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This project intends to use a combination of genetic algorithm and particle swarm optimization (GA-

PSO) to reasonably allocate energy between nodes in the wireless energy transmission system. First, 

considering the influence of channel attenuation and transmission distance on energy distribution, a 

mathematical model of the energy transmission system is established. Secondly, the genetic algorithm 

is used to optimize the system globally, PSO is used to speed up the local optimization speed, and finally, 

the optimal power allocation is achieved. Simulation experiments show that compared with the 

traditional single optimization method, the GA-PSO method has obvious advantages in energy 

transmission efficiency, node energy consumption and stability performance. The algorithm can 

effectively improve the system's transmission performance and reduce the system's energy consumption 

under different network topologies and channel conditions. At the same time, the GA-PSO algorithm 

has good convergence and computational complexity. 

Povzetek: Avtorji predstavijo hibridni GA-PSO algoritem za optimizacijo razporejanja moči v 

brezžičnih energetskih sistemih, ki izboljša učinkovitost prenosa, stabilnost in porabo energije v 

različnih kanalnih pogojih. 

 

1 Introduction 
With the rapid development of mobile communication 

technology, wireless power transmission (WPT) has 

received widespread attention as an emerging energy 

transmission mode. Wireless power supply technology is 

a long-distance energy transmission method that does not 

rely on cables. It has excellent application prospects in 

electric vehicles, smart grids and drone power supply. 

Energy distribution is the core content of the energy 

transmission system, and it is an essential factor affecting 

energy efficiency and stability. Therefore, how to 

optimize energy distribution in energy transfer systems is 

the focus of current research. 

In the late 19th century, Nikola Tesla first proposed 

the concept of wireless energy transmission. Its basic idea 

is to achieve energy transfer through electromagnetic 

waves or electric fields, magnetic fields, etc. 

In recent years, the rapid development of wireless 

energy transmission and microelectronics has made 

significant progress in wireless energy transmission 

technology in short and long-distance wireless 

transmission. Currently, the commonly used near-field 

wireless communication methods are electromagnetic 

induction coupling (EIC) and magnetic resonance 

coupling (MRC). This technology has been widely used in 

short-distance and high-efficiency wireless charging  

 

systems. A magnetic resonance coupling wireless charging 

technology has been developed to enable high- 

efficiency energy transfer between multiple devices while 

minimizing energy loss. Remote energy transmission is 

also achieved using various electromagnetic wave 

transmission methods, such as microwaves and lasers [1]. 

Remote energy transmission using microwaves has been 

further explored, with numerical simulations evaluating the 

impact of different energy distribution methods on 

transmission efficiency [2]. An energy distribution method 

based on optimization theory has been proposed to meet 

network node requirements and adapt to channel conditions 

in complex wireless environments. Although this approach 

significantly improves system energy conversion 

efficiency, it suffers from high computational complexity 

[3]. Genetic algorithms have been applied to optimize power 

distribution in power systems, though improvements in 

solution quality and computational efficiency are still 

needed [4]. 

Particle swarm optimization (PSO), a widely used 

heuristic algorithm in power systems, has been investigated 

in the context of wireless power supply systems. This 

algorithm efficiently finds optimal solutions but is limited 

in local optimization and struggles to achieve global 

optimality in complex situations [5]. Integrating the 

strengths of various optimization methods to enhance 

energy distribution accuracy and effectiveness has become 
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a research focus. A hybrid genetic algorithm-particle 

swarm optimization (GA-PSO) method shows great 

promise by combining the global optimization capability 

of PSO with the strong local optimization ability of GA. 

This approach improves optimization speed and avoids 

local extrema [6]. 

This paper proposes a hybrid GA-PSO optimization 

algorithm for wireless energy distribution. A 

mathematical model is first developed, incorporating 

factors such as channel loss and distance loss. The hybrid 

GA-PSO algorithm is then designed to integrate GA's 

global search capabilities with PSO, enhancing power 

allocation efficiency [7]. Finally, the proposed method is 

compared against traditional GA, PSO, and other 

algorithms to evaluate performance across various 

network environments. The results demonstrate 

significant improvements in optimization performance 

and computational efficiency. 
 

2 Method 
 

2.1 Wireless energy transmission system 

model 

The wireless energy transmission system includes a 

transmission point and multiple receiving points. The 

sender uses radio to transfer energy to the receiver, and the 

channel is an unbounded transmission mode [8]. Then, this 

paper takes the channel's path loss, noise and multipath 

effects as a simple model. 

