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Received:  

Starting in December 2019, the COVID-19 virus has impacted economies globally, infected billions of 

people worldwide, and created a global health disaster. The discovery of vaccines against SARS-CoV-2, 

the virus responsible for COVID-19, has proven safe and successful in combating the epidemic. As of July 

2021, there were 184 vaccine candidates in preclinical development, 105 in clinical testing, and 18 

vaccinations that were authorized for use in emergencies. These efforts represent the hard work of the 

scientific community in combating the pandemic. Language processing tactics can be used for the 

guidance of health communication strategies and to reduce misinformation. This investigation focuses on 

the emotion analysis of Pfizer vaccines using data from the Twitter platform based on different deep-

learning methods and transformers. The dataset used in this study includes 11,021 tweets from the Twitter 

platform, collected from Kaggle, related to the Pfizer and BioNTech vaccines. The survey analyzes recent 

tweets to find out what people are saying about the Pfizer and BioNTech vaccines. The database was 

divided based on tweets related to Pfizer vaccines, which were categorized using DL frameworks. The 

sentiment distribution provides an overview of the opinions on positive, negative, and neutral comments. 

This can be represented using graphical and chart representations such as word clouds, ROC curves, and 

precision-recall curves. Deep learning models are employed for sentiment analysis, including 

Transformers and Bi-LSTM models.Various models, including DistilBERT, Google Electra-base, Bi-

LSTM, and other Transformers, were utilized for this analysis. the results are reported using metrics such 

as accuracy, F1-score, and other evaluation metrics.  The sentiment analysis results from the models show 

that Model DistilBERT outperformed the others in both accuracy (0.92) and F1-score (0.91), as depicted 

in the bar chart, where DistilBERT had the highest performance across all models. Such analyses will 

help healthcare providers, policymakers, and the general public understand the overall sentiment of Pfizer 

vaccines. 

Povzetek: Narejena je analiza sentimenta tvitov o Pfizerjevem cepivu z metodami DistilBERT, ELECTRA 

in Bi-LSTM. DistilBERT doseže najboljše rezultate na 11.021 tvitih. 

1 Introduction 
Social media can be a very strong channel not only for 

communication and content sharing but also for 

relationship building. Employing social media for the 

monitoring of vaccine adverse effects could extend public 

health and safety with real-time data and open discussion. 

[1].  

This COVID-19 epidemic originally came from 

Wuhan, China, and then spread to several 213 countries 

and territories of the world. On February 17, 2020, the 

WHO reported that 80% of COVID-19 patients show mild 

symptoms, such as fever, and recover without special 

treatment. It has a reported mortality rate of about 2%, 

which is rather low compared to other coronavirus-related 

diseases [2]. 

Among the vaccines developed against COVID-19, 

some are generated with great effort by many researchers,  

 

out of which the development by BioNTech and Pfizer  

 

exhibits extraordinary effectiveness and safety. They have  

been in wide distribution and use in different regions, 

especially in Europe and Canada, for their indispensable 

contributions towards the combat against the pandemic. 

These vaccines have played an indispensable role in the 

global fight against the pandemic. BioNTech's 

collaboration with Pfizer in developing and distributing 

their COVID-19 vaccine is among the most telling on 

record in medical science and public health. Full FDA 

approval on August 23, 2021, for individuals aged 16 and 

older underlines established safety and effectiveness 

requisite ingredients in instilling confidence in the 

vaccine's use as a crucial device in the ongoing fight 

against the COVID-19 pandemic [3]. 

Comirnaty, developed by Pfizer-BioNTech, is the 

first mRNA-based vaccine, purposed to enhance 

immunity against infection with COVID-19. Although 

highly effective against COVID-19 infection and grave 
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illness, a wide array of side effects has also been reported 

for this vaccination [4]. 

Indeed, sentiment analysis does sit at the crossroads 

of linguistics and computer science, using the latter to 

make clear distinctions and classify the emotive content 

within the text. Applications also span many fields, right 

from customer feedback regarding certain products or 

services to public sentiments expressed across social 

media platforms. This is a worthy insight for businesses, 

marketers, and researchers by automating the analysis of 

sentiments in texts. Thus, it helps in understanding the 

overall sentiment landscape of any particular topic or 

entity by classifying sentiments into positive, negative, or 

neutral [5]. 

Sentiment analysis constitutes a considerable basis for 

decision-making processes in a variety of industries. The 

combination of NLP and computational tactics in emotion 

analysis makes possible the classification and extraction 

of emotion from the pile of text data, whether reviews or 

social media posts. Therefore, sentiment analysis has 

become pivotal in developing better decision-making 

processes and optimizing business outcomes [6]. 

Recently, deep learning methods for code analysis 

have been increasingly used in code vulnerability 

detection or code classification. Normal steps would 

involve data pre-processing, where the source code is put 

in a shape to serve the deep learning schemes. Further, this 

includes steps such as code representation and 

tokenization, where code gets divided into meaningful 

components like tokens or sequences of tokens [7]. 

Tokenization is a very important step in NLP. It helps 

break down the stream of text into certain manageable 

pieces or tokens that can later be processed and analyzed 

by the various schemes developed within the scope of 

NLP. Sometimes, other tokenization strategies provide 

more efficient outcomes for one type of task or another. 

On the other hand, subword tokenization is used with 

transformer schemes like BERT and GPT that deal 

efficiently even with rare or unknown words [8]. 

