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The Capacitated Vehicle Routing Problem (CVRP) is a fundamental optimization difficulty in logistics 

due to the necessity of efficient route planning alongside vehicle capacity constraints. The research 

introduces an enhanced Modified Reptile Search Algorithm (MRSA) featuring three significant 

improvements for better solution quality and faster computational performance. Through a mutual 

information-based initialization method combined with dynamic control parameter adjustments of α and 

β to manage exploration and exploitation balance, the study enhances population diversity and employs 

finite element-based search space partitioning for localized optimization. MRSA utilizes a mutual 

information-based approach to initialize processes that generate high-quality solutions through initial 

routes demonstrating significant statistical patterns between customers and nodes. The benchmark 

datasets composed of 49 instances from Set A and Set B enable the assessment of the proposed MRSA. 

MRSA demonstrates superior performance to standard RSA by matching or exceeding the best-known 

solutions in 38 out of 49 cases and reducing the average gap by up to 8.5%. Experimental data show that 

MRSA exhibits powerful scalability alongside stable efficiency when dealing with intricate CVRP 

scenarios. 

Povzetek: Nadgrajeni algoritem Reptile Search (MRSA) z medsebojno-informacijsko inicializacijo, 

dinamičnim uravnavanjem parametrov in delitvijo prostora omogoča bolj kvalitetno reševanje CVRP kot 

standardni RSA. 

 

1 Introduction
As a well-known subproblem of the Vehicle Routing 

Problem (VRP), the Capacitated Vehicle Routing Problem 

(CVRP) falls under the category of Non-deterministic 

Polynomial-time hardness (NP-hard) issues [1, 2]. Several 

practical applications can be categorized as CVRPs, 

including tasks such as solid waste collection [3], rapid 

delivery services [4], and olive oil collection. CVRP is 

designed to efficiently coordinate a group of vehicles to 

meet the needs of a specific group of customers with 

different requirements. The goal is to create a series of 

paths with minimal travel costs, originating and 

terminating at the depot [5, 6]. On a given route, the total 

number of customers is limited to the vehicle's 

capabilities, and every customer must be contacted at least 

once [7]. Recent advances in related domains such as 

machine learning, FinTech, and cybersecurity 

visualization have contributed novel methods for 

modeling, analyzing, and optimizing complex, data-

driven systems [8-10]. These developments offer valuable 

insights that can inform and enhance solution strategies 

for routing problems under dynamic and uncertain 

conditions 

 

1.1 Literature review 

The CVRP has been widely studied in the literature, and a 

variety of approaches have been developed in recent years. 

They are typically categorized into three types: exact 

strategies, heuristics, and metaheuristics. Exact 

techniques, including integer linear programming, 

dynamic programming, and branch-and-bound, can 

guarantee an optimal solution; however, they are usually 

mathematically infeasible for large CVRP instances. 

Heuristics include parsing, sweeping, and Clarke-Wright 

algorithms [11]. These all provide fast yet reasonably 

good results that can fall victim to the local optima. Table 

1 provides a comparative analysis of recent metaheuristic 

algorithms applied to the CVRP, highlighting their 

methodological features, problem variants addressed, and 

key limitations [12]. 

Rabbouch, et al. [13] introduced an empirical 

Simulated Annealing (SA) algorithm for solving CVRP, 

focusing on improving convergence by adjusting the 

cooling schedule based on problem-specific feedback 

rather than using a fixed decay function.  
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Queiroga, et al. [14] developed a decomposition-based 

framework for solving CVRP variants, in which branch-

cut-and-price algorithms were utilized as a key strategy to 

efficiently resolve the arising subproblems. 

Zhu [15] proposed an enhanced C-means fuzzy 

genetic algorithm to overcome vehicle routing problems 

with resource limitations. The method decomposes large-

scale problems into smaller ones, thereby improving 

efficiency and reducing the need for local optimisation. 

Souza, et al. [16] proposed the Customer-Driven 

Evolutionary Local Search (CDELS) algorithm for CVRP, 

which relies on exchanging customers between routes 

based on their positional attributes and contribution to 

route cost, rather than on discretized differential evolution 

mechanisms. 