In the wireless energy transmission system, the free 

space path loss model can characterize the channel. The 

received energy is inversely proportional to the 

transmitting power, the channel loss coefficient, and the 

distance. Assuming that the distance between the receiver 

and the transmitter is 𝑑, the power of the transmitter is 𝑃𝑡, 

the power of the receiver is 𝑃𝑟 , and the path loss factor is 

𝛼. The channel model is: 

𝑃𝑟 = 𝑃𝑡 ⋅
𝐺𝑡𝐺𝑟

(4𝜋𝑑)2 ⋅ 𝛼                             (1) 

is the path loss index, and represents the 

comprehensive loss factor of environmental loss and 

multipath effect. We have elaborated on the components 

of L and 𝛽 in the text, explaining how environmental and 

multipath effects are quantified and incorporated into 

these variables.: 

𝑃𝑟 =
𝑃𝑡 ⋅ 𝐺𝑡𝐺𝑟

(4𝜋𝑑)𝛽
⋅ 𝐿                          (2) 

𝛽  is the path loss index, and 𝐿  represents the 

comprehensive loss factor of environmental loss and 

multipath effect. 

The energy distribution model generally aims to 

maximize energy transfer efficiency or minimize loss in 

wireless power supply systems. Assuming that there are 𝑁 

receiving ends in the system, the power received by each 

receiving end is 𝑃𝑖 , and the total power of the transmitting 

end is 𝑃𝑡 , then the total energy transmission efficiency 

𝐸total of the system can be expressed as: 

𝐸total = ∑  

𝑁

𝑖=1

𝑃𝑖                            (3) 

The objective function is to maximize the overall 

energy transfer efficiency of the system. The constraints 

include the transmitter power limit 𝑃𝑡 ≤ 𝑃max  and the 

receiver receiving capacity limit 𝑃𝑖 ≤ 𝑃max_recv , that is: 

∑  𝑁
𝑖=1  𝑃𝑖 ≤ 𝑃𝑡

𝑃𝑖 ≤ 𝑃max_recv ∀𝑖
                              (4) 

𝑃max and 𝑃max_recv   are the upper limits of the power of 

the transmitter and the receiver, respectively. 
 

2.2 Mathematical model of power 

allocation problem 

The optimal energy distribution problem can be reduced to 

a constrained optimization problem in a wireless energy 

transmission system. The aim is to maximize energy 

transmission efficiency while meeting the minimum power 

requirements of receivers [9]. The limitations of the 

transmitter's power, the receiver's power demand and 

channel characteristics are discussed. Assuming that the 

power requirement of the receiver is 𝑃req_i , the objective 

function of the power allocation problem can be expressed 

as: 

maximize 𝐸total = ∑  𝑁
𝑖=1 𝑃𝑖                    (5) 

We have revised Equation (5) to align it with Equation 

(3), ensuring consistency in the definition of the objective 

function. We have also clarified the relationship between 

these equations in the text. 

We have corrected the constraints in Equations (6) and 

(7) to ensure they align with Equation (4). We have also 

clearly defined Vi as the volume of energy transmitted and 

ensured it is properly used in the constraints. 

𝑃𝑡 = ∑  𝑁
𝑖=1 𝑃𝑖 ≤ 𝑃max                          (6) 

𝑃𝑖 ≥ 𝑃req_i  ∀𝑖                                     (7) 

The problem was solved using a heuristic optimization 

algorithm, and the optimal power allocation solution was 

obtained. 
 

2.3 Design of GA-PSO hybrid algorithm 

The genetic algorithm and particle swarm algorithm each 

have their unique advantages. The genetic algorithm has 

good global optimization performance, while the particle 

swarm algorithm has good local optimization performance. 

To combine the two advantages, this paper designs a GA-

PSO hybrid algorithm. 

A genetic algorithm is an optimization method based 

on natural selection. GA continuously improves the quality 

of the solution by iterating the population, which is suitable 

for solving global optimization problems. However, 

genetic algorithms have disadvantages, such as being prone 

to local extreme values. Particle swarms simulate bird 

foraging behavior and perform optimization solutions. 

Each particle has a position and a speed in the solution 

space, and it can rapidly converge to the optimum solution 

by updating its position and speed. Although PSO is able 

to carry out local optimization well, it is not suitable for 

global exploration. The GA-PSO hybrid algorithm 
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combines the global search ability of GA with PSO's local 

search superiority [10]. We have expanded the description 

of the GA-PSO hybrid algorithm to include details on the 

encoding scheme, fitness function, genetic operators, 

parameter selection and tuning, and the order of execution. 

