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With the continuous advancement of technology, carbon emission prediction results have become 

increasingly reliable. However, traditional carbon emission prediction methods face limitations in data 

and uncertainty, requiring substantial experimental resources and data. Therefore, the study optimizes 

the Support Vector Machine through the Improved Grey Wolf Optimizer. It combines the extended 

stochastic environmental impact assessment model to provide a framework for influencing factors and 

introduces randomness and regression analysis. This approach improves the accuracy and applicability 

of the fusion model in predicting carbon emissions in industrial zones. Experimental results show that, in 

the Hubei Province dataset, the proposed model achieves the smallest Mean Squared Error of 0.0075 

among four models. The Root Mean Squared Error values of the individual Feedforward Neural Network 

and Multilayer Perceptron are 0.0101 and 0.0197 higher than that of the proposed model, respectively. 

Compared to existing single models, such as backpropagation neural networks, the Root Mean Squared 

Error values of the studied model is significantly reduced by 12%. These results indicate that the proposed 

prediction model demonstrates excellent timeliness in carbon emission forecasting. This capability 

provides policy makers with a variety of policy assessment tools to help develop more effective emissions 

reduction policies. 

Povzetek: Hibridni model IGWO-SVM-STIRPAT omogoča bolj kvalitetno napoved emisij ogljika v 

industrijskih conah, ker združuje optimizacijo parametrov in regresijsko analizo. 

 

1 Introduction 
Since the end of the 20th century, the adverse effects of 

global warming have become increasingly significant. 

Carbon emissions have caused widespread effects on 

ecosystems and the economy. Climate change has also led 

to a rise in natural disasters, severely threatening 

agriculture and infrastructure [1]. To address this global 

challenge, governments and businesses worldwide have 

made reducing carbon emissions a common goal, with an 

increasing urgency for the implementation of emission 

reduction policies. Therefore, developing effective carbon 

emission prediction methods has become an important 

objective in current research. Although current carbon 

emission prediction methods are somewhat effective, their 

results are highly susceptible to various factors. In cases 

of data with low complexity, there is a risk of overfitting 

[2]. In recent years, Support Vector Machine (SVM) has 

been widely applied in carbon emission prediction 

research due to its strong generalization ability and 

suitability for nonlinear problems [3]. Compared to SVM, 

the Improved Grey Wolf Optimizer (IGWO) optimizes  

 

faster and adaptively adjust parameters based on model  

behavior [4]. Combining these two methods in carbon 

emission prediction allows for quicker solutions with 

fewer iterations and enhances the global search capability 

of individual algorithms by leveraging the strengths of 

different models [5]. Building on this, the study 

innovatively proposes integrating it with the scalable 

Stochastic Impacts by Regression on Population, 

Affluence, and Technology (STIRPAT) model. IGWO-

optimized SVM enhances prediction accuracy through a 

non-linear kernel function and adaptive parameter 

adjustment. The STIRPAT model compensates for the 

deficiencies of traditional model to include qualitative 

factors, such as carbon policies, in prediction by 

introducing policy drivers. The proposed fusion model 

aims to overcome the limitations of traditional prediction 

methods, which are constrained by parameter 

dependencies and applicability, by improving overall 

prediction accuracy through the combination of multiple 

model strengths. This method is expected to offer valuable 

data insights to support low-carbon transformation and 
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economic development, ensuring well-informed emission 

reduction policies and fostering a sustainable green 

economy. 

2 Related works 
With the continuous breakthroughs in machine learning 

and data mining technologies, SVM has demonstrated 

strong regression analysis capabilities in pattern 

recognition and classification problems. At the same time, 

the algorithm is efficient and robust when handling large 

datasets with many features. As a result, numerous 

scholars from both domestic and international research 

communities have conducted extensive studies leveraging 

this advantage. For example, Neethu’s team proposed a 

novel classification method to address the shortcomings of 

traditional gesture classification methods. This approach 

applied a threshold segmentation method to finger 

segmentation based on SVM. The results showed that the 

sensitivity, specificity, and accuracy of the method all 

exceeded 90% [6]. Gangadevi and other researchers 

proposed a hybrid fruit fly optimization model based on 

SVM to accurately identify tomato diseases. The method 

simulated hybridization to address the issue of 

hyperparameters. Simulation experiments validated that 

the approach upon traditional algorithms while 

maintaining high precision [7]. Yu’s team proposed a 

novel gain algorithm for model recognition, which 

optimized SVM combined with the conjugate direction 

method to enhance the functional gain of traditional 

algorithms. The results indicated that this algorithm 

outperformed other models in terms of timeliness [8]. 

Compared to SVM, STIRPAT is more flexible and 

scalable, as it does not require a large amount of 

experimental data for data evaluation. Shobande and 

Asongu proposed a combined algorithm based on 

STIRPAT to explore the relationship between information 

and communication technology and environmental 

sustainability. This method, when combined with time 

series data, mined the interactions between various 

indicators. The results showed that the approach 

effectively promoted the development of environmental 

sustainability [9]. Rasoulinezhad’s team aimed to explore 

how carbon emissions and energy efficiency impact green 

finance, proposing the use of STIRPAT for 

experimentation. By analyzing the interactions between 

population, affluence, and technology, they concluded that 

there was no causal relationship among the variables in the 

short term [10]. 