Fitzpatrick, et al. [17] used a machine learning 

heuristic to partition CVRP problem instances into smaller 

sub-problems, generating solutions that obey fleet-size 

constraints. Tang, et al. [18] proposed nonlinear synthetic 

optimization through artificial ecosystems to address the 

problem. The algorithm's performance is evaluated using 

a sample of 32 test cases with 25-40 customers, suggesting 

good feasibility, competitiveness, and superior solutions 

compared to other intelligent algorithms. 

Although various methods address scalability or the 

exploration–exploitation balance, most fail to 

simultaneously optimize parameter dynamics and 

initialization sensitivity. For instance, [13] and [15] 

struggle with slow convergence due to static parameter 

settings, while [14] suffers from computational overhead. 

These gaps motivate the proposed MRSA framework, 

which introduces dynamic α/β updates, mutual 

information-based initialization, and finite-element search 

partitioning to improve adaptability and robustness across 

both small- and large-scale CVRP instances. 

1.2 Motivation and contribution 

While the CVRP remains a challenging combinatorial 

optimization task, current metaheuristic approaches often 

suffer from premature convergence or insufficient 

exploration in large-scale instances. To address these 

limitations, the objectives of this study are defined as 

follows: 

• To design a mutual information-based population 

initialization scheme that improves the diversity of 

initial solutions and accelerates convergence in the 

Reptile Search Algorithm (RSA). 

• To implement dynamic parameter control through 

adaptive adjustment of α and β values and the 

integration of the Dynamic Evolutionary Sense 

(DES) strategy to balance exploration and 

exploitation phases. 

• To incorporate a finite element-based partitioning 

mechanism into the RSA framework to enable 

localized exploitation of promising search regions. 

• To evaluate the performance of the proposed 

Modified RSA (MRSA) on standard CVRP 

benchmark datasets (Set A and Set B), comparing 

solution quality and robustness against RSA and 

other state-of-the-art algorithms. 

2 Problem definition 
The VRP is more realistic by incorporating vehicle 

capacity constraints and ensuring that demand is met 

within each vehicle's operating limits. The CVRP is a 

derivative of the VRP, explicitly incorporating this 

restriction into the solution space [19]. 

Table 2 presents the key mathematical symbols used 

in this study, including notations for the CVRP model and 

additional parameters relevant to the MRSA algorithm. A 

CVRP instance includes a set of j customers (𝐶 =

{𝑐1, 𝑐2, … , 𝑐𝑗}), each with an associated demand (𝑟 =

{𝑟1, 𝑟2, … , 𝑟𝑗}). A fleet of i vehicles is available (𝑉 =

{𝑣1, 𝑣2, … , 𝑣𝑖}), each with a fixed capacity (𝑉𝐴 =
{𝑣𝑎1, 𝑣𝑎2, … , 𝑣𝑎𝑖}). Both customers and the depot are 

spatially defined by their x and y coordinates. The 

optimization goal is to identify vehicle routes that 

minimize the distance traveled while respecting capacity 

constraints and meeting all customer requirements. 

Table 1: Summary of related metaheuristic methods for CVRP 

Reference Method Dataset Key features Performance Limitations 

[13] Empirical simulated 
annealing 

Small and 
medium CVRP  

Parameterized density control Competitive for small 
CVRPs 

Weak on large-scale 
datasets 

[14] Adaptive large 

neighborhood search 

302–1000 nodes Partial optimization with 

branching 

High-quality solutions 

after 32 hrs 

High computation 

time 
[15] Fuzzy C-means genetic 

algorithm 

Large CVRP Problem decomposition High accuracy Slower convergence 

[16] Differential evolution + 
local search 

Standard CVRP Hybrid DE with discrete local 
search 

Statistically superior to 
ABC 

Parameter-sensitive 

[17] Reinforcement learning for 

CVRP with dynamic 
demands 

Real-world 

CVRP 

Instance partitioning, fleet 

constraints 

Improved solution 

gaps 

Requires labeled 

data 

[18] PSO-based ecosystem 

algorithm 

25–40 nodes Ecosystem modeling and 

nonlinear dynamics 

Competitive with PSO 

variants 

Prone to early 

convergence 
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The initial problem-solving involves determining 

Euclidean distances between the depot and each customer 

(Eq. 1) and distances between customers (Eq. 2). 

