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In recent years, as the tourism industry rapidly develops, personalized recommendation systems have 

become an important tool for improving user experience and satisfaction. However, traditional methods 

face problems such as insufficient recommendation accuracy and low computational efficiency when 

dealing with large-scale data and complex user needs. Therefore, a sports tourism recommendation model 

(TRM) based on improved gated graph neural network and user embedded representation is proposed. 

The model integrates user behavior data and attraction features, and adds attention mechanism and gated 

unit to improve recommendation accuracy. The dataset used in the study is publicly available on 

TripAdvisor, which includes detailed user reviews, ratings, and historical behavior data of tourists. The 

baseline models used for comparison are graph neural networks and attention-based graph neural 

networks. The performance of this model is evaluated based on several metrics, including F1 score, 

accuracy, AUC, and inference speed. The research results indicate that the proposed model achieves the 

highest F1 score of 0.95 after approximately 150 iterations and an accuracy of 0.98 after approximately 

100 iterations. Moreover, the model performs outstandingly in terms of recommendation accuracy, 

relevance, and computational efficiency, with an AUC value of 0.97, inference speed of 0.02 seconds, and 

computation time of 45 seconds. The findings denote that the proposed model effectively improves the 

personalization and computational efficiency of tourism recommendations, and can provide users with 

more accurate recommendations of tourist attractions. 

Povzetek: Prispevek predstavi izboljšan model Gated Graph Neural Network z uporabniškimi vdelanimi 

predstavitvami in mehanizmom pozornosti za natančnejše priporočanje turističnih destinacij v športnem 

turizmu. 

 

1 Introduction 
With the rapid development of the tourism industry, 

personalized recommendation systems have gradually 

become an important tool for improving user experience 

and enhancing user satisfaction. Traditional tourism 

recommendation methods often rely on rule-based 

recommendation systems or simple content-based 

recommendation methods, which often cannot effectively 

handle users' complex needs and diverse preferences. 

Therefore, data-driven personalized recommendation 

systems have become a hot research topic [1-2]. In recent 

years, as the machine learning and deep learning 

technologies advance, graph neural networks (GNNs) 

have achieved significant results in the application of 

recommendation systems. GNN can effectively capture 

the relationships between attractions by processing graph 

structured data, and extract potential patterns between 

users and attractions through node aggregation operations. 

However, existing GNN methods still have some 

limitations in practical applications, especially when 

dealing with the temporal nature of user behavior and  

 

complex relationships between attractions, which often 

perform inadequately. Therefore, a sports TRM based on  

improved gated graph neural network (GGNN) and user 

embedded representation is proposed. This model 

improves the GNN model by introducing attention 

mechanisms (AM) and gated units, enabling the model to 

fully utilize user behavior data and enhance its 

computational efficiency and recommendation accuracy. 

Introducing user embedding representation in 

personalized recommendation systems can significantly 

improve the accuracy of recommendations, as it can better 

capture users' personalized features and preferences. 

However, this process also brings some computational 

trade-offs. User embedding representation requires 

additional parameters to represent the behavior and 

preferences of each user. This means that during the 

training process, the model needs to store and update a 

large number of embedding vectors. As the number of 

users increases, the demand for storage and computing 

will also sharply rise, leading to an increase in training 

time. Embedded representation is usually a high-
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dimensional vector, and each user has an embedded 

vector. This leads to significant memory consumption, 

especially on large-scale datasets. As the size of the 

dataset expands, storing embedded representations for 

each user will consume a significant amount of memory 

space, further increasing hardware requirements. The 

research aims to provide a more accurate and efficient 

tourism recommendation system, and provide new ideas 

for the field of personalized recommendation research. 

The main research questions include: 1) How can the 

GGNN model outperform traditional GNN and AGNN 

models in recommendation accuracy by introducing user 

embedding representation and AMs. 2) Is there a trade-off 

in the computational efficiency of GGNN while 

improving recommendation accuracy. 3) How does this 

model handle the cold start problem and can it maintain 

good recommendation performance in situations where 

data is scarce for new users or new attractions. The main 

contributions of the research include: proposing a TRM 

based on improved GGNN, which combines gate units and 

AM, significantly improving recommendation accuracy 

and computational efficiency. By introducing user 

embedding representation and attraction embedding 

representation, the model can capture users' interests and 

attraction features more personalized, overcoming the 

shortcomings of traditional methods in big data and 

dynamic user needs. An innovative time series modeling 

method has been proposed to enable recommendation 

systems to consider the dynamic changes in user 

preferences, thereby improving the real-time and accuracy 

of recommendations. The research is mainly divided into 

five sections. The first section reviews research in related 

fields, and the second section provides a detailed 

description of the proposed model structure, including 

improvements to GGNN, learning methods for user and 

attraction embeddings, introduction of gating units and 

AMs, etc. The third section presents the experimental 

setup and results, comparing the performance of this 

model with other benchmark models. The fourth section 

analyzes the advantages, limitations, and future 

improvement directions of the model. The fifth section 

summarizes the work of this article and proposes possible 

directions for future research. The innovation of the 

research lies in combining user embedded representations 

with scenic spot features, using gating mechanisms to 

dynamically adjust the data flow, to better capture the 

relationship between user preferences and scenic spots. 