In addition, in order to promote ecological 

civilization, low-carbon development has gradually 

become the main goal for future development. Regarding 

how to achieve accurate carbon emission predictions, 

scholars both domestically and internationally have 

proposed different perspectives. For example, Wang and 

other researchers proposed an extended planning model to 

address the impact of carbon emission trading price 

fluctuations on energy system planning. By analyzing 

device characteristics, they developed a planning model 

for carbon emission prediction. Simulation experiments 

verified the reliability of this prediction model [11]. 

Unsalan’s team proposed a novel carbon emission 

prediction method to study the impact of carbon footprints 

on global warming. They employed various technological 

systems combined with SVM to analyze carbon emission 

data. The results showed that the network model exhibited 

excellent predictive performance and accuracy [12]. Tang 

and others proposed a combined algorithm based on a 

carbon emission planning model to address the issue of 

energy consumption optimization. By optimizing the 

configuration and predicting and optimizing carbon 

emissions, their method provided reliable data support for 

low-carbon transportation planning [13]. Amanatidou and 

colleagues proposed using a static floating chamber to 

collect carbon emissions and methane concentrations for 

accurate prediction and evaluation of greenhouse gas 

emissions. Their experiments validated the reliability of 

this method for assessing the environmental impact of 

reservoirs through the statistical correlation between gas 

and water characteristics [14]. Gao’s team developed a 

new hybrid model to predict carbon emissions in the 

production industry and explored the solution space based 

on initial sequences and search strategies. Data results 

showed that the hybrid model had high accuracy and 

effectiveness [15]. A summary of the results of the 

available studies is shown in Table 1. 

Table 1: Summary of available studies. 

Research object Author Method Advantage Disadvantage 

SVM 

Neethu P S et al 
Thresholding was used on 
the basis of the SVM 

High sensitivity, 

specificity, and 

accuracy 

Not suitable for complex 
backgrounds 

Gangadevi E et al 

Hybrid fruit fly 

optimization model based 

on SVM 

With a relatively high 

accuracy 

High computational 

complexity 

Yu L et al 
Optimized SVM combined 
with the conjugation 

orientation method 

Have a better 

timeliness 

Multi-classification problem 

is complicated 

STIRPAT model 

Shobande O A and 
Asongu S A 

A binding algorithm based 
on the STIRPAT model 

Flexibility and strong 
scalability 

High data dependence 

Rasoulinezhad E et al STIRPAT model Extensive applicability 
Limited handling of the 

nonlinear relationships 

Carbon emission forecast 

Wang L et al 
Establish an extended 
planning model 

Quantitative analysis 
ability is outstanding 

The local optimal problem 

Unsalan K et al 
Using different technical 

systems with the SVM 

Strong classification 

ability 

Parameter selection is 

sensitive 
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Tang Y et al 
A combined algorithm 
based on a carbon emission 

planning model 

The model accuracy is 

high 

The data dependency is 

relatively high 

Amanatidou E et al 

Carbon emission and 

methane concentration were 
collected using a static 

floating chamber 

Easy to operate 
Spatial representation is 
limited 

Gao M et al 
New hybrid prediction 
model for carbon emissions 

High information 
utilization rate 

Computational resources 
consume costly 

 

Based on results of domestic and international 

scholars, current research methods for carbon emission 

prediction still face limitations in terms of a data quality 

and a lack of flexibility. The existing RF-SVM model is 

based on static data training and lacks dynamic 

adaptability. The neural network is prone to overfitting in 

low-dimensional temporal data. Some machine learning 

methods have weak policy variable modeling and a high 

dependence on data quality. Therefore, this research 

chooses to combine the optimized SVM with STIRPAT 

and integrate STIRPAT and machine learning features to 

build a "policy-technology-emissions" closed-loop 

feedback. The research aims to improve the timeliness of 

prediction and policy response ability through parameter 

optimization, mechanism innovation, and multi-source 

data collaborative governance, and then to promote the 

realization of low-carbon emission reduction. 

3 Carbon emission prediction model 

based on the fusion of SVM and 

STIRPAT and its optimization 

3.1 Construction of the industrial zone 

carbon emission prediction model 

based on IGWO-SVM 

SVM is a model used for data classification in a supervised 

learning manner. It achieves better generalization ability 

and classification performance by maximizing the margin 

of the hyperplane. It is particularly effective for handling 

nonlinear classification problems and high-dimensional 

data [16]. However, when applied to large-scale datasets, 

the algorithm faces high computational complexity and 

requires significant machine memory during the training 

process. On the other hand, IGWO has the advantages of 

strong adaptability and fast convergence speed. It features 

a convergent factor and an information feedback 

mechanism that can be adaptively adjusted, making it 

easier to implement compared to SVM [17]. IGWO is an 

optimization algorithm that simulates the social behavior 

of wolf packs. It adjusts experimental parameters 

adaptively during the optimization process based on task 

adaptability, reducing parameters to lower the complexity 

of the model and obtaining the optimal solution in a 

shorter time. The working process is shown in Figure 1. 