The transformer model is an extremely powerful DL 

framework drawing on the attention mechanism for the 

processing of sequential data, which may be text or time-

series information. The transformer model does indeed 

constitute a unique class of neural network architecture 

that differs from how conventional recurrent neural 

networks and LSTMs process the data series. This parallel 

processing ability makes it efficient for transformers to 

handle long-range dependencies and capture context much 

more powerfully [9].[10] 

Sentiment analysis for Pfizer's vaccines requires 

scraping and interpreting data from different channels 

where public opinions have been expressed. This paper, 

therefore, focuses on the tweets mentioning the Pfizer and 

BioNTech vaccines. In this investigation, a DL framework 

is applied to categorize sentiments expressed by the 

tweets, whether positive, negative, or neutral, concerning 

the Pfizer vaccine. The database utilized in this paper has 

been obtained from Kaggle, titled "Pfizer Vaccines 

Tweets.". It includes recent tweets mentioning Pfizer 

vaccines, hence a valid basis for sentiment analysis. 

Sentiment analysis gives insight into how the public feels 

towards vaccines by Pfizer. The distribution of sentiments 

breaks down into positive, negative, and neutral, giving an 

overview of what the public is saying in a few words. Such 

information can be depicted using graphs and charts, 

including word clouds, ROC curves, and precision-recall 

curves. This can help providers, policymakers, and the 

general public understand the general sentiment related to 

Pfizer vaccines. 

1.1 Related works 

Hasan Dwi Cahyono et al. in 2024 presented Fast Using 

Naïve Bayes classifiers for real-time fake detection in 

COVID-19 news on social networks could be quite 

impactful, given the proliferation of misinformation 

during the pandemic. The emphasis on the CNB model's 

efficiency and effectiveness in identifying online 

misinformation about COVID-19 highlights the 

significance of leveraging advanced algorithms to combat 

the spread of false information, particularly during public 

health crises. This investigation could potentially 

contribute significantly to the development of more robust 

tools for combating misinformation online [11].  

Janko et al. (2021) utilized machine learning 

techniques to analyze factors affecting the early spread of 

COVID-19, focusing on non-countermeasure factors. 

Their research highlighted the role of socioeconomic 

factors, geographic location, and public behaviors in the 

early phases of the pandemic, offering valuable insights 

into the dynamics of disease spread. By integrating data 

analytics and machine learning models, they provided an 

in-depth look into how these factors contribute to 

pandemic outcomes, which can inform future public 

health interventions [12]. 

Bharati Sanjay Ainapure et al. 2023 reported research 

on emotion analysis of COVID-19 tweets utilizing 

lexicon-based and DL tactics. This research included 

outstanding outcomes for vaccination-related tweet 

classification, with Bi-LSTM and GRU schemes 

achieving high accuracy values of 92.48% and 93.03%, 

accordingly. It shows the effectiveness of these DL tactics 

in handling emotion analysis tasks. Study schemes could 

indeed provide valuable insights for healthcare workers 

and policymakers, helping them understand public 

sentiment and make more informed decisions during 

future pandemics [13].  

Using DL frameworks for sentiment analysis of 

COVID-19 vaccination reactions collected from Twitter 

data was presented by Kazi Nabiul Alam et al. in 2023. 

The study covered tweets collected from December 21 to 

July 21, capturing a significant timeline of public 

discourse on COVID-19 vaccines. The analysis included 

tweets discussing various vaccines available globally. To 

gauge sentiments, the researchers utilized the Valence 

Aware Dictionary for Sentiment Reasoner (VADER), an 

NLP tool. The sentiments were categorized as positive 

(33.96%), negative (17.55%), and neutral (48.49%) [14]. 

Saleh Albahli et al. 2023 presented a study utilizing 

deep learning to evaluate public emotions toward COVID-

19 vaccines. Using the Random Multimodal DL (RMDL) 

classifier, they attained an accuracy rate of 94.81%. Their 
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goal is to increase public knowledge about vaccinations to 

combat anti-vaccination movements and promote 

COVID-19 booster doses [15]. 

Andrew T. Lian et al. in 2022 presented a study that 

used machine learning to analyze Twitter data and detect 

COVID-19 vaccine adverse events. It identified tweets 

discussing personal experiences with COVID-19 

vaccinations and extracted information about vaccine 

doses, types, and symptoms. This is the inaugural study, 

to our understanding, to detect indications of COVID-19 

vaccine side effects from social media, proposing that this 

method could enhance current vaccine safety monitoring 

systems [1]. 

Abdulaziz et al. in 2021 presented an in-depth 

investigation on sentiment analysis of COVID-19 relevant 

tweets, focusing on Twitter data. By examining tweets in 

English during two distinct periods of the pandemic, they 

identified the most discussed topics and analyzed the 

sentiments associated with them. Interestingly, conflicting 

topics emerged during both periods, reflecting the diverse 

perspectives and concerns of individuals regarding the 

pandemic. This type of research can provide valuable 

insights into public opinion and sentiment dynamics 

during significant events like the COVID-19 pandemic 

[16]. 

Etaiwi et al. 2021 explored the use of deep learning 

techniques for sentiment analysis, focusing on the 

complexities of social media discourse during the 

COVID-19 pandemic. They investigated how NLP tools, 

specifically tailored for sentiment analysis, can help 

identify public sentiment and enhance health 

communication strategies. The study examined tweets 

discussing COVID-19, identifying key topics and 

emotions associated with the pandemic's progression. This 

research is important as it helps capture public sentiment, 

providing actionable insights for policy-makers and health 

communication strategies during a global crisis [17]. 

Siru Liu et al. in 2021 shed light on the flexible nature 

of emotion regarding vaccination efforts. The research 

looked at classifying tweets into positive, neutral, or 

negative feelings using the compound scores from SA 

tools by analyzing English-language tweets from 

November 1, 2020, to January 31, 2021. The findings 

indicated that public opinion on COVID-19 vaccines was 

very intricate, influenced by several reasons such as trial 

outcomes, administration processes, trust issues in public 

authorities, effectiveness, and access to information. 

Positive feeling tweets discussed trial outcomes, 

administration processes, improvement in life, efficacy, 

and provision of information. On the negative side, some 

tweets reflected negative opinions on trial outcomes, 

conspiracy theories, trust issues, effectiveness, and 

satisfaction with administrative procedures [18]. 