 

2  Related works 
With the rapid development of the tourism industry, 

personalized recommendation systems have become an 

important tool for improving user experience and 

satisfaction. However, traditional recommendation 

methods still face problems such as insufficient 

recommendation accuracy and low computational 

efficiency when dealing with large-scale data and complex 

user needs. Rabiu I et al. developed an emotion rating 

model grounded on long short-term neural networks to 

address the problems of sparse and imbalanced historical 

rating data in recommendation systems. This model 

combined functions to capture emotional biases between 

user ratings and comments. The research findings 

indicated that the model could effectively solve the above 

problems and demonstrated good recommendation 

performance [3]. Yang Z et al. proposed a method that 

utilizes unlabeled sample information and location 

information to raise the accuracy of recommendation 

algorithms, to address the problem of discarding useful 

information from unknown entries in the rating matrix in 

traditional recommendation methods. Meanwhile, to 

reduce computational complexity, the research team also 

designed an approximate solution model. The research 

findings indicated that the method had good predictive 

performance and exhibited robustness to the diversity of 

the dataset [4]. Zare A et al. proposed a recommendation 

system framework grounded on supply chain interaction 

to address the lack of research on interpersonal 

relationships in social networks. The system adopted a 

hybrid method combining artificial neural networks and 

fuzzy strategies, aiming to recommend similar users to 

social network users. The research results indicated that 

this method had good recommendation performance and 

could effectively match similar individuals [5]. 

Mohammadi N et al. found that many people are 

increasingly using online services to meet their needs, but 

there are many users who lack professional knowledge 

and cannot express their needs well. The current 

recommendation system only supports users with precise 

expression ability. In response to this issue, the research 

team proposed a powerful recommendation system to 

meet the demands of various users. The system was 

capable of collecting user preference information and 

making information recommendations based on various 

types of information. The research results indicated that 

the method model had good effect in both accuracy and 

scalability, and the accuracy of the model was higher when 

the dataset capacity was large [6]. Benabbes K et al. 

believed that as the amount of online information 

continued to increase, it has exceeded the scope of human 

processing and effective utilization, resulting in extremely 

low information utilization rates. A recommendation 

system can solve this problem. The research team applied 

existing recommendation models to interpret comment 

texts for user recommendations. The findings indicated 

that the model had good performance in interpreting 

comment texts to obtain user information and make 

recommendations [7]. Peng B found that although the 

development of e-commerce has facilitated people, the 

choice of things can lead to the emergence of information 

processes, which in turn makes it hard for people to find 

what they want. In response to this issue, the research team 

proposed a recommendation system based on fuzzy rough 

sets and cellular algorithms, which can provide 

personalized recommendations to users grounded on 

purchase history, and etc. The results indicated that the 

recommendation system could provide targeted 

recommendations to users [8]. Xie X et al. proposed an 

evaluation model based on snowfall, temperature, and 

wind speed to enrich the connotation of climate suitability 

for ice and snow sports and conduct cross regional 

comparisons. They used meteorological data from 1991 to 
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2021 to study major ski tourism destinations in China. The 

results indicated that the overall suitability of different 

regions has decreased, with significant differentiation and 

spatial heterogeneity in northern Xinjiang. Snowfall was 

the main influencing factor [9]. 

In summary, although recommendation algorithms 

have been widely applied in multiple fields, existing 

recommendation system methods have some limitations. 

Firstly, many traditional rule-based and content-based 

recommendation methods exhibit poor generalization 

ability when facing diverse or unfamiliar user behaviors. 

For example, traditional methods that rely on 

collaborative filtering cannot effectively provide accurate 

recommendations for new users or cold start users because 

they fail to fully utilize users' contextual information. 

Secondly, many methods fail to effectively capture the 

temporal characteristics of user behavior. The preferences 

and behaviors of users change over time, and traditional 

static models fail to consider this temporal dependence, 

resulting in a decrease in recommendation performance. 

Many SOTA methods have low computational efficiency, 

especially large-scale graph models such as GNN, which 

require a large amount of computing resources during 

training and inference. When processing large datasets, 

there are often computational bottlenecks that cannot meet 

the needs of real-time applications. Finally, some methods 

fail to fully focus on learning user embedded 

representations and lack dynamic adjustments based on 

user behavior, which leads to recommendation systems 

failing to accurately capture user preferences. This study 

proposes a new travel recommendation algorithm by 

improving GNN and user embedded representation. This 

model aims to provide personalized tourist attraction 

recommendations for users by integrating their historical 

behavior and feature information of attractions, especially 

for those who have travel needs but have not yet made a 

clear destination choice. The summary of the above 

research is shown in Table 1. 

 

Table 1: Summary of model performance indicators 

Method Dataset Accuracy 
F1 

score 
AUC Remarks 

Rabiu I et 

al. [3] 

Custom 

Emotion 

Dataset 

0.84 0.71 0.81 

Emotion-aware 

recommendation 

model 

Yang Z et 

al. [4] 

Custom 

Location 

Dataset 

0.85 0.75 0.80 
Combines location 

info for accuracy 

Zare A et al. 

