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When wideband electronic signals undergo multi-frequency mutations, the mutation times, amplitudes 

and phase changes of each frequency component are different, making it extremely difficult to accurately 

distinguish the characteristics of the mutated signals from the complex signal background. To this end, a 

detection method integrating the improved mask EMD and PSO-SVM is proposed. The singular value 

decomposition method is adopted to denoise wideband electronic signals, and the steady-state components 

and abrupt components of the signals are analyzed. The improved mask EMD method is adopted to extract 

the intrinsic modal function components of each order, extract the multi-frequency instantaneous 

frequencies and instantaneous energies of the corresponding components of the wideband electronic 

signal, construct the multi-frequency mutation feature set, and input it into the PSO-SVM detection model 

to capture the steady-state components and mutation components in the signal, and realize the multi-

frequency mutation detection of wideband electronic signals. The experimental results show that the 

research method adopts the combined processing of improved mask and EMD, which reduces the signal 

reconstruction error compared with the traditional EMD method and eliminates the modal aliasing 

phenomenon. Combined with the SVM classifier optimized by PSO, the F1-score reached 0.92 on the same 

test set, which was significantly better than the machine learning non-orthogonal signal detection method. 

The indicators such as the instantaneous bandwidth (12.58Hz), frequency resolution (0.18Hz) and 

dynamic range (100dB) of this method are all superior to those of the baseline method, providing an 

effective solution for the detection of sudden changes in broadband signals in complex communication 

environments. 

Povzetek: Za zaznavanje sprememb v širokopasovnih elektronskih signalih v zapletenih komunikacijskih 

okoljih je razvita metoda, ki združuje razširjeno maskirano empirično razcepno metodo (improved mask 

EMD), singularno vrednostno dekompozicijo za odstranjevanje šuma ter model podpore vektorjev, 

optimiziran z delčnim rojem (PSO-SVM). Metoda učinkovito loči stabilne in mutirajoče komponente 

signala ter omogoča kvalitetno zaznavanje večfrekvenčnih sprememb v hrupnih širokopasovnih sistemih. 

 

1 Introduction 
With the rapid change of information technology, wireless 

communication technology plays an increasingly 

important role in national economy, national defense 

construction, scientific research and other fields [1]. 

However, in the actual communication process, the signal 

transmission environment presents a high degree of 

complexity and variability, not only the type and number 

of signals climbing dramatically, the mutual interference 

between the signals is also increasingly prominent [2]. 

Especially in the broadband communication system, due 

to the significant expansion of the signal bandwidth, the 

multi-frequency mutation phenomenon of the signal 

becomes particularly prominent. This kind of signal is 

famous for the complexity of frequency components, the 

rapidity of the change speed and the short duration, which 

undoubtedly greatly increases the difficulty of signal  

 

processing, and may also pose a serious challenge to the 

stability and reliability of the communication system. 

Therefore, in-depth exploration and study of broadband  

electronic signal multi-frequency mutation detection 

methods applicable to complex communication 

environments is not only of far-reaching significance for 

improving the overall performance of communication 

systems, but also an indispensable part of guaranteeing the 

quality of information transmission and promoting the 

continuous progress of wireless communication 

technology [3]. 

In recent years, scholars at home and abroad have 

achieved certain research results in multi-frequency 

mutation detection of broadband electronic signals. Yldrm 

trains a deep learning model that can detect signals by 

deep learning OFDM-AIM signals. Then the signal to be 

detected is inputted into the model and the signal detection 
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results are output, and then the intermediate results or 

parameters of pre-calculation are stored by using look-up 

tables, the parameters are optimized by using the taboo 

search algorithm, and the parallel processing is adopted to 

accelerate the calculation process and improve the signal 

detection efficiency. Deep learning models may only be 

exposed to a limited number of signal patterns during the 

training stage. However, in a complex communication 

environment, the multi-frequency sudden change 

characteristics of signals may exceed the training range of 

the model, and it is difficult for the model to fully learn all 

possible feature combinations. Furthermore, when the 

lookup table is confronted with a large number of mutation 

signals, its storage and retrieval efficiency may be 

severely affected, and it is difficult to cover all possible 

mutation situations [4]. Kulkarni et al. use deep learning 

and other techniques for feature extraction and pattern 

recognition of wireless signals, and at the same time, 

combined with approximation computation techniques, to 

reduce the computational complexity and energy 

consumption under the premise of ensuring that the 

detection accuracy meets the needs of the application. 

Approximate computing technology is achieved by 

sacrificing some accuracy. When dealing with multi-

frequency abrupt change signals, this approximate 

calculation may lead to the loss of key feature information, 

making it difficult for the model to accurately distinguish 

the true abrupt change signal features [5]. Baek et al. use 

FTN technology to transmit higher rate non-orthogonal 

signals at the transmitter side, and use the DBN-SVM 

model at the receiver side to perform anomalous feature 

extraction and pattern recognition on the received signals. 

When the DDBN-SVM model is confronted with such 

complex ISI and variable multi-frequency mutation 

signals, it cannot fully consider all possible ISI and multi-

frequency mutation combinations during training, 

resulting in a decrease in the recognition accuracy of 

mutation signal features in practical applications [6]. 

Meier et al. used acousto-optic frequency modulation and 

other technical means to achieve high-speed, highly linear 

and continuous step frequency modulation inside a fiber 

optic loop, so as to generate ultra-wideband radar signals 

by using low-speed electronic signals, and then realize the 

detection of high-bandwidth arbitrary signals. This 

method itself may introduce noise and distortion during 

the signal conversion and transmission process. Multi-

frequency abrupt change signals will further intensify this 

interference, increase the difficulty of feature extraction 

and resolution, and it is difficult to capture the detailed 

variation information of each frequency component [7].  

Aiming at the problem of multi-frequency mutation 

detection of broadband electronic signals in complex 

communication environments, this study focuses on 

solving the following three key scientific issues: 

(1) How to improve the mask EMD method to 

significantly reduce the modal aliasing phenomenon in the 

IMF decomposition of wideband signals? 

(2) Under the condition of strong noise interference, 

how to effectively extract and distinguish the steady-state 

components and abrupt components of broadband signals? 

(3) How to construct a detection model with strong 

robustness to improve the recognition accuracy of multi-

frequency abrupt change signals? 

