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Aiming at the problems of environmental perception accuracy and multi-task collaborative processing in 

the process of autonomous driving, this paper proposes an Autonomous Driving Multi-Task (ADMT) 

perception model based on Cross Stage Partial DarkNet (CSPDarkNet) and attention mechanism. This 

model shares features and combines information by creating a feature decoupling and fusion module and 

optimizing the loss function design. This reduces the complexity of training and improves the collaborative 

effect among tasks. Dynamically weighting the spatiotemporal features of different tasks improves the 

performance of target detection, instance segmentation, and target tracking. The experimental results 

showed that, compared with YOLOv4 and YOLOv5, ADMT has achieved significant performance 

improvements on the KITTI and Cityscapes datasets. Among them, on the KITTI dataset, the F1score of 

the model reached 0.94, and APiou=0.5 was 0.92. The corresponding values of YOLOv4 and YOLOv5 

were 0.93 and 0.91, respectively. These results indicate that ADMT effectively enhances the accuracy and 

efficiency of target recognition for autonomous driving systems in complex environments, providing 

strong technical support for future intelligent transportation systems. 

Povzetek: Predstavljen je ADMT, model na osnovi CSPDarkNet in mehanizmov pozornosti, ki z 

razgradnjo in fuzijo značilk doseže bolj kvalitetno zaznavanje, segmentacijo in sledenje kot 

YOLOv4/YOLOv5. 

 

1 Introduction 
With the rapid development of artificial intelligence and 

machine learning technologies, Autonomous Driving 

(AD) technology has become one of the hotspots in global 

transportation research. AD is not only expected to 

improve traffic efficiency and reduce traffic accidents but 

also may completely change people's travel methods. 

Therefore, ensuring the safety and reliability of AD 

systems becomes particularly crucial. Environmental 

perception, as the core link of AD, involves vehicles 

obtaining information about the surrounding environment 

through various sensors (such as cameras, lidars, 

ultrasonic sensors, etc.) and conducting real-time analysis 

and processing [1]. This process aims to quickly identify 

important information such as surrounding obstacles, 

traffic signals, and pedestrians to assist vehicles in making 

safe decisions. However, environmental perception faces 

many challenges, including dynamically changing traffic 

scenes, complex climatic conditions, and the interference 

caused by light changes to visual sensors, etc. [2-3]. These 

factors pose higher requirements for the accuracy and 

robustness of sensing systems, especially when multiple 

sensing tasks must be processed simultaneously. 

Researchers have proposed the Multi-Task Perception 

Network (MTPN) to address these challenges. The goal of 

the MTPN is to implement the simultaneous processing of 

multiple perception tasks, such as object detection,  

 

semantic segmentation, and depth estimation, by  

constructing a unified network framework [4-5]. MTPN 

can share the feature extraction process, thereby reducing  

the consumption of computing resources and improving 

the collaborative effect among tasks [6-7]. The existing 

MTPN designs an independent loss function for each 

segmentation task, which affects the generalization ability 

of the model and also requires a lot of time to create and 

adjust the loss function and its parameters. Therefore, it is 

necessary to shorten the time for processing multiple tasks 

and optimize the loss function. The Cross-Stage Partial 

DarkNet (CSPDarkNet) is an improved network structure 

based on the deep learning DarkNet framework. It 

effectively enhances the feature extraction ability of the 

network through channel segmentation and aggregation. 

The Attention Mechanism (AM) simulates the focusing 

characteristics of human visual attention, which helps 

deep learning networks identify key features more 

accurately. In MTPN, AM helps the network identify and 

focus on targets in complex environments more 

accurately, improving perception accuracy [8]. Therefore, 

the research aims to clearly evaluate the performance of 

the multi-task perception system in AD, and how to 

effectively improve the accuracy and efficiency of 

multiple tasks such as target detection, instance 

segmentation, and target tracking in complex traffic 

environments. Meanwhile, the research explores how to 
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solve the problem of information interference in 

multitasking and optimize the loss function to improve the 

overall performance and reliability of the model. Against 

this background, the study proposes the Autonomous 

Driving Multi-Task (ADMT) perception model. The 

innovation point of this model lies in the use of the feature 

decoupling and fusion module to integrate features from 

different tasks, thereby reducing the mutual interference 

among various tasks. A new fusion loss function strategy 

is proposed. By comprehensively considering the 

correlations among various tasks, the sharing of the loss 

function is achieved. In the feature extraction stage, an 

adaptive attention module is introduced. ADMT can 

effectively suppress irrelevant background information in 

complex environments and enhance the recognition ability 

of small targets and occluded targets. 

The research content mainly has four sections. 

Section 1 discusses the problems of AD and the related 

research results of the MTPN. Section 2 designs the 

ADMT. Section 3 analyzes the effectiveness of research 

methods. Section 4 discusses and summarizes the entire 

text. 

2 Related works 
AD technology is extensively utilized in transportation. 

To improve the effectiveness of AD, researchers have 

proposed some methods and strategies. Khan M A et al. 

proposed a building block technology to improve the level 

of vehicle driving automation. They discussed 

technologies and concepts such as sensors, mobile edge 

computing, machine learning, data analysis, and 

distributed learning, and mapped their roles to end-to-end 

solutions. The case analysis showed that this technology 

was feasible and provided ideas for different solutions for 

5-level autonomy [9]. Chen L et al. proposed a parallel 

driving operating system based on parallel driving theory 

to address incompatibility between different AD 

algorithms and platforms. The system consisted of 4 

structural layers: hardware layer, kernel layer, functional 

layer, and application layer. It could be derived into 

specific operating systems in 4 application scenarios: 

intelligent mining, warehousing, logistics, and ports. In 

the above testing scenarios, the parallel-driven operating 

system demonstrated reliability and high efficiency [10]. 