[5] 

Custom 

Social 

Dataset 

0.89 0.8 0.83 
Hybrid ANN & 

Fuzzy system 

Mohammadi 

N et al. [6] 

Custom E-

Commerce 

Dataset 

0.90 0.82 0.87 
Multi-information 

recommendation 

Benabbes K 

et al. [7] 

Custom 

Reviews 

Dataset 

0.88 0.79 0.85 
Based on text 

interpretation 

Peng B. [8] 

E-

Commerce 

Dataset 

0.86 0.77 0.81 

Fuzzy rough sets 

& cellular 

algorithms 

 

3  Sports tourism recommendation 
3.1 Tourist attraction recommendation model 

based on GNN 
Tourist attraction recommendation is a service that 

recommends the most suitable tourist attractions to users 

grounded on their interests, needs, and preferences 

through algorithms. Its main purpose is to provide users 

with personalized and accurate tourist attraction 

recommendations, helping tourists find the most suitable 

destination among numerous choices. The tourist 

attraction recommendation model is shown in Figure 1. 
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Recommendation 
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Recommended 
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Collection
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Figure 1: Structure of tourist attraction 

recommendation model 

 

As shown in Figure 1, the user first provides personal 

preference data, and the recommendation system obtains 

the user's preference information based on this data. After 

obtaining user preferences, the system processes them 

using recommendation algorithms and generates 

recommendation results. Subsequently, these 

recommendation results will be conveyed to the users and 

further adjustments will be made based on their feedback. 

Throughout the process, the recommendation system 

continuously optimizes its recommendation strategy by 

collecting user preferences and feedback, forming a 

dynamic adjustment loop to achieve personalized 

recommendations. The key modules of recommendation 

methods, user preference models (UPMs), and 

recommendation result models work together to ensure 

that the recommendation system can provide users with 

accurate personalized recommendation services [10]. 

Through this iterative mechanism, the system can not only 

satisfy the diverse requirements of users, but also 

continuously optimize recommendation accuracy and 

improve user experience. In GNN, each node corresponds 

to a tourist attraction, and the edges between nodes 

represent the correlations or relationships between these 

attractions, such as shared features or user preferences that 

connect them. In each convolutional layer, nodes 

aggregate information from their neighboring nodes to 

update their representations. The expression for feature 

aggregation is denoted in equation (1). 

( 1) ( ) ( ) ( )

( )

1l l l l

v u
u v

vuc
+



 
=  + 

 
h W h b

N

 (1) 

In equation (1), ( )N v  represents the set of 

neighboring nodes of node v . vuc  is defined as the 

normalization factor, which is employed to compensate 

for the discrepancy in the number of neighbours 

associated with each node. This is achieved by 

normalizing the information from proximate nodes, 
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thereby ensuring that the influence of each neighbouring 

node is appropriately balanced. This factor can be defined 

as the reciprocal of the degree of a node, ensuring that the 

influence of each neighboring node on the target node is 

fairly considered. ( )l
W  means the weight matrix of the l

th layer, ( )   means the activation function, and ( )l
b  

means the bias term. The features of neighboring nodes 

are aggregated into the target node to enhance its 

contextual information. After feature aggregation, the 

representation of nodes is updated through the output of 

the previous layer, as denoted in equation (2) [11]. 
( 1) ( ) ( 1)l l l

v v v

+ += +h h h    (2) 

In equation (2), 
( )l

vh  and 
( 1)l

v

+
h  represent the node 

representations before and after the update, respectively. 

By integrating information from the previous and current 

layers, it can better capture the complex features of nodes 

[12-13]. However, simply calculating the similarity 

between attractions is not enough to generate user 

recommendations. In the actual recommendation process, 

the user's preference information is combined with the 

similarity between tourist attractions. Firstly, the 

embedded representation of the user will be subjected to 

similarity calculation with the representations of various 

attractions to obtain the matching degree between each 

user and the attractions. Then, by calculating the 

recommendation score for each attraction, the user's level 

of interest in the attraction and the similarity between the 

attractions are considered. The similarity of scenic spots is 

measured by calculating the inner product between node 

representations, as expressed in equation (3). 
( ) ( )

( ) ( )
sin( , )

L L

v u

L L

v u

v u


=
h h

h h
  (3) 

In equation (3), L  denotes the final layer of the 

GNN, and sim( , )v u  represents the similarity between 

attraction v  and attraction u . Similar tourist attractions 

are recommended to users by calculating the similarity 

between attractions. Finally, based on the calculated 

similarity, the most matching attraction is recommended 

to the user, as expressed in equation (4). 
( )

( )

sin( ,ˆ )L

uv u
u v

r v u


=  h
M

  (4) 

In equation (4), ûvr  represents the recommended 

rating of attraction v  to users, and ( )vM  represents all 

attractions similar to attraction v . By calculating the 

recommendation score for each attraction, personalized 

recommendation lists can be generated for users. GNN 

uses fixed weights to weight and aggregate information 

from neighboring nodes, which ignores the differences in 

information contribution between neighboring nodes. In 

fact, the impact of different neighboring nodes on the 

target node is different. Some neighboring nodes may 

provide more effective information, while others may be 

noise [14-15]. Therefore, introducing AM can help the 

model focus more on important neighbor nodes when 

aggregating neighbor node information, automatically 

assigning a weight to each edge, thereby improving the 

model's expressive power. The structure of the introduced 

AM is denoted in Figure 2. 

