0.9502 0.9675 0.9751 0.9785 0.9836 

MAPE 2.2071 2.0387 1.3553 1.1973 1.2118 0.9655 

MAE 0.0888 0.0767 0.0521 0.0499 0.0466 0.0381 

RSE 0.1375 0.1217 0.0988 0.0866 0.0804 0.0702 

It produced the greatest R² values (training 0.9857, 

testing 0.9836), which indicates a superior ability to 

account for the variance of copper price trends. 

It produced the lowest MAPE and MAE, high precision, 

and the lowest variation. The lowest RSE values indicate 

a more central distribution of errors and a superior fit 

to actual values. These results validate the fact that 

AdaBoost is a highly effective and stable model 

for predicting copper prices, better than traditional 

statistical models (ARIMA, SVR) and deep learning 

models (GRU, Bi-LSTM). Based on this strong baseline 

performance, AdaBoost was selected as the baseline 

ensemble learner to be further optimized through 

metaheuristic optimization. Its combination with an NGO 

at the level of optimization enabled hyperparameter tuning 

(learning rate, number of estimators), further enhancing 

generalization performance in especially noisy or 

nonlinear market conditions.  

 

Figure 10: Contrasting the results of the suggested Adaboost model with state-of-the-art techniques.

6.2  Statistical Significance tests 

The models' statistical significance was assessed by 

comparing the NGO-AdaBoost model's performance to 

that of other benchmark models using the Wilcoxon 

signed-rank test. Table 7 displays the Wilcoxon test 

results, test statistics (Wilcoxon values), and 

corresponding p-values for each model. The p-values  

 

 

indicate the statistical significance, whereas the Wilcoxon 

values show the performance differences between the 

paired models. A p-value of less than 0.05 indicates a 

statistically significant difference in performance. The 

table shows that the NGO-AdaBoost model performs 

better than AdaBoost, GA-AdaBoost, PSO-AdaBoost, 

FOA-AdaBoost, and SSA-AdaBoost in terms of 

predictive accuracy. Additionally, its p-value (1.36E-67) 

is the lowest. 
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Table 7:  Wilcoxon Test Statistics and P-values for Model Comparison. 

Models Wilcoxon P-value 

AdaBoost 18506 2.07E-17 

GA-Adaboost 20233 1.95E-13 

PSO-Adaboost 19518 1.39E-09 

FOA-AdaBoost 31227 2.72E-07 

SSA-AdaBoost 2493 1.17E-65 

NGO-AdaBoost 1358 1.36E-67 

6.3  Comparison with literature reviews 

The literature reviews for copper price prediction are 

compared in Table 8 and Fig.11, where the accuracy of 

various models and approaches is compared with the  

 

model suggested in this study. These findings indicate that 

the suggested model is significantly has more accuracy for 

predictions. These findings offer insightful information 

that helps investors make well-informed investment 

decisions. 

Table 8: Performance comparison between the suggested model in this study and the methods and models offered in 

literature reviews. 

Methods Results Year Reference 

RBF R2: 0.727 2024 

[34] 
RF R2: 0.608 2024 

SVM R2: 0.805 2024 

Deep Extreme Learning Machine (DELM) R2 : 0.959 2024 

XGB R2: 0.935 2024 

[35] 
GEP R2: 0.947 2024 

SSO-XGB R2 : 0.962 2024 

HHO-XGB R2: 0.959 2024 

LSTM  R2 : 0.99012 2023 [19] 

ANFIS-ACO R2 : 0.956 2021 [36] 

NGO-Adaboost 𝐑𝟐: 0.9919 Proposed model 
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Figure 11: Comparison of the performance of the proposed model with other models presented in the literature 

reviews for predicting the price of copper.

7 Conclusions 
Accurately predicting copper prices in both the spot and 

futures markets provides significant benefits to several 

stakeholders. Increased price predictability may allow 

policymakers to control the market more effectively. 

Copper producers can increase the efficiency and 

responsiveness of their production processes. As a result, 

investors may more effectively develop profitable 

investment plans for the short, medium, or long term. The 

purpose of this research is to forecast copper prices using 

a hybrid forecasting strategy that combines optimal 

schemes and ensemble learning algorithms. This work 

aims to fill the lack of research on copper price 

anticipation by providing a hybrid technique that 

overcomes the constraints of conventional time series 

schemes. 

The main findings obtained from this investigation are 

as follows: 

To forecast copper prices, this study introduced a new 

hybrid forecasting model that combines NGO and 

AdaBoost. This research uses historical data, including 

OHLC price and volume. The January 2014–October 

2023 dataset period is used. The findings demonstrated 

that the NGO-AdaBoost model outperformed other 

metaheuristic-based models like PSO and GA-AdaBoost 

as well as more conventional machine learning models 

like SVR and ARIMA. Out of all the models tested, the 

NGO-AdaBoost model produced the best predictions with 

the highest R2 values (0.9978 training and 0.9919 testing) 

and the lowest error levels (MAPE: 0.6733, MAE: 

0.0268). This resulted from the NGO's ability to  

 

successfully modify AdaBoost's hyperparameters to trade 

off local exploitation and global search through its 

biologically inspired two-phase search process. 

. The outcomes display the robustness of the model in 

even adverse, noisy economic climates like predicting 

copper prices. The data clearly shows that the NGO-

AdaBoost model works better than any other model. It also 

produces precise forecasts. Forecasts might be helpful to 

investors, policymakers, and manufacturers.   

Notwithstanding its high predictive accuracy, the 

NGO-AdaBoost model has a few limitations. The model's 

sensitivity to AdaBoost and NGO hyperparameter settings 

may necessitate considerable fine-tuning to attain peak 

performance. NGOs help automate this process, but 

improper configurations can still result in less-than-ideal 

results. As with most ensemble methods, there is also a 

risk of overfitting, particularly when applied to small or 

noisy datasets. The model's performance has only been 

validated using data on copper prices; its applicability to 

other commodities or financial assets has not yet been 

established. Ultimately, using metaheuristic optimization 

increases computational complexity, which may limit 

scalability for real-time or large-scale applications. 

Subsequent studies will build on this research by 

assessing the performance of various meta-heuristic 

optimization algorithms, such as Simulated Annealing 

(SA), Artificial Bee Colony (ABC), and Ant Colony 

Optimization (ACO), in enhancing AdaBoost for copper 

price forecasting. The application of external factors like 

macroeconomic factors (such as inflation rates, interest 

rates, and commodity prices) and geopolitical events (such 

as trade wars and policy changes) will also be critical in 
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enhancing the robustness of the model. Taking these 

factors into account is most likely going to increase the 

model's ability to predict due to their crucial role in 

variations in copper price. Additionally, learning more 

advanced ensemble methods like Gradient Boosting 

Machines (GBM) will give a well-rounded understanding 

of the best techniques for predicting prices. Finally, using 

techniques like SHAP or LIME, the explainability of 

NGO-AdaBoost can be improved such that stakeholders 

can understand the driving factors behind the predictions 

of the model and have faith in its outcomes in real-world 

applications. 
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