Li G et al. proposed a continuous decision-making method 

built on Deep Reinforcement Learning (DRL) to balance 

driving efficiency and comfort. This method utilized a 

convolutional neural network to map the relationship 

between traffic images and vehicle operation, established 

an end-to-end decision-making framework, and used a 

deep deterministic policy gradient algorithm to solve the 

problems in the decision-making process, obtaining the 

optimal driving strategy. This method provided an 

effective strategy for AD at intersections while balancing 

driving comfort, and ensuring driving safety and 

efficiency [11]. Wang H et al. proposed a novel anchor-

free detection network and average boundary model to 

address occlusion issues in driving scenarios. The 

backbone network of this network used structural 

reparameterization technology to locate targets using 

boundary feature information. This algorithm 

outperformed CenterNet in both speed and precision, with 

an accuracy of 55.6%, meeting the requirements for speed 

and accuracy in driving scenarios [12]. Yang K et al. 

proposed a robust decision-making framework for AD on 

highways to improve driving safety and constructed a 

reinforcement learning strategy based on deep 

deterministic policy gradients. This strategy directly 

mapped observations to actions and evaluated model 

uncertainty based on deep deterministic strategies at 

runtime to quantify the reliability of the strategy and 

identify unknown scenarios. The proposed framework had 

good performance [13]. 

Some experts have also conducted research on 

MTPN. Ji Y et al. proposed a multi-task context-aware 

recommendation method to assist product design in a 

more intelligent way. By pre-processing work, multi-task 

knowledge requirement perception, and recommendation 

engine, the problem of mutual interference of contextual 

information in different tasks has been solved. This 

method outperformed traditional methods in terms of 

effectiveness and performance [14]. Ye H et al. proposed 

a sequential greedy pruning strategy to optimize the 

objective of global channel pruning task mismatch. They 

developed a performance-sensitive criterion to assess the 

filtersensitivity to each task and retain the filters that are 

globally most task-related. Experiments on multiple 

multitasking datasets have shown that the algorithm 

reduced parameters by over 60% without significant 

performance degradation, and achieved 1.2-3.3 times 

acceleration on cloud and mobile platforms [15]. 

Choudhry A et al. proposed a multi-tasking framework for 

identifying fake news and rumors on the internet. This 

framework trained various deep learning models in both 

single-task and multi-task settings for more 

comprehensive comparisons. Whether in domain or cross 

domain settings, this model consistently outperformed 

single-task models in accuracy, precision, recall, and other 

aspects [16]. Yang E et al. proposed a task adaptive 

learning rate method to balance different tasks on each 

parameter. This method measured the task dominance of 

a parameter by overall updates made to that parameter by 

each task, to separate the cumulative gradient in the 

adaptive learning rate method. Comprehensive 

experiments on recommendation system datasets have 

shown that this method optimizes the performance of the 

dominant task [17]. Pei Y et al. proposed a multi-task DRL 

method for controlling voltage regulation in distribution 

systems through photovoltaic intelligent inverters. This 

method encoded the topology as an additional state for 

multi-task DRL and utilized a multi-task learning scheme 

to jointly learn all task control strategies. The comparison 

conducted on the improved node system showed that this 

method had good robustness [18]. 

Xudong Yu et al. proposed an intelligent driving 

simulation test platform based on a six-degree-of-freedom 

motion platform for the safety and comfort of AD. This 

platform included four parts: the motion platform, the 

ultra-fast data acquisition system, the visual simulation 

and projection system, and the real-time simulation 

system. It had A fast response, wide-angle range, and 
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excellent driving ability, capable of simulating various 

dynamic driving scenarios. The research results showed 

that in the absence of monitoring requests, the time it took 

for drivers to return their palms to the steering wheel was 

significantly longer than in the situation with a request 

strategy. Monitoring requests effectively improved the 

takeover efficiency. Meanwhile, different prompt sounds 

also had an impact on the driver's takeover performance 

[19]. Yang T et al. proposed a design method based on the 

convex program for the Cooperative Adaptive Cruise 

Control (CACC) problem of Connected and Automated 

Vehicles (CAVs), aiming to synthesize distributed attack 

monitors and H∞ CACC controllers. The goal of this 

method was to minimize the combined impact of covert 

pseudo-data injection attacks and system interference on 

fleet dynamics while ensuring that designated trains 

adhere to performance [20]. Wang X et al. proposed a 

trajectory prediction model named Multi-Dimensional 

Spatio-Temporal Feature Fusion (MDSTF) for the 

problem of trajectory prediction of traffic participants in 

AD, aiming to accurately capture complex spatiotemporal 

features. The experimental results on the ApolloScape 

trajectory dataset showed that this method outperformed 

other advanced methods in the Weighted Average 

Displacement Error (WSADE) and Weighted Final 

Displacement Error (WSFDE) metrics, reducing the errors 

by 4.37% and 6.23% respectively compared to the best 

benchmark model S2TNet [21]. 

In summary, although many scholars have designed 

some models to enhance the recognition accuracy of AD, 

the existing models have low recognition accuracy. In 

view of this, this study attempts to use CSPDarkNet and 

AM to construct ADMT, providing certain technical 

support for improving the security of AD and the accuracy 

of target recognition. 