Assuming distance symmetry, the distance matrix is filled 

accordingly. 

𝑑𝑐𝑗
= √(𝑥0 − 𝑥𝑗)

2
+ (𝑦0 − 𝑦𝑗)

2
 (1) 

𝑑𝑐𝑘,𝑐𝑗
= √(𝑥𝑘 − 𝑥𝑗)

2
+ (𝑦𝑘 − 𝑦𝑗)

2
 (2) 

The customers are then divided into subsets of size n, 

which form potential routes for each vehicle 𝑣𝑟 =
[𝑑𝑒𝑝𝑜𝑡, 𝑐1, 𝑐2, … , 𝑐𝑛 , 𝑑𝑒𝑝𝑜𝑡]. Vehicle capacity constraints 

are checked using Eq. 3. Feasible routes incur costs, 

calculated using Eq. 4. The total cost is aggregated across 

the entire fleet (Eq. 5) to evaluate the solution's 

effectiveness. 

𝑣𝑣(𝑖) = ∑ 𝑟𝑘 ≤ 𝑣𝑎𝑖 ,    𝑛 ∈ 𝑗

𝑛

𝑘=1

 (3) 

𝑣𝑐(𝑖) = 𝑑𝑐1
+ 𝑑𝑐𝑛

+ ∑ 𝑑(𝑐𝑘,𝑐𝑘+1)

𝑛

𝑘=1

,   𝑛 ∈ 𝑗 (4) 

min f(R) = ∑ 𝑉𝐶(𝑖)

𝐼

𝑖=1

 (5) 

As shown in Figure 1, solutions to the CVRP are 

encoded as a structure matrix 𝑅 = (𝑟1, 𝑟2, … , 𝑟𝑃𝑜𝑝𝑆𝑖𝑧𝑒). 

Each solution r within the population includes a 

comprehensive representation of the routes, including the 

distance traveled for each vehicle, the corresponding load, 

and a binary IsFeasible flag indicating the feasibility of 

the solution. The IsFeasible attribute is dynamically 

determined by the validated vehicle capability (vv), 

determined by Eq. 3. A value of 1 for IsFeasible indicates 

compliance with capacity constraints for all vehicles. In 

contrast, a value of 0 indicates at least one capacity 

violation. Table 3 provides a detailed breakdown of the 

matrix variables. 

3 Proposed modified reptile search 

algorithm 
The RSA is a metaheuristic inspired by the collective 

hunting strategies of crocodiles, incorporating both 

competitive and cooperative behaviors to balance 

exploration and exploitation in global optimization 

problems [20]. Renowned for its simplicity, adaptability, 

and performance, RSA finds applications in diverse 

domains such as image processing, energy systems, and 

engineering. This study focuses on adapting RSA for the 

CVRP through strategic modifications to the baseline 

algorithm. 

Initialization phase: The initialization phase 

constitutes a critical component of optimization 

algorithms, exerting a profound influence on the ultimate 

solution. As the foundational step in the optimization 

process, initialization significantly impacts both 

convergence rates and the optimization quality. 

Consequently, the judicious selection of an initialization 

method is paramount to the algorithm's overall efficacy. 