In Figure 1, IGWO first initializes parameters to 

define the number of gray wolves and the positions of the 

individual wolves. When the positions of the entire wolf 

pack meet the final condition, the optimal position of the 

gray wolf is obtained [18]. The dynamic weight 

adjustment strategy is used to output the objective 

function value of the optimal gray wolf. The Equation for 

calculating the distance between an individual and the 

prey is shown in Equation (1). 

. ( ) ( )pD C X t X t= −                        (1) 

In Equation (1), t  and C  represent the current 

iteration number and the coefficient vector, respectively. 

pX  represents the prey's position vector, and X  

represents the gray wolf's position vector. When the 

initialized positions of the gray wolf pack do not meet the 

termination condition, the objective function value of the 

wolf pack needs to be calculated, and the positions of the 

wolves are updated. After obtaining the updated function 

value, the process returns to the initialization step of the 

wolf pack [19]. During IGWO operation, hyperparameter 

combinations for SVM are randomly generated through 

parameter initialization. The SVM model is then trained, 

and its fitness value is calculated. Then, the individual 

position is updated according to the hunting behavior of 

the gray Wolf, and finally the optimal hyperparameter 

combination is gradually approached by iterative updating 

the location of the gray Wolf, so as to realize the 

integration of IGWO optimized SVM. IGWO 

significantly improves the search efficiency by controlling 

the parameter random adjustment strategy, at the same 

time, by minimizing the MSE and RMSE as the 

optimization targets, the model parameters are 

dynamically adjusted to improve the prediction accuracy 

of the model. The study uses IGWO to optimize the SVM, 

resulting in IGWO-SVM. The implementation steps of 

this algorithm are shown in Figure 2. 
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Figure 1: Working process of IGWO. 
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Figure 2: Implementation steps of IGWO-SVM. 

As shown in Figure 2, the initial stage of IGWO-SVM 

involves preprocessing the input data and randomly 

initializing the data based on the position and velocity of 

the gray wolves. The fitness of the wolves is calculated 

using the new positions and velocities, and after a second 

calculation, the updated fitness is compared with the 

previous fitness to determine the optimal strategy that 

satisfies the termination condition. The Equation for 

calculating the individual gray wolf's tracking of the prey's 

position is shown in Equation (2). 

1

2

3

.

.

.

D C X X

D C X X

D C X X

 

 

 

 = −



= −

 = −


                         (2) 

In Equation (2), D  and X  represent the distance 

between   and other individuals, and   denotes the 

current position. X  and X   represent the distance 

between   and other individuals, and   is the current 

position. D  and X   represent the distance between   

and other individuals, and   is the current position. 
1C , 

2C , and 
3C  are random vectors. Individual tracking of 

prey location by grey wolves can shorten the optimization 

time of SVM parameters through a collaborative search 

mechanism and capture the non-linear relationship 

between carbon emissions and driving factors. The new 

position of the gray wolf individual is determined by the 

position-weighted average of  ,   and  , as shown in 

Equation (3). 

1 2 3( 1)
3

X A D X A D X A D
X t

     −  + −  + − 
+ =  (3) 

In Equation (3), 
1A ，

2A and 
3A coefficients 

representing the control step size. The convergence factors 

in IGWO-SVM are used to determine whether the 

algorithm reaches the optimal solution in the iteration 

process, and the information feedback mechanism feeds 

back information into the parameter update strategy by 

evaluating the quality of the current solution, and then 

guides the next search direction. IGWO-SVM 

dynamically adjusts the search step size and search range 

for gray wolf individuals by introducing adaptive weights 

and following convergence factors and information 

feedback mechanisms, and terminates the iteration early 

when the fitness value dose not significantly change in 

multiple successive iterations. Moreover, integrating 

IGWO can compensate for the lack of convergence 

performance and the need for a large amount of training 

data in SVM. The proposed IGWO-SVM carbon emission 

prediction model is shown in Figure 3. 
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Figure 3: Working diagram of IGWO-SVM carbon emission prediction modeling. 

As shown in Figure 3, the model for predicting carbon 

emissions first requires determining the target range and 

gathering relevant parameters. After initializing the 

parameters, the target function needed for the experiment 

is obtained. The new target function is then derived 

through adaptive parameter adjustments and weight 

updating strategies. This updated target function is used as 

the input vector, and SVM is employed to find a separating 

hyperplane in the feature space to classify the data. After 

data integration, the final carbon emission prediction 

results are obtained. The distance calculation Equation 

from any point to the hyperplane in the sample space is the 

core mathematical tool of SVM, which can allow the 

sample space to be divided into different regions through 

the hyperplane to capture the non-linear relationship 

between carbon emissions and driving factors. The 

distance from any point in the sample space to the 

hyperplane is calculated using the Equation in Equation 

(4). 
Tw b

r
w

+
=                                 (4) 

In Equation (4), 
Tw  and b  represent the normal 

vector and the displacement term, respectively. w  

represents the normal vector of the hyperplane. The 

Equation for calculating the distance between the data 

points and the decision boundary is shown in Equation (5). 
T

i

i

w x b
d

w

+
=                              (5) 

In Equation (5), w  and 
ix  represent the Euclidean 

norm of the normal vector w  and the data points, 

respectively. The Equation for calculating the individual 

gray wolf is shown in Equation (6). 