3 Design of ADMT 

3.1 Construction of CSPDarknet structure 

During the process of AD, vehicles need to detect and 

recognize surrounding targets. In small target detection in 

remote sensing images, the YOLOv4 algorithm cannot 

achieve very accurate detection results [22]. CSPDarkNet 

is the core Feature Extraction Network (FEN) of 

YOLOv4. To enhance the extraction of small targets, the 

paper adds a backbone network to the Context Converter 

(Cot) module of YOLOv4 and constructs a Cot-

CSPDarknet. The Cot module is shown in Figure 1. 

In Figure 1, the Cot module is generated by "query", 

"key", and "value" through three independent 1 × 1 

convolutional layers of the input feature map A. The 

parameters of the convolutional layers are not shared to 

learn different context representations. The convolution 

kernel size of each branch is 1×1, the stride is 1, and the 

fill is 0, aiming to extract task-related features through 

channel dimension reduction while maintaining the spatial 

resolution unchanged. The "key" further encodes the 

Static Context (SC) through 3×3 convolution kernels to 

generate the SC, which is designed to capture the local 

spatial correlation. Subsequently, the attention weight 

matrix is generated through two 3 × 3 convolution 

operations and multiplied by the "values" to obtain the 

Dynamic Context (DC). The expression for the attention 

matrix is shown in equation (1). 

1=[ , ]A K Q W W    (1) 

In equation (1), A  is the attention matrix. 
1K  is an 

SC. W  and W  represent convolutions with and 

without sigmoid activation functions. The DC formula for 

input is shown in equation (2). 

2  =K V A   (2) 

In equation (2), 
2K  is the DC. The fusion of SC and 

DC can serve as the Cot module’s output. The most basic 

structure in Cot-CSPDarknet is the Cot module. The 

convolution kernel in Layer 1 can lower the 

dimensionality of the Feature Matrix (FM) and decrease 

the number of parameters. The Layer 2's Cot module 

combines the residual structure in Cot-CSPDarknet to 

optimize the extraction of contextual feature information 
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Figure 1: Cot module diagram. 
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Figure 2: SE module network structure. 

near small targets. The function of the 1×1 convolution 

kernel in Layer 3 is to increase the dimensionality of the 

FM and double the number of channels in the FM. The 

number of channels of the Cot module is determined 

through the combination of empirical dimensionality 

reduction and experimental tuning. To balance the 

computational efficiency and the feature expression 

ability, the number of input feature map channels C is 

uniformly dimensionally reduced to C/4 through 1×1 

convolution (for example, 64 channels are output when 

C=256). To pay more attention to small objects in remote 

sensing, this study uses Squeeze-and-Excitation (SE) 

Attention module in the early stage of FEN downsampling 

operation. The SE module achieves selective attention to 

features through two main steps: compression and 

excitation. In the compression step, the SE module first 

performs global average pooling on the input feature map 

to obtain the global feature description of each channel. In 

the excitation step, the SE module learns the 

interrelationships between channels through the fully 

connected layer and generates a channel weight vector. 

Finally, the SE module multiplies the channel weight 

vectors obtained through the above learning by the 

original feature map and re-weights the input features, 

thereby enhancing the important features and suppressing 

unnecessary shallow features. This process ensures that 

the model can focus more on the information useful for the 

actual tasks when dealing with downstream tasks. The 

reason for researching the supplementary SE module is 

that the model can enhance the emphasis on key channels 

and effectively filter out shallow features irrelevant to the 

task. The SE module accelerates the convergence of the 

network by reducing information redundancy and reduces 

the computational burden during the training process. The 

addition of the SE module promotes feature sharing 

among multiple tasks. It enables each task to more 

effectively apply the learned feature information within 

the model to different tasks, such as object detection, 

instance segmentation, object tracking, etc., thereby 

improving overall performance. Figure 2 shows the SE 

structure. 

In Figure 2, the SE includes compression and 

excitation operations, which optimize the network's 

expressive power by explicitly modeling the 

interdependence between feature map channels. The SE 

first compresses the features from input U . This 

operation utilizes the spatial dimension M×N to generate 

channel features, then performs incentive operations to 

learn the connections between each channel, and finally 

multiplies the feature U to generate the output of the SE, 

as shown in equation (3). 
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In equation (3), 
sqF  is the compression operation. 

exF  

is an incentive operation. 
cu  is a feature from U .   is 

the ReLU activation function. 
scaleF  is the feature of 

multiplying the activation values of each channel learned 

through compression and excitation operations by U . 
cx  

is the result of compression and excitation operations on 

input U . The sub-pixel convolution operation is achieved 

by inserting a rearrangement step after the convolution 

layer. In this process, a feature map of a higher dimension 

is first generated using a convolutional layer, and then the 

channel information of the feature map is reorganized into 

a higher-resolution output through a rearrangement 

operation. The magnification factor adopted is 2, which 

means that the width and height of the output image are 

both twice that of the input feature map. The 

transformation relationship of sub-pixel convolution is 

shown in equation (4). 

2 , ,, ,

LR

x y c

SR

xlr ylr c r
I I


→   (4) 

In equation (4), LRI  and SRI  are feature maps with 

low resolution and high resolution. x  and y  both 

represent the size of the feature map. c  is the amount of 

channels in the feature map. By converting low-resolution 

feature maps into high-resolution one, small targets can be 

better detected. The fully convolutional structure is 

adopted, and two convolutional layers are used to change 

the number of channels and accommodate the feature data 

of the network model. Two consecutive convolution 

operations are used to achieve classification and 

regression of detection targets. Classification is used to 

predict the confidence level of each anchor, and regression 
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is used to predict the offset between the anchor and the 

bounding box at each location. The expression for 

calculating the predicted box position based on the offset 

is shown in equation (5). 
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In equation (5), 
xc  and 

yc  are the coordinates of the 

points on the current grid. 
wp  and 

hp  are the width and 

height of the anchors. 
xb  and 

yb  are the adjusted center 

coordinates of the predicted box. 
wb  and 

hb  are the width 

and height of the adjusted prediction box. To improve the 

performance of the prediction branch, this study 

introduces a residual module to supersede the first 

convolutional layer of the prediction branch with a 

ResBlock, and optimizes the feature maps input for 

candidate box regression and classification tasks to 

achieve the performance of the prediction branch. The 

network structure of Cot-CSPDarknet feature extraction is 

shown in Figure 3. 

