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When wideband electronic signals undergo multi-frequency mutations, the mutation times, amplitudes
and phase changes of each frequency component are different, making it extremely difficult to accurately
distinguish the characteristics of the mutated signals from the complex signal background. To this end, a
detection method integrating the improved mask EMD and PSO-SVM is proposed. The singular value
decomposition method is adopted to denoise wideband electronic signals, and the steady-state components
and abrupt components of the signals are analyzed. The improved mask EMD method is adopted to extract
the intrinsic modal function components of each order, extract the multi-frequency instantaneous
frequencies and instantaneous energies of the corresponding components of the wideband electronic
signal, construct the multi-frequency mutation feature set, and input it into the PSO-SVM detection model
to capture the steady-state components and mutation components in the signal, and realize the multi-
frequency mutation detection of wideband electronic signals. The experimental results show that the
research method adopts the combined processing of improved mask and EMD, which reduces the signal
reconstruction error compared with the traditional EMD method and eliminates the modal aliasing
phenomenon. Combined with the SVM classifier optimized by PSO, the F1-score reached 0.92 on the same
test set, which was significantly better than the machine learning non-orthogonal signal detection method.
The indicators such as the instantaneous bandwidth (12.58Hz), frequency resolution (0.18Hz) and
dynamic range (100dB) of this method are all superior to those of the baseline method, providing an
effective solution for the detection of sudden changes in broadband signals in complex communication
environments.

Povzetek: Za zaznavanje sprememb v Sirokopasovnih elektronskih signalih v zapletenih komunikacijskih
okoljih je razvita metoda, ki zdruzuje razsirjeno maskirano empiricno razcepno metodo (improved mask
EMD), singularno vrednostno dekomporzicijo za odstranjevanje Suma ter model podpore vektorjev,
optimiziran z delcnim rojem (PSO-SVM). Metoda ucinkovito loci stabilne in mutirajoce komponente
signala ter omogoca kvalitetno zaznavanje vecfrekvencnih sprememb v hrupnih Sirokopasovnih sistemih.

1 Introduction

With the rapid change of information technology, wireless
communication technology plays an increasingly
important role in national economy, national defense
construction, scientific research and other fields [1].
However, in the actual communication process, the signal
transmission environment presents a high degree of
complexity and variability, not only the type and number
of signals climbing dramatically, the mutual interference
between the signals is also increasingly prominent [2].
Especially in the broadband communication system, due
to the significant expansion of the signal bandwidth, the
multi-frequency mutation phenomenon of the signal
becomes particularly prominent. This kind of signal is
famous for the complexity of frequency components, the
rapidity of the change speed and the short duration, which
undoubtedly greatly increases the difficulty of signal

processing, and may also pose a serious challenge to the
stability and reliability of the communication system.
Therefore, in-depth exploration and study of broadband
electronic signal multi-frequency mutation detection
methods applicable to complex communication
environments is not only of far-reaching significance for
improving the overall performance of communication
systems, but also an indispensable part of guaranteeing the
quality of information transmission and promoting the
continuous  progress of wireless communication
technology [3].

In recent years, scholars at home and abroad have
achieved certain research results in multi-frequency
mutation detection of broadband electronic signals. Yldrm
trains a deep learning model that can detect signals by
deep learning OFDM-AIM signals. Then the signal to be
detected is inputted into the model and the signal detection
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results are output, and then the intermediate results or
parameters of pre-calculation are stored by using look-up
tables, the parameters are optimized by using the taboo
search algorithm, and the parallel processing is adopted to
accelerate the calculation process and improve the signal
detection efficiency. Deep learning models may only be
exposed to a limited number of signal patterns during the
training stage. However, in a complex communication
environment, the multi-frequency sudden change
characteristics of signals may exceed the training range of
the model, and it is difficult for the model to fully learn all
possible feature combinations. Furthermore, when the
lookup table is confronted with a large number of mutation
signals, its storage and retrieval efficiency may be
severely affected, and it is difficult to cover all possible
mutation situations [4]. Kulkarni et al. use deep learning
and other techniques for feature extraction and pattern
recognition of wireless signals, and at the same time,
combined with approximation computation techniques, to
reduce the computational complexity and energy
consumption under the premise of ensuring that the
detection accuracy meets the needs of the application.
Approximate computing technology is achieved by
sacrificing some accuracy. When dealing with multi-
frequency abrupt change signals, this approximate
calculation may lead to the loss of key feature information,
making it difficult for the model to accurately distinguish
the true abrupt change signal features [5]. Baek et al. use
FTN technology to transmit higher rate non-orthogonal
signals at the transmitter side, and use the DBN-SVM
model at the receiver side to perform anomalous feature
extraction and pattern recognition on the received signals.
When the DDBN-SVM model is confronted with such
complex ISl and variable multi-frequency mutation
signals, it cannot fully consider all possible ISI and multi-
frequency mutation combinations during training,
resulting in a decrease in the recognition accuracy of
mutation signal features in practical applications [6].
Meier et al. used acousto-optic frequency modulation and
other technical means to achieve high-speed, highly linear
and continuous step frequency modulation inside a fiber
optic loop, so as to generate ultra-wideband radar signals
by using low-speed electronic signals, and then realize the
detection of high-bandwidth arbitrary signals. This
method itself may introduce noise and distortion during
the signal conversion and transmission process. Multi-
frequency abrupt change signals will further intensify this
interference, increase the difficulty of feature extraction
and resolution, and it is difficult to capture the detailed
variation information of each frequency component [7].