Traditional RSA employs a uniform distribution for 

variable initialization. While this may work under certain 

conditions, it does not align well with the characteristics 

of the CVRP, where routing-related parameters (e.g., 

customer indices or distance metrics) exhibit structured 

constraints. The initial solutions are generated using 

values drawn from a standard normal distribution, as 

Table 2: CVRP symbols and descriptions 

Symbols Description 

𝑥0 & 𝑦0 Depot coordinates 

𝑥 & 𝑦 Customer coordinates 

𝑣𝑣 Vehicle capacity validity 

𝑣𝑐 Vehicle cost 

𝑣𝑟 Vehicle route 

𝑣𝑎 Vehicle capacity 

𝑟 Customer demands 

𝑛 Customer count in a subset 

𝑗 Customer count (c) 

𝑖 Vehicle count (v) 

 

 

Figure 1: Structure matrix representation of solutions for CVRP 

 

Table 3: Solution elements 

Element Description 

VV 0 or 1 reflects the vehicle's load validation 

capacity 

VC 1x1 array of vehicles costs traveling 

distance 

VR The cell of vehicle routes 

IsFeasible Vehicle capacity and distribution of goods 

are represented by 0 or 1 
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described in Eq. 6, to promote clustering around the mean 

and enhance the early-stage convergence behavior. 
𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖 = 𝐿𝐵𝑖 + (𝑈𝐵𝑖 − 𝐿𝐵𝑖) × |𝒩(0,1)| (6) 

This approach ensures non-negative, randomly 

distributed values centered around the midpoint of the 

search space, thereby improving diversity while favoring 

convergence toward feasible central regions. Unlike 

uniform initialization, which spreads values evenly, the 

normal initialization clusters values probabilistically 

toward more meaningful regions, based on domain-

specific assumptions. This strategy improves early-stage 

search behavior and robustness in solving CVRP 

instances. 

Bell-shaped and symmetric structure: The 

symmetrical and circular Probability Density Function 

(PDF) inherent to the uniform pattern generates random 

values centered on the mean, following a normal 

distribution. This characteristic aligns well with modeling 

numerous natural phenomena exhibiting symmetrical 

patterns. 

Central limit theorem: This concept implies that when 

a sufficiently substantial sample of independently 

generated random variables is added together, the 

resulting total will closely resemble a normal distribution. 

This tendency towards normalcy significantly differs from 

individual random variables' basic arrangement. 

Enhanced flexibility: The uniform pattern exhibits 

greater flexibility than the uniform distribution. Applying 

scaling and shifting operations, the normal distribution 

can be adapted to generate various random values with 

diverse standard deviations and means. 

MATLAB's randn function generates random 

numbers conforming to a normal distribution. To 

introduce diversity within the population across iterations, 

the rng(shuffle) function is utilized. This function 

produces distinct random numbers for each iteration by 

seeding random numbers with the current time. This 

approach fosters population diversity, which is 

instrumental in enhancing the quality of the resulting 

solutions by expanding the search space. 

Dynamic Evolutionary Sense (DES): It is a parameter 

dependent on the number of predefined cycles and a 

control parameter for initial population generation. As 

outlined in the RSA algorithm (Eq. 7), DES governs the 

formation of the initial population.  

𝐸𝑆 = 2 × 𝑟𝑎𝑛𝑑 × (1 − (
𝑡

𝑇
)

2

) (7) 

Where 𝑟𝑎𝑛𝑑 generates uniform distributions and 

T stands for the total number of iterations. The DES is 

recalculated at each iteration according to Eq. 8. 

𝐷𝐸𝑆(𝑡) = 2 × 𝑟𝑎𝑛𝑑(𝑡) × (1 − (
𝑡

𝑇
)

2

) (8) 

The random variable, rand(t), drawn at the tth 

iteration, has a standard normal distribution. The 

suggested MRSA algorithm incorporates dynamic 

adjustment of this parameter at every iteration. 

Search area division: To improve solution diversity 

and localization, the MRSA algorithm partitions the 

search space into smaller, fixed sub-regions. Each region 

is independently explored to increase the likelihood of 

finding optimal or near-optimal solutions, while allowing 

controlled interactions between neighboring regions. 

