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This paper proposes an innovative joint algorithm based on adaptive wavelet transform (AWT) and 

support vector machine (SVM) to diagnose data equipment faults in the industrial Internet of Things 

and optimize the model parameters through particle swarm optimization (PSO) technology. Firstly, 

adaptive wavelet transform is used to extract time-frequency features of sensor data by adaptively 

adjusting the wavelet transform according to the wavelet basis function, thereby realizing the 

extraction of the time-frequency characteristics of the signal. Secondly, an improved support vector 

machine is used to classify feature data. At last, PSO is applied to improve the precision and 

efficiency of classification. The experiment results show that the new algorithm has higher precision, 

computing speed and faster response than the conventional single algorithm. The experimental 

results show that the proposed AWT-SVM-PSO algorithm achieves an average accuracy improvement 

of 13% over traditional methods, with the classification accuracy of different fault modes reaching 

98%, and the response time is shortened from 300 milliseconds to 200 milliseconds. This project's 

research results will effectively improve industrial equipment's fault diagnosis capability and provide 

reliable support for large-scale data processing and real-time monitoring. 

Povzetek: Predstavljen je izboljšani algoritem za napovedovanje napak v IIoT, ki združuje AWT, SVM 

in PSO ter dosega visoko točnost in krajši odzivni čas. 

 

1 Introduction 
With the rapid development of IIoT, many industrial 

equipment and sensors worldwide are connected to the 

Internet, thus forming a vast data network. Real-time 

monitoring and analysis of equipment operation data can 

accurately grasp the equipment status, and possible faults 

can be warned. This can improve production efficiency 

and shorten downtime. However, how to extract 

practical information from massive real-time data to 

achieve fault diagnosis and early warning is a key 

problem that the current Industrial Internet of Things 

needs to solve urgently [1]. The traditional approach to 

fault diagnosis is based on empirical or rules-based 

statistics [2]. Though they have some effect on simple 

cases, they are usually hard to solve in complicated 

situations, especially nonlinear and time-varying faults. 

This results in poor fault diagnosis accuracy [3]. As the 

number of Industrial Internet of Things devices 

skyrockets, the amount of data captured by sensors has 

skyrocketed [4]. The data has the characteristics of high 

dimension, noise, and complex correlation. Traditional 

fault diagnosis methods are not efficient and accurate in 

large data environments [5]. Therefore, it has been a hot 

topic and difficult to solve the Industrial Internet of 

Things problem. 

 

 

 

The combination of AWT and SVM in research on IIoT, 

followed by the application of PSO to optimize the  

parameters of the joint model, can improve the accuracy 

and real-time performance. AWT is a kind of signal 

processing technique that has the strength of being able to 

adaptively adjust according to the characteristics of the 

input signal. It can select the most appropriate wavelet 

basis function, which enables it to extract more 

discriminative and representative time-frequency features 

from the sensor data, compared to some state-of-the-art 

methods that might have fixed or less flexible feature 

extraction mechanisms, AWT's adaptability gives it an 

advantage in handling the complex and variable data in 

the IIoT environment, where different industrial 

equipment may generate signals with different 

characteristics [6]. SVM is one of the most efficient 

classification algorithms for identifying all kinds of 

failure modes [7]. The PSO can be used to simulate the 

cooperative search behavior, which can rapidly find the 

global optimum solution and improve the overall 

performance of the PSO. Finally, the experiment 

indicates that this algorithm is highly real-time and highly 

precise. 
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2 Fault diagnosis algorithm based on 

improved SVM and adaptive 

wavelet transform 
 

2.1 Application of wavelet transform in 

fault diagnosis 

This paper applies the AWT method to realize the 

multi-scale analysis of industrial equipment. This 

method can adaptively adjust the wavelet transform 

according to the wavelet basis function, thereby realizing 

the extraction of the time-frequency characteristics of the 

signal [8]. The advantage of AWT is its adaptive ability. 