G. G. Md. Nawaz Ali et al. presented, in the year 

2021, an approach to realizing public opinions on COVID-

19 vaccines. They use sentiment analysis in tweets to tap 

into a real-time source of public opinion. Interestingly, 

they are not only looking at sentiment but also comparing 

it to vaccination data from authoritative sources such as 

the CDC and the Household Pulse Survey. This will be 

quite useful in pointing out how sentiment can relate to 

vaccination rates and trends. Overall, if such data are 

tapped from social media, then this may most probably 

lead to more updated, integrated insights for policymakers 

to enable them to formulate more efficient public health 

strategies, including those that would accelerate 

vaccination efforts toward the goal of immunity[19][40]. 

A study by Tanmay Vijay et al., dated 2020, was titled 

"Sentiment Analysis on COVID-19 Twitter Data"; it 

focused on tweets about COVID-19 in India, ranging from 

November 2019 to May 2020. It thus aimed to understand 

the sentiments of the masses and their shifts over time. 

This paper provides important insights into how public 

sentiment evolved at the beginning of the COVID-19 

pandemic. This investigation gives a snapshot of the 

emotional panorama and underlines the great value of 

sentiment analysis in understanding and tackling public 

concerns during a crisis [21]. 

Farah Shahid et al. 2020 presented a study on 

predicting COVID-19 trends using different DL schemes, 

namely LSTM, GRU, and Bi-LSTM. The research was 

focused on the COVID-19 trend forecast for ten major 

countries and, for comparison, used some traditional 

schemes like ARIMA and SVR. It serves to underline a 

finding that deep learning methods have been coming up 

to deal with intricate situations and non-linear patterns, or 

in other words, the "sine qua non" of time series data, 

characterizing pandemics like COVID-19. Further, the 

study emphasizes the importance of strong forecasts with 

schemes that can contribute to public health decision-

making and resource allocation when considering health 

crises [2] [41].  

In comparison with the state-of-the-art (SOTA) 

methods, the proposed approach introduces several 

innovations. While existing solutions predominantly rely 

on traditional deep learning models like LSTM and CNN, 

the authors integrate advanced Transformer-based 

models, such as DistilBERT and Google Electra-base, to 

better capture the nuances of sentiment in vaccine-related 

tweets. The proposed method outperforms previous 

models in terms of accuracy and F1-score, addressing the 

gaps in existing research, particularly the inability to 

effectively capture sentiment shifts in rapidly changing 

public opinions. Furthermore, the approach incorporates 

multi-modal analysis, allowing for more robust sentiment 

detection compared to prior works. Table 1 summarizes 

the key findings from previous research on sentiment 

analysis of tweets related to COVID-19 vaccines. It 

includes details on the methods used, datasets, and 

performance metrics of various deep learning approaches, 

highlighting the most relevant studies in this area. The 

comparison demonstrates the range of techniques, 

including machine learning, deep learning, and lexicon-

based methods, and provides an overview of their 

accuracy and key findings in analyzing public sentiment 

regarding COVID-19 vaccines. 
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Table 1: Summary of related works on sentiment analysis 

Author(s) Year Method Used Dataset Key Findings 
Accuracy/Performance 

Metric 

A. Lian, 

J. Du, L. 

Tang 

2022 
Machine 

Learning, NLP 

Twitter (Dec 

2020–Aug 2021) 

Identified vaccine adverse 

events (VAE) from tweets; 

common symptoms: sore to 

touch, fatigue, headache 

Not specified 

B. S. 

Ainapure 

et al. 

2023 
Deep Learning, 

Lexicon-based 

COVID-19 

Tweets 

Combined deep learning and 

lexicon-based approaches 

for sentiment analysis 

Bi-LSTM: 92.48%, 

GRU: 93.03% 

K. N. 

Alam et 

al. 

2021 

Deep Learning 

(LSTM, Bi-

LSTM) 

Twitter (Dec 

2021–Jul 2021) 

Analyzed vaccination 

responses; sentiment 

distribution: 33.96% 

positive, 17.55% negative, 

48.49% neutral 

LSTM: 90.59%, Bi-

LSTM: 90.83% 

S. 

Albahli, 

M. 

Nawaz 

2023 
Deep Learning 

(CNN, LSTM) 

Twitter 

(COVID-19 

Vaccines) 

Proposed TSM-CV for 

sentiment analysis of 

COVID-19 vaccines 

Not specified 

M. 

Abdulaziz 

et al. 

2021 

Topic-based 

Sentiment 

Analysis 

COVID-19 

Tweets 

Focused on topic modeling 

and sentiment analysis 

during and after the first 

wave of the pandemic 

Deep Learning: Up to 

81% 

 

2 Materials and method 
In this paper, four advanced DL classification algorithms 

have been developed for sentiment evaluation related to 

COVID-19 Pfizer vaccination. These include distilBERT, 

Google-Electra-base, 3 layers Bi-LSTM with 32 units 

each (model-1), 3 layers Bi-LSTM with 64 units each 

(model-2), 5 layers Bi-LSTM with 32 units each (model-

3), and a hybrid model consisting of 1 CNN layer with 

kernel size 128 and 1 Bi-LSTM layer with 64 units 

(model-4). Further, the architecture followed by the 

implementation of each model will be discussed in detail. 

2.1 Database description 

This "COVID-19 Vaccines Tweets" database on Kaggle 

includes the latest tweets related to Pfizer and BioNTech 

vaccines. Collected via Twitter, the database comprises 

11,021 tweets with users' information. This database is 

aimed at analyzing and performing the NLP tasks of the 

tweets related to Pfizer and BioNTech vaccines [3].  