In Figure 3, this study first optimizes the backbone 

network by introducing the Cot module that focuses more 

on contextual information, thereby constructing a new 

Cot-CSPDarknet. CSPDarkNet is an improved deep 

learning network architecture derived from the original 

DarkNet framework, specifically designed to enhance 

feature extraction capabilities. It divides the feature 

mapping into multiple parts through the Cross-Stage 

Partial Network (CSP) technology and conducts different 

feature learning in each part, thereby enhancing the 

model's ability to capture complex features. To more 

effectively utilize shallow feature information, an AM-SE 

module is introduced in the feature fusion stage after 

adding features extracted by downsampling at different 

magnifications. This helps reduce interference from 

irrelevant features such as background. This study utilizes 

clustering algorithms to regenerate prior boxes that are 

more suitable for small targets in the dataset. To further 

improve the accuracy of upsampling, the original nearest 

neighbor interpolation method has been replaced with sub-

pixel convolution. Finally, to enhance the performance of 

the prediction layer, the first convolutional block of the 

prediction layer is used to replace the residual unit. 

In the above content, the overall structure of the 

ADMT model as an MTPN is introduced, emphasizing 

that its design purpose is to achieve multiple perception 

tasks simultaneously through a unified network structure. 

These tasks include object detection, semantic 

segmentation, depth estimation, etc. In the complex AD 

environment, these tasks are interdependent and require 

comprehensive consideration by the network to improve 

the accuracy and efficiency of perception. By sharing the 

feature extraction process, the model can effectively 

reduce the consumption of computing resources and 

improve the collaborative effect among various tasks. 

After constructing the overall framework of the ADMT 

model, the next step will be to explore its internal structure 

and modules in detail, in order to achieve collaborative 

processing of multiple tasks. Especially the feature 

decoupling and fusion module, and how to effectively 

allocate feature weights for subtasks such as object 

detection, instance segmentation, and object tracking. 

3.2 Environment perception decoupling 

fusion algorithm based on AM 

Cot-CSPDarknet can enhance the recognition of small 

targets, but it cannot solve the problem of mutual 

interference between tasks in multitasking environments. 

Cot-CSPDarkNet cannot effectively solve the problem of 

mutual interference among tasks in a multi-task 

environment. The main reason is that the feature sharing 

strategy adopted may result in different focus on feature 

information for each task, leading to the information of 

some tasks being overwhelmed by other tasks. 

Furthermore, the gradient influence of the loss functions 

of different tasks on the shared features can lead to 

interference in the optimization process, making it 

difficult for the model to balance the learning 

requirements of multiple tasks. Finally, the lack of feature 

decoupling ability limits the adaptability of the model in 

complex environments and reduces the efficiency of full 

utilization of information among tasks. AM can reduce 

information overload by focusing on key information, 

enabling neural networks to process input data more 

effectively and improve task processing efficiency and 

accuracy [23]. To solve the multitasking problem in AD, 

this study proposes an environment aware decoupling 

fusion algorithm based on AM, and its module structure is 

displayed in Figure 4. 
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Figure 3: Cot module and its convolutional layer structure. 
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Figure 4: Block diagram of feature decoupling and fusion module. 

In Figure 4, the spatiotemporal features are input into 

the feature decoupling module and weighted through AM 

to obtain the features of the detection object. To capture 

the intrinsic connections between features, it is necessary 

to use feature pools. The feature pool is the fused 

spatiotemporal features, and AM is applied during feature 

selection. Then, decoupled features are fused to obtain 

features suitable for various tasks. This study employs 

Efficient Channel Attention (ECA). ECA proposes a cross 

channel interaction method that does not require 

dimensionality reduction, and replaces the fully connected 

layer in the SE with a 1D convolutional structure. This not 

only simplifies the model structure but also improves 

network performance. The ECA module uses the softmax 

function for feature mapping, and its calculation is shown 

in equation (6). 

( )( )2 1softmax ReLUR W W y=  (6) 

In equation (6), R  is the feature map. 
1W  and 

2W  are 

hyperparameters. y  is the result of global average 

pooling of image features. ReLU  is the activation 

function. The flowchart of the feature decoupling module 

is exhibited in Figure 5. 

In Figure 5, after being processed by a dual AM, 

spatiotemporal features are weighted for application in 

detecting objects. The features processed by the 

decoupling fusion unit are assigned different weights and 

then sent to three fully connected networks to perform 

specific sub-tasks. When performing feature decoupling, 

the object detection network first performs heatmap 

prediction to determine the approximate position, and then 

estimates the offset to lift the localization accuracy. 

Finally, the target size is estimated based on the model to 

collect detailed information about the target, ensuring 

comprehensive and accurate object detection. The 

instance segmentation module uses the offset calculated 

by the extraction module for data matching, and finally 

generates the predicted target trajectory. To balance the 

training speed of multiple tasks, this study uses dynamic 

weighted averaging to optimize the network as a whole. 