It can select the best wavelet basis according to different 

signal characteristics to improve the accuracy of feature 

extraction. The mathematical expression of the wavelet 

transform is as follows: 

𝜓𝑎,𝑏(𝑡) =
1

√|𝑎|
𝜓 (

𝑡 − 𝑏

𝑎
)                        (1) 

𝜓𝑎,𝑏(𝑡)   is the mother wavelet of the wavelet 

transform, 𝑎  is the scale factor, 𝑏  is the translation 

factor, and 𝜓(𝑡) is the wavelet basis function. Adaptive 

wavelet transform can adjust the time-frequency 

decomposition accuracy and optimize the scale 

coefficient a and translation coefficient b of wavelet 

transform [9]. The conversion process of adaptive 

wavelet transform can be expressed as follows: 

𝑊𝜓(𝑓) = ∫  
∞

−∞
𝑥(𝑡) ⋅ 𝜓∗(𝑡 − 𝑓)𝑑𝑡                 (2) 

𝑊𝜓(𝑓)represents the transformation result of signal 

𝑥(𝑡)under wavelet basis function 𝜓. 𝜓∗(𝑡 − 𝑓)  is the 

complex conjugate form of the wavelet basis function. 

 

2.2 SVM classification model 

Support vector machine is a supervised learning method. 

It has been widely used in pattern recognition and 

classification. Support vector machine classifies data by 

constructing hyperplanes. The most significant 

advantage of this method is that it can handle 

high-dimensional nonlinear problems and maintain good 

classification results under minor sample conditions [10]. 

However, standard support vector machines may 

encounter problems such as kernel function selection and 

parameter adjustment for complex fault modes. 

To improve the performance of support vector 

machines, a kernel function selection method based on a 

dynamic adjustment mechanism is proposed. This 

method improves the classification accuracy of support 

vector machines for complex fault modes by real-time 

adjustment of kernel function parameters [11]. The 

improved SVM model has the following mathematical 

expression: 

𝑓(𝑥) = ∑  

𝑛

𝑖=1

𝛼𝑖 ⋅ 𝐾(𝑥𝑖 , 𝑥) + 𝑏                          (3) 

𝑓(𝑥)  is the classification function, 𝛼𝑖   is the 

Lagrange multiplier, 𝐾(𝑥𝑖 , 𝑥) is the kernel function, 𝑏 is 

the bias term, and 𝑥 is the input feature. 

 

2.3 Joint algorithm process 

Combining AWT with the improved support vector 

machine model makes it effective. This method first uses 

AWT to perform time-frequency analysis on the 

equipment operation data to extract key state features; 

then uses the improved support vector machine method to 

classify these feature values to determine whether the 

equipment is in a failed state or is about to fail [12]. The 

joint algorithm has the following mathematical model: 

𝑦 = 𝑆𝑉𝑀(𝐴𝑊𝑇(𝑥))                               (4) 

𝑦  is the fault diagnosis result, 𝐴𝑊𝑇(𝑥)   is the 

feature extracted by adaptive wavelet transform, and 

𝑆𝑉𝑀(⋅) is the improved SVM classification model.  

 

2.4 Algorithm optimization 

The particle swarm algorithm simulates group 

intelligence, simulates the foraging process of flocks of 

birds, optimizes the support vector machine 

hyperparameters, and improves the classification 

performance. The updated formula of the particle swarm 

algorithm is as follows: 

𝑣𝑖(𝑡 + 1) = 𝑤 ⋅ 𝑣𝑖(𝑡) + 𝑐1 ⋅ 𝑟1 ⋅ ( pbest 
𝑖

− 𝑥𝑖) + 𝑐2 ⋅ 𝑟2 ⋅ ( gbest − 𝑥𝑖)

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1)
                                     (5) 

𝑣𝑖(𝑡)represents the velocity of the particle. 𝑥𝑖(𝑡) 

represents the position of the particle. 𝑤 represents the 

inertial component. 𝑐1   and 𝑐2  represent acceleration 

constants. 𝑟1 and 𝑟2  represent random factors.  pbest
𝑖
 

and gbest represent the individual and overall optimal 

solutions. 