Some of the common cleaning and preprocessing tasks 

performed on text data to get them ready for analysis 

involve URL removal, email removal, unwanted character 

removal, and finally tokenization of the text [23]. 

The tokenization process was tailored to the specific 

architecture of each model employed in this study. For the 

Transformer-based models (DistilBERT and Electra-

base), pre-trained tokenizers provided by the 

HuggingFace Transformers library were used to ensure 

compatibility. These tokenizers applied subword 

tokenization (e.g., WordPiece for BERT variants), 

handled case normalization, and managed sequence 

formatting through truncation and padding. Input 

sequences were truncated to the models' default maximum  

 

 

lengths (e.g., 512 tokens for DistilBERT) and padded with 

the default [PAD] token where necessary. 

In contrast, the Bi-LSTM model relied on the Keras 

Tokenizer, which converts input text into sequences of 

word indices based on vocabulary frequency observed in 

the training data. Stop words were retained to preserve 

linguistically significant elements that could contribute to 

sentiment understanding. All sequences were padded to 

match the maximum sentence length found in the training 

set, ensuring uniform input dimensions for model training. 

 

2.1.1  Preprocessing 

Given the informal and noisy nature of Twitter data, 

several preprocessing steps were applied using the Natural 

Language Toolkit (NLTK) to prepare the dataset for 

analysis. Hashtags, emojis, and special characters were 

removed to reduce noise and standardize the textual 

content. Unlike typical text preprocessing pipelines, 

stemming and lemmatization were deliberately omitted. 

Preliminary experiments showed that these techniques 

often disrupted the grammatical structure and altered verb 

tenses in a way that could distort sentiment interpretation, 

especially in short, context-dependent tweets. Since the 

dataset consisted entirely of English-language tweets, no 

language filtering was required. To maintain consistency 

with previous studies that utilized the same dataset, no 

filters were applied based on tweet length, publication 

date, or tweet quality. Furthermore, an analysis of the 

sentiment class distribution revealed no significant 

imbalance among the categories (positive, negative, and 
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neutral); therefore, resampling methods such as SMOTE, 

oversampling, or class weighting were not deemed 

necessary. 

2.2 DL frameworks 

Neural networks (NNs) are utilized in DL, which is 

essentially an ML technology, to automatically extract and 

engineer traits. DL frameworks can learn automatically 

from data by locating pertinent extracted representations 

using deep nonlinear transformations, in contrast to 

conventional standard machine learning where domain 

experts often manually create traits. This capability for 

autonomous discovery and refinement of traits greatly 

increases the accuracy and performance of DL 

schemes.[24], [25]. 

Various common deep learning methods are vastly 

used, each for its advantage and purpose, which includes 

CNNs, RNNs, De-noising Autoencoders, Deep Belief 

Networks (DBNs), and LSTMs [26]. 

2.2.1 CNN 

The CNN revolutionized image-processing tasks by 

fundamentally changing how traits are learned and 

represented from pixel data. Its pooling layers 

downsample the feature maps to save computation and 

make the network invariant to slight fluctuations in the 

input, while its convolutional layers apply filters to input 

pictures to detect edges, textures, and other characteristics. 

As the network deepens, these layers capture increasingly 

abstract features. These features are then passed to the 

fully connected layers, which interpret the extracted 

information and perform the final classification task [27].  

2.2.2 Recurrent neural networks (RNN) 

Because of their ability to remember previous inputs in the 

sequence, RNNs are excellent for sequence data. This 

makes them very good for use in tasks where the order of 

data is important: speech recognition, handwriting 

recognition, or text analysis. RNNs can learn 

dependencies and patterns in sequential data and therefore 

are a valuable instrument for solving many tasks in which 

sequences occur [28]. 

2.2.3 DBN 

A DBN is a DL tactic consisting of several layers of latent 

variables, or hidden units, and is used in unsupervised 

feature extraction. The concept behind it is based on 

stacking RBMs to build a deep architecture. Neural 

network problems with deep layers can be resolved by the 

DBN, where the velocity during learning will be low and 

overfitting might occur. Thus, initialization in the DBN 

for every layer is followed, first by unsupervised pre-

training and then by supervised fine-tuning [29]. 

2.2.4 LSTM 

RNNs are powerful in handling sequential data because 

they can retain information from previous steps and 

leverage this to contextualize the current processing. 

However, standard RNNs inherently cannot handle long-

term dependencies due to the issues of vanishing or 

exploding gradients during backpropagation, making 

learning and information conservation over long 

sequences problematic. This is addressed effectively by 

LSTMs [2]. 

The LSTM mechanism comprises three memory 

gates, specifically, the input gate (𝑖𝑡), forget (𝑓𝑡) gate, and 

output gate (𝑜𝑡). As a result, the LSTM network 

effectively handles long-term dependencies in sequential 

data. The mathematical formulas for LSTM are [30]: 

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑖 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖) (1) 

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓) (2) 

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜) (3) 

𝑐̃ = 𝑓𝑡⨀𝑐𝑡−1 (4) 

ℎ𝑡 = 𝑜𝑡⨀𝑡𝑎𝑛ℎ𝑐𝑡 (5) 

In the context of an LSTM network, the offered notation 

describes how different components interact within the 

unit at time step t. Here's a detailed explanation: 

𝑥𝑡: The input sample at time t. 

𝜎: The sigmoid activation functions. 

𝑐𝑡: The memory unit (cell state) at time t. 

𝑏𝑓 , 𝑏𝑖 , 𝑏𝑜 : The forget gate, input gate, and output gate have 

different bias terms. 

𝑊𝑓 , 𝑊𝑖 , 𝑊𝑜: The forget gate, input gate, and output gate 

weight matrices are as follows. 

⨀: multiplication of elements. 

ℎ𝑡−1: The concealed condition from the preceding time 

interval (t−1). 

ct−1: The condition of each cell at the preceding time step 

(t−1). 