1 1

2 2

3 3

X X A D

X X A D

X X A D

 

 

 

 = − 


= − 


= − 

                       (6) 

In Equation (6), 
1X , 

2X , and 
2X  represent different 

gray wolf individuals, determining the step size and 

direction in which the gray wolf individuals move towards 

 ,  , and  . By applying the IGWO-SVM model to 

carbon emission prediction, the model parameters are 

adaptively adjusted according to the different 

characteristics of carbon emissions, allowing the initial 

feature parameters to be more evenly distributed in the 

hyperplane solution space, thus improving the model's 

prediction accuracy and generalization ability. Next, the 

Gaussian kernel is preferentially selected as the kernel 

function, and the optimal value of the generalization and 

fitting ability of the equilibrium model is found by IGWO. 

The adjustment of the kernel function parameters was 

searched in a smaller range by IGWO to avoid the model 

being too sensitive to local data. This provides reliable 

data support for formulating and implementing carbon 

emission policies. 

3.2 Optimization of the carbon emission 

prediction model combined with 

STIRPAT 

Although applying IGWO to optimize SVM improves its 

sensitivity to parameters, the fusion model may get stuck 

in local optima in complex problems, which affects the 

model's prediction accuracy. Therefore, this study 

proposes further introducing STIRPAT to improve the 

prediction results based on the limitations of IGWO-SVM. 

By introducing randomness and regression methods, the 

research can flexibly handle the nonlinear relationship 

between carbon emissions and population, affluence and 

technology level, while the traditional IPAT model can 

only describe the linear relationship. And the STIRPAT 

model supports the addition of other variables, which can 

more comprehensively analyze the drivers of carbon 

emissions in industrial zones. Other models are usually 

limited to linear assumptions or single variables. Its 

components are shown in Figure 4. 
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As shown in Figure 4, the pressure in STIRPAT 

determines the environmental carrying capacity and the 

impact on the ecosystem, including factors such as climate 

change and environmental pollution. The four 

components—trend, pressure, impact, and response—

together describe the comprehensive effect of human 

factors on the environment. By simulating and predicting 

the influencing factors, the model provides an important 

basis for ecosystem management [20]. The core 

calculation Equation of the STIRPAT model is shown in 

Equation (7). 
b c dI aP A T e=                             (7) 

In Equation (7), I represents environmental impacts, 

such as carbon emissions. a  and P  represent the model's 

elasticity coefficient and population size, while A  and T  

represent affluence and technological level. b  is the 

elasticity coefficient for population size, and c  represents 

the elasticity coefficient for affluence. d  and e  represent 

the elasticity coefficient for technological level and the 

error term, respectively. By adjusting the exponents in the 

model and adding new variables, the model can be made 

suitable for different research needs, offering excellent 

flexibility and scalability. The mechanism of 

incorporating STIRPAT to improve the carbon emission 

prediction model is shown in Figure 5. 

As shown in Figure 5, the IGWO-SVM carbon 

emission prediction model defines and normalizes the 

feature space vectors output by SVM, and after variable 

transformation, the STIRPAT model is used to improve 

the fusion model through model selection and fitting to 

determine the independent and dependent variables. The 

study constructs a regression model using linear 

regression methods, and finally evaluates the model’s 

goodness of fit and predictive ability through residual 

analysis tools, thus obtaining the prediction results of the 

model. The error Equation is calculated as shown in 

Equation (8). 

( )

11 12 1n

21 22 2n

1 m2 mn

1
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( , ) ( )

   X      X

  X       X

                        

   X       X

T Xs y
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X

X
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X

s

s
s

s

−







= −


 
   =
 


 


 


  
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              (8) 
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Figure 4: Components of STIRPAT. 
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Figure 5: Workflow of the carbon emissions forecasting model introduced into STIRPAT. 

In Equation (8), X  and y  represent the sample input 

matrix of m n  and the column vector of 1m , 

respectively. s  represents the column vector of 1n . m  

and n are the number of samples and the number of 

features for each sample, respectively. The calculation 

Equation for the objective function is shown in Equation 

(9). 

1

1
min

2

nT

ii
R w w C 

=
= +                   (9) 

In Equation (9), C  and   represent the penalty 

factor and slack variables, respectively. w  weight the 

impact of different characteristics on carbon emissions in 

the carbon emission prediction model. By optimizing the 

normal vector, the relationship between carbon emissions 

and drivers can be fitted more accurately, and adjusting 

the penalty factor can avoid model overfitting and ensure 

the reliability of the prediction results. Minimizing the 

normal vector and penalty factor optimize the feature 

weights and reduce the computational complexity of the 

model. This model not only reduces the difficulty of data 

acquisition but also enhances the model's flexibility 

through regression analysis, effectively compensating for 

the limitations of traditional prediction models influenced 

by data quality. The study selected the filtering method as 

a feature selection technique, evaluating feature 

importance based on statistical indicators such as variance 

and screening it independently of the model. The carbon 

emission prediction model combining IGWO-SVM and 

STIRPAT is shown in Figure 6. 