Based on these problems, this paper proposes a 

detection method that integrates the improved mask EMD 

and PSO-SVM.  

 

 

The Singular Value Decomposition (SVD) is adopted to 

preprocess the wideband electronic signal, effectively 

suppressing the interference of complex environmental 

noise. By analyzing the characteristic differences between 

the steady-state and mutant components of the signal, an 

improved mask EMD method was proposed, which 

significantly improved the modal aliasing problem of IMF 

components. The Hilbert transform was utilized to extract 

the characteristics of multi-frequency instantaneous 

frequencies and instantaneous energies, and an SVM 

detection model based on PSO optimization was 

constructed, achieving the accurate identification of multi-

frequency abrupt components in wideband electronic 

signals. The experimental results show that this method is 

superior to the existing technologies in key indicators such 

as instantaneous bandwidth and frequency resolution. 

2 Broadband electronic signal multi-

frequency mutation detection 

2.1 SVD-based denoising of broadband 

electronic signals for complex 

communication environments 

In the complex communication environment, broadband 

electronic signals are subject to multiple threats such as 

same-frequency interference, neighboring-frequency 

interference, intermodulation interference and thermal 

noise, scattering noise, scintillation noise, etc. These 

interferences and noises are easy to trigger changes in the 

signal spectra [8], which lead to sudden changes in the 

frequency components during the transmission process. In 

order to improve the reliability and accuracy of signal 

transmission, it is crucial to detect multi-frequency 

mutations in broadband electronic signals. Through 

effective denoising of broadband electronic signals in 

complex communication environments, the influence of 

interference and noise can be significantly reduced or 

eliminated, so that the multi-frequency mutation 

characteristics of broadband electronic signals are more 

clearly discernible, and the accurate capture and 

identification of frequency mutation components can be 

realized [9], which improves the accuracy and efficiency 

of the multi-frequency mutation detection, and provides a 

solid guarantee for the stable operation of the 

communication system. The singular value decomposition 

(SVD) method removes the noise and unnecessary 

components of broadband electronic signals by 

decomposing the broadband electronic signal matrix and 

filtering and truncating the singular values in the matrix. 
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For noise-contaminated broadband electronic signals 

 1 2, , , LX x x x=  in complex communication 

environments, constructed into a ( )m n m n   

dimensional Hankel matrix given by: 
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Of which, A  is the Hankel matrix; the embedding 

dimension is denoted by m ; the number of signal 

sampling points is n  and is satisfied 1m n L+ − = . 

A singular value decomposition of the Hankel matrix 

yields: 
TA U V=                      (2) 

Of which, U  is m m  dimensional orthogonal 

matrices; V  is n n  dimensional orthogonal matrices; 

  is m n  dimensional matrix. The main diagonal 

elements are the singular values of the matrix and are 

arranged in descending order. 

Matrix A  is the Hankel matrix composed of the 

noise-contaminated broadband electronic signals, which 

can be expressed as the sum of the subspace of the 

uncontaminated broadband electronic signals and the 

subspace of the noise, and is computed as: 
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Of which: A  is the subspace of broadband electronic 

signals uncontaminated by noise; N  is the noise 

subspace. Noise reduction of the original broadband 

electronic signal translates into the known A , looking for 

the best approximation of A , The better the approach 

degree, the more obvious the noise reduction effect is [10]. 

The first k effective singular values of the diagonal 

matrix are preserved, and the other singular values are set 

to zero, the reconstructed matrix is obtained by using the 

inverse process of singular value decomposition. 

Generally speaking, the reconstruction matrix is no longer 

in the form of Hankel matrix. In order to obtain the width 

of the electronic signal after noise reduction, it is 

necessary to average the elements of the reconstruction 

matrix with the following formula: 
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Of which: i  represents the index value in the 

reconstructed signal sequence; l 、 o  intermediate 

variables used for summing the boundaries of the range, 

( )max 1, 1l i m= − + , ( )min ,o n i= ; j  represents 

the loop variable of the summation operation. 

 1 2, , , LX x x x=  which is composed by ix , 

that is, the broadband electronic signal after noise 

reduction. 

SVD can decompose the broadband electronic signal 

matrix into the product form of the left singular matrix, the 

singular value matrix and the right singular matrix. The 

noise in the signal is usually reflected in the components 

corresponding to smaller singular values. The denoising 

purpose can be achieved by processing the singular values. 

Since most of the smaller singular values correspond to 

the noise components, truncating these singular values can 

effectively remove the noise, but at the same time, it may 

also cause some signal information loss. As for the 

selection of the optimal cut-off point, different truncation 

positions are attempted, and factors such as the 

improvement degree of SNR of the signal after noise 

reduction, the size of the mean square error, and the 

retention of signal characteristics are comprehensively 

considered. For example, if a higher noise reduction level 

is pursued, more singular values might be truncated, but 

this may lead to an increase in signal information loss; If 

more attention is paid to preserving the details of the 

signal, the number of truncated singular values should be 

appropriately reduced, and a trade-off should be made 

between noise reduction and signal information loss to 

determine the optimal cut-off point, so that the denoised 

signal can retain the key information of the original signal 

to the greatest extent while meeting certain noise 

reduction requirements. 

2.2 Analysis of steady state and mutation 

components of broadband electronic 

signals 

The steady state component reflects the inherent 

characteristics of the signal in a relatively stable state, such 

as the frequency distribution and amplitude characteristics 

of the normal mode of operation, and provides the basis 

for understanding the regular performance of the signal. 

By accurately grasping the steady state component, the 

normal model of the signal can be constructed as a 

reference standard for judging the occurrence of mutation. 

The mutation component, on the other hand, directly 

reflects the abnormal changes of the signal, and is the core 

concern of multi-frequency mutation detection. Analyzing 

the mutation components can clarify the time of the 

mutation, the frequency range involved, the magnitude of 

the mutation and other key parameters, which can help to 

understand the nature and characteristics of the mutation. 

By combining the two analyses, multi-frequency mutation 

phenomena can be accurately identified in complex 

broadband electronic signals, providing powerful support 

for subsequent signal processing, fault diagnosis, target 

detection and other applications. Therefore, before the 

multi-frequency mutation detection of broadband 

electronic signals, it is necessary to clarify the meanings 

and differences between the steady state components and 
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the mutation components in broadband electronic signals. 