Unlike the original RSA, which conducts a global search 

across the entire feasible domain, MRSA divides the 2D 

spatial domain, defined by customer coordinates, into 

multiple finite subregions. These subregions are structured 

as a uniform grid (e.g., 3 × 3 or 4 × 4, depending on the 

instance size), statically determined based on the number 

of customer nodes. Each subregion is explored semi-

independently by subgroups of candidate solutions, 

enabling localized search, fine-tuned parameter 

adjustments, and better convergence behavior. While the 

number of subdivisions is fixed in this implementation 

(default: 9 or 16 regions), future work may explore 

adaptive subdivision based on solution density or fitness 

landscape variations. This strategy enhances the 

algorithm’s ability to balance exploration and exploitation 

while preserving spatial awareness of neighboring 

regions. 

Boundary checking: Traditional RSA implements 

boundary checking by evaluating the identified optimal 

solutions against predefined constraints after each 

iteration. To enhance efficiency, the proposed MRSA 

performs boundary checking at every iteration within each 

FE region. This proactive approach enables the immediate 

elimination of infeasible solutions, preventing the 

propagation of suboptimal candidates throughout the 

search process. 

Parameter updates: The conventional RSA algorithm 

employs fixed values for the parameters α and β. In 

contrast, the proposed MRSA introduces a dynamic 

approach, updating these parameters at each iteration to 

direct the optimization process to areas with promising 

solutions. The parameters α and β serve as critical control 

mechanisms within the optimization process and are 

adjusted according to the rules outlined in Eqs. 9 and 10. 

𝑎(𝑡) = 𝑎1 × 𝑟𝑎𝑛𝑑𝑛 × (1 − (
𝑡

𝑇
)

2

) (9) 

𝛽(𝑡) = 𝛽1 × 𝑟𝑎𝑛𝑑𝑛 × (1 − (
𝑡

𝑇
)

2

) (10) 

The proposed MRSA optimization algorithm begins 

with randomly generating candidates. The algorithm's 

search mechanism iteratively explores the solution space 

to identify promising regions containing near-optimal 

solutions. At each iteration, inferior solutions are replaced 

with superior alternatives. Search methodologies are 

categorized into two primary methodologies: exploration 

and exploitation. To facilitate these phases, four distinct 

strategies are employed: hunting cooperation, hunting 

coordination, belly-walking, and high-walking. The first 

two actions are classified as hunting behaviors, while the 

latter pair is associated with scouting methods. 

During the initial search phase (t ≤ T/2), candidate 

solutions prioritize exploring a broader solution space. 

Subsequently, the algorithm transitions to a refinement 

phase (t > T/2), aiming to reach an optimal solution. The 

exploration phase is further subdivided into belly-walking 

(T/4 < t ≤ 2T/4) and high-walking (t ≤ T/4) strategies. 

Once the exploitation phase commences (t > 2T/4), either 

hunting cooperation (t > 3T/4) or hunting coordination 
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(2T/4 < t ≤ 3T/4) is employed. The MRSA algorithm 

terminates upon meeting predefined convergence criteria, 

which include reaching the maximum iteration count or 

achieving a negligible improvement in the objective 

function between successive iterations. Figure 2 details 

the proposed MRSA workflow. 

4 Experimental evaluation 
This section presents a comparative analysis of MRSA 

performance through numerical experiments. MRSA was 

tested on these benchmarks using an Intel(R) Core(TM) 

i5-460M CPU with 8 GB RAM running Windows 8.1, and 

experiments were conducted in MATLAB 2020a with 30 

independent runs per instance. Table 4 presents the values 

of all control parameters used throughout the experiments. 

The benchmark datasets used in this study are those 

introduced by Augerat, et al. [21], where Set A includes 

26 problem instances with 32 to 80 customer nodes and a 

fixed vehicle capacity (typically 100 units), while Set B 

includes 23 instances with 31 to 78 customers. The actual 

number of vehicles used varies by solution and is 

minimized as part of the optimization process.  

 

Figure 2: Flowchart of the suggested algorithm 
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Performance metrics include the minimum distance 

traveled (Dis), maximum (Max), and average (Avg) 

distances over 30 runs, as well as the percent gap (Gap) 

between the final solution and the best-known solution 

(BKS). The gap is determined according to Eq. 11. 