From Figure 6, it can be observed that after inputting 

carbon emission and influencing factor data into the 

model, the first step is to initialize the data through IGWO-

SVM and output the optimal objective function value. 

This function value forms the optimal hyperplane in the 

feature space after maximizing the classification margin. 

The second part, the STIRPAT module, mainly 

standardizes the data, determines the distribution of 

parameters to be optimized, and optimizes the parameters 

using a random search method. Finally, after result 

verification, the predicted value of carbon emissions is 

output. The calculation Equation for the inner product 

kernel function is shown in Equation (10). 
2

( , ) exp( )i j i jK c c y c c= − −                (10) 

In Equation (10), 
ic  and 

jc  represent the input 

factors and the expected values, respectively. The 

calculation Equation for the nonlinear function is shown 

in Equation (11). 
*( ) ( ) ( )i i i j

sv

f x K c gc v = − +            (11) 

In Equation (11), 
i  and *

i  represent the support 

vector parameters, while v  and ( )i jK c gc  represent the 

constant term and the inner product kernel function, 

respectively. The calculation Equation for the function 

margin is shown in Equation (12). 

ˆ ( )Ta w x v = +                        (12) 

In Equation (12), 
Tw x b+  represents the distance 

from point T  to the hyperplane. The integration of 

IGWO-SVM and STIRPAT mainly builds the STIRPAT 

model using historical data, outputs the quantitative 

relationship between carbon emission and each factor as 

the input feature of SVM, and then trains the SVM model 

optimized by IGWO. The optimization of the fusion 

model by STIRPAT not only enhances the model's 

flexibility and comprehensiveness, but also compensates 

for the lack of timeliness in single prediction algorithms. 

This makes the prediction results more accurate, greatly 

improving the timeliness and transparency of carbon 

emission data. 
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Figure 6: Final carbon emissions forecasting model workflow diagram. 

Design the rolling verification mechanism for time-

dependent nature of carbon emission data, and conduct the 

cross-validation of the model evaluation by simulating the 

actual prediction scenario. The penalty factor of SVM is 

dynamically adjusted within the range of 0.1~100 through 

IGWO to balance model complexity and training error. 

The optimization interval of Gaussian kernel parameters 

and the value of ε in the regression task are set to 0.001-

1001000 and 0.01-0.1 respectively, to avoid overfitting of 

the model to industrial data noise. The population 

elasticity coefficient and the technical elasticity 

coefficient of the STIRPAT model are constrained 

between 0.8 and 1.5 and 0.3~0.9, respectively. To enhance 

the adaptability of the model to different policy strengths, 

the study treats the policy drivers by normalization and 

maps to an interval of 0 to 1.Set the IGWO algorithm to 

stop the calculation when the fitness value change rate is 

below 110-4 after 20 consecutive iterations. 

4 Performance verification of the 

industrial zone carbon emission 

prediction based on the fusion 

model 

4.1 Comparative performance analysis of 

the fusion model 

In order to validate the performance of the STIRPAT 

combined with IGWO-SVM hybrid model, the study 

named this fusion model as Model A, and selected 

Feedforward Neural Network (FNN), Random Forest and 

Support Vector Machine (RF-SVM), and Multilayer 

Perceptron (MP) as comparison prediction models. FNN, 

RF-SVM and MP all have strong non-linear modeling 

capabilities, and can compare the performance with the 

integrated model of IGWO-SVM and STIRPAT in 

complex data scenarios, and choosing different types of 

models for comparison can verify the superiority of the 

integrated model from multiple perspectives. The study 

selected the programming language and TensorFlow 2.5 

to implement data preprocessing and model 

implementation, using AMD Ryzen 7 and NVIDIA RTX 

3060 for the hardware configuration, with a memory size 

of 32GB. The four models had 400 iterations, with a 

population size of 35. The 400 iterations ensure that the 

algorithm reaches the convergence state when optimizing 

the model parameters and effectively controls the 

computing resource consumption. Setting the overall size 

set to 35 ensures that the algorithm maintains sufficient 

population diversity within the search space, reducing the 

likelihood of a local optimal solution. The carbon 

emission prediction results for different provinces and 

years were compared and analyzed. The experimental 

datasets included the China Emission Accounts and 

Datasets (CEADs) dataset and the Multi-resolution 

Emission Inventory for China (MEIC) dataset. The 

CEADs dataset served as the training set, containing 

carbon accounting inventories at multiple scales, and was 

used to verify the performance of the fusion model. The 

MEIC dataset, as the testing set, covered carbon emission 

data from various industry sectors and was used to test the 

accuracy of the model in real-world applications. The 

CEAD and MEIC datasets adopt the proportional partition 

of 80% training set and 20% test set, combined with cross-

validation to ensure that the model has good 

generalization ability while fully learning the data 

features. To ensure fairness in the experiment, the same 

parameter preprocessing was applied to all four models. 