2.2.4.1. Bidirectional LSTM (Bi-LSTM) 

Bi-LSTMs are quite successful in enhancing the 

contextual understanding of sequential data like text. In 

particular, Bi-LSTMs can better capture the dependencies 

in sequential data by processing the input sequence in both 

directions simultaneously. This is particularly useful in 

tasks where both the past and future contexts are 

informative, like natural language processing, sentiment 

analysis, or machine translation. In the context of this 

study, Bi-LSTM was selected due to its capability to 

effectively handle the short, informal, and often 

ambiguous nature of tweets. By considering both 

preceding and succeeding words in a sentence, the model 

can better interpret subtle cues in sentiment, such as 

sarcasm or negation, which are common in social media 

content. Fig. 1: Architecture of the Bi-LSTM, a 

composition of two layers - one processing the input from 

start to end (forward) and the other from the end towards 

the beginning (backward), both made of LSTM units that 

capture information in both directions [31].  
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Figure 1: Bidirectional LSTM (Bi-LSTM) architecture 

Bidirectional LSTMs are a variation of RNNs where 

the model takes in an input sequence in two directions: one 

forward and one backward. As a result, the model may 

simultaneously gather data from past and future situations. 

In certain applications, such as those requiring 

bidirectional contexts—many NLP duties, including 

emotion analysis or machine translation—this may be 

quite helpful [32]. This will help the model learn the 

context in both directions, which can come in handy when 

performing certain tasks for which understanding context 

is key. Similar to NLP, it embeds information from both 

directions and often results in better performance and 

generalization ability compared to unidirectional LSTMs. 

The output of the forward layer (ℎ𝑡
𝑓
) and backward layer 

(ℎ𝑡
𝑏) of the BiLSTM framework is generated as [33]. 

ℎ𝑡 = 𝛼ℎ𝑡
𝑓

+ 𝛽ℎ𝑡
𝑏  (6) 

𝑦𝑡 = 𝜎(ℎ𝑡) (7) 

Herein, α and σ probably represent weights or factors 

determining how much each direction-foward and 

backward accordingly-contributes in the model BiLSTM. 

The sum of α and σ is equal to 1 because the weights sum 

up to 1; that is, both directions have been taken into 

consideration and their contribution is balanced [30]. 

2.3 DAE 

DAE is a variant of the artificial neural network that 

extends the basic idea of the Autoencoder, enhancing its 

robustness and offering better feature learning from noise-

laden databases [34]. 

2.4 The transformer framework 

In 2017, Vaswani et al. introduced the Transformer model, 

which transformed NLP and produced innovative 

language translation outcomes with a significant decrease 

in training times compared to schemes before the 

transformer [35].  

Transformers are a powerful DL architecture. They 

have been widely used in recent tasks and provide 

effective results due to attention mechanism. The 

Transformer represents a class of topologies for Artificial 

Neural Networks. In this transformer, an attention 

mechanism is employed to handle the input of sequential 

data including text sentences and time-series data. In 

contrast to conventional RNN and CNN, it captures 

contextual information and long-range relationships 

differently. It is intended to operate in conjunction with an 

encoder-decoder system [7].  

Figure 2 illustrates the architecture of the Transformer 

model, which underpins state-of-the-art language models 

such as BERT and DistilBERT used in this study. The left 

block represents the encoder, and the right block shows 

the decoder. Both components consist of multiple 

identical layers (denoted by Nx), where each layer 

includes multi-head attention mechanisms and position-

wise feed-forward networks, followed by residual 

connections and layer normalization. In the encoder, self-

attention layers allow the model to weigh the importance 

of each word relative to others in the input. The decoder 

includes an additional masked multi-head attention layer 

that prevents access to future tokens during training, 

enabling autoregressive generation. Positional encoding is 

added to the input embeddings to retain sequence order 

information, as the architecture lacks recurrence. The final 

output is passed through a linear layer and a softmax 

function to produce the probability distribution over 

possible output tokens. This structure allows the 

Transformer to model complex dependencies in language 

efficiently and is a foundational component of the pre-

trained models used for sentiment classification in this 

study [9]. 
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Figure 2: The Transformer model architecture 

2.4.1 BERT 

BERT was presented by Google in 2018, greatly 

increasing NLP. By examining the words that come before 

and after a word in a phrase, the language model BERT 

can understand its definition. In contrast to previous 

schemes that sequentially analyze text, BERT's 

methodology takes into account a word's whole context to 

maximize its performance for diverse NLP applications, 

including emotion analysis, linguistic inference, and 

question answering [8]. 

2.4.2 DistilBERT 

DistilBERT is a compact version of the BERT model that 

preserves a large portion of BERT's language 

understanding capabilities while offering increased 

efficiency. It consists of six transformer layers, compared  

 

 

 

to BERT's twelve, making it approximately 40% smaller 

and 60% faster in execution [7] [36]. 

The model is trained using a method known as knowledge 

distillation, in which a smaller model, referred to as the 

*student*, learns to replicate the behavior of a larger, pre-

trained *teacher* model. This is achieved by minimizing 

the difference between the output distributions of the two 

models. Through this process, the student model acquires 

much of the performance characteristics of the teacher 

model, while maintaining a lower computational footprint. 

In the proposed framework, DistilBERT is utilized for 

extracting contextual and semantic features from text data 

efficiently. Its reduced size and computational 

requirements make it particularly suitable for real-time or 

resource-constrained NLP applications, without causing 

significant degradation in performance. 
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2.4.3 Google Electra-base 

Google's ELECTRA is a new pre-training method for NLP 

tasks employing replaced token detection (RTD) to 

enhance efficiency. In contrast to BERT, ELECTRA 

allows the main framework to learn from all input tokens 

rather than just a subset by substituting certain input 

tokens with alternatives produced by a tiny masked 

language model [37]. 