The kernel function parameter γ and penalty factor 

C are optimized in SVM using PSO, and the precision of 

SVM is improved. This method improves the 

generalization ability of the support vector machine and 

has a good recognition effect on various types of 

industrial equipment faults. The optimized joint 

algorithm has the following mathematical formula: 

The kernel function parameter γ and penalty factor 

C are optimized in SVM using PSO. We are using the 

Radial Basis Function (RBF) kernel in our SVM. The 

PSO algorithm searches for the optimal values of the 

kernel function parameter γ and the penalty factor C for 

the RBF kernel during the training process. It iteratively 

adjusts these parameters based on the fitness function that 

evaluates the performance of the SVM in terms of 

classification accuracy and generalization ability. This 

interaction helps to improve the performance of the SVM 

by finding the best combination of these hyperparameters 

for our specific fault diagnosis problem. The optimized 

joint algorithm has the following mathematical formula: 

 

𝑦 = 𝑃𝑆𝑂 (𝑆𝑉𝑀(𝐴𝑊𝑇(𝑥)))                     (6) 

𝑃𝑆𝑂(⋅)  represents the particle swarm optimization 

algorithm, 𝑆𝑉𝑀(⋅)   is the optimized SVM model, 

𝐴𝑊𝑇(𝑥)  is the feature extracted by adaptive wavelet 

transform, and 𝑦 is the fault diagnosis result. 

 



Adaptive Wavelet Transform and SVM-based Fault Diagnosis…                               Informatica 49 (2025) 33–38   35                                                                          

3 Experiment and simulation 
To validate the validity of the AWT and the improved 

SVM algorithm in IE, several simulation experiments are 

designed and compared with the existing ones. The core 

goal of the experiment is to evaluate the performance 

differences between the proposed algorithm and 

traditional algorithms under different fault modes, 

including indicators such as classification accuracy, 

recall rate, F1 score, computational efficiency, and fault 

diagnosis response time. 

 

3.1 Experimental design 
This experiment is conducted in an industrial 

equipment simulation environment and includes multiple 

failure modes. This project intends to use vibration, 

temperature, pressure and other multi-sensor data as the 

research object to simulate vibration, overheating and 

other failure modes as these modes were selected 

because they are among the most common and critical 

failure types in industrial equipment. They cover 

different aspects of mechanical, thermal, and 

pressure-related issues that are frequently encountered in 

real industrial settings. Also, they can comprehensively 

represent a wide range of potential failures as many other 

failures can be related to or manifested through changes 

in these basic parameters. This project aims to test the 

application capabilities of different algorithms in 

complex and changeable industrial environments. In the 

experimental design process, the failure mode is defined, 

sensor data is collected, data is preprocessed, and feature 

extraction is performed. 

1) Failure mode definition: The simulation model 

includes multiple failure modes, such as vibration, high 

temperature, abnormal pressure, etc., covering common 

failure types of industrial equipment. 

2) Sensor data acquisition: Use virtual sensors to 

collect real-time data from the equipment under test to 

obtain signals such as temperature, pressure and 

vibration. The virtual sensors are implemented based on 

typical sensor readings from industrial equipment like 

temperature, pressure, and vibration. They mimic the 

behavior and characteristics of real sensors in industrial 

settings. Preprocess the sensor data and input it into the 

algorithm. 

3) Data preprocessing and feature extraction: First, 

a noise filtering technique is applied to remove any 

random noise in the sensor data that could affect the 

subsequent analysis. Then, normalization is performed to 

scale the data to a common range, which helps improve 

the performance of the feature extraction and 

classification algorithms. Regarding missing values, a 

simple imputation method is used to fill in any missing 

data points based on the statistical characteristics of the 

surrounding data. Use AWT to extract signal features 

from the time-frequency domain for subsequent 

classification model processing. 