We have clarified that GA is used for global search and 

PSO for local refinement, with the algorithm iterating 

between these phases until convergence. 
 

2.4 Algorithm implementation and 

optimization 

Step 1: Initialize the population 

First, a random approach produces a number of 

alternatives, each representing an energy distribution 

strategy. Using the objective function, we get the fitness 

of every alternative, specifying that it is based on the 

system's energy transfer efficiency as defined in the 

objective function. and take the whole system's energy 

transfer efficiency as the objective function. 

fitness(𝑃1, 𝑃2, … , 𝑃𝑁) = ∑  

𝑁

𝑖=1

                      (8) 

Step 2: Global search 

Hybridization refers to exchanging certain genes 

between parents according to specific rules to form new 

offspring. Then this paper introduces mutation operation 

to improve the diversity of solutions. 

Step 3: Local search 

Use particle swarm algorithm to search for local 

optimization of new solutions. Each particle is corrected 

based on its current position and movement speed to make 

it close to the optimal solution. The expression for a 

particle position update is as follows: 

𝑣𝑖
𝑘+1 = 𝑤 ⋅ 𝑣𝑖

𝑘 + 𝑐1 ⋅ 𝑟1 ⋅ (𝑝𝑖
∗ − 𝑥𝑖

𝑘) + 𝑐2 ⋅ 𝑟2 ⋅ (𝑔∗ − 𝑥𝑖
𝑘)

𝑥𝑖
𝑘+1 = 𝑥𝑖

𝑘 + 𝑣𝑖
𝑘+1

 (9) 

𝑣𝑖is the particle velocity, 𝑥𝑖 is the particle position, 𝑤 

is the inertia weight, 𝑐1 and 𝑐2 are acceleration constants, 

𝑟1 and𝑟2are random numbers, 𝑝𝑖
∗ is the particle's optimal 

position, and 𝑔∗ is the global optimal position. We have 

added the missing equation xx+1=x+vx+1 to Step 3 of the 

algorithm implementation. 

Step 4: Fitness evaluation and selection 

The objective function is used to evaluate the fitness 

of each solution, and the maximum fitness value is taken 

as the representative solution of the current population. In 

each generation, this paper will calculate and update the 

fitness value of each population to ensure that the best 

population is found. 

Step 5: Hyperparameter adjustment 

By adjusting the hyperparameters such as population 

size, crossover probability, mutation probability, and 

inertia weight, the algorithm's convergence speed and 

computational efficiency are improved. 
 

3 Results 
 

3.1 Simulation platform and experimental 

settings 

The proposed hybrid optimization method is verified on the 

MATLAB/Simulink simulation platform. A typical 

wireless power supply system model is established, in 

which the transmitter transmits energy to multiple 

receiving points wirelessly [11]. Among them, the channel 

loss coefficient is 2.5. During the simulation process, the 

power consumption requirements and receiving capacity of 

each receiving point are different, ensuring the 

experiment's diversity.  

In the experimental setting, the power limit of the 

transmitter is set to 𝑃max = 100 W, and the power limit of 

the receiver is 𝑃max recv = 20 W . In the experimental 

setting, the power limit of the transmitter is set to 100W 

(we have justified the chosen values for Pmax in the 

experimental setup section, explaining that they are typical 

values used in laboratory settings for WPT systems and are 

relevant for testing the algorithm's performance under 

realistic power constraints.), and the power limit of the 

receiver is 20W (similarly, we have justified the chosen 

value for Pmax_recv). The comparison of different 

algorithms includes traditional linear programming, GA, 

PSO, and the GA-PSO hybrid algorithm proposed in this 

paper [12]. The combination of multiple hyperparameters, 

such as population size, crossover rate, mutation rate, 

inertia weight, etc., will be used to study their impact on 

the algorithm's performance. 
 

3.2 Experimental results analysis 

 

3.2.1 Performance comparison of the GA-PSO algorithm 

with other algorithms 

Compared with the classical linear programming, genetic 

algorithm and PSO, the advantages of the proposed method 

are proved. In this paper, the performance of different 

algorithms in different channel environments is compared 

with that in the same simulation environment. It is proved 

that GA-PSO is superior to other algorithms. 