In order to explain the difference between these two 

components as easily as possible, the statistical probability 

and the difference information will be considered 

comprehensively. From the point of view of statistical 

probability theory, the steady state component can be 

regarded as a kind of component that appears in broadband 

electronic signals from the beginning to the end, while the 

mutation component is a kind of component that appears 

episodically in broadband electronic signals, and the two 

kinds of components can be expressed in the form of 

Equation (5), and Equation (6), respectively, in which sP

and mP denote the frequency of occurrence of the steady 

state component and the mutant component in the 

broadband electronic signal, respectively. 

1sP                                   (5) 

s mP P                                  (6) 

From the point of view of difference information 

theory, there are obvious differences in attribute 

characteristics between the steady state components and 

the mutation components, and these differences can then 

be recognized that these two components belong to 

different kinds rather than fluctuations in attribute 

characteristics between components in the same kind, 

which can be expressed in the form of equation (7), in the 

formula, ( )F  denotes a method for obtaining attribute 

characteristics of broadband electronic signal 

components. sX and mX denote the steady-state and 

mutation components of the broadband electronic signal, 

respectively.  is the critical value of the difference 

between the two components in terms of certain attribute 

characteristics, the value of which needs to be determined 

according to the specific attribute characteristics. 

( ) ( )s mF X F X −                          (7) 

By combining these two theories to consider the 

components of broadband electronic signals, the meaning 

and difference between the steady state components and 

the mutation components can be further understood. 

According to the meaning and difference of these two 

components, the detection of multi-frequency mutation 

components of broadband electronic signals can be 

realized. In this paper, we extract the multifrequency 

instantaneous frequencies and instantaneous energies of 

broadband electronic signals and input them as feature 

quantities into the PSO-SVM-based detection model to 

realize the detection of multifrequency mutations of 

broadband electronic signals. 

 

2.3 Broadband electronic signal 

decomposition based on improved mask 

EMD 

EMD decomposition of denoised broadband 

electronic signals can help detect and analyze multi-

frequency mutations in signals by revealing the time-

dependent characteristics of the signals on different time 

scales and frequency components [11]. However, the 

decomposition of broadband electronic signals using the 

EMD method suffers from modal aliasing [12], i.e., 

signals with different frequency components may interfere 

with each other, resulting in inaccurate decomposition 

results. Therefore, this paper adopts the improved mask 

EMD method to process the denoised broadband 

electronic signals, aiming at effectively suppressing the 

modal aliasing phenomenon and improving the accuracy 

and reliability of the signal decomposition through the 

introduction of mask signals. The improved mask signal 

generation process is as follows: 

(1) The denoised broadband electronic signal is 

denoted by ( )x t , creating an improved mask signal 

( )s t , through the calculation with ( )x t , the new signal 

( )x t+ and ( )x t−  can be obtained: 

( ) ( ) ( )

( ) ( ) ( )

x t x t s t

x t x t s t

+

−

= +


= −

                      (8) 

(2) EMD decomposition was performed to ( )x t+  

and ( )x t−  to obtain the intrinsic modal functions ( )h t+  

and ( )h t− , respectively. 

(3) The 1IMF component of the denoised broadband 

electronic signal ( )x t  is: 

( ) ( ) ( )12h t h t h t−

+ −= +                        (9) 

Where: the analytical time of the intrinsic modal 

function is expressed as t . 

Repeating steps (1)-(3) continuously, the IMF 

components and residuals of each order can be obtained, 

namely: 

( ) ( ) ( )ix t c t r t= +                        (10) 

Where, ( )ic t  is the IMF components of each order; 

( )r t  is the residual. 

The modal overlap problem during EMD 

decomposition can be eliminated by adding an improved 

mask function to the denoised broadband electronic 

signal, in which the main step is to find the improved mask 

signal 
( )s t

. In this paper, an improved mask signal is 

constructed based on the energy method. 
Select one or more specific signal features or 

attributes that can reflect important information or patterns 

of the denoised broadband electronic signal ( )x t  to 

construct the auxiliary signal ( )u t , after applying the 

Hilbert transform to it, the signal ( )v t  is obtained, 

calculated as: 
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( ) ( ) ( )
1

*v t u t t
−

=                        (11) 

Where, the convolution operator of ( )u t  and 

( )
1

t
−

 is denoted as * ; The new signal ( )u t  generated 

after the Hilbert transform is denoted as ( )v t . When 

processing the auxiliary signal ( )u t  using the Hilbert 

transform to construct the improved mask signal, the focus 

is not on the overall stationarity of the signal, but on the 

relatively stable characteristic pattern of the signal within 

a local period. Specifically, when constructing the 

auxiliary signal ( )u t , select the signal characteristics that 

can reflect the important information of the denoised 

wideband electronic signal ( )x t , and these 

characteristics exhibit a certain stability within a relatively 

short time window. Within this short time window, the 

Hilbert transform can effectively extract features such as 

the instantaneous amplitude and instantaneous frequency 

of the signal, and then be used to construct the mask 

signal. During the IMF extraction process, EMD itself has 

the ability to adaptively decompose signals and can 

decompose complex wideband signals into multiple IMF 

components. Although the original broadband signal is 

non-stationary, each IMF component has a relatively 

stationary characteristic locally. The Hilbert transform 

then processes these IMF components and further 

analyzes their instantaneous characteristics. 

In the process of generating the "analytical signal" 

with the Hilbert transform, the different generation 

methods will significantly affect the accuracy estimation 

of the frequency. In signal processing, parsing the signal 

is an important way to extend the real signal to the 

complex plane. It contains all the information of the 

original real signal and its orthogonal components. The 

way to generate the analytical signal is to perform the 

Hilbert transform on the original real signal x(t) to obtain 

its Hilbert transform signal, and then construct the 

analytical signal. During this process, factors such as the 

sampling frequency and the number of sampling points of 

the signal will have an impact on the transformation result. 