 

3.2 Comparative experiments 

Four algorithms were designed for comparative 

experiments: 

1) AWT alone:  Only AWT was used to perform 

time-frequency analysis on sensor data, and after 

extracting features, traditional classification algorithms 

(such as KNN and decision trees) were used for 

diagnosis. We chose KNN and decision trees because 

they are simple yet commonly used traditional 

classification methods that can provide a good baseline 

for comparison. KNN is based on the similarity of 

neighboring data points and is easy to understand and 

implement. Decision trees can handle both categorical 

and numerical data and can provide interpretable results. 

2) SVM alone: SVM was directly applied to classify 

raw or preprocessed data. 

3) Joint algorithm (AWT+SVM): AWT was 

combined with SVM. Firstly, time-frequency features 

were extracted by wavelet transform, and then SVM was 

used to classify features. 

4) Optimized joint algorithm (AWT+SVM+PSO): 

The PSO algorithm was introduced to optimize the 

hyperparameters of SVM to improve classification 

performance based on the AWT+SVM joint algorithm. 

To comprehensively evaluate the algorithm's 

performance, this paper adopts the following evaluation 

criteria: Accuracy measures the proportion of correct 

classifications of the algorithm. Recall measures the 

ability of the algorithm to correctly identify faults, 

especially when the fault mode is more complex. The F1 

score comprehensively considers the balance between 

accuracy and recall. Computational efficiency analysis is 

the time required for the algorithm to run, especially the 

efficiency when processing large-scale data. Fault 

diagnosis response time is the time it takes for the 

algorithm to identify equipment faults, which directly 

affects the real-time performance of the system. 

 

3.3 Experimental results 

Table 1 compares the classification accuracy of different 

algorithms under vibration, overheating and pressure 

fault modes. It can be seen that the classification accuracy 

of the joint algorithm (AWT + SVM) in all fault modes is 

significantly higher than that of the algorithm using AWT 

or SVM alone. The joint algorithm (AWT + SVM + PSO) 

optimized by PSO has achieved the best accuracy in each 

fault mode, with classification accuracy rates of 96.80%, 

93.60% and 91.20%, respectively, and an average 

classification accuracy of 93.90%, which is better than 

other algorithms. 
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Table1:  Comparison of classification accuracy of each algorithm. 
Algorithm Vibration fault Overheating fault Pressure fault Average 
AWT 85.60% 80.20% 78.30% 81.30% 
SVM 88.50% 83.00% 82.40% 84.60% 
AWT + SVM 92.20% 89.40% 87.80% 89.80% 
AWT + SVM + PSO 96.80% 93.60% 91.20% 93.90% 

 

Table 2 shows the recall rate of each algorithm 

under different fault modes. The optimized joint 

algorithm (AWT + SVM + PSO) improves the recall rate 

in all fault modes, especially in complex fault modes. In 

the vibration fault mode, the optimized algorithm  

 

reaches 95.40%, and in the overheating and pressure fault 

modes, it reaches 92.40% and 90.30%, respectively, 

showing the overall improvement of the optimized 

algorithm in fault detection. 

 

 

Table 2:  Comparison of recall rates of various algorithms. 
Algorithm Vibration Fault  Overheating fault Pressure fault  Average 
AWT 84.30% 79.10% 75.60% 79.70% 
SVM 87.40% 81.20% 80.10% 82.90% 
AWT + SVM 91.60% 88.10% 86.40% 88.70% 
AWT + SVM + PSO 95.40% 92.40% 90.30% 92.70% 

 

 
Figure1: Comparison of the computational 

efficiency of various algorithms. 