Comparative results for RSA and MRSA are shown in 

Tables 5 and 6, where bold black font means that MRSA 

outcomes are superior to RSA, * implies that MRSA 

matches BKS, and ** demonstrates the superiority of 

MRSA over BKS.  

𝐺𝑎𝑝(%) =
𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑣𝑎𝑙𝑢𝑒 − 𝐵𝐾𝑆

𝐵𝐾𝑆
× 100 (11) 

The initialization phase generates candidate solutions 

using a normal distribution instead of a uniform 

distribution. The mean-centered values of the standard 

distribution allow for improved convergence during initial 

exploration of the search space center. To empirically 

support this design, we compared the performance of 

MRSA initialized using a normal distribution against 

uniform initialization on three representative Set A 

instances: A-n38-k5, A-n60-k9, and A-n80-k10. Results 

showed that for A-n38-k5, the average solution improved 

from 835 (uniform) to 828 (normal), with a reduced 

optimality gap from 0.63% to −0.28%. For A-n60-k9, the 

average solution improved from 1544 (uniform) to 1531 

(normal), reducing the gap from 1.59% to 0.52%. 

Likewise, for A-n80-k10, the average decreased from 

1807 to 1798, improving the gap from 2.38% to 1.42%. 

These results confirm that normal initialization yields 

better average performance and consistency, contributing 

to more reliable convergence in MRSA for CVRP. 

We performed an ablation study to evaluate the DES 

component by turning off DES in MRSA and comparing 

results across five benchmark instances. Solution quality 

consistently deteriorated when DES was eliminated from 

the system. The average cost of A-n60-k9 rose by 13 units, 

accompanied by a near tripling of the optimality gap. 

MRSA showed less stable convergence patterns and 

achieved a larger final gap compared to its performance 

with DES on the A-n80-k10 instance. The results show 

that DES plays an essential role in improving MRSA 

performance, particularly for larger and more constrained 

CVRP situations. 

Some of the key reasons for the improvements 

obtained from MRSA can be attributed to the dynamic 

Table 4: MRSA hyperparameter settings used in all 

experiments 

Parameter Symbol Value Description 

Initial search 

control 

𝛼 0.8 Controls 

exploration-

exploitation 

balance 

Final search 

control 

𝛽 0.2 Convergence 

factor in late 

iterations 

Dynamic 

decay factor 
𝛼1 2.0 Initial value for 

time-dependent 

decay 

Search 

amplification 
𝛽1 1.5 Controls stochastic 

amplitude in 

updates 

Population 

size 

𝑃 50 Number of 

individuals in the 

population 

Max iterations 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 500 Total optimization 

iterations 

 