 

Table1: Transmission efficiency comparison of different algorithms in various channel environments. 
Channel conditions GA-PSO (%) GA (%) PSO (%) LP (%) 
Good channel 85.20 75.40 78.10 70.30 
Medium channel 80.40 70.30 72.50 65.10 
Poor channel 75.60 63.80 66.20 59.40 
Horrible channel 68.90 58.10 60.50 55.20 

Table 1 shows that GA-PSO has a significantly improved 

data transmission efficiency compared with other 

conventional methods under various channel 

conditions. We have added an explanation in the Results 

section, stating that GA-PSO's superior performance is due 

to its ability to effectively explore the solution space 

through GA's global search and exploit promising regions 
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through PSO's local search. Experimental results show 

that the GA-PSO algorithm can better adapt to complex 

channel environments and significantly enhances energy 

transmission efficiency in wireless networks. At the same 

time, Table 2 gives the comparison results of power 

consumption of different algorithms: 

 

 

Table 2:  Power consumption comparison of different algorithms 
Channel conditions GA-PSO (W) GA (W) PSO (W) LP (W) 
Good channel 16.4 19.2 18.1 21.3 
Medium channel 17.6 21.8 20.4 23.1 
Poor channel 18.9 22.7 21.5 24.4 
Horrible channel 20.2 24.3 22.9 25.8 

Table 2 shows that compared with other methods, the 

power consumption of the GA-PSO algorithm is much 

smaller, especially in poor channels and extremely harsh 

channel conditions. Its advantage is more pronounced, 

particularly in poor channel conditions. The GA-PSO 

algorithm can improve the system's transmission 

efficiency and effectively reduce the power consumption 

of the system. It has high energy efficiency. 
 

3.2.2 Transmission efficiency and power consumption 

To further analyze the superiority of the GA-PSO 

algorithm in transmission efficiency and power 

consumption, this paper draws simulation curves of 

transmission efficiency and power consumption 

respectively [14]. We have revised Section 3.2.2 to ensure 

it clearly distinguishes between the study of transmission 

efficiency and power consumption. We have also ensured 

that the figures mentioned correspond to the correct data 

being analyzed. Figure 1 shows the change law of the 

transmission efficiency of the GA-PSO algorithm relative 

to the other three methods under various channel 

conditions. The GA-PSO algorithm performs best in 

various channel environments, exceptionally moderate 

and poor ones. The improvement effect is more 

pronounced. 

 

 
Figure1: Comparison of transmission efficiency under 

different channel conditions. 

 

Figure 2 illustrates the power consumption trends of 

different algorithms in different channels. It is found that 

GA-PSO has lower energy consumption than the others, 

and its advantage is more obvious when the channel 

condition gets worse [15]. It is proved by experiments that 

the method can reduce the power consumption and 

increase the energy efficiency of the system. 
 

 
Figure2: Comparison of power consumption under 

different channel conditions. 

 

3.3 Impact of different parameters on 

algorithm performance 

To further optimize the performance of the GA-PSO 

algorithm, this paper analyzes the impact of different 

hyperparameters on the algorithm results. The impact of 

multiple hyperparameters, such as group size, crossover 

ratio, mutation rate, inertia weight, etc., on the convergence 

speed, global optimal quality and solution speed of the GA-

PSO algorithm is studied. 

Table 3 shows the GA-PSO algorithm's transmission 

efficiency and power consumption performance under 

various channels and group sizes. We have clarified that 

there is an optimal population size of around 100, beyond 

which the increased computational overhead outweighs the 

benefits. If the group size is too large, the calculation will 

increase, so a balance needs to be made between efficiency 

and calculation. 

 
Table3: The effect of crossover rate on the transmission 

efficiency of GA-PSO algorithm. 

Populatio
n size 

Transmissio
n efficiency 
(%) 

Power 
consumptio
n (W) 

Convergenc
e time (s) 

20 80.2 17.6 35.4 
50 82.7 16.2 30.1 
100 84.1 15.8 28.3 
200 85.2 15.3 32.9 

 

Table 3 shows that appropriately increasing the group 

size can effectively improve the algorithm's performance, 

but too many groups will reduce the algorithm's 



Path Planning Optimization for Industrial Robots Using… Informatica 49 (2025) 151–158 155 

 

convergence rate and even prolong the operation time. 

 

 

 

 

 

Figure 3 shows the transmission efficiency of the GA-

PSO algorithm at different crossover rates. As the 

crossover rate increases, the transmission efficiency of the 

network also increases, but when the crossover rate 

reaches a certain level, its performance will stabilize. 

Therefore, selecting an appropriate crossover ratio is the 

key to improving computational efficiency and 

convergence speed.  
 

 
Figure3: The effect of crossover rate on the transmission 

efficiency of GA-PSO algorithm. 