Aiming at the problem of multi-frequency mutation
detection of broadband electronic signals in complex
communication environments, this study focuses on
solving the following three key scientific issues:

(1) How to improve the mask EMD method to
significantly reduce the modal aliasing phenomenon in the
IMF decomposition of wideband signals?

(2) Under the condition of strong noise interference,
how to effectively extract and distinguish the steady-state
components and abrupt components of broadband signals?
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(3) How to construct a detection model with strong
robustness to improve the recognition accuracy of multi-
frequency abrupt change signals?

Based on these problems, this paper proposes a
detection method that integrates the improved mask EMD
and PSO-SVM.

The Singular Value Decomposition (SVD) is adopted to
preprocess the wideband electronic signal, effectively
suppressing the interference of complex environmental
noise. By analyzing the characteristic differences between
the steady-state and mutant components of the signal, an
improved mask EMD method was proposed, which
significantly improved the modal aliasing problem of IMF
components. The Hilbert transform was utilized to extract
the characteristics of multi-frequency instantaneous
frequencies and instantaneous energies, and an SVM
detection model based on PSO optimization was
constructed, achieving the accurate identification of multi-
frequency abrupt components in wideband electronic
signals. The experimental results show that this method is
superior to the existing technologies in key indicators such
as instantaneous bandwidth and frequency resolution.

2 Broadband electronic signal multi-
frequency mutation detection

2.1 SVD-based denoising of broadband
electronic signals for complex
communication environments

In the complex communication environment, broadband
electronic signals are subject to multiple threats such as
same-frequency interference, neighboring-frequency
interference, intermodulation interference and thermal
noise, scattering noise, scintillation noise, etc. These
interferences and noises are easy to trigger changes in the
signal spectra [8], which lead to sudden changes in the
frequency components during the transmission process. In
order to improve the reliability and accuracy of signal
transmission, it is crucial to detect multi-frequency
mutations in broadband electronic signals. Through
effective denoising of broadband electronic signals in
complex communication environments, the influence of
interference and noise can be significantly reduced or
eliminated, so that the multi-frequency mutation
characteristics of broadband electronic signals are more
clearly discernible, and the accurate capture and
identification of frequency mutation components can be
realized [9], which improves the accuracy and efficiency
of the multi-frequency mutation detection, and provides a
solid guarantee for the stable operation of the
communication system. The singular value decomposition
(SVD) method removes the noise and unnecessary
components of broadband electronic signals by
decomposing the broadband electronic signal matrix and
filtering and truncating the singular values in the matrix.
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For noise-contaminated broadband electronic signals
X = {71, 72,"',7L} in complex communication

environments, constructed into a MX n(m < n)
dimensional Hankel matrix given by:

yi yz ... yn
Y2 K3 : 7n+1

Ava =l (1)
Ym Ym+l ° XL

Of which, A is the Hankel matrix; the embedding
dimension is denoted by M ; the number of signal
sampling points is N and is satisfied m+n—-1=1L.

A singular value decomposition of the Hankel matrix
yields:

A=UzxV' (2)

Of which, U is MxM dimensional orthogonal
matrices; V is N XN dimensional orthogonal matrices;
> is MXxN dimensional matrix. The main diagonal
elements are the singular values of the matrix and are
arranged in descending order.