 

Figure 1 compares the computational efficiency of 

various algorithms. The AWT + SVM + PSO algorithm 

showed the highest computational efficiency throughout 

the iteration process and maintained a stable and 

optimized performance close to 0.9. The SVM algorithm 

fluctuated slightly in the early stage, but its overall 

performance was still better than other combination 

algorithms. The AWT + SVM algorithm performed 

moderately compared to the separate AWT and SVM  

 

 

algorithms in some aspects because while combining 

AWT and SVM can leverage the advantages of both 

feature extraction and classification, without the PSO 

optimization, the hyperparameters of the SVM might not 

be in the optimal state for handling the complex and 

diverse data in our IIoT fault diagnosis scenarios. The 

PSO optimization in the AWT + SVM + PSO algorithm 

helps to fine-tune these parameters and thus achieve 

better performance. The AWT algorithm performed 

poorly in the early iterations but stabilized after a certain 

number of iterations. These results show that the 

combination of AWT and SVM plus PSO optimization 

can significantly improve computational efficiency, while 

the performance of the AWT algorithm alone still needs 

to be further optimized to match the performance of other 

methods. 

Table 3 compares the F1 scores of different 

algorithms under various fault modes. The optimized 

joint algorithm (AWT + SVM + PSO) has the highest F1 

scores in vibration, overheating, and pressure fault 

modes, which are 0.97, 0.94 and 0.92, respectively, and 

the average F1 score reaches 0.94. This shows that the 

algorithm has found the best balance between precision 

and recall, can effectively deal with various fault modes, 

and provide more reliable fault diagnosis. 

 

Table 3:  Comparison of F1 scores of various algorithms. 
Algorithm Vibration fault Overheating fault Pressure fault Average F1  
AWT 0.85 0.81 0.8 0.82 
SVM 0.88 0.82 0.81 0.84 
AWT + SVM 0.93 0.89 0.88 0.9 
AWT + SVM + PSO 0.97 0.94 0.92 0.94 
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Figure 2: Comparison of fault diagnosis 

response time of different algorithms. 

 

Figure 2 shows the comparison of different 

algorithms for troubleshooting response time. The AWT 

algorithm has a long response time and significant 

fluctuations in the entire iteration process, especially in 

the early iterations. The response time is significantly 

higher. The response time of the SVM algorithm is 

slightly lower than that of the AWT, but there is also 

some fluctuation. The response time of AWT + SVM is 

relatively stable and generally lower than that of the 

separate AWT and SVM algorithms. The AWT + SVM 

+ PSO algorithm is the most significant, whose response 

time remains at the lowest level and has small 

fluctuations, showing strong stability. Especially in the 

later stages of the iteration, the response time of AWT + 

SVM + PSO is significantly lower than that of other 

algorithms. 

These results show that the AWT + SVM + PSO 

algorithm combined with the particle swarm 

optimization (PSO) algorithm can significantly reduce 

the response time while improving the computational 

efficiency, thereby improving the real-time performance 

of the fault diagnosis system. In contrast, the AWT or 

SVM algorithm's response time alone needs to be further 

optimized. This result highlights the advantages of 

multi-algorithm integration, especially in scenarios with 

high real-time requirements, such as the Industrial 

Internet of Things, which can effectively improve the 

responsiveness and overall performance of the fault 

diagnosis system. 

 

4 Conclusion 
This project intends to combine AWT and SVM and use 

particle swarm optimization to optimize their parameters 

to solve the industrial Internet of Things's fault diagnosis 

and early warning problems. Experiments have proved 

that this method has high recognition accuracy and 

adaptability to different types of faults. Specifically, the 

classification accuracy of the optimized algorithm 

reached 98%, which is 13 percentage points higher than 

the traditional algorithm, and the response time was 

significantly reduced, showing strong real-time and high 

efficiency. Compared with the simple use of AWT or 

SVM, this method has more advantages in 

high-dimensional data processing, complex fault 

diagnosis, etc. 
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