"Dynamic weighted averaging" is achieved by assigning a 

dynamic weight to each input feature, and these weights 

are adjusted according to the importance of the feature and 

the context information. Firstly, the initial weights of each 

feature are calculated, and then these weights are 

dynamically updated through learning mechanisms such 

as neural networks or AM to reflect the relative 

importance of specific tasks or data moments. Ultimately, 

the calculation process of the dynamic weighted average 

is to multiply the eigenvalues by their corresponding 

weights and then sum them up. Finally, it is normalized 

and divided by the sum of weights to obtain an accurate 

average value. The calculation of minimizing the loss 

function is shown in equation (7). 

 ( ) ( ) ( )total t td is is tf tfl t l t l t l  =  +  +   (7) 

In equation (7), totall  is the total loss function. The 

total loss function summarizes the losses of the model on 

different tasks and is used to evaluate the overall 

performance of the model, ensuring that all tasks receive 

reasonable attention and optimization. tdl , isl , and tfl  are 

the loss function for object detection, instance 

segmentation, and target tracking. The object detection 

loss function measures the model's ability to recognize 

objects in an image, typically including the accuracy of the 

detection box and the prediction accuracy of the 

corresponding object category. The instance segmentation 

loss function evaluates the ability of the model to 

distinguish different instances of the same type of target 

and perform precise segmentation. The target tracking loss 

function is used to measure the model's ability to maintain 

the tracking target in the video stream. ( )t  represents 

the weight of the loss function at time t. These weights 

dynamically adjust the contribution of each task to the 
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total loss function based on the importance and 

performance of each task. The multitasking algorithm 

framework is shown in Figure 6. 
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Figure 5: Feature decoupling module. 
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Figure 6: Multi-task learning framework. 

In Figure 6, first, feature spatiotemporal correlation is 

performed based on the driving environment, then 

spatiotemporal features are decoupled and fused, and 

finally three tasks are performed: object detection, 

instance segmentation, and object tracking. The 

corresponding weights of the loss functions for these three 

tasks are shown in equation (8). 

( )
( )( )
( )( )

N exp 1 /
=

exp 1 /

i

i

nn

r t T
t

r t T


 −

−
 (8) 

In equation (8), ir  is the training speed, i  is the task, 

( 1)t −  is a certain moment, and N  is the number of tasks. 

T  stands for temperature scaling. Its value can adjust the 

competition intensity among tasks. A smaller value will 

enhance the difference in training speed and accelerate the 

convergence of simple tasks. Larger values alleviate the 

imbalance of learning rates among tasks and prevent 

certain tasks from being completely ignored. The dynamic 

weighted average method is achieved by evaluating the 

weight of each task's loss function, with a lower weight 

indicating a faster training process for that task. The 

calculation process of training speed is expressed in 

equation (9). 

( )
( )

( )

1
1

2

n

n

n

l t
r t

l t

−
− =

−
 (9) 

In equation (9), 
nl  is the corresponding loss function 

for a certain iteration cycle. The research adopts the design 
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of the Feature Decoupling Fusion Module (FDFM) based 

on the feature decoupling theory of multi-task learning 

and the collaborative optimization principle of the AM. 

The theoretical core lies in explicitly separating the task-

specific features from the shared features, and using the 

local cross-channel interaction of the ECA module and the 

global channel recalibration of the SE module to enhance 

the positioning accuracy of small targets and suppress 

background noise respectively. The decoupling stage uses 

a gating mechanism to generate sparse features of the task. 

In the fusion stage, cross task self attention is introduced 

to model collaboration between tasks, and multi task 

losses are balanced through dynamic uncertainty 

weighting to avoid bias in manual parameter adjustment. 

This architecture alleviates task conflicts and enhances the 

feature saliency of occlusions and distant small targets 

through hierarchical feature optimization and adaptive 

weight allocation. 

4 ADMT effectiveness analysis 

4.1 Multi-task perception model 

performance testing 

To analyze the performance of ADMT at runtime, this 

study uses the KITTI and Cityscapes datasets as test data. 

For the KITTI dataset, the main tasks include object 

detection and depth estimation, as this dataset is typically 

used for object recognition and 3D reconstruction in 

traffic scenes. For the Cityscape dataset, the main task is 

semantic segmentation, with a focus on image 

understanding and pixel level classification in urban 

environments. To optimize the hyperparameters of the 

model and improve its performance, the study adopts the 

Bayesian optimization strategy to automate the 

hyperparameter search process. The research 

systematically optimizes key hyperparameters such as the 

learning rate, batch size, and momentum by constructing 

the objective function of hyperparameters. The Bayesian 

optimization method uses the previous experimental 

results to guide the subsequent search, thereby effectively 

exploring the hyperparameter space. In the experiment, 

the study sets the initial value range of the learning rate 

from 0.0001 to 0.01. The batch size ranges from 16 to 64, 

and the momentum parameter ranges from 0.8 to 0.99. 

Through this strategy, the optimal combination of 

hyperparameters can be quickly found, resulting in the 

optimal setting of a learning rate of 0.001, batch size of 

32, and momentum of 0.9, thereby improving the 

convergence speed and performance of the model. The 

research adopts the standard division strategies of training 

set, validation set, and test set to ensure the generalization 

ability of the model on different data. The KITTI and 

Cityscapes datasets are divided in the proportions of 70% 

for training, 15% for validation, and 15% for testing. The 

training set is used for the learning and optimization of the 

model, while the validation set regularly evaluates the 

model performance during the training process to achieve 

the best effect. The test set is used to ultimately evaluate 

the generalization ability and performance of the model. It 

will not be viewed or adjusted during the testing phase. 