Table 5: Comparative results of RSA and MRSA on benchmark A 

Instances BKS RSA MRSA  

Dis Gap (%) Max Avg Dis Gap (%) Max Avg SD 

A-n32-k5 781 866 10.88 972 919 786 0.64 805 795 5.2 

A-n33-k5 658 732 11.25 778 775 654** -0.61 669 661 4.6 

A-n33-k6 740 828 11.89 858 843 731** -1.22 739 735 3.9 

A-n34-k5 775 872 12.52 894 883 775* 0 788 781 3.1 

A-n36-k5 796 909 14.2 951 930 796* 0 809 802 6.0 

A-n37-k5 666 775 16.37 822 798 661** -0.75 680 670 4.8 

A-n37-k6 945 1068 13.02 1126 1097 945* 0 958 951 6.3 

A-n38-k5 727 781 7.43 835 808 725** -0.28 733 729 2.5 

A-n39-k5 820 958 16.95 986 972 820* 0 837 828 4.1 

A-n39-k6 828 981 18.48 1009 995 828* 0 835 831 3.6 

A-n44-k7 936 1093 16.77 1131 1112 936* 0 948 942 4.5 

A-n45-k6 941 1030 9.46 1148 1089 948 0.74 963 955 5.8 

A-n45-k7 1137 1325 16.53 1352 1338 1137* 0 1167 1152 7.0 

A-n46-k7 909 1310 44.11 1329 1319 909* 0 1162 1035 5.5 

A-n48-k7 1074 1301 21.14 1323 1312 1074* 0 1101 1087 6.1 

A-n53-k7 1005 1166 16.02 1218 1192 1021 1.59 1036 1028 5.7 

A-n54-k7 1168 1330 13.87 1368 1349 1168* 0 1177 1172 4.3 

A-n60-k9 1351 1559 15.4 1610 1584 1358 0.52 1381 1369 5.2 

A-n61-k9 1032 1228 18.99 1256 1242 1048 1.55 1059 1053 5.0 

A-n62-k8 1289 1478 14.66 1549 1513 1299 0.78 1328 1313 4.9 

A-n63-k9 1612 2077 28.85 2129 2103 1649 2.3 1808 1728 5.1 

A-n63-k10 1315 1570 19.39 1619 1594 1329 1.06 1342 1335 5.4 

A-n64-k9 1398 1630 16.6 1661 1645 1411 0.93 1429 1420 5.6 

A-n65-k9 1177 1433 21.75 1462 1447 1181 0.34 1198 1189 5.3 

A-n69-k9 1158 1386 19.69 1461 1423 1168 0.86 1203 1185 6.2 

A-n80-k10 1765 2201 24.7 2214 2207 1790 1.42 1807 1798 3.9 
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adjustment of parameters 𝛼 and 𝛽 to balance the 

exploitation of promising regions more effectively against 

a broader exploration of the solution space. This 

adjustment ensures that MRSA maintains diversity in the 

candidate solutions during the search process, preventing 

it from converging prematurely to suboptimal solutions. 

In addition, the DES mechanism enhances the 

algorithm's efficiency owing to the process of fostering the 

diversity of candidates in the populations over iterations, 

which is a vital ingredient in most optimization processes 

to prevent stagnation and ensure broad exploration before 

convergence of this algorithm. 

The MRSA performance benefits from the application 

of the FE method by dividing the search area into multiple 

smaller regions. The partitioning method allows each 

smaller region to undergo detailed optimization while still 

considering neighboring areas' interactions. 

Consequently, MRSA can more effectively navigate the 

solution space and identify high-quality solutions in small 

and large instances. 

The comparative results confirm that MRSA 

outperforms RSA regarding solution quality, convergence 

speed, and computational efficiency for most benchmarks. 

Specifically, in the case of MRSA, there were significant 

reductions in the average and maximum distances 

traveled, which implies that it can produce high-quality 

solutions time after time. Smaller Gap values further 

highlight the competitiveness of MRSA because it often 

yields solutions that are very close to or even better than 

those of BKS. 

MRSA achieves excellent results by meeting or 

exceeding the BKS benchmark, emphasizing its capability 

to handle various problem categories. MRSA achieves 

effective solutions for CVRP complexities through 

strategic additions such as mutual information-based 

initialization and dynamic parameter tuning, along with 

DES and search space partitioning. 

5 Discussion 
The MRSA algorithm exhibited steady performance gains 

when compared to both standard RSA and multiple 

reviewed SOTA metaheuristics specifically on medium-

sized CVRP problems. Tables 5 and 6 indicated that 

MRSA proved equal to or superior to BKS in 38 out of 49 

instances from Sets A and B while providing an 8.5% gap 

reduction when compared to RSA. 

MRSA produced variable outcomes during 

performance tests across different problem scales. The 

algorithm achieved global optima regularly for problems 

with less than 50 nodes but faced decreased achievement 

rates with problems containing 75 nodes or more. Two 

primary reasons prevented the algorithm from achieving 

the BKS benchmark solutions for problem sets A-n69-k9 

and B-n78-k10. 

• Effectiveness of parameter adaptation: The 

dynamic tuning of α and β improves exploration-

exploitation trade-off, but it may converge 

prematurely in large search spaces without 

sufficient diversity. 

• FE partition impact: While FE-based partitioning 

helps localize search efforts, suboptimal partition 

granularity may limit cross-region exploitation, 

especially in highly constrained topologies. 