Query Contribute

Key Key Key

 

Figure 2: Attention mechanism structure 

 

In Figure 2, the AM is applied within the GNN model 

to help the system focus on important neighboring 

attractions during the feature aggregation. The query 

represents the user's preferences or behavior data, which 

is used to determine which attractions are more relevant to 

the user's interests. The keys correspond to the feature 

representations of the attractions (e.g., location, type, user 

ratings), while the values represent the attributes or ratings 

associated with each attraction. The AM calculates the 

relevance between the query (user's preferences) and the 

keys (attraction features), assigning higher weights to 

more relevant attractions. This allows the model to 

prioritize and aggregate more important features from the 

neighboring attractions, enhancing the accuracy of the 

recommendation. The optimized model structure is 

denoted in Figure 3. 
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Figure 3: Structure of AGNN model 

 

In Figure 3, the model contains two main modules, 

namely the UPM and the attraction feature model. In the 

UPM, the embedded representation of the user is 

processed together with the rating embedded through a 

multi-layer perceptron to generate the user's preference 

information. Then, this information is concatenated with 

the embedded of scenic spots and potential factors of 

scenic spots, and input into a multi-layer perceptron to 

further generate rating predictions. The scenic spot feature 

model includes multiple attention networks and GNN 

layers, which are used to process the feature information 

and graph structure information of scenic spots, 

respectively, and capture the correlations between scenic 

spots through AMs and GNN [16]. Finally, through 

multiple layers of perceptron, the outputs of the UPM and 

the attraction feature model are combined to generate the 

final rating prediction. 
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3.2 Tourism recommendation algorithm 

based on improved GGNN and user 

embedded representation 
Although the proposed TRM based on GNN can 

complete most recommendation tasks, the user click 

sequence is temporal, so inaccurate recommendations may 

also occur. A TRM based on an improved GGNN and user 

embedded representation is proposed [17-18]. This model 

is inspired by recurrent neural network (RNN), which adds 

gated units to GNN. The time unfolding structure of RNN 

is shown in Figure 4. 
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Figure 4: Time evolution of RNN model 

 

In Figure 4, each block represents a moment in the 

neural network where the input, state, and output of the 

network interact with each other. At a certain moment, the 

input value is weighted and inputted into the current state, 

and the output is calculated through a neural network. 

Subsequently, the state vector will be passed on to the next 

moment, and together with the new input, a new state and 

output will be calculated. This process iterates 

continuously in time-series data until all time steps are 

processed, allowing the RNN to capture temporal 

dependencies when processing sequential data. In this 

study, the improved GGNN model proposed was inspired 

by the time series modeling ability of RNNs. However, 

unlike traditional RNNs, GGNN combines the 

characteristics of GNNs, especially in each time step, the 

model not only propagated information through sequence 

data, but also controlled the information flow in the graph 

structure through gating units. The introduction of gate 

control units enabled the model to selectively update node 

states, retained key memories of user preferences and 

attraction features, while eliminating noise information. 

Each node in the graph was embedded with a 

representation based on its historical behavior and 

features, and dynamically updated at each time step 

through the gating mechanism in the GNN. This is similar 

to the time unfolding structure of RNN, but in GNNs, the 

state of nodes not only depends on their history, but is also 

influenced by neighboring node information. On the basis 

of introducing gated units, the embedding is obtained 

through projection [19-20]. The structure of the model is 

denoted in Figure 5. 
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Figure 5: Framework of the proposed GGNN-based 

recommendation model 

 
As shown in Figure 5, the five key stages of the 

recommendation process include the construction of a 

conversation graph of attractions and attributes, learning 

of attraction embedding representations, learning of user 

embedding representations, learning of conversation 

embeddings, and the final recommendation and model 

training process. Firstly, constructing a conversation 

graph of scenic spots and their attributes mainly involves 

building structured data about each scenic spot and its 

characteristics. Next, by learning the attraction embedded 

representation module, the system converts the attributes 

of the attraction into embedded vectors, allowing the 

representation of the attraction to be manipulated in low 

dimensional space [19, 21]. Its expression is shown in 

equation (5). 

[ ,0]t t

s sv x=   (5) 

In equation (5), ,

t

s iv  is the embedded representation 

of the s th attraction at time t . ,

t

s ix  is the original input 

feature of the attraction at time t . At the initial stage of 

the model, the embedding vector of the scenic spot has no 

historical information. This zero initialization process is 

the first step in the model learning process. Over time, by 

combining GNN and attraction attributes, the embedded 

representation of attractions will gradually update, 

capturing the features of attractions and user preferences. 

The expression for attention score is shown in equation 

(6). 
1 0

, , ,[ , , ]t t T

s i s s i s ia A v v H b−=   +   (6) 

In equation (6), ,

t

s ia  represents the attention score of 

the s th attraction at time t, which is calculated based on 

the weight matrix of the attraction and the concatenation 

of embedded representations from previous time steps.  
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sA  represents the weight matrix of attraction s , 

1 0

, ,[ , , ]t

s i s iv v−   is the embedding representation, which 

represents the embedding history of the s th attraction in 

the past l time steps. These embedding representations 

capture the temporal changes of attraction features. H  is 

the hidden state, and b  is the bias term. The equation for 

updating the door is denoted in equation (7). 
1

, , ,tanh( )t t t

s i r s i r s ir W a U v −= +   (7) 

In equation (7), ,

t

s ir  is the update gate of the scenic 

spot s  at time t , rW  and rU  are the learned weight 

matrices, ,

t

s ia  is the attention score of the scenic spot, and 

1

,

t

s iv −
 is the embedded representation of the previous time 

[22]. Then, the system enters the stage of learning user 

embedded representations. In this process, the system will 

learn the user's embedded vector based on their behavior 

data, capturing their interests and preferences. The control 

mechanism enables the embedded representation of scenic 

spots to be flexibly adjusted according to changes in user 

behavior, rather than relying solely on the static structure 

of the graph. This improvement enables the model to 

capture temporal dependencies, that is, changes in user 

interest in scenic spots, and provide more personalized and 

accurate recommendations. Among them, the initial 

embedded representation of the user is shown in equation 

(8). 
0 ( Aggreneighbors( ( )))i kh W x N i b=   + (8) 

In equation (8), 
0

ih  is the initial embedded 

representation of user i , W  is the learned weight matrix, 

Aggreneighbors( ( ))kx N i  means the feature 

vector set of attractions adjacent to user i , and b  is the 

bias term. Specifically, it includes the historical behavior 

of users and attractions, such as clicks, visits, ratings, etc. 