Table 1 shows the experimental environment and 

equipment. 

To test the performance of ADMT, this study 

conducts training and testing. After 60 iterations, the 

ADMT model is compared and analyzed with YOLOv4 

[24] and YOLOv5 [25]. The experiment compares the 

losses of three methods under different iterations. The loss 

values include the KITTI dataset and the Cityscapes 

dataset. These losses are measured by the cross-entropy 

loss function. The specific calculation method is to 

compare the category probabilities predicted by the model 

with the real labels, thereby quantifying the performance 

of the model during the training process. The experimental 

results are shown in Figure 7. 

Figure 7 shows the trend of loss variation with 

iteration times for three different methods. As the Number 

of Iterations (NoI) increases, the loss values of all methods 

show a decreasing trend, indicating that the model 

gradually learns and optimizes during the training process. 

When the NoI is relatively small, especially within 10 

iterations, the loss reduction curve is steeper, indicating 

that in the early phases of training, the model's loss 

reduction rate is faster and the learning efficiency is 

higher. However, when the NoI exceeds 10, the curve of 

loss reduction becomes relatively flat, indicating that as 

the training progresses, the rate of loss reduction in the 

model gradually slows down. Until after 60 iterations, the 

loss value approaches 0, indicating that the model is 

approaching convergence. In Figure 7, at iteration times of 

10 and 20, the losses of YOLOv4 and YOLOv5 are 38% 

and 20%, 28% and 12%, while the losses of ADMT are 

10% and 5%, significantly lower than the comparison 

algorithm. This indicates that the ADMT model can 

reduce losses during iterations. This study compares the 

MOTA, F1 score, and APiou=0.5 scores of different 

algorithms on KITTI and Cityscapes, as shown in Figure 

8. 

Table 1: Engineering project setting conditions. 

Name Parameter 

Simulation program Matlab2020 

Computer Intel (R) Core (TM) i5-6200U CPU@ 2.30GHz 

Dataset KITTI, Cityscapes 

Operating system Ubuntu 16.04 

CPU Intel.Xeon, E5_2 660.ν3 

GPU NVIDIA TESLA V100 

mailto:CPU@2.30GHz电脑上运行。设置种群规模为60，迭代次数为150，交叉概率和变异概率分别设置为0.6和0.4。
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Video memory 16 GB 

Deep learning framework Tensorflow 
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Figure 7: Loss comparison of different methods in training and testing phases. 
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Figure 8: Comparisonof existing methods tested on KITTI and Cityscapes datasets. 

Figure 8 shows the performance between the ADMT 

model and the other two methods on the KITTI and 

Cityscapes datasets. On KITTI, the MOTA, F1 score, and 

APiou=0.5 scores of the ADMT model are 0.85, 0.94, and 

0.92. These scores are the highest among the three 

comparison methods, demonstrating the superior 

performance of the ADMT model in multi-target tracking 

and object detection tasks. In contrast, the corresponding 

scores of YOLOv4 and YOLOv5 are 0.834, 0.93, 0.904 

and 0.81, 0.91, 0.83, all lower than the ADMT model. 

These results indicate that the ADMT model has higher 

accuracy and robustness in handling object detection and 

tracking tasks in complex road environments. On 

Cityscapes, the MOTA, F1 score, and APiou=0.5 scores 

of the ADMT model are 0.852, 0.946, and 0.818. These 

scores also demonstrate the good performance of the 

ADMT model in urban scenarios. These datasets contain 

complex scenes of urban streets, including targets of 

different sizes and shapes, as well as various occlusion and 

truncation situations. Therefore, these scores further 

validate the effectiveness and applicability of the ADMT 

in practical AD scenarios. 

4.2 Application analysis of multi-task 

perception model 

To validate the application effectiveness of each module 

used, the study conducts ablation experiments. The 

datasets used in the experiment are KITTI and Cityscapes 

datasets, as shown in Figure 9. 

The ablation experiment in Figure 9 compares the 

independent and collaborative contributions of each 

component to the model performance by gradually 

introducing different modules into the system. The results 

show that when CSPDarkNet is used alone as the base 

network, the MOTA and F1 scores on the KITTI dataset 

are 0.55 and 0.60, respectively, indicating its basic feature 

extraction ability as a backbone network. When the ECA 

module is introduced, the MOTA’s value increases to 0.66 

(+20%), and the F1 score rises to 0.66 (+10%). This is 

attributed to the fact that ECA achieves cross-channel 

interaction through lightweight 1D convolution, optimizes 

the dynamic selection ability of key features, and 

particularly enhances the positioning accuracy of small 

targets. When the SE module is added alone, MOTA and 

F1 scores reach 0.62 (+12.7%) and 0.63 (+5%), 
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respectively. Its channel AM suppresses redundant 

background features by explicitly modeling the channel 

dependency relationship. When the ECA and SE modules 

are used in combination, MOTA and F1 scores further 

increase to 0.71 (+29.1%) and 0.69 (+15%), respectively, 

revealing the complementarity of the two AMs: ECA 

focuses on local cross-channel feature interaction, while 

SE enhances semantic importance through global channel 

re-calibration. The synergy of the two significantly 

improves the feature representation ability of multi-scale 

targets in complex scenarios. This ablation experiment not 

only verifies the effectiveness of each module design but 

also quantifies the hierarchical optimization mechanism of 

the AM in the feature decoupling and fusion strategy, 

providing an empirical basis for the interpretability of the 

model components. The results of comparing the 

compression ratio and mean Average Precision (mAP) of 

different methods are shown in Figure 10. 