CEADs data set in the process of pretreatment, the first 3 

σ criteria to identify and eliminate the outlier indicators 

such as carbon intensity, through time series interpolation 

processing local missing, then the carbon emissions data 

and industrial economic indicators features cross and build 

multidimensional driver, normalized after the carbon 

emissions sequence decomposition into high frequency 

and low frequency mode. In the preprocessing of MEIC 

data set, spatial weighting method was used to aggregate 

the grid data to regional scales, divide carbon emission 

sources according to industrial sub-industries, and extract 

industry characteristic parameters as input variables for 

the model. Finally, the carbon emission trend differences 

of the data set was compared by cross-verification, and the 

systematic deviation was corrected by Bayesian network. 

And the ROC curves for the four models in the CEADs 

and MEIC datasets are shown in Figure 7. 
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Figure 7: ROC curves of the four models in CEADs dataset and MEIC dataset. 
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Figure 8: Prediction results of the four models in the CEADs dataset. 

As shown in Figure 7(a), in the CEADs dataset, the 

sensitivity curves of all four models increased as 

specificity increased. The ROC curve of Model A was 

closest to the upper left corner, and the Area Under Curve 

(AUC) value was the largest, reaching 0.95. The AUC 

value of the RF-SVM model was relatively lower than that 

of Model A, at 0.91, while the AUC values of the FNN 

and MP models were noticeably different from that of 

Model A, at 0.86 and 0.82, respectively. As shown in 

Figure 7(b), Model A performed well in the MEIC dataset, 

with an AUC value of 0.94, while the AUC values of the 

other three comparison models were all lower than that of 

Model A. The AUC values of the RF-SVM and FNN 

models were 0.89 and 0.84, respectively, while the MP 

model had the lowest AUC value, at only 0.80. In 

summary, from Figure 7, it can be seen that in different 

datasets, the ROC curve of the proposed Model A was the 

closest to the left side, and the area under the curve was 

the largest, demonstrating excellent classification 

performance compared to traditional algorithms. The 

CEADs dataset contained rich data samples, and by 

transforming the samples, the number of training samples 

was increased, reducing the risk of model overfitting. 

Therefore, the experiment used this as input data, and the 

carbon emission prediction values output by the four 

models were analyzed against the dataset labels, as shown 

in Figure 8. 

As shown in Figure 8, Model A exhibited relatively 

good prediction results in the CEADs dataset, when the 

label value is 0~1.0million tons / m2, the predicted value 

of carbon emission is close to the label value is relatively 

dense. RF-SVM prediction results were more scattered 

compared to Model A, and when the label value was 1.5 

million tons/m2, its carbon emission prediction reached 

1.92 million tons/m², deviating significantly from the label 

value. At the same time, both FNN and MP performed 

worse than Model A. When the carbon emission label 

value was 1.5 million tons/m2, FNN's carbon emission 

prediction deviated to 2.06 million tons/m², which was 

0.55 million tons/m² higher than Model A's prediction. 

Based on the data results, it can be observed that Model A 

exhibited significant prediction accuracy among the four 

algorithms and maintained good performance even when 

the label values varied. For a comprehensive evaluation of 

the overall performance of the fusion model, the study also 

analyzed the carbon emission prediction deviations of the 

four models in the training and testing datasets, as shown 

in Figure 9. 
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Figure 9: Carbon emission prediction deviation of four models in training set and test set. 

As shown in Figure 9(a), in the CEADs dataset, 

Model A's carbon emission predictions were the closest to 

the actual values, resulting in the smallest data deviation. 

When the year was 2014, Model A's prediction deviation 

was only -0.003, while MP's prediction deviation reached 

1.46 in 2016. The deviation curves of the comparison 

algorithms also fluctuated more significantly, and their 

overall performance was inferior to that of Model A. 

According to Figure 9(b), Model A achieved the minimum 

carbon emission prediction deviation of -0.009 in 2016. 

The corresponding prediction deviations for RF-SVM and 

FNN were -0.27 and -0.48, while MP's prediction 

deviation reached 0.78. Based on the data results, it can be 

concluded that the proposed Model A demonstrated 

excellent prediction performance and accuracy when 

compared to the other algorithms. 

4.2 Verification of the prediction effect of 

the fusion model in practical 

application scenarios 

To further validate the performance of the proposed fusion 

model in real-world carbon emission prediction scenarios, 

the study selected carbon emission data from four 

provinces—Hubei, Henan, Gansu, and Shaanxi—for the 

experiment, and assigned different sample numbers to 

them. The sample number range of Hubei Province is 001-

100, and the data covers major carbon emission industries 

such as energy production and manufacturing. The sample 

number range of Henan Province is 101-200, which 

includes the carbon emission data of some emerging 

industries. The sample number of Gansu Province is 201-

300, and the sample data is mainly energy production and 

mineral resources development. The sample number of 

Shaanxi Province is 301-400. The data includes carbon 

emission data mainly from high-tech industries and 

traditional energy industries. The difference in the 

accuracy of carbon emission prediction between different 

provinces and cities mainly stems from the combined 

impact of data quality, regional policy and model 

adaptability. The carbon emission prediction accuracy of 

the four models in various provinces is shown in Figure 

10. 