These behaviors reflect users' interests and preferences for 

scenic spots. The attention score is shown in equation (9). 
2

1 2[ Φ ]k

ij r i k ky W x x b b=  + +   (9) 

In equation (9), 
k

ijy  represents the attention score of 

attraction k  to user i , 
2

rW  is the learned weight matrix, 

ix  denotes the embedded vector of user i , kx  denotes 

the embedded vector of attraction k , Φk  is an additional 

feature representing attraction k , which typically 

includes additional information such as attraction type, 

location, rating history, and user preferences, and b  is the 

bias term. Next, the learning session embedded 

representation module will combine the embedded 

representations of users and attractions to learn the 

embeddeds for each session, which helps to understand the 

needs of users in different conversations [23]. Ultimately, 

these embedded representations are used to generate 

recommendation results and model training. In this part, 

the system generates personalized recommendations 

based on previously learned representations and trains and 

optimizes the model. In the "User Embedding Learning" 

and "Scenic Spot Embedding Learning" stages in Figure 

5, the user and scenic spot embeddings obtained separately 

will be used as inputs along with the session embeddings 

for processing by the user embedding layer and scenic spot 

embedding layer in Figure 6. The relationship between 

users and scenic spots is finely modeled through the 

information propagation mechanism in GNNs. The final 

model structure diagram is shown in Figure 6. 
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Figure 6: GGNN model architecture diagram 

 

As shown in Figure 6, firstly, the system inputs 

scenic spot vectors, which are normalized by the Softmax 

layer to generate probability distributions. Next, these 

results are connected to vectors from other parts through 

linear transformation to obtain higher-level feature 

representations. Then, these input vectors are merged 

through a fusion layer to generate a comprehensive feature 

representation that helps the system integrate multiple 

input information. Next, these data will be input into 

multiple attention networks, which learn to focus on the 

important parts of each vector. Next, the system uses a 

GGNN to update the attraction vector and generate a new 

representation, while updating the user vector 

representation through the GNN. Ultimately, through 

these processed vectors, the system is able to generate 

personalized recommendation results. 

 

4  Recommendation model 

performance analysis 

4.1 Performance of tourism recommendation 

algorithm based on improved GGNN and 

user embedded representation 

The study was conducted using a Windows 10 

operating system running on a desktop computer with 16G 

of RAM, an Intel(R) Core(TM) i5-12600KF CPU, and an 

NVIDIA GeForce RTX 4090D GPU. The study used 

TripAdvisor's publicly available dataset, which includes 

travel review data from 500000 users worldwide, covering 

approximately 10000 tourist attractions. Each attraction 

was rated on a scale of 1 to 5 based on user feedback. The 

dataset has high sparsity, with a rating matrix sparsity of 

95%, which means that most users did not rate all 

attractions. Each user comment was accompanied by a 

timestamp, which records the time of the comment, 

providing the model with time-series data of user behavior 

and capturing the temporal changes in user interests. The 

dataset provided detailed basic information about different 



An Improved Gated Graph Neural Network for Sports Tourism… Informatica 49 (2025) 161–172 167 

locations, such as the names, locations, and types of 

attractions, as well as the types of restaurants and hotels. 

In addition to comments and ratings, the dataset also 

included users' historical behavior data, such as the 

attractions visited, pages browsed, and favorite 

destinations. To ensure the best performance of the model 

on a given dataset, a grid search method was used to 

optimize hyperparameters. A comprehensive search was 

conducted for each important hyperparameter to find the 

most suitable configuration. The parameter settings of the 

model are as follows: learning rate was 0.001, optimizer 

used Adam optimizer (default β 1=0.9 and β 2=0.999), 

batch size was set to 64, training rounds were 150, L2 

regularization weight decay was 0.0005, activation 

function was ReLU, loss function was cross entropy loss, 

initial embedding dimension was 128, and gradient 

clipping was set to a maximum gradient of 5. The study 

chose GNN and AGNN as the comparison models, and the 

findings are indicated in Figure 7. 
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Figure 7: Comparison of F1 and ACC of various models 

 

Figures 7 (a) and 7 (b) show the relationship between 

the iteration times and F1 score and the relationship 

between the iteration times and accuracy (ACC), 

respectively. According to Figure 7 (a), IGGNN reached 

its highest F1 score of 0.95 after approximately 150 

iterations, while AGNN and GNN lagged behind with F1 

scores of 0.89 and 0.75. The reason for the superior 

performance of IGGNN is its more advanced model 

architecture and more effective regularization techniques, 

which enable it to better capture important features in 

tasks. In Figure 7 (b), the IGGNN model performed the 

best, achieving an ACC of 0.98 after approximately 100 

iterations. AGNN and GNN lagged behind with ACC of 

0.88 and 0.84, respectively. This model performed well in 

recommendation ACC, relevance, and computational 

efficiency, demonstrating more significant advantages 

than AGNN and GNN. The superiority of IGGNN lied in 

its more advanced architecture, which effectively 

combines gating units and AMs. Although AGNN also 

included these features, IGGNN improved these 

mechanisms by dynamically adjusting the information 

flow, allowing the model to focus more on relevant 

features from past user behavior and suppress irrelevant or 

outdated data. In addition, the AM in IGGNN helped 

prioritize the most relevant attractions, ensuring that the 

model can adapt to changes in user preferences. This 

dynamic adjustment made IGGNN more advantageous 

than standard GNN in capturing complex temporal 

dependencies and generating personalized 

recommendations. The performance of each model on 

different types of datasets was analyzed, and the findings 

are indicated in Figure 8. 
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Figure 8: Comparison of ACC and training time of various models on different datasets 