In Figure 10, the compression rate of ADMT is 

73.2%, which is higher than the compression rates of 

71.0% for YOLOv5 and 68.0% for YOLOv4. The mAP of 

ADMT is 69.2%, higher than the 67.4% of YOLOv5 and 

67.0% of YOLOv4. This indicates that ADMT has good 

compression performance in object detection and is more 

stringent on target boxes detected by the network. Figure 

11 shows the percentage of targets identified using ADMT 

on KITTI and Cityscapes. 
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Figure 9: Comparative experiment of decoupling modules in KITTI and Cityscapes datasets. 
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Figure 10: Compression ratio and mAP comparison of different detection methods. 
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Figure 11: The proportion of targets identified at different driving times. 

Figure 11 shows the comparison of the recognition 

percentages of far small targets and occluding targets by 

ADMT and YOLOv4 and YOLOv5 on the KITTI and 

Cityscapes datasets. The x-axis in the figure represents 

"Driving time (h)", which represents the cumulative 

testing time of the model in continuous driving scenarios, 

used to simulate the changes in target recognition 

performance of AD vehicles when driving for a long time 

in real road environments. Figure 11(a) shows the 

recognition of far small targets. The recognition rate of 

ADMT within a 2.5-hour driving time is 6.6%, which is 

higher than that of YOLOv5 (2.2%) and YOLOv4 (3.8%). 

This advantage stems from the enhanced extraction of 

context features by Cot-CSPDarkNet and the refined 

reconstruction ability of low-resolution features by sub-

pixel convolution. Figure 11(b) shows the recognition of 

occlusion targets. The recognition rate of ADMT reaches 

7.0%, while that of YOLOv5 and YOLOv4 is 2.4% and 

4.1%, respectively. This verifies the effectiveness of the 

FDFM module in dynamically decoupling the occluded 

area from the background noise through attention weights. 

Meanwhile, it indicates that the synergistic effect of the 

ECA and SE modules can improve the fusion accuracy of 

local features and global semantics. Although the above 

results have improved the recognition accuracy of small 

objects and occlusions, on the whole, they are still 

relatively low. The main reasons lie in the deviation of 

data distribution, the limitations of model structure, and 

the boundaries of multi-task optimization. In terms of 

data, the proportion of far small targets and severely 

occluded samples in the KITTI and Cityscapes datasets is 

less than 5%, resulting in insufficient learning of extreme 

scenes by the model. The limitation of sensor resolution 

causes the details of small targets to be blurred. In terms 

of model structure, the channel compression loss of the 

Cot module is small for the shallow texture features of the 

target. The sub-pixel convolution is insufficient for the 

reconstruction of low-resolution features. The AM is 

prone to interference from similar backgrounds in densely 

occluding areas. In terms of task conflicts, the dynamic 

weighting strategy leans towards tasks with fast training 

speeds and ignores the refinement requirements of 

instance segmentation for occlusion boundaries. The 

visualization diagram of the research method is shown in 

Figure 12. 

Several key elements are involved in Figure 12, 

including the detected target box, the corresponding 

category label, and the confidence score. Boxes of 

different colors represent the model's recognition of 

different types of targets, demonstrating the model's 

ability to handle complex traffic scenarios, such as 

effectively distinguishing pedestrians, vehicles, and other 

obstacles during dynamic driving. In addition, the instance 

segmentation part reflects the precise boundary division of 

the model on the target, thus more clearly depicting the 

shape and boundary of the target, which is conducive to 

improving the tracking accuracy of subsequent tasks. 

Through these visualization effects, Figure 12 not only 

reveals the effectiveness of ADMT but also provides 

important analytical basis and visualization feedback for 

further optimizing the model and field applications. To 

further verify the feasibility of the proposed method, the 

Waymo dataset is adopted for more in-depth verification. 

The Waymo dataset is a large-scale AD dataset released 

by Waymo to support advanced AD research. This dataset 

contains over 250,000 scenarios, covering various 

complex urban and highway environments, with a focus 

on traffic participants such as pedestrians, cyclists, and 

vehicles. The dataset provides high-quality Lidar and 

camera data, supporting a variety of perception tasks, 

including object detection, instance segmentation, and 

tracking. Meanwhile, the diversity of the Waymo dataset, 

such as different weather conditions, illumination 

changes, and occlusion situations, provides a good basis 

for the robustness test of the algorithm. The comparative 

methods adopted in the research are the intelligent driving 

simulation test platform proposed by Xudong Y U et al. 

[19], the CACC method based on convex programming 

proposed by Yang T et al. [22], and the MDSTF trajectory 

prediction model proposed by Wang X et al. [21]. The 

specific comparison results of the experiment are shown 

in Table 2. 
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Figure 12: Study the visualization results of the model. 

Table 2: Performance comparison results of different models. 

Indicator ADMT 
Xudong Y U  

et al.[19] 

Yang T  

et al. [20] 

Wang X  

et al. [21] 

Inference Speed (FPS) 45 FPS 30 FPS 38 FPS 35 FPS 

Parameter size (MB) 10.5 MB 12.2 9.8 11.3 

FLOPs 25.4 B 30.2 B 22.8 B 27.0 B 

IoU 0.88 0.81 0.82 0.82 

Accuracy rate of occlusion situation recognition 75.2% 60.6% 70.4% 65.4% 

Recognition accuracy rate of light changes 80.5% 65.3% 72.4% 68.9% 

 

Table 2 shows that the proposed ADMT model 

outperforms other comparison methods in multiple key 

performance indicators. Firstly, in terms of inference 

speed, the 45 FPS of ADMT is significantly higher than 

the 30 FPS of Reference [19] and the 35 FPS of Reference 

[21], demonstrating the advantage of ADMT in processing 

speed and helping to meet the real-time requirements of 

AD systems. Secondly, in terms of parameter size and 

FLOPs, the parameter count (10.5 MB) and FLOPs (25.4 

B) of ADMT are more optimized compared to other 

methods, indicating that it is more efficient in terms of 

computing resource consumption. Furthermore, ADMT 

achieves 0.88 in the IoU index, surpassing the 

performance of other methods and proving its stronger 

ability in target detection and tracking accuracy. 