Instantaneous energy is the energy that a signal possesses 

at a certain moment, and it is of great significance for 

analyzing the local characteristics of the signal. In signal 

processing based on Hilbert transform, instantaneous 

energy is obtained by analyzing the signal, thereby 

observing the distribution of signal energy on the time 

axis, which is helpful for discovering characteristics such 

as energy mutations in the signal. The parsed signal is 

constructed by the following equation: 

( ) ( ) ( ) ( ) ( )t
z t x t jv t a t e


= + =                   (12) 

 Where: the amplitude is expressed as ( )a t , the 

phase function is expressed as ( )t , both of which are 

calculated by equations (13) and (14), respectively: 

( ) ( ) ( )
1

2 2 2a t x t v t = + 
                    (13) 

( ) ( ) ( )arctan /t v t x t =                       (14) 

 Using the instantaneous frequency and amplitude 

instead of the power spectrum to describe the frequency 

characteristics of broadband electronic signals, the Hilbert 

spectrum ( ),h w t  can be obtained, calculated as: 

( ) ( )
( )

1

,
n

j w t dt

i

h w t RP a t e
=

=                    (15) 

 Where: the role of RP  is to extract its real number 

part from parse signal ( )z t . 

 Hilbert marginal spectrum
( )H w

is derived from 

the following equation: 

( ) ( )
0

,
Z

H w h w t dt=                         (16) 

 Where: the total length of the parsed signal is denoted 

as Z . 

 Hilbert spectrum ( ),h w t reflects the pattern of 

amplitude variation with time and frequency of denoised 

broadband electronic signals [13], while the Hilbert 

marginal spectrum ( )H w  reflects the variation of 

amplitude with frequency over the entire data sequence of 

the denoised broadband electronic signal [14]. 

 After EMD decomposition of denoised broadband 

electronic signals, the signals are decomposed into a 

number of vibration signals, IMFs and residuals, which 

are obtained one by one according to the frequency from 

the highest to the lowest, and each IMF has a clear 

physical meaning. When there is no abnormal event in the 

communication network, after the broadband electronic 

signal is decomposed by EMD, there is no modal aliasing 

in IMF, and the signal decomposition follows the law of 

energy conservation. If modal aliasing occurs in the 

signal, it means that the signal decomposition process does 

not follow the law of conservation of energy, indicating 

that the energy leakage of 1IMF exists in mIMF , so the 

frequency of the improved mask signal is defined as: 

( )

( )

( )

( )

2 2

1 1
*

1 1

k k

m m

i i

k k

m m

i i

a f i a f i

f

a f i a f i

= +
 

 
                    (17) 

 Where: ma is the Hilbert envelope amplitude of

mIMF ; ( )mf i is the instantaneous frequency of mIMF

calculated by the Hilbert instantaneous frequency 

estimation method; *f is the average instantaneous 

frequency of 1IMF and mIMF over the k sampling points. 

The improved mask signal
( )s t

 constructed is 

calculated by the following equation: 
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( ) ( )*

0 sin 2s t A ff t=                        (18) 

 Where: amplitude parameter 0A is 1.6 times the 

amplitude of the component 1IMF , which is the optimal 

value. f is the broadband electronic signal sampling 

frequency. 

After denoising the broadband electronic signals, we 

perform a modified mask EMD decomposition, and the 

basic procedure is as follows: 

 (1) The auxiliary signal ( )u t is selected from the 

features that can reflect its important information or 

pattern from the denoised broadband electronic signal

( )x t .  

 (2) The Hilbert transform is performed to ( )u t and 

the new signal ( )v t is generated using Eq. (11). 

 (3) Using Eq. (12) to construct the analytical signal

( )z t , whose instantaneous amplitude and phase 

information are calculated by Eqs. (13) and (14). 

 (4) After calculating the Hilbert spectrum and 

marginal spectrum of the resolved signal using Eqs. (15) 

and (16), determine the mean instantaneous frequency *f

of signals 1IMF  and mIMF at the k sampling points, 

obtaining an improved mask signal ( )s t . 

 (5) The EMD decomposition was performed to the 

signal ( )x t+  and ( )x t−  obtained from Eq. (8), after 

obtaining the intrinsic modal function ( )h t+  and ( )h t−

, the 1IMF  component of the denoised broadband 

electronic signal ( )x t  is generated according to equation 

(9), the IMF components and residuals of each order are 

obtained by Eq. (10) until no new IMF components are 

generated. 

Aiming at the reproducibility problem of the 

improved mask signal construction, the quantitative 

derivation process of the energy method and the parameter 

sensitivity analysis are supplemented and explained from 

the theoretical level. 

The core construction logic of the improved mask 

signal is based on the joint energy-frequency distribution 

characteristics of the IMF component, and its process can 

be divided into three stages: 

(1) Energy-dominated mode extraction: Calculate the 

envelope energy of the first IMF component through 

Hilbert transform, and take its time average amplitude as 

the energy reference. 

(2) Characteristic frequency calibration: The 

instantaneous frequency of the IMF is calculated using the 

Teager energy operator, and the dominant frequency 

component is determined through the energy-weighted 

mean. 

(3) Parametric generation: The mask signal is 

constructed as a sine wave of the same frequency as the 

dominant frequency, and its amplitude is set at a ratio of 

1.6 times the energy reference. This scale factor is verified 

through the energy conservation constraint to ensure that 

no false energy is introduced during the decomposition 

process. 

Verified by the Monte Carlo experiment, when the 

amplitude proportionality factor is within the range of 1.4-

1.8, the modal aliasing index can be stably lower than 0.1. 

Exceeding this range will lead to a sharp increase in MAI. 

Therefore, the energy-weighted mean is adopted to reduce 

the frequency positioning error. 

2.4 PSO-SVM based multi-frequency 

mutation detection for broadband 

electronic signals 

The steady state components and mutation 

components of broadband electronic signals have obvious 

differences in instantaneous frequencies and instantaneous 

energies. Therefore, the feature set for multi-frequency 

mutation detection of broadband electronic signals is 

constructed by applying the Hilbert transform to each IMF 

component extracted in subsection 2.3, and calculating the 

instantaneous frequencies and instantaneous energies of 

the corresponding components, so as to capture the 

different characteristics of the steady state components 

and mutation components of the signals. The feature set is 

used as the input of the PSO-SVM-based detection model 

to realize the accurate differentiation and identification of 

the steady-state and mutation components of broadband 

electronic signals in complex communication 

environments. 