 

Figures 8 (a) and 8 (b) show the ACC and the 

computation time of three models on different datasets. In 

Figure 8 (a), the IGGNN model performed the best, with 

higher ACC than GNN and AGNN on all datasets. On 

DatasetC, the ACC of IGGNN reached 0.98, significantly 

better than AGNN's 0.71 and GNN's about 0.62. In 
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addition, IGGNN also maintained high ACC on DatasetA 

and DatasetD, outperforming other models. As shown in 

Figure 8 (b), GNN had the longest computation time, with 

a computation time of nearly 100 seconds on DatasetA, 

while AGNN and IGGNN reduced computation times to 

approximately 70 seconds and 45 seconds, respectively. 

On DatasetC, IGGNN had the lowest computation time, 

only 31 seconds, which was significantly reduced 

compared to GNN. The comprehensive performance of 

each model was analyzed, and the findings are denoted in 

Table 2. 

 

Table 2: Comprehensive performance analysis table 
Model IGGNN AGNN GNN 

F1 0.95 0.89 0.75 

ACC 0.98 0.88 0.84 

Computing 

time/s 
45 70 100 

Iterations 150 120 180 

Memory usage 

/MB 
550 500 600 

AUC 0.97 0.92 0.85 

Inference speed 
/s 

0.02 0.03 0.05 

 

According to Table 2, the F1 score of the IGGNN 

model was 0.95, with an ACC of 0.98, indicating the best 

performance. IGGNN significantly outperformed other 

models in both F1 score and ACC, indicating its clear 

advantages in capturing important features and improving 

classification performance. The computation time of 

IGGNN was 45 seconds, significantly lower than AGNN 

and GNN, indicating that IGGNN also has higher training 

efficiency. IGGNN required 150 iterations, while AGNN 

and GNN required 120 and 180 iterations respectively. 

Although IGGNN had slightly more iterations, it still 

dominated in other metrics. The AUC value measured the 

classification performance of the model at different 

thresholds. The AUC value of IGGNN was 0.97, which 

was much higher than AGNN's 0.92 and GNN's 0.85, 

indicating that IGGNN has significant advantages in 

overall classification performance. The inference speed of 

IGGNN was the fastest, only 0.02 seconds, while AGNN 

and GNN were 0.03 seconds and 0.05 seconds 

respectively, which means that IGGNN can make 

predictions more quickly in practical applications. In 

summary, the IGGNN model performs outstandingly in 

multiple key indicators, with overall performance superior 

to AGNN and GNN, especially in terms of classification 

ACC, computational efficiency, and inference speed. The 

ablation experiment analysis was conducted on the model, 

and the results are shown in Table 3. 

 

Table 3: Ablation experiment table 

Removed 

component 

F1 

score 
ACC  AUC 

Training 

time (s) 

Inference 

time (s) 

Original 
GGNN 

model 

0.95 0.98 0.97 45 0.02 

Remove 
gated units 

0.9 0.94 0.92 60 0.03 

Remove 

attention 

mechanism 

0.91 0.95 0.93 55 0.02 

Remove 
gated units 

and attention 

mechanism 

0.85 0.9 0.88 70 0.05 

 

According to Table 3, the original GGNN model 

showed the highest performance, with an F1 score of 0.95, 

ACC of 0.98, and AUC of 0.97. When the gating unit was 

removed, the performance of the model decreased, with 

F1 score dropping to 0.90, ACC dropping to 0.94, and 

AUC dropping to 0.92. The training time has also been 

increased to 60 seconds, indicating that removing the 

gating unit would affect learning efficiency. The removal 

of AM could also lead to a decrease in performance, with 

an F1 score of 0.91 and an AUC of 0.93. Finally, when 

both the gating unit and AM were removed, the 

performance of the model significantly decreased, with an 

F1 score of 0.85, ACC of 0.90, and AUC of 0.88. This 

indicates that these two components are crucial to the 

performance of the GGNN model, and their absence can 

lead to a significant decrease in ACC and effectiveness. 

The training time has been increased to 70 seconds, which 

further emphasized the negative impact on learning 

efficiency when both components were removed. 

Compared to AGNN, the GGNN model 

demonstrated a noticeably faster convergence during 

training, achieving optimal ACC and F1 score within 

approximately 100–150 iterations, whereas AGNN 

required a longer period to reach its peak performance. 