Especially in the task performance in complex 

environments, the accuracy rate of ADMT in recognizing 

occlusion situations (75.2%) and recognition accuracy 

under illumination changes (80.5%) is significantly better 

than that of other models. This indicates that ADMT has 

stronger robustness and adaptability under adverse 

conditions. These results indicate that the ADMT model 

not only performs well in standard perception tasks but 

also has higher reliability and accuracy when dealing with 

the challenges of complex driving environments. 

5 Discussion 
The ADMT model based on CSPDarkNet and the AM 

proposed in the research is significantly superior to the 

existing mainstream methods, such as YOLOv4 and 

YOLOv5, in multiple tasks. On the KITTI and Cityscapes 

datasets, ADMT achieved 0.94 and 0.92 respectively in 

performance metrics such as F1score and APiou=0.5, 

demonstrating its efficiency in object detection and 

tracking tasks and robustness in complex environments. 

Through the feature decoupling and fusion module, 

ADMT effectively and dynamically allocates and weights 

the features of different tasks, reduces information 

interference, and enhances the focus of key features of 

each task. This innovative design enhances the 

generalization ability of the model, enabling it to perform 

more accurately in diverse traffic situations. The 

introduced AM enables the model to focus on key 

information, improves the recognition ability of small 

targets and occluded targets, and enables ADMT to 

maintain efficient perception performance under changing 

environmental conditions. In similar studies, the method 

based on DRL proposed by Khan MA et al. has achieved 

good results in balancing driving efficiency and comfort. 

However, this method still faced challenges in the 

accuracy of target detection in complex environments 

[11]. In contrast, ADMT significantly improves the 
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perceptual performance in complex scenarios by 

comprehensively considering multi-task features and 

utilizing the AM. The anchor-free detection network 

proposed by Wang H et al. performed relatively well in 

the detection of occlusive objects. However, its model had 

a high complexity and might face the bottleneck of real-

time processing in practical applications [12]. By 

optimizing the network structure and introducing an 

efficient feature decoupling mechanism, ADMT has 

achieved a better detection rate and response speed in the 

case of target occlusion, demonstrating stronger real-time 

processing capabilities. The AD decision-making 

framework proposed by Yang K et al. utilized 

reinforcement learning algorithms to enhance the safety of 

highway driving, but it lacked systematic methods in 

multi-task processing [13]. In contrast, ADMT 

demonstrates its ability to cope with different driving 

decision-making tasks in complex environments through 

centralized multi-task learning and feature fusion of task 

relevance, indicating the superiority of its own method. To 

sum up, ADMT outperforms the existing related methods 

in multiple performance indicators, demonstrating its 

broad application potential and technical value in the field 

of AD. 

6 Conclusion 
This study designed an ADMT aimed at improving the 

safety of AD and the precision of target recognition. This 

model established a FEN by integrating the Cot module, 

which optimized the prediction branch of YOLOv4 using 

the full convolution structure. In addition, the model also 

incorporated an AM SE module to perfect the recognition 

capacity of the target. To address potential conflicts 

between multiple tasks, the model specifically added 

FDFM. In the experiment, the compression rate of the 

model reached 73.2%, with an mAP of 69.2%. The model 

outperformed YOLOv5 and YOLOv4 algorithms in terms 

of compression rate and average accuracy. When the 

driving time was 2.5 hours, the proportion of ADMT 

recognizing far and small targets was 6.6%, and the 

proportion of recognizing occluded targets was 7.0%. 

These data indicated that the model not only had good 

compression performance in object detection but also had 

stricter requirements for target boxes detected by the 

network, effectively increasing the recognition of 

occluded truncated targets and far small targets. The 

results show that the Cot-CSPDarkNet constructed by the 

study enhances the context feature extraction ability of 

small targets through the context transformation module 

and the convolution of sub-pixels. The FDFM designed in 

the research combines a dual-pathway AM to dynamically 

separate task-specific features from shared features, 

alleviating multi-task conflicts. A task uncertainty 

weighting strategy based on temperature scaling is 

proposed to balance the differences in training speeds of 

detection, segmentation, and tracking tasks. However, 

ADMT still has limitations. The negative migration effect 

between tasks is not explicitly modeled, and the feature 

decoupling in extreme occlusion scenarios may fail. The 

dynamic weighting strategy relies on a fixed temperature 

parameter T and has insufficient adaptability to dynamic 

scenes such as sudden changes in illumination. The 

proportion of far small targets in the experimental dataset 

is relatively low, which affects the generalization ability 

of the model. Future work will focus on three areas. One 

is to introduce task association aware AM and clarify the 

decoupling process that constrains task features. The 

second is to design an adaptive temperature parameter 

strategy, combined with online learning to dynamically 

adjust the T value to adapt to complex road conditions. 

The third is to jointly generate adversarial networks to 

integrate high-density small targets and occlusion data, 

optimizing the robustness of the model under long tail 

distribution. 
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