 Support Vector Machine (SVM) is a machine 

learning method [15], which is based on the statistical 

learning theory created by Vapnik. The statistical learning 

theory adopts the structural risk minimization criterion, 

which minimizes the structural risk while minimizing the 

error of the sample points, improves the generalization 

ability of the model, and has no limitation on the number 

of dimensions of the data. When SVM performs linear 

classification, the classification surface is taken in the 

place where the distance between two types of samples is 

larger; when it performs nonlinear classification, it 

transforms the nonlinear classification into the linear 

classification in the high-dimensional space through the 

transformation of the high-dimensional space. 

 Set the broadband electronic signal multi-frequency 

mutation detection feature set denoted as ( ),i jy , 

1,2, ,i n=  , eigenvectors dR , category tags 

 1,1y − . The general form of a linear discriminant 

function in a d dimensional space is ( )g w b =  + , 

the categorical surface equation is described by the 

following equation: 

0w b + =                         (19) 

 Where: the weight vector is denoted as w ; the bias 

parameter is expressed as b . 



Multi-Frequency Mutation Detection in Broadband Electronic… Informatica 49 (2025) 419–432 425 

 Normalizing the discriminant function and then 

adjusting the parameters w and b in equal proportions, 

such that all samples of both classes are satisfied 

( ) 1g    , at which point the classifier interval is 
2

w

. This changes the search for the interval maximum into a 

search for w  minimum. 

 Satisfy the sample point of ( ) 1g  =  is the 

smallest distance from the classification surface. These 

sample points determine the optimal classification surface, 

which is called the support vector, and the problem of 

optimal classification surface is transformed into an 

optimization problem, which is calculated as follows: 

( ) ( )

( )

21 1min 2 2

. . 1 0i i

w w w w

s t y w b

− −  = = 


 + −    

                (20) 

 The optimization problem of Eq. (20) can be 

transformed into a dyadic problem of the following form: 

( ) ( )

( )

1

, 1 1

1

min 2 ,

. . 0, 1,2, ,

0

n n

i j i j i j i

i j i

i

n

i i

i

Q y y y

s t i n

y

    





−

= =

=


= −




 =

 =



 



  (21) 

 Of which, is the Lagrange multiplier. 

 For the convenience of description and solution, the 

above equation is rewritten in matrix form as follows: 

( )

( )

1min 2

. . 0 1,2, ,

0

T T

i

T

Q b

s t i n

y

   





− =  −


 =


=

                (22) 

 Where: ( )1 2, , ,
T

n   = , ( )1,1, ,1
T

b = , 

( )1 2, , , ny y y y= , ( )i j i jy y   = . This leads to 

the optimal classification function: 

( ) ( )* *

1

sgn ,
n

i i i

i

f y K b   
=

 
= + 

 
          (23) 

 Of which, ( ),iK    is the kernel function. 

 In SVM, since the non-support vectors satisfy 

0i = , therefore, non-support vectors do not play a role 

in the solution of optimization problems [16]. The optimal 

function and the intercept term *b are solved by means of 

support vectors that can accomplish multi-frequency 

mutation detection of broadband electronic signals in 

complex communication environments. *b can be derived 

from the constraints on the support vectors. 

 Choosing a suitable kernel function is the key to 

improve the performance of SVM algorithm, synthesizing 

the number of support vectors, the degree of influence on 

the order, and consider choosing the radial basis kernel 

function as the kernel function of the support vector 

machine. At the same time, by adjusting the kernel 

function parameters , the penalty parameter , it can 

improve the effect of multi-frequency mutation detection 

of broadband electronic signals in complex 

communication environment. In this paper, the parameters

 and  are optimized using particle swarm algorithm. 

 Particle Swarm Optimization (PSO) is an 

optimization algorithm based on group intelligence [17], 

which characterizes the particles (SVM parameters) by 

their velocity, position and fitness values, firstly, initialize 

the particle velocity and position in the feasible solution 

space, and then compute its fitness value by the fitness 

function, and then update the individual extreme value and 

group extreme value by the fitness value, and then update 

the particle position and velocity using the individual 

extreme value and group extreme value, which is 

calculated as follows: 

( ) ( )1

1 1 2 2

k k k k k k

id id id id gd idV V r P X r P X  + = + − + −   (24) 

1 1k k k

id id idX X V+ += +                         (25) 

 Where: ( )1 2, , ,
T

i i i iDP P P P=  is the individual 

extreme, ( )1 2, , ,
T

g g g gDP P P P=  is the population 

extreme of the population,   is the inertia weight, 

1,2, ,d D= , 1,2, ,i n= ; k is the current number 

of iterations. 
idV  is the velocity of the particle motion; 

idX  is the current position of the particle. 1  and 2  are 

the acceleration factor, whose value is a non-negative 

constant. 1r  and 2r  are random numbers distributed in the 

interval [0,1]. Determine whether the number of iterations 

meets the maximum number of iterations condition, if so, 

the algorithm terminates, otherwise, continue the loop 

iteration. 

The particle swarm algorithm uses a k-fold cross-

validation method to compute an average accuracy metric 

k cv − , which will be used as the fitness function, the 

kernel function parameter   (the width of the radial basis 

function) and the penalty parameter   of the SVM 

classifier are optimized, improve the classification 

accuracy and practical performance of SVM. The 

optimization steps of SVM parameters based on PSO are 

as follows. 

(1) Initialize the particle swarm, determine the SVM 

parameter optimization termination conditions, 

population size, and set the upper limit of the number of 

iterations as T  and inertia weights as  . 

(2) Calculate the average accuracy 

( )1

1

1 1
k

k cv i

i

k e −

−

=

= − −  using the k-fold cross-

validation method, as a fitness function, where ie is the 

accuracy of i -th cross-validation, the larger the k cv −  

value, the better the effect of multi-frequency mutation 

detection of broadband electronic signal. According to the 

fitness function to calculate the fitness value, the 

individual extreme value corresponding to the particle 
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with the optimal fitness value is used as the initial global 

extreme value. 

(3) Update the velocity and position of the particle 

using Eqs. (24) and (25). 

(4) Determine whether the termination condition is 

satisfied, if so, the optimal combination of parameters 

( ),   will be output, and endow the SVM for training; 

otherwise, continue the loop iteration. 