For the sentiment classification task, three deep learning 

models were employed: DistilBERT, Google Electra-

base, and a Bidirectional Long Short-Term Memory (Bi-

LSTM) network. These models were selected due to their 

proven effectiveness in handling short and informal 

textual data, such as tweets. All models were trained using 

the Adam optimizer, which is widely adopted for its 

efficiency and adaptability in deep learning applications. 

The learning rate was set to 2e-5 for the Transformer-

based models (DistilBERT and Electra-base), while a 

higher rate of 1e-3 was used for the Bi-LSTM model to 

facilitate faster convergence. A uniform batch size of 32 

was applied across all models to strike a balance between 

computational efficiency and training stability. Each 

model was trained for up to five epochs, with early 

stopping implemented based on validation loss to mitigate 

the risk of overfitting. Regarding regularization, dropout 

with a rate of 0.3 was applied in the Bi-LSTM model to 

prevent overfitting, while Transformer models utilized 

their internal dropout mechanisms. Additionally, a weight 

decay of 1e-5 was applied to the Transformer models as 

an extra layer of regularization. 

2.5 Evaluation metrics 
This investigation utilized accuracy, precision, recall, F1-

score, and a confusion matrix (comprising TP, FP, TN, 

and FN values) to evaluate the performance of the model 

across various dimensions[38]. 

2.5.1 Accuracy 

Accuracy is the general metric of performance that is used 

commonly to tell how well a certain classification model 

is performing. It provides one complete measure of the 

performance of the model, the ratio between correct 

predictions, and the whole count of anticipations. In this 

case, determining the accuracy will be of paramount 

importance, but it must be taken into consideration that it 

might not be appropriate every time since some problems 

can be with imbalanced classes or different types of errors 

which may have different consequences [39]. 

Accuracy is a measure of the overall correctness of 

the model. It measures the ratio of accurately expected 

instances (both positive and negative) to the whole count 

of samples [38]. 

Here's the formula for accuracy (8): 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (8) 

2.5.2 Recall   

This investigation utilized accuracy, precision, recall, F1-

score, and a confusion matrix with values for TP, FP, TN, 

and FN to evaluate the model's performance using a 

variety of measures.[40]. 

Recall =
𝑡𝑝

𝑡𝑝+𝑡𝑛
  (9) 

2.5.3 Precision 

Precision is indeed an essential performance indicator in 

categorization tasks, particularly in the context of 

determining specific classes such as attack records [41].  

the accuracy metric, which determines the percentage of 

accurate positive predictions among all the model's 

positive predictions. The following formula is used to 

calculate precision (10): 

Precision =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (10) 

2.5.4 F1score 

The F1 score is a helpful metric for considering both 

precision and recall in a single value. It's especially 

valuable when you need to strike a balance between these 

two metrics, as it gives equal weight to both. This is 

particularly important in tasks where you want to avoid 

missing too many positive instances (high recall) while 

ensuring that the ones you label as positive are indeed 

correct (high precision) [42] [39]. 

For the F1 score, the following Eq. (11) has been used. 

F1score =
2𝑇𝑃

2. 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

= 2.
𝑅𝑒𝑐𝑎𝑙𝑙. 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

(11) 

3 Result   
Sentiment analysis of social media discussions, 

particularly on platforms like Twitter, provides valuable 

insights into public opinion and discourse around 

significant topics such as COVID-19 vaccination. 

Analyzing the sentiment of tweets can help researchers, 

policymakers, and healthcare providers understand the 

public's perception and tailor communication strategies 

accordingly. In our analysis of the sentiment surrounding 

the Pfizer COVID-19 vaccine, four deep-learning 

classification algorithms have been used. These included 

DistilBERT, Google-Electra-base, three-layer Bi-LSTM 

with 32 units each (model-1), three-layer Bi-LSTM with 

64 units each (model-2), and five-layer Bi-LSTM with 32 

units each (model-3). Additionally, a 1D convolutional 

layer with 128 kernel size and one Bi-LSTM layer with 64 

units (model-4) have been used.  

DistilBERT: A distilled version of BERT, which 

retains 97% of BERT’s language understanding while 

being faster and lighter. 

Google-Electra-base: A pre-trained transformer 

model that improves BERT’s performance with more 

efficient training. 

Three-layer Bi-LSTM with 32 units each (Model-1): 

A bidirectional LSTM model with three layers, each 

consisting of 32 units. 

Three-layer Bi-LSTM with 64 units each (Model-2): 

Similar to Model-1 but with 64 units in each layer. 
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Five-layer Bi-LSTM with 32 units each (Model-3): A 

deeper Bi-LSTM model with five layers of 32 units each. 

1D Convolutional Layer with 128 Kernel Size and 

One Bi-LSTM Layer with 64 Units (Model-4): This model 

combines a convolutional layer to capture local patterns 

and a Bi-LSTM layer to capture sequential dependencies. 

Table 2 presents the architectural details of the deep 

learning models employed for sentiment classification of 

tweets related to the Pfizer COVID-19 vaccine. Also Fig. 

3 shows Chart of the quantity of tweets in each class, 

including positive, negative, and neutral. 

 

 

Table 2: Model architecture descriptions used for sentiment classification 

Model Name Architecture Description 

DistilBERT A lightweight Transformer-based model for efficient sentiment detection. 

Google-Electra-base A Transformer-based model using replaced token detection pretraining. 

Model-1 Three-layer Bi-LSTM with 32 units in each layer. 

Model-2 Three-layer Bi-LSTM with 64 units in each layer. 

Model-3 Five-layer Bi-LSTM with 32 units in each layer. 

Model-4 One 1D convolutional layer (kernel size = 128) + one Bi-LSTM layer with 64 units. 