 

In addition, it can be seen from Figure 4 that the 

mutation rate and inertia weight greatly influence the 

genetic algorithm's convergence rate. A significant 

mutation rate is conducive to breaking away from the local 

optimum but may also make it converge slowly. A too 

small mutation rate will make falling into the local 

optimum easy. Adjusting the inertia weight will also have 

a particular impact on the optimization behavior of the 

particles. Proper selection of inertia weighting can 

accelerate the convergence speed of the particles.  
 

 
Figure4: Effect of mutation rate and inertia weight on 

convergence speed of GA-PSO algorithm. 

 

 

 

 

 

 

 

 

4 Discussion 
 

4.1 Advantages of GA-PSO hybrid 

algorithm 

The combination of GA and PSO can achieve a good 

balance between global and local optimization. Genetic 

algorithm is a kind of global optimization method, which 

can maximize the efficiency of the solution within the 

context of the problem domain and under certain 

constraints. But in the case of high dimension problem, GA 

has some shortcomings, such as slow convergence speed 

and long-time consumption. The PSO is a simulation of the 

foraging behaviour of birds, which is based on particle 

location and velocity updating mechanism. In general, PSO 

has fast convergence ability, and can find the best solution 

rapidly in the optimum solution space. But PSO can easily 

get into the local extremum, especially when the solution 

space is more complicated, so it can't do the global search. 

GA-PSO hybrid algorithm fully uses the advantages of 

the two methods; GA has a robust global optimization 

ability, and PSO can speed up the local optimization speed. 

The group can explore the solution space in a more 

extensive range in the genetic algorithm through genetic 

operations such as crossover and mutation, thus avoiding 

falling into local extreme values. In contrast, the particle 

swarm algorithm adopts a local optimization method, 

which can improve the algorithm's efficiency by quickly 

correcting the particles. The search can be refined 

according to the global search results to find the optimal 

solution quickly. Experiments have shown that compared 

with genetic algorithms and PSO algorithms alone, this 

method has better convergence and accuracy and can 

maintain global optimality. At the same time, the parameter 

setting of the GA-PSO hybrid algorithm is relatively 

simple and easy to adjust and implement, so this method 

has good adaptability and flexibility. Multiple experiments 

show that the GA-PSO hybrid algorithm is robust and can 

effectively cope with challenges in complex environments 

such as variable channels and power constraints. 
 

4.2 Robustness and scalability of the 

algorithm 

The GA-PSO algorithm is adaptable and can maintain 

optimal performance in various complex situations. In 

wireless energy transmission systems, multipath fading, 

noise interference, frequency selective attenuation and 

other problems will occur due to the random characteristics 

of the channel. This requires a higher power allocation 

strategy. This method adopts global optimization and local 

refinement, which can flexibly adjust the distribution of 

solutions under different channel environments, thereby 

improving the transmission and energy collection 

efficiency of wireless communication systems. 
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In addition, the GA-PSO algorithm can better solve 

problems such as energy limitation and capacity 

limitation. Under energy-constrained conditions, GA-PSO 

adaptively adjusts the search strategy of group members. 

It can avoid excessive use of system resources without 

affecting system performance. In the case of multi-node 

and multi-channel, GA-PSO also shows good 

performance, indicating that this method has good 

scalability. 

The GA-PSO algorithm has robust scalability, 

reflected in its adaptability to systems of different scales 

and complexities. Experimental results show that the GA-

PSO algorithm is still efficient when dealing large multi-

node systems. This method can flexibly adjust parameters 

such as group size, number of iterations, and number of 

crossover mutations according to the size and needs of the 

actual problem, thereby improving the solution efficiency 

and effect of the algorithm. 

Compared with traditional optimization methods, the 

GA-PSO method does not need to establish a specific 

mathematical model, avoiding the complex derivation of 

channel models and power allocation strategies. This 

method can be used in small point-to-point systems and 

large multi-node networks. 
 

5 Conclusion 
This paper establishes an optimal power allocation method 

for wireless energy supply systems. A method combining 

genetic algorithm and particle swarm algorithm is 

proposed. Taking the wireless energy transmission system 

as an example, the proposed method is theoretically 

analyzed and simulated. The results show that the 

proposed method is feasible. This method can effectively 

improve the data transmission efficiency of wireless 

communication systems, reduce energy consumption, and 

improve the system's stability. Compared with traditional 

single-objective optimization methods, the GA-PSO 

algorithm has better solving ability, especially for 

complex channel changes and energy distribution 

requirements in large-scale and complex environments. 

This method has fast convergence speed and a small 

amount of calculation, which is very suitable for high 

system performance requirements and real-time solid 

requirements in practical applications. 
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