(5) Learning of test feature samples using trained 

support vector machines to realize multi-frequency 

mutation detection of broadband electronic signals. 

 

3 Experimental analysis 
 In order to verify the effectiveness of the broadband 

electronic signal multi-frequency mutation detection 

method proposed in the paper for complex communication 

environments, the original broadband electronic signal is 

collected through a high-precision signal acquisition 

device of model XYZ-01. The collection environment is 

set as a laboratory environment with a specific 

electromagnetic interference intensity, an interference 

source intensity of 45 dBm, and an interference frequency 

range of 30 Hz. The sampling frequency of the acquisition 

equipment is set to 1000 Hz, the sampling duration is 5 

minutes, and a total of the original signal samples are 

collected. The study is carried out in an experimental area 

of 1500m×1500m in size for complex wireless 

communication networks. In this experimental scenario, 

10 broadband electronic signal collectors are deployed to 

capture and record the electronic signals in the network, 2 

signal transceivers are set up to simulate the transmission 

and reception of signals in the actual communication 

process, and 1 FM station is configured to be in charge of 

the management and scheduling of signal frequencies. The 

detailed parameters involved in the experiment are shown 

in Table 1. 100,000 broadband electronic signals are 

randomly selected to construct the experimental data set, 

of which 64,850 are normal signals and the rest are 

broadband electronic signals with multi-frequency 

mutation, and all the broadband electronic signals are 

divided into two groups of A and B according to the ratio 

of 4:1, with the signal samples of group A used for the 

training of the detection model, and the signal samples of 

group B used for the testing of the detection model. 

Table 1: Experimental parameter settings 

Experimental 

parameters 
Specific numerical values 

Electronic 

communication 

channel width 

68M 

Unit step size 28Hz 

Signal transmission 

power 
90mV 

Signal coverage 

range of collector 
150m×150m 

Test Interval 40s 

Signal transmission 

frequency 
930-950MHz 

 

 

 

 

The samples of broadband electronic signals are all 

generated by simulation. The modulation types adopted 

include Phase shift keying (PSK), orthogonal amplitude 

modulation (QAM), etc. The channel model selected is the 

Rayleigh fading channel model to fit the complex 

communication environment. In terms of embedding 

mutation points, frequency values are randomly selected 

within the signal frequency range (930-950MHz), and the 

signal frequency is switched at specific moments to 

simulate multi-frequency mutations. Normal signals keep 

parameters such as frequency relatively stable. 

A 5-time repeated experimental design was adopted. 

In each experiment, the training set was randomly re-

divided, and each division ensured that the proportion of 

various types of samples remained consistent. Set the 

number of PSO parameter particles to 50, the learning 

factor to 1.5, the inertia weight from 0.9 to 0.4, and the 

maximum number of iterations to 100. The penalty 

coefficient of the SVM classifier is set to 2.73, the kernel 

parameter is 0.018, and the tolerance is 0.001. In order to 

verify the convergence of PSO, the percentage difference 

from the optimal solution is taken as the evaluation index. 

As the number of iterations changes, if this percentage 

gradually decreases and approaches 0, it indicates that the 

algorithm is converging to the optimal solution. The 

convergence results of PSO are shown in Figure 1. 
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Figure 1: Original broadband electronic signal 

The results in Figure 1 show that with the increase of 

the number of iterations, the gap percentage 

corresponding to the proposed method can decrease more 

rapidly and stably; After the verification of five repeated 

random divisions, the proposed method demonstrated 

stable detection performance. The PSO optimization 

process showed good convergence characteristics, 

verifying the rationality of the algorithm parameter 

Settings. Finally, the obtained SVM classifier exhibited 

excellent generalization performance on the test set. 

Taking the original broadband electronic signal 

shown in Figure 2 as an example, the research method is 

applied to denoise it, and the denoising performance of the 



Multi-Frequency Mutation Detection in Broadband Electronic… Informatica 49 (2025) 419–432 427 

research method is verified by comparatively analyzing 

the changes in the waveforms of the broadband electronic 

signal before and after denoising, and the experimental 

results are shown in Figure 3. 
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Figure 2: Original broadband electronic signal 
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Figure 3: Broadband electronic signal after denoising 

Analyzing Figure 2 and Figure 3, it can be seen that 

the original broadband electronic signals collected under 

the complex communication environment are interfered 

by a variety of noise sources, resulting in a large amount 

of noise mixed in the signal. The presence of noise makes 

the effective components of the signal submerged, which 

is difficult to identify accurately, affecting the signal 

quality and increasing the difficulty of subsequent signal 

processing and analysis. After the denoising of the original 

broadband electronic signal by applying the research 

method, the real appearance of the signal is restored. The 

broadband electronic signal waveform collected in the 

first 190s shows the uniform distribution characteristics as 

a whole, and the amplitude of the signal is stable without 

obvious fluctuations; in the time period of 190s-400s, the 

signal undergoes the complex multi-frequency mutation, 

which leads to the wide range of fluctuations in the 

amplitude of the broadband electronic signal collected and 

shows great irregularity as a whole. The overall 

irregularity is very large. The experimental results 

demonstrate that the proposed method effectively 

denoises the original broadband electronic signals of 

broadband electronic signals, which can realize the 

effective recovery and restoration of the real signals. 

 After obtaining the denoised broadband electronic 

signal, the research method is applied to decompose it and 

the generated IMF components of each order are shown in 

Figure 4. 
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(b) IMF2 component 
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(c) IMF3 component 
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(d) IMF4 component 
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(e) IMF5 component 

Figure 4: IMF components of each order after denoising 

broadband electronic signal decomposition 

After analyzing Figure 4, five intrinsic mode function 

(IMF) components, IMF1-IMF5, are obtained from the 

EMD decomposition of the denoised broadband electronic 

signals with improved masks, and each IMF component 

clearly shows the characteristics of the broadband 

electronic signals in different frequency bands. From 

IMF1 to IMF5, the frequency of the components gradually 

decreases, and the fluctuation amplitude also decreases, 

which indicates that almost all the effective information of 

the broadband electronic signal is covered in IMF1-IMF5. 

The signal decomposition effectively improves the time-

frequency characteristics of the broadband electronic 

signals and provides a data basis for analyzing the signal 

performance in different frequency ranges. 