This trend can be attributed to two main architectural 

improvements in GGNN: the integration of gated units 

and user embedded representation. The gated mechanism 

allowed the model to selectively control the flow of 

information at each layer, filtering out irrelevant or noisy 

features and focusing on the most informative inputs. This 

selective updating process enhanced the model's ability to 

learn key patterns more efficiently, leading to faster 

convergence. Additionally, the incorporation of user 

embedded representations at an early stage gave the model 

a more expressive initialization of user preferences. As a 

result, the model could better align user interests with 

attraction features during the early training phase, 

accelerating the matching process. In contrast, AGNN 

lacked the temporal memory and fine-grained control 

offered by gated units, which results in a slower and more 

general pattern discovery process. Furthermore, AMs 

alone, as used in AGNN, were more dependent on large-

scale feature interactions to generate meaningful weights, 

often requiring more training epochs to stabilize.  

 

4.2 Analysis of simulation results of tourism 

recommendation model 
To identify the effect of the model, four different 

users were chosen for simulation analysis based on their 

information, and recommended travel destinations that 

they may be interested in. C1 was an active user with 

frequent interactions, typically with multiple attractions. 

The behavior pattern of C2 was relatively clear and stable, 

but the interaction frequency was slightly lower than C1. 



An Improved Gated Graph Neural Network for Sports Tourism… Informatica 49 (2025) 161–172 169 

Although the system was able to capture their preferences, 

less interaction resulted in a relatively slow learning 

process for the model, especially when the amount of data 

was small. C3 users had a lower frequency of interaction 

and exhibited a certain degree of uncertainty or 

randomness in their behavior. Due to the lack of sufficient 

behavioral data, the model struggled to accurately capture 

its preferences, especially in small datasets. C4 was a cold 

start user with almost no historical behavior data or 

interaction with attractions. Due to the lack of sufficient 

interactive information, recommendation systems were 

unable to effectively provide accurate personalized 

recommendations, especially when the data volume was 

small. The results are shown in Figure 9. 
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Figure 9: The recommendation ACC of IGGNN model for different customers 

 

Figure 9 (a) shows the recommendation ACC of the 

IGGNN model for different customers, and Figure 9 (b) 

shows the recommendation correlation of the IGGNN 

model for different customers. in Figure 9 (a), C1 showed 

an almost linear increase in ACC with the rising of data 

volume, and the ACC approached 0.95 when the data 

volume reached 600. In contrast, the performance of C4 

was weaker. Despite the increase in data volume, the 

improvement in ACC was still relatively slow, even 

reaching only around 0.6 when the data volume was large. 

However, the overall ACC was above 0.85. From Figure 

9 (b), the relevance to C1 rapidly increased when the data 

volume reached around 500 and stabilized at around 0.97. 

The relevance performance of C4's recommended content 

was poor. Although the relevance increased with the 

increase of data volume, its growth rate was slow and 

could only reach 0.83 in the end. When the data volume 

reached 600, the correlation between C2 and C3 stabilized 

at 0.91 and 0.88, respectively. The findings denoted that 

the proposed model had excellent recommendation 

performance. The study selected Mean Reciprocal Ranks 

(MRR@K) as an indicator. MRR@K measured the 

location of the scenic spots in the recommended list that 

best match the user's preferences. The higher the value of 

MRR@K, the higher the recommended attractions, and 

the stronger the relevance of the recommendation results 

to the user. The results are shown in Figure 10. 
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Figure 10: Analysis of MRR@K and recommended time under different experimental times 

 

Figure 10 (a) shows the MRR@K under different 

experimental times, and Figure 10 (b) shows the 

recommended time under different experimental times. In 

Figure 10 (a), for C1, the MRR@K value was significantly 

higher than other users, staying in the range of 80-90, 

indicating its efficiency and ACC in recommendation 

tasks. Relatively speaking, the recommendation 

performance for C4 was poor, the majority of the 

MRR@K values were concentrated below 50, for C2 and 

C3, the MRR@K performance was between C1 and C4. 

From Figure 10 (b), the time for each recommendation to 

C4 was the shortest, about 0.2 seconds, indicating that the 
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C4 model may have high computational efficiency. In 

contrast, the recommendation time for C1 was the longest, 

close to 0.4 seconds. The recommendation time of C2 and 

C3 was between C1 and C4, showing a relatively balanced 

computational efficiency and ACC. The experimental 

outcomes showed that the proposed model had excellent 

effectiveness for all users. The simulation analysis of the 

model was conducted, and the outcomes are denoted in 

Table 4. 

 

Table 4: Simulation analysis results of tourism 

recommendation model 
Consum

er 
ACC 

Correlatio
n 

MRR@K 
Recommende

d time/s 

C1 0.95 0.97 85 0.40 

C2 0.9 0.91 78 0.35 

C3 0.88 0.88 72 0.31 

C4 0.6 0.83 48 0.22 

Consum

er 

The 
number of 

experimen

ts 

Memory 

usage/MB 

Computin

g power 
/ 

C1 5 550 0.87 / 

C2 5 530 0.83 / 

C3 5 540 0.75 / 

C4 5 520 0.65 / 

 

In Table 4, computing power represents the 

CPU/GPU computing power consumed by the model 

during the training or inference phase, usually indirectly 

expressed through computation time (in seconds). Higher 

computing power means that the model requires more 

time to process data and perform computational tasks. 

Therefore, computing power is closely related to the 

running efficiency of the model, which can be measured 

by the training time and inference time of the model. 

According to Table 4, C1 had the highest ACC rate, 

reaching 0.95, indicating the strongest ACC in their 

recommendation. C4 had a significantly lower ACC rate, 

only 0.6, indicating poor recommendation performance. 