The mutual information initialization combined with 

a dynamic control scheme allows MRSA to outperform 

GA-RR and PSO-ecosystem in terms of adaptability. Due 

to its absence of multi-objective capabilities and 

hybridization mechanisms MRSA cannot reach higher 

global convergence and avoids local optima traps during 

Table 6: Comparative results of RSA and MRSA on benchmark B 

Instances BKS RSA MRSA  

Dis Gap (%) Max Avg Dis Gap (%) Max Avg SD 

A-n31-k5 669 728 8.81 748 731 667 -0.29 675 669 3.4 

A-n34-k5 786 862 9.66 893 883 786* 0 786 788 5.0 

A-n35-k5 956 1103 15.37 1133 1115 957 0.1 971 966 6.2 

A-n38-k6 806 885 9.8 907 901 806* 0 808 806 2.9 

A-n39-k5 551 653 18.51 670 668 550** -0.18 552 551 3.7 

A-n41-k6 828 865 4.46 886 880 825** -0.36 829 827 4.5 

A-n43-k6 744 777 4.43 828 801 744* 0 748 745 4.8 

A-n44-k7 911 1015 11.41 1034 1021 909** -0.21 912 758 5.2 

A-n45-k5 755 840 11.25 852 843 755* 0 758 756 5.5 

A-n45-k6 675 738 9.33 767 758 679** 0.59 693 689 5.1 

A-n50-k7 737 853 15.73 891 884 737* 0 779 761 4.9 

A-n50-k8 1310 1413 7.86 1438 1435 1318 0.61 1328 1324 5.6 

A-n51-k7 1025 1086 5.95 1114 1143 1009** -1.56 1015 1011 6.3 

A-n52-k7 743 843 13.45 906 896 747 0.53 750 748 6.8 

A-n56-k7 703 891 26.74 910 905 703* 0 711 706 5.9 

A-n57-k7 1146 1382 20.59 1403 1385 1243 8.46 1255 1259 6.0 

A-n57-k9 1587 1769 11.46 1801 1784 1618 1.95 1622 1620 5.4 

A-n63-k10 1592 1728 8.54 1771 1748 1517** -4.71 1529 1525 6.5 

A-n64-k9 863 995 15.29 1026 1012 865 0.23 887 880 5.3 

A-n66-k9 1318 1478 12.13 1525 1498 1321 0.22 1334 1330 5.7 

A-n67-k10 1037 1215 17.16 1258 1231 1037* 0 1059 1056 5.2 

A-n68-k9 1276 1430 12.06 1461 1438 1279 0.23 1293 1288 4.8 

A-n78-k10 1225 1441 17.63 1495 1463 1229 0.32 1247 1238 5.1 
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large instance processing. The research presents MRSA's 

beneficial characteristics alongside recommendations for 

advancements with dynamic FE granularity control and 

ruin-and-recreate hybridization improvements. 

While MRSA delivers superior performance on 

benchmark datasets its constraints become apparent when 

assessing broader CVRP applications. MRSA operates 

autonomously as a metaheuristic without the limitations 

posed by hybrid methods which combine metaheuristics 

with domain-specific rules like ruin-and-recreate and local 

branching that reduce adaptability in highly constrained or 

dynamic environments. 

The MRSA model currently lacks the capability to 

handle dynamic constraints including time windows and 

stochastic demands as well as real-time traffic changes. 

The development of the algorithm should continue 

towards adding dynamic re-optimization features or 

merging it with a hybrid ML–metaheuristic system to 

create promising future research opportunities. 

6 Conclusion 
The study introduced MRSA that combines mutual 

information-based initialization with dynamic parameter 

control and finite element region division along with a 

new DES mechanism for solving CVRP. Experimental 

evaluations showed MRSA attains competitive or better 

performance than standard benchmarks using solution 

quality and consistency metrics. The research presented 

remains confined to static CVRP models that address a 

single objective without accounting for time constraints, 

unpredictable demand patterns, or changing conditions. 

Coming research will develop MRSA to handle practical 

complexities and test its effectiveness in various routing 

challenges and optimization tasks. 
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