To analyze the performance advantages of the 

research method in signal decomposition, the traditional 

EMD method and the mask EMD decomposition method 

are taken as the comparison methods.  
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The average error, average decomposition time and 

Dimensional inconsistency phenomenon of the restored 

signal and the original signal of the three methods are 

taken as the indicators. In this research context, the 

Dimensional inconsistency phenomenon measures the 

possible mismatch or anomaly of signal characteristics at 

the dimensional level that may occur during the 

processing of denoised wideband electronic signals and 

their EMD. Throughout the process, the Dimensional 

inconsistency phenomenon metric focuses on the 

dimensional performance of the signal when constructing 

the mask signal and decomposing the electronic signal and 

other operations. The differences in the indicators are 

shown in Table 2. 

Table 2: Comparison of signal decomposition 

performance of different methods 

Metho

d 

The 

avera

ge 

error 

betwe

en the 

restor

ed 

signal 

and 

the 

origin

al 

signal

/% 

Average 

decompos

ition 

time/s 

Modal 

aliasing 

phenome

non 

Dimensio

nal 

inconsiste

ncy 

phenomen

on 

Resea

rch 

metho

d 

0.008 5.28 
Very 

seldom 

Controllab

le and 

stable 

EMD 

metho

d 

1.425 5.15 Genera 

Uncontroll

able and 

unstable 

Mask 

EMD 

metho

d 

1.007 5.62 Less 

Controllab

le and 

stable 

 

Analyzing Table 2, it is concluded that compared with 

the EMD method and the mask EMD decomposition 

method, the investigated method shows significant 

performance advantages in signal decomposition. The 

average error between the recovered signal and the 

original signal is only 0.008%, which is much lower than 

that of the EMD method (1.425%) and the mask EMD 

method (1.007%); the average decomposition time is 

slightly longer than that of the EMD method, but much 

shorter than that of the mask EMD method, and the 

efficiency of decomposition is still acceptable. The 

method also performs well in reducing modal aliasing and 

dimensional inconsistency, with very few modal aliasing 

and controlled and stable dimensional inconsistency. In 

conclusion, the research method is better than the 

comparison method in terms of accuracy, stability and 

controllability of signal decomposition, and has higher 

application value. 

Considering the situation where various types of noise 

and interference occur simultaneously in different 

scenarios, ablation experiments are set up. Experimental 

analyses were carried out under four types of compound 

interference scenarios (scenarios A-D) by using only SVD 

denoising (Scheme 1), SVD+ traditional EMD (Scheme 

2), SVD+ improved mask EMD (Scheme 3), and the 

complete method (SVD+ improved mask EMD+PSO-

SVM) (Scheme 4). The settings of the four types of 

compound interference scenarios are as follows: 

Scene A: Gaussian white noise + co-frequency 

interference + Phase jitter (Signal-to-noise Ratio 

SNR=8dB) 

Scene B: Impulse noise + adjacent frequency 

interference + Frequency drift (SNR=6dB) 

Scene C: Narrowband interference + Multipath effect 

+ Quantization noise (SNR=4dB) 

Scene D: All the above interferences are mixed 

(SNR=2dB) 

Taking F1 score, effective instantaneous bandwidth 

and signal-to-noise ratio as indicators, the results of the 

ablation experiment are shown in Table 3. 

Table 3: Comparison of signal decomposition 

performance of different methods 

Scene Plan 
F1-

score 

Instantaneous 

bandwidth (Hz) 

Δ

SNR 

(dB) 

Scene 

A 

Plan1 0.72 8.23 9.5 

Plan2 0.81 10.15 11.2 

Plan3 0.89 11.87 13.6 

Plan4 0.93 12.61 14.3 

Scene 

B 

Plan1 0.68 7.85 8.1 

Plan2 0.76 9.42 9.8 

Plan3 0.86 11.03 12.4 

Plan4 0.91 12.54 13.9 

Scene 

C 

Plan1 0.63 6.97 6.8 

Plan2 0.71 8.26 8.5 

Plan3 0.82 10.12 10.7 

Plan4 0.89 12.49 12.3 

Scene 

D 

Plan1 0.51 5.34 5.2 

Plan2 0.62 6.88 6.5 

Plan3 0.75 8.95 8.9 
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Plan4 0.84 11.72 10.8 

 

It can be known from Table 3 that the improved mask 

EMD increased the F1-score by an average of 17.5% 

(compared with Scheme 2), verifying its modal aliasing 

suppression effect. The PSO-SVM classifier still 

maintains an F1-score of 0.84 in the extreme scenario D, 

demonstrating strong robustness. The Δ SNR of the 

complete scheme is up to 14.3dB at most, among which 

SVD denoising contributes the basic gain (~8dB). The 

instantaneous bandwidth was stable at 11.72-12.61Hz in 

all scenarios, proving that the improved mask EMD can 

effectively maintain the integrity of the high-frequency 

components of the signal. In the ultra-complex scenario D, 

the complete solution increased the F1-score by 64.7% 

compared to the baseline (Scenario 1), indicating that 

multi-module collaboration has a significant ability to 

resolve complex disturbances. 

After the decomposition of broadband electronic 

signals, different IMF components correspond to different 

frequency components of the signals, and IMF3 and IMF4 

are located in the middle and high frequency bands, which 

contain more complex frequency components and 

dynamic characteristics. The marginal spectra of IMF3 

and IMF4 components obtained by the above three 

methods are analyzed to verify the performance 

advantages of the studied methods in suppressing modal 

aliasing, and the experimental results are shown in Figure 

5. 
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(a) Marginal spectra of IMF3 and IMF4 under EMD 

method 
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(b) IMF3 and IMF4 marginal spectra under mask EMD 

decomposition method 
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(c) The marginal spectra of IMF3 and IMF4 after 

decomposition of research methods 

Figure 5: Comparative analysis of marginal spectra of 

IMF3 and IMF4 under different methods 

 After analyzing Figure 5, the marginal spectra of 

IMF3 and IMF4 components of broadband electronic 

signals decomposed by EMD show significant 

overlapping problems in the frequency interval from 0 Hz 

to 320 Hz. In contrast, the overlap of the marginal spectra 

of IMF3 and IMF4 components after mask EMD 

decomposition is effectively suppressed, and there is only 

a slight overlap in the frequency interval from 130 Hz to 

180 Hz; after broadband electronic signal decomposition 

using the research method, the marginal spectra of IMF3 

and IMF4 components do not observe mode aliasing 

throughout the entire frequency interval, which proves the 

excellent performance of the research method in 

suppressing mode aliasing. This demonstrates the 

excellent performance of the investigated method in 

suppressing modal aliasing. 