The correlation of C1 was 0.97, which performed very 

well, while the correlation of C4 was 0.83, which was 

relatively low, indicating that the model failed to 

effectively capture C4's interests and preferences. C1's 

MRR@K value was 85, which is greatly higher than other 

customers, indicating that their recommended results 

usually rank higher. In contrast, the MRR@K value of C4 

was only 48, indicating a low recommendation effect. C4 

had the shortest recommendation time, only 0.22 seconds, 

indicating that its model has high computational 

efficiency, while C1 had a longer recommendation time, 

reaching 0.4 seconds. C1 has the strongest computing 

power at 0.87, performing the best, while C4 had the worst 

computing power at only 0.65. The findings denoted that 

the proposed model had excellent performance. 

 

5 Discussion 
The IGGNN model proposed in the study 

significantly outperformed existing GNN and AGNN 

models in multiple performance metrics, particularly in 

ACC, F1 score, and AUC value. IGGNN achieved an ACC 

of 0.98 and an F1 score of 0.95 on the TripAdvisor dataset, 

while GNN and AGNN performed significantly worse, 

with accuracies of 0.84 and 0.88, respectively. This 

improvement can be attributed to the user embedding 

representation, temporal modeling, and AM introduced in 

the IGGNN model, which effectively enhance the 

personalization and ACC of recommendations, and have 

stronger recommendation performance compared to other 

methods in existing literature. However, there are also 

some issues with using IGGNN. Although IGGNN 

performed well in ACC, its computational complexity was 

relatively high, especially in the training and inference 

stages, requiring more computing resources, especially on 

large datasets, which is similar to the research results of 

Liu C et al. [24]. Therefore, IGGNN may not be suitable 

for real-time applications with limited resources. In 

addition, the interpretability of IGGNN was relatively 

poor compared to some simple recommendation models. 

Although AMs were introduced to help the model focus 

on important features, the complexity of its internal 

structure still made the decision-making process of the 

model difficult for users to understand. The performance 

differences of the model on different datasets were 

analyzed. IGGNN performed well on the TripAdvisor 

dataset, but its performance was slightly inferior on other 

datasets, with an ACC rate dropping to 0.71. This 

indicated that IGGNN relied heavily on datasets and might 

not be able to fully utilize its advantages when dealing 

with datasets with limited data or simple features. 

Therefore, future research can consider further optimizing 

the IGGNN model on datasets from different fields to 

improve its universality. Although IGGNN performs well 

in most experiments, there are still some limitations. For 

example, the issue of cold start has not been fully 

addressed in research. When there is insufficient behavior 

data for new users or new attractions, the recommendation 

performance of the model will decrease. Future research 

can combine transfer learning or reinforcement learning 

techniques to alleviate this problem. In summary, the 

IGGNN model proposed in the study has made significant 

progress in improving recommendation ACC and 

computational efficiency, but further optimization is still 

needed in terms of the model's computational efficiency, 

interpretability, and response to cold start problems. 

The IGGNN model proposed in the study has strong 

deployability in real-world tourism applications. Firstly, 

the model can process user behavior data in real-time, 

dynamically adjust recommended content, and ensure the 

ACC and real-time nature of personalized 

recommendations. Secondly, IGGNN can support large-

scale user and attraction data through efficient 

computation of embedded representations and GNNs. 

Although the training phase requires a lot of computing 

resources, the inference speed is fast and meets real-time 

recommendation requirements. In addition, the model can 

provide diversified recommendations to avoid user 

recommendation fatigue. Finally, the IGGNN model can 

be regularly updated through incremental learning to 

maintain continuous performance optimization and adapt 

to new attractions and changing user needs. In practical 

deployment, combined with reinforcement learning and 
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other techniques, the model can continuously optimize 

itself during the application process, improving 

recommendation effectiveness. 

 

6  Conclusion 
A TRM based on IGGNN and user embedded 

representation was proposed to solve the challenges of 

traditional tourism recommendation systems in terms of 

ACC, timeliness, and computational efficiency. By 

introducing gated units and AMs, IGGNN could 

effectively integrate user behavior data and attraction 

features, significantly improving recommendation ACC 

and system efficiency. The findings denoted that the 

IGGNN model performed well in indicators such as F1 

score, ACC, and AUC value. The IGGNN model had the 

best performance with an F1 score of 0.95 and an ACC of 

0.98. IGGNN significantly outperformed other models in 

both F1 score and ACC, indicating its clear advantages in 

capturing important features and improving classification 

performance. The computation time of IGGNN was 45 

seconds, significantly lower than AGNN and GNN, 

indicating that IGGNN also had higher training efficiency. 

IGGNN required 150 iterations, while AGNN and GNN 

required 120 and 180 iterations respectively. Although 

IGGNN had slightly more iterations, it still dominated in 

other metrics. The AUC value measured the classification 

performance of the model at different thresholds. The 

AUC value of IGGNN was 0.97, which was much higher 

than AGNN's 0.92 and GNN's 0.85, indicating that 

IGGNN has significant advantages in overall 

classification performance. In the simulation analysis, the 

ACC of C1 was as high as 0.95, and the recommended 

time was 0.4 seconds. The outcomes denoted that the 

proposed model had excellent performance. Although the 

model performed well in multiple indicators, there were 

still certain challenges for low-frequency users and cold 

start problems, especially in situations where the data 

volume is small or user behavior is low, the 

recommendation performance of the model may decrease. 

Future research can further improve the recommendation 

ACC and generalization ability of the model by combining 

more contextual information and reinforcement learning 

techniques. 
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