Matrix A is the Hankel matrix composed of the
noise-contaminated broadband electronic signals, which
can be expressed as the sum of the subspace of the
uncontaminated broadband electronic signals and the
subspace of the noise, and is computed as:

R IAVAL
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Of which: A is the subspace of broadband electronic

signals uncontaminated by noise; N is the noise
subspace. Noise reduction of the original broadband
electronic signal translates into the known A, looking for

the best approximation of A, The better the approach
degree, the more obvious the noise reduction effect is [10].

The firstk effective singular values of the diagonal
matrix are preserved, and the other singular values are set
to zero, the reconstructed matrix is obtained by using the
inverse process of singular value decomposition.
Generally speaking, the reconstruction matrix is no longer
in the form of Hankel matrix. In order to obtain the width
of the electronic signal after noise reduction, it is
necessary to average the elements of the reconstruction
matrix with the following formula:

1 > —
X = —— s 4
i 0_|+1;A j+lj ()
Of which: 1 represents the index value in the

reconstructed signal sequence; | . O intermediate
variables used for summing the boundaries of the range,
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| =max(Li—m+1), o=min(n,i); J represents
the loop variable of the summation operation.
X :{xi,xz,---,xL} which is composed by X ,

that is, the broadband electronic signal after noise
reduction.

SVD can decompose the broadband electronic signal
matrix into the product form of the left singular matrix, the
singular value matrix and the right singular matrix. The
noise in the signal is usually reflected in the components
corresponding to smaller singular values. The denoising
purpose can be achieved by processing the singular values.
Since most of the smaller singular values correspond to
the noise components, truncating these singular values can
effectively remove the noise, but at the same time, it may
also cause some signal information loss. As for the
selection of the optimal cut-off point, different truncation
positions are attempted, and factors such as the
improvement degree of SNR of the signal after noise
reduction, the size of the mean square error, and the
retention of signal characteristics are comprehensively
considered. For example, if a higher noise reduction level
is pursued, more singular values might be truncated, but
this may lead to an increase in signal information loss; If
more attention is paid to preserving the details of the
signal, the number of truncated singular values should be
appropriately reduced, and a trade-off should be made
between noise reduction and signal information loss to
determine the optimal cut-off point, so that the denoised
signal can retain the key information of the original signal
to the greatest extent while meeting certain noise
reduction requirements.

2.2 Analysis of steady state and mutation
components of broadband electronic
signals

The steady state component reflects the inherent
characteristics of the signal in a relatively stable state, such
as the frequency distribution and amplitude characteristics
of the normal mode of operation, and provides the basis
for understanding the regular performance of the signal.
By accurately grasping the steady state component, the
normal model of the signal can be constructed as a
reference standard for judging the occurrence of mutation.
The mutation component, on the other hand, directly
reflects the abnormal changes of the signal, and is the core
concern of multi-frequency mutation detection. Analyzing
the mutation components can clarify the time of the
mutation, the frequency range involved, the magnitude of
the mutation and other key parameters, which can help to
understand the nature and characteristics of the mutation.
By combining the two analyses, multi-frequency mutation
phenomena can be accurately identified in complex
broadband electronic signals, providing powerful support
for subsequent signal processing, fault diagnosis, target
detection and other applications. Therefore, before the
multi-frequency mutation detection of broadband
electronic signals, it is necessary to clarify the meanings
and differences between the steady state components and
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the mutation components in broadband electronic signals.
In order to explain the difference between these two
components as easily as possible, the statistical probability
and the difference information will be considered
comprehensively. From the point of view of statistical
probability theory, the steady state component can be
regarded as a kind of component that appears in broadband
electronic signals from the beginning to the end, while the
mutation component is a kind of component that appears
episodically in broadband electronic signals, and the two
kinds of components can be expressed in the form of

Equation (5), and Equation (6), respectively, in which P,

and P, denote the frequency of occurrence of the steady

state component and the mutant component in the
broadband electronic signal, respectively.

PS ~1 (5)
P®P, (6)

From the point of view of difference information
theory, there are obvious differences in attribute
characteristics between the steady state components and
the mutation components, and these differences can then
be recognized that these two components belong to
different kinds rather than fluctuations in attribute
characteristics between components in the same kind,
which can be expressed in the form of equation (7), in the

formula, F () denotes a method for obtaining attribute

characteristics  of  broadband electronic  signal
components. X, and X denote the steady-state and

mutation components of the broadband electronic signal,
respectively. & is the critical value of the difference
between the two components in terms of certain attribute
characteristics, the value of which needs to be determined
according to the specific attribute characteristics.