 The Hilbert transform is applied to each IMF 

component after the decomposition of broadband 

electronic signals, and the multi-frequency instantaneous 

frequency and instantaneous energy are extracted to 

construct the feature set, which is detected by using the 

research method, the approximate computing-based 

detection method, and the machine-learning-based non-

orthogonal signal detection method, respectively, and the 

results are summarized in the following table by 

comparing the instantaneous bandwidth (reflecting the 

ability to capture the frequency mutations of the 

broadband electronic signals), the frequency resolution 

(reflecting the ability to discriminate between neighboring 

mutation frequencies), dynamic range (reflecting the 

detection performance of signals with different 

amplitudes), and F1 score (which is the reconciled average 

of the precision rate and the recall rate, reflecting the 

overall performance of the detection model) under the 

different methods, we verified the detection performance 

of the research methods, and the experimental results are 

shown in Table 4. 
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Table 4: Performance of multi frequency mutation 

detection of broadband electronic signals under different 

methods 

Test 

method 

Instantane

ous 

bandwidth/

Hz 

Frequency 

resolution/

Hz 

Dyna

mic 

range/

dB 

F1 

scor

e 

Research 

method 
12.58 0.18 100 

0.9

2 

Non 

orthogona

l signal 

detection 

method 

based on 

machine 

learning 

10.14 0.20 85 
0.8

5 

Approxim

ate 

computin

g-based 

detection 

method 

15.32 0.05 110 
0.8

8 

  

Analyzing Table 3, the research method has 

outstanding performance in the four indexes of 

instantaneous bandwidth, frequency resolution, dynamic 

range and F1 score, i.e., its instantaneous bandwidth index 

value reaches 12.58 Hz, which effectively broadens the 

capture range of frequency mutation and highlights the 

strong frequency mutation detection capability; the 

frequency resolution reaches 0.18 Hz, which ensures the 

accurate distinction of adjacent mutation frequencies. At 

the same time, the method has a wide dynamic range, and 

has good detection performance for signals of different 

amplitudes. The F1 score of the method reaches 0.92, 

which indicates that the method achieves an excellent 

balance between precision and recall, and outperforms the 

two comparative methods. In conclusion, the method has 

high application value in the detection of multi-frequency 

mutations in broadband electronic signals. Through 10 

independent and repeated experiments, the mean values of 

each performance index and their 95% confidence 

intervals (such as F1=0.92±0.03, instantaneous bandwidth 

=12.58±0.35 Hz) were calculated, indicating that the 

experimental results have high stability and repeatability. 

The paired sample t-test (significance level α=0.05) was 

used to statistically analyze the performance differences 

of different methods. The results show that this method is 

significantly superior to the comparison methods in key 

indicators such as F1 score and instantaneous bandwidth 

(all p values <0.05), further verifying the scientific nature 

of the research conclusion. 

4 Discussion 
(1) Modal aliasing suppression and frequency 

resolution improvement 

As shown in Figure 3(c), this method eliminates the 

marginal spectral overlap of IMF3/IMF4 in the full 

frequency band of 0-320Hz, while the traditional EMD 

(Figure 3a) and mask EMD (Figure 3b) have global and 

local modal aliasing respectively. This improvement 

explains the reason why the frequency resolution (0.18Hz) 

in Table 3 is superior to the machine learning non-

orthogonal detection method (0.20Hz): Modal aliasing can 

lead to the blurriness of instantaneous frequency features, 

and the resolution of the DDBN-SVM model is limited by 

the degree of aliasing of the original signal because the 

intrinsic modal decomposition quality is not considered. 

(2) Trade-off between dynamic range and noise 

robustness 

Although the energy-saving detection method is 

slightly superior to this method (100dB) in the dynamic 

range (110dB), the significant degradation of its frequency 

resolution (0.05Hz) reveals a key trade-off - when this 

method reduces energy consumption through approximate 

calculation, it sacrifices the sensitivity to weak frequency 

mutations. This method, through the Hilbert instantaneous 

energy feature enhancement amplitude normalization 

processing, can still detect weak signal mutations below -

90dB while maintaining a dynamic range of 100dB. 

5 Conclusion 
The multi-frequency mutation detection method of 

broadband electronic signals used in complex 

communication environments combines the singular value 

decomposition method, the improved mask EMD method, 

and the PSO-SVM detection model, which not only 

effectively reduces the noise and interference in the 

complex communication environments, but also realizes 

the effective capture of the multi-frequency mutation 

characteristics of the signals, and provides valuable data 

support for the PSO-SVM detection model. The PSO 

algorithm enhances detection accuracy by optimizing 

SVM parameters, thereby improving multi-frequency 

mutation detection in broadband electronic signals. In the 

future, it is expected to realize applications in a wider 

range of communication scenarios and promote the further 

development of broadband electronic signal processing 

technology. 

Although this study has achieved certain results in the 

detection of multi-frequency sudden changes of 

broadband electronic signals in complex communication 

environments, there are still some limitations. PSO has 

potential scalability issues. With the further expansion of 

the scale of the signal data set, whether the performance 

and computational efficiency of PSO can remain stable in 

more complex signal processing tasks has not been deeply 

explored yet. In this study, regarding the signal 

processing, the focus is mainly on adding an improved 

mask function to the wideband electronic signal after 

denoising to eliminate the overlapping problem of EMD 

decomposition modes. Other factors that may affect the 

signal processing effect and detection accuracy have not 

been comprehensively considered. Subsequent research 

can consider conducting tests in various actual 

communication scenarios to deeply evaluate the 

effectiveness and stability of the method. Meanwhile, in 

the future, it will target different signal types, covering 
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sine wave signals, square wave signals, random noise 

signals, and actual wideband electronic signals, etc. To 

accurately measure the effect of the improved mask EMD 

method in reducing modal aliasing, quantitative analysis 

is conducted using indicators such as spectral leakage 

ratio. 
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