 

 

Figure 3: Sentiment analysis of positive, negative, and neutral tweets count 

In Fig. 4, the diagram illustrates the distribution of 

samples in the training and testing data for each class. This 

demonstrates that the database is randomly separated into 

training and testing subsets, with 25% allocated for 

testing, 15% for validation, and 60% for training. 

 

Figure 4: Samples of the training and testing data for each class 
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Stop words are commonly used words (such as "and", 

"the", "is", etc.) that are often filtered out of text during 

the preprocessing phase of natural language processing. 

These words are regarded as insignificant for tasks like 

text analysis, as they occur frequently and don't carry 

much meaning. By removing stop words, the focus can be 

placed on the more meaningful words in the text. 

In Fig. 5, the blue section clearly illustrates the length 

of the sentences before removing stop words and 

punctuation, while the orange section distinctly indicates 

the reduced length after their removal. It is evident that 

this substantial reduction significantly cuts down 

computational costs and processing time (about 40%), 

particularly when dealing with magazine content. 

 

Figure 5: Sentence length with stop words (blue part), sentence length without stops words (orange part) 

In this section, Word Clouds, a popular visualization 

tool that graphically represents the frequency or 

importance of words within a given text or topic, will be 

discussed. The size of each word in the Word cloud 

correlates with how often it appears or its significance in 

the text. The word clouds are used for sentiment analysis 

tasks to see tweets classified as good, negative, or neutral. 

By examining these Word Clouds, insights into the 

psychological underpinnings of the sentiments expressed 

in the tweets have been gained. Overall, Word Clouds 

proved to be a valuable tool for quickly grasping the 

prevalent emotions and themes within different sentiment 

categories, providing a visual summary of the 

psychological foundation behind the tweets [14]. 

Certain words or phrases were divided into polarity 

groups, which categorize language based on emotional 

tone positive, neutral, or negative to reflect the underlying 

sentiment. This classification helps in identifying the 

emotional orientation of the content. Using Word Cloud 

visualization, words with negative sentiment are shown in 

Figure 6, those with neutral sentiment in Figure 7, and 

positive sentiment words are displayed in Figure 8.

 

Figure 6: The most frequent words in negative tweets 
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Figure 7: The most frequent words in neutral tweets 

 

Figure 8: The most frequent words in positive tweets 

In this article, several measures of accuracy, namely 

Accuracy, Precision, Recall, and F1-score have been 

employed. Fig. 9 presents the outcomes for diverse 

schemes on the database. It illustrates various schemes, 

and it's necessary to note that the outcomes  have been used 

from the test data to evaluate an algorithm. The Distilbert 

and Google Electrabase schemes are transformer schemes, 

while the other schemes are neural network schemes used 

for comparison in this paper. According to Fig. 9, the 

Distilbert model delivered better outcomes than the other 

schemes presented. 

 

Figure 9: The accuracy of different schemes is based on the dataset 
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Comparing schemes based on the average time each 

epoch takes to complete is a common practice in machine 

learning research. This metric can offer a glimpse into the 

efficiency of different schemes during training. Fig. 10 

depicts that the schemes were trained for a maximum of 

70 epochs, after which training was halted to avoid 

wasting computing resources if performance did not 

increase over time. This approach is often used to prevent 

overfitting and to ensure that schemes converge to the best 

possible solution within a reasonable amount of time. 

 

Figure 10: Comparison of schemes in terms of time 

To assess the performance of multi-class 

classification schemes using ROC and AUC to check or 

visualize the performance. Figure 11 presents the ROC 

curve for DistilBert, model-1, model-2, model-3, model-

4, and Google-Electra-base. In this graph, a larger area 

under the curve indicates better outcomes from the model. 

As depicted in Fig. 11, the DistilBert model covers the 

largest area (0.9859) compared to the other schemes, 

while the Google-Electra-base model has the smallest area 

(0.9485). 

 

Figure 11: ROC comparison for DistilBert, model-1, model-2, model-3, model-4, and Google-Electra-base 

The precision-recall (PR) curve showcases recall on 

the x-axis and precision on the y-axis over a range of 

threshold values. As the categorization threshold varies, 

this graph illustrates the trade-off between accuracy and 

recall values. This precision-recall curve is shown in Fig. 

12. With PR curves, it can be quickly determined which 

curves represent superior performance for a certain class 

or model. Figure 12 presents the model's accuracy and 

recall values. It is clear from Fig. 12 that the DistilBERT 

model covers a larger area (0.97) than the other schemes, 

while the Google-Electra-base model has the smallest area 

(0.91). 
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Figure 12: PR comparison for DistilBert, model-1, model-2, model-3, model-4, and Google-Electra-base 

According to Fig. 13, most schemes performed 

effectively in classifying the positive and neutral classes, 

which had a larger number of samples. However, a notable 

exception is the DistilBERT model, which demonstrated 

superior accuracy in classifying the negative class, despite 

its lower representation in the database. This suggests that 

DistilBERT's contextual understanding and robust feature 

extraction capabilities may be well-suited for handling 

imbalanced class distributions, especially for the negative 

sentiment class. 

 

Figure 13: The performance of schemes in different classifications 
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This section contrasts the performance of the proposed 

models with findings from comparable literature. To 

ensure a robust and consistent evaluation of the sentiment 

classification models, the dataset comprising 11,021  
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precision, recall, F1-score, and ROC-AUC. In addition, a 

misclassification plot (Fig 13) was generated to visualize 

class-wise prediction errors and identify potential biases 

or weaknesses in model performance. All experiments 

were conducted in a Google Colab Pro environment 

equipped with an NVIDIA Tesla P100 GPU (16 GB 

VRAM) and 32 GB of RAM.  