As shown in Figure 10, the four models demonstrated 

varying levels of accuracy in carbon emission predictions 

across different provinces and cities, the root mean square 

error (Root Mean Squared Error, RMSE) is statistically 

significant. In Hubei, Model A and RF-SVM had Mean 

Absolute Errors (MAE) of 0.0048 and 0.0076, 

respectively, while FNN and MP had MAEs of 0.0121 and 

0.0173, respectively. Among the four models, MP had the 

highest Root Mean Square Error (RMSE) at 0.182, while 

Model A's RMSE was only 0.0047. In Henan and Gansu, 

Model A's MAEs were 0.0032 and 0.0041, respectively, 

with the MAE and RMSE of the other three comparison 

models being higher than those of Model A. In Shaanxi, 

Model A had the smallest MAE and RMSE at 0.0052 and 

0.0073, respectively, showing the largest difference 

compared to MP's errors. These results indicated that 

Model A exhibited the smallest prediction errors among 

the four algorithms, making it more accurate in predicting 

carbon emissions than traditional methods. The 

adaptability of the four models in Hubei and Shaanxi is 

shown in Figure 11. 
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Figure 10: Comparison of carbon emission forecasting accuracy in different provinces and municipalities. 
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Figure 11: The fitness of four models in different provinces and cities. 

As shown in Figure 11(a), in Hubei, when the number 

of iterations was 5, the fitness values of Model A and RF-

SNN were 0.081 and 0.072, respectively. Compared to 

Model A, the fitness of FNN decreased by 0.024. MP had 

the lowest fitness, with a value of only 0.049. When the 

number of iterations was 20, Model A's fitness was 0.023 

higher than that of MP, and the fitness values of the other 

two comparison algorithms were lower than that of Model 

A. In Figure 11(b), in Shaanxi, the fitness of Model A was 

higher than that of the comparison models. When the 

number of iterations was 20, MP's fitness was only 0.042, 

while Model A's fitness reached 0.064. Overall, Model A 

demonstrated the best fitness across different data 

samples, showing an improvement in performance 

compared to traditional algorithms. The prediction 

accuracy of Model A and comparison models on the 

CEADs dataset, MEIC dataset, and sample data from 2018 

is shown in Table 2. 
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Table 2: Prediction accuracy of four models in CEADs dataset and MEIC dataset. 

Data set Model MSE RMSE MAE MAPE 
Training time 
/s 

Sample data of 

Hubei Province 

A Model 0.0075 0.0866 0.0086 0.0186 64.39 

RF-SVM 0.0126* 0.1122* 0.0127* 0.0249* 116.32 

FNN 0.0153* 0.1237* 0.0164* 0.0275* 122.08 

MP 0.0169* 0.1300* 0.0178* 0.0304* 129.61 

Sample data of 
Henan Province 

A Model 0.0062 0.0787 0.0092 0.0191 51.37 

RF-SVM 0.0134* 0.1158* 0.0143* 0.0284* 114.58 

FNN 0.0159* 0.1261* 0.0172* 0.0291* 119.34 

MP 0.0156* 0.1249* 0.0186* 0.0327* 125.79 

Gansu province 

sample data 

A Model 0.0079 0.0889 0.0081 0.0142 59.05 

RF-SVM 0.0143* 0.1196* 0.0119* 0.0266* 114.87 

FNN 0.0152* 0.1233* 0.0167* 0.0293* 126.43 

MP 0.0161* 0.1269* 0.0206* 0.0375* 131.82 

Shaanxi province 

sample data 

A Model 0.0074 0.0860 0.0079 0.0148 62.39 

RF-SVM 0.0141* 0.1187* 0.0117* 0.0264* 118.74 

FNN 0.0157* 0.1253* 0.0165* 0.0296* 123.49 

MP 0.0169* 0.1300* 0.0078* 0.0341* 126.13 

Note: * represents P <0.05, meaning that the results are statistically significant. 

 

The data results in Table 2 showed that Model A 

demonstrated excellent prediction performance across all 

datasets. In the Hubei dataset, the RMSE of Model A was 

the smallest among the four models, with a value of 

0.0075, while the RMSE of FNN and MP were higher than 

Model A by 0.0101 and 0.0197, respectively. In the Henan 

dataset, the MAE of Model A was 0.0092, and the errors 

of the other three comparison algorithms were all higher 

than that of Model A, with the MP's Mean Absolute 

Percentage Error (MAPE) reaching 0.0327. In the Gansu 

dataset, Model A also exhibited good accuracy, with an 

MAE of only 0.0081, while the MAEs of RF-SVM and 

FNN were 0.0119 and 0.0167, respectively, both higher 

than that of Model A. From the perspective of training 

time in different datasets, the training time of the proposed 

model was less than 100s, while the training time of the 

comparison model reached 129.61s, and according to the 

experimental results, the obtained error data were 

statistically significant. According to the experimental 

results, the obtained study data are statistically significant. 