The Transformer models, i.e., DistilBERT and Google 

Electra-base, performed comparatively better than Bi-

LSTM and CNN-based models in terms of accuracy and 

F1-score. Better performance in Transformer models is 

due to the fact that these models can identify long-range 

dependencies within textual data and also employ 

attention mechanisms in order to achieve better 

contextualization than conventional approaches such as 

Bi-LSTM. Meanwhile, although Bi-LSTM models 

perform well, they lack the capability to identify long-

range dependencies and context within the dataset and 

therefore reflect fewer performances in tweet sentiment 

analysis on vaccines. 

The results clearly demonstrate that DistilBERT 

outperforms the other models across key metrics, 

including AUC (Area Under the Curve) and ROC 

(Receiver Operating Characteristics). As shown in Figure 

11, DistilBERT (represented by the yellow line) has the 

highest True Positive Rate (TPR) and the lowest False 

Positive Rate (FPR) compared to the other models, 

particularly when analyzing the ROC curve. This 

highlights DistilBERT’s superior ability to correctly 

classify positive samples while minimizing false positives, 

making it particularly effective in sentiment analysis tasks 

with imbalanced datasets. In Figure 12, the Precision-

Recall Curve illustrates how DistilBERT maintains its 

high performance, especially in scenarios with high recall. 

This superior performance is attributed to DistilBERT’s 

attention mechanisms, which allow it to effectively 

capture long-range dependencies and contextual nuances 

in the text, something that other models, like Bi-LSTM or 

CNN-based approaches, struggle to achieve. Additionally, 

Figure 13 further strengthens this analysis by showing the 

time complexity and model performance comparison. 

DistilBERT consistently delivers superior results but 

requires higher computational resources, as evidenced by 

the steep performance curves at the upper right, where it 

excels in accuracy but also demands more training time. 

The gap between DistilBERT and models like Google 

Electra Base and Model 3 is clearly visible in these curves, 

showing how DistilBERT surpasses them in both training 

speed and final performance, but with a noticeable 

computational trade-off. 

Regarding computational efficiency, While DistilBERT 

provides the best performance, its higher time complexity 

could limit its applicability in real-time systems where 

efficiency is critical. In contrast, models like Model 1 and 

Model 2, though slightly less accurate, offer a better 

balance between performance and computational 

efficiency, making them more suitable for deployment in 

environments with constrained resources. Due to the high 

computational cost of training large-scale Transformer 

models, cross-validation was not applied. Likewise, 

statistical significance testing was not included in this 

version but is planned for future work to further support 

model comparisons. 

 

One of the key limitations of this research is the 

prevalence of bias in the dataset, which is predominantly 

based on tweets by certain populations or geographical 

locations, and this may result in a biased sentiment 

distribution. Such bias may potentially influence the 

overall generalizability of the results because certain 

opinions or sentiments are disproportionately represented 

or insufficiently represented. 

5 Conclusion 

This investigation's main objective is to examine public 

sentiment regarding Pfizer vaccines by focusing on tweets 

that mention Pfizer and BioNTech vaccines. The study 

employs DL frameworks to sort the sentiments expressed 

in these tweets as positive, negative, or neutral. This 

exploration tries to create an improved sentiment 

classification model scheme to test the performance of the 

new model against methods explored previously. 

The material analyzed in this investigation was 

obtained from Kaggle and represents the "Pfizer Vaccines 

Tweets" database. The database includes recent tweets 

about Pfizer vaccines; thus, it was a good basis for 

sentiment analysis. The research provides useful insights 

into the public view of Pfizer vaccines through the 

determination of public perception through sentiment 

distribution. Such insights are visualized by different 

graphical tools: word clouds, ROC curves, and precision-

recall curves. These visualizations help in viewing the 

outcomes of sentiment analysis and presenting findings 

effectively to stakeholders. They also allow for the 

understanding of the trend of public sentiment and making 

decisions judiciously based on the analysis. 

Data on sentiment about vaccines for healthcare 

providers, policymakers, and the general public could, 

therefore, be very instrumental. Furthermore, this insight 

is bound to make an impact on the way strategies for 

public communication, vaccine advocacy, and policy-

making will be carried out. Research is targeted at 

classifying tweets into positive, negative, or neutral using 

ratio analysis.  The application of deep learning and 

transformer methods, including RNN-based LSTM and 

Bi-LSTM schemes, demonstrates a comprehensive 

exploration of various deep learning architectures. 

Analysis of the ROC curve and its integral indicates 

that the DistilBERT model outperforms all other schemes. 

This result is consistent with the findings from the 

precision-recall curve analysis. Our sentiment analysis 

provides valuable insights for vaccine producers, 

governments, health ministries, and organizations like the 

WHO. Understanding public sentiment can help these 

entities tailor their communication strategies and address 

concerns effectively, thereby increasing trust and uptake 

of vaccines. Analyzing reactions to different vaccines 

across various countries offers insights into public 

perceptions and concerns about the vaccination process, 

aiding health researchers in understanding factors 

influencing vaccine acceptance and hesitancy. This 
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information can contribute to more effective 

communication strategies and public health interventions. 

Nomenclature 

Abbreviation Explanation Abbreviation Explanation 

ANN An Artificial Neural Network FP False Positive 

ARIMA An Autoregressive Integrated Moving 

Average 

LSTM Long Short-Term Memory 

AUC Area Under the Curve ML Machine Learning 

BERT Bidirectional Encoder Representations 

from Transformers 

NLP Natural Language Processing 

  PR precision-recall 

BI-LSTM A Bidirectional LSTM RNN A Recurrent Neural Network 

CDC Centers for Disease Control and 

Prevention 

ROC Receiver Operating Characteristic 

CNN Convolutional neural network RTD Replaced Token Detection 

DAE Denoising Autoencoder SVR Support Vector Regression 

DBN Deep Belief Network TN True Negative 

DL Deep Learning TP True Positive 

Electra Efficiently Learning an Encoder that 

Classifies Token Replacements 

Accurately 

WHO World Health Organization 

FN False Negative   
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