Overall, the proposed fusion model performed excellently 

in various aspects, providing precise prediction 

performance on different sample data. It improved the 

applicability of traditional algorithms in large-scale big 

data applications. Moreover, applying this hybrid model 

to carbon emission prediction has provided a new 

approach for scientifically and rationally formulating 

emission reduction policies. 

5 Discussion 
As a key part of promoting green low-carbon 

transformation and realizing the goal of "dual carbon", 

carbon emission prediction can provide scientific basis for 

relevant institutions to formulate emission reduction 

policies by predicting the future carbon emission trend and 

peak time. According to the ROC curves of the proposed 

prediction model in different datasets, it can be found that 

the proposed model has excellent classification 

performance compared with the traditional comparison 

algorithm, and can still maintain good prediction 

performance under the condition of label value changes. 

Moreover, the predicted carbon emission value of the 

proposed model is the closest to the actual value, and the 

data deviation generated is the smallest. In the actual 

application scenario, the fitness of the proposed model in 

different data samples is the best. The fusion model 

dynamically screens the subset of features by combining 

the IGWO algorithm to ensure that the model can still run 

efficiently on large datasets, and the normalization in data 

preprocessing enables the model to adapt to a larger scale 

of data input. 

The RF-SVM model has high parameter sensitivity 

when processing high-dimensional data, which is prone to 

overfitting risk. It is difficult for MP model to deal with 

the complex interaction effect between carbon emission 

and multiple factors, and it lacks adaptability to external 

variables, resulting in a large prediction error. The 

dynamic adjustment of parameters by IGWO in the 

proposed model effectively balances the bias and 

variance, making the model maintain a low error on 

different datasets. Moreover, STIRPAT has enhanced the 

model's ability to explain complex systems by introducing 

macro-driving factors, thus reducing the prediction error 

caused by sample bias. In terms of bias-variance tradeoff, 

the dynamic feature selection mechanism of the proposed 

model can automatically identify key drivers and reduce 

the prediction bias caused by feature redundancy or 

missing. The implementation of the research model in the 

real-world industrial environment or policy making 

background can be implemented through model 

verification optimization and policy coordination, so as to 

provide a quantitative decision tool for "two-carbon 

targets". 

Although the IGWO-SVM-STIRPAT model shows 

excellent performance in the prediction of carbon 

emission in industrial zones, the noise data may interfere 

with the feature selection process of the IGWO algorithm 

and lead to the inaccurate selected feature subset, which 

affects the explanatory power and prediction effect of the 

fusion model. The model prediction should consider the 

short-term emission reduction targets and emphasize the 

balance between economic and social development in the 

industrial areas, and eliminate the variables that may cause 
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bias to ensure the fairness of the prediction results. The 

fusion model will meet future challenges posed by the 

challenges of future carbon policy changes and new 

industrial data through carbon policy scenario simulation 

and adaptive optimization of the model. 

6 Conclusion 
To address the issues of low accuracy, limitations, and 

uncertainty in traditional carbon emission prediction 

models, this study proposed the IGWO-SVM, a novel 

predictive model combined with STIRPAT. This model 

achieves accurate carbon emission prediction and 

enhances the overall applicability and robustness of the 

model compared to traditional single algorithms. 

Experimental data results showed that in the CEADs 

dataset, as specificity increased, the sensitivity curve of 

the four models also rose. The ROC curve of Model A was 

closest to the top-left corner, with the largest AUC under 

the curve, reaching 0.95. The AUC value of RF-SVM was 

slightly lower than that of Model A, at 0.91, while the 

AUC values of FNN and MP showed significant 

differences compared to Model A, at 0.86 and 0.82, 

respectively. The prediction results of RF-SVM were 

more dispersed than those of Model A. When the label 

value was 1.5 million tons/m2, the carbon emission 

prediction of RF-SVM reached 1.92 million tons/m², 

deviating significantly from the label value. Similarly, 

both the FNN and MP had inferior prediction performance 

compared to Model A. When the carbon emission label 

value was 1.5 million tons/m2, the prediction of FNN 

deviated to 2.06 million tons/m², which was 0.55 million 

tons/m² higher than the prediction of Model A. Overall, 

the proposed fusion model demonstrated excellent 

accuracy and prediction performance in carbon emission 

prediction, with the best adaptability across different data 

samples. Compared to traditional algorithms, its 

performance showed notable improvements. The 

proposed model provides policy makers with scientific 

and interpretable carbon emission prediction tools through 

the elastic coefficient analysis of STIRPAT, feature 

selection optimized by IGWO and high-precision 

prediction of SVM. However, its classification 

performance still has room for improvement compared to 

the other three models, so further optimization and 

refinement of this fusion algorithm are necessary in future 

work. 
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