F(X,)-F(X,)>d )

By combining these two theories to consider the
components of broadband electronic signals, the meaning
and difference between the steady state components and
the mutation components can be further understood.
According to the meaning and difference of these two
components, the detection of multi-frequency mutation
components of broadband electronic signals can be
realized. In this paper, we extract the multifrequency
instantaneous frequencies and instantaneous energies of
broadband electronic signals and input them as feature
quantities into the PSO-SVM-based detection model to
realize the detection of multifrequency mutations of
broadband electronic signals.

2.3 Broadband electronic signal
decomposition based on improved mask
EMD

EMD decomposition of denoised broadband

electronic signals can help detect and analyze multi-
frequency mutations in signals by revealing the time-
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dependent characteristics of the signals on different time
scales and frequency components [11]. However, the
decomposition of broadband electronic signals using the
EMD method suffers from modal aliasing [12], i.e.,
signals with different frequency components may interfere
with each other, resulting in inaccurate decomposition
results. Therefore, this paper adopts the improved mask
EMD method to process the denoised broadband
electronic signals, aiming at effectively suppressing the
modal aliasing phenomenon and improving the accuracy
and reliability of the signal decomposition through the
introduction of mask signals. The improved mask signal
generation process is as follows:

(1) The denoised broadband electronic signal is

denoted by X(t), creating an improved mask signal
S (t) through the calculation with X(t) , the new signal
X, (t)and X (t) can be obtained:
X, (t)=x(t)+s(t)
x_(t)=x(t)-s(t)

(2) EMD decomposition was performed to X, (t)

®)

and X_ (t) to obtain the intrinsic modal functions h, (t)

and h_ (t) , respectively.
(3) The IMF, component of the denoised broadband
electronic signal X(t) is:

h(t)=2"[h,(t)+h (t)] )

Where: the analytical time of the intrinsic modal

function is expressed as t
Repeating steps (1)-(3) continuously, the IMF
components and residuals of each order can be obtained,

namely:
x(t)=c (t)+r(t)

Where, C, (t) is the IMF components of each order;

(10)

r (t) is the residual.

The modal overlap problem during EMD
decomposition can be eliminated by adding an improved
mask function to the denoised broadband electronic
signal, in which the main step is to find the improved mask

signal S(t)_ In this paper, an improved mask signal is
constructed based on the energy method.

Select one or more specific signal features or
attributes that can reflect important information or patterns

of the denoised broadband electronic signal X(t) to
construct the auxiliary signal U(t), after applying the

Hilbert transform to it, the signal V(t) is obtained,
calculated as:
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(11)

v(t)=u(t)*(at)”

Where, the convolution operator of u(t) and
(7rt)71 is denoted as *; The new signal U(t) generated
after the Hilbert transform is denoted as V(t) . When

processing the auxiliary signal u(t) using the Hilbert

transform to construct the improved mask signal, the focus
is not on the overall stationarity of the signal, but on the
relatively stable characteristic pattern of the signal within
a local period. Specifically, when constructing the

auxiliary signal U (t) , select the signal characteristics that
can reflect the important information of the denoised
signal X(t) , and these

characteristics exhibit a certain stability within a relatively
short time window. Within this short time window, the
Hilbert transform can effectively extract features such as
the instantaneous amplitude and instantaneous frequency
of the signal, and then be used to construct the mask
signal. During the IMF extraction process, EMD itself has
the ability to adaptively decompose signals and can
decompose complex wideband signals into multiple IMF
components. Although the original broadband signal is
non-stationary, each IMF component has a relatively
stationary characteristic locally. The Hilbert transform
then processes these IMF components and further
analyzes their instantaneous characteristics.

In the process of generating the "analytical signal”
with the Hilbert transform, the different generation
methods will significantly affect the accuracy estimation
of the frequency. In signal processing, parsing the signal
is an important way to extend the real signal to the
complex plane. It contains all the information of the
original real signal and its orthogonal components. The
way to generate the analytical signal is to perform the
Hilbert transform on the original real signal x(t) to obtain
its Hilbert transform signal, and then construct the
analytical signal. During this process, factors such as the
sampling frequency and the number of sampling points of
the signal will have an impact on the transformation result.
Instantaneous energy is the energy that a signal possesses
at a certain moment, and it is of great significance for
analyzing the local characteristics of the signal. In signal
processing based on Hilbert transform, instantaneous
energy is obtained by analyzing the signal, thereby
observing the distribution of signal energy on the time
axis, which is helpful for discovering characteristics such
as energy mutations in the signal. The parsed signal is
constructed by the following equation:

2()=x(t)+ v(t) =a()e"

Where: the amplitude is expressed as a(t) , the

wideband electronic

(12)

phase function is expressed as ¢(t) both of which are
calculated by equations (13) and (14), respectively:
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(13)

a(t)= I:Xz (t)+v? (t)];
g(t)=arctan| v(t)/ x(t)] (14)

Using the instantaneous frequency and amplitude

instead of the power spectrum to describe the frequency
characteristics of broadband electronic signals, the Hilbert

spectrum h(W,t) can be obtained, calculated as:

h(w,t)= RPZn:a(t)eij(t)dt

Where: the role of RP is to extract its real number

(15)

part from parse signal Z (t) .

H(w
Hilbert marginal spectrum ( )is derived from
the following equation:

Z
H (w):J.0 h(w,t)dt
Where: the total length of the parsed signal is denoted
as/Z .
Hilbert spectrum h(W,t) reflects the pattern of

amplitude variation with time and frequency of denoised
broadband electronic signals [13], while the Hilbert

marginal spectrum H(W) reflects the variation of

(16)

amplitude with frequency over the entire data sequence of
the denoised broadband electronic signal [14].

After EMD decomposition of denoised broadband
electronic signals, the signals are decomposed into a
number of vibration signals, IMFs and residuals, which
are obtained one by one according to the frequency from
the highest to the lowest, and each IMF has a clear
physical meaning. When there is no abnormal event in the
communication network, after the broadband electronic
signal is decomposed by EMD, there is no modal aliasing
in IMF, and the signal decomposition follows the law of
energy conservation. If modal aliasing occurs in the
signal, it means that the signal decomposition process does
not follow the law of conservation of energy, indicating

that the energy leakage of IMF, exists in IMF, , so the
frequency of the improved mask signal is defined as:

 Yar() Yar)
Yah(i) Yat()

Where: @, is the Hilbert envelope amplitude of

f

(A7)

IMF,; f,,(i)is the instantaneous frequency of IMF,,
calculated by the Hilbert instantaneous frequency
estimation method; f~ is the average instantaneous

frequency of IMF, and IMF_ over the k sampling points.

s(t
The improved mask signal () constructed is
calculated by the following equation:
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(18)

s(t)=Asin(27fft)
Where: amplitude parameter A0 is 1.6 times the

amplitude of the component IMF, , which is the optimal

value. f is the broadband electronic signal sampling

frequency.

After denoising the broadband electronic signals, we
perform a modified mask EMD decomposition, and the
basic procedure is as follows:

(1) The auxiliary signal u(t) is selected from the

features that can reflect its important information or
pattern from the denoised broadband electronic signal

x(t).
(2) The Hilbert transform is performed toU (t)and

the new signalv(t) is generated using Eq. (11).
(3) Using Eq. (12) to construct the analytical signal
Z(t) , whose instantaneous amplitude and phase

information are calculated by Egs. (13) and (14).
(4) After calculating the Hilbert spectrum and
marginal spectrum of the resolved signal using Egs. (15)

and (16), determine the mean instantaneous frequency f
of signals IMF, and IMF_ at the k sampling points,

obtaining an improved mask signal S(t).
(5) The EMD decomposition was performed to the
signal X, (t) and X_ (t) obtained from Eq. (8), after

obtaining the intrinsic modal function h, (t) and h_(t)
, the IMF, component of the denoised broadband

electronic signal X(t) is generated according to equation

(9), the IMF components and residuals of each order are
obtained by Eq. (10) until no new IMF components are
generated.

Aiming at the reproducibility problem of the
improved mask signal construction, the quantitative
derivation process of the energy method and the parameter
sensitivity analysis are supplemented and explained from
the theoretical level.

The core construction logic of the improved mask
signal is based on the joint energy-frequency distribution
characteristics of the IMF component, and its process can
be divided into three stages:

(1) Energy-dominated mode extraction: Calculate the
envelope energy of the first IMF component through
Hilbert transform, and take its time average amplitude as
the energy reference.

(2) Characteristic frequency calibration: The
instantaneous frequency of the IMF is calculated using the
Teager energy operator, and the dominant frequency
component is determined through the energy-weighted
mean.

(3) Parametric generation: The mask signal is
constructed as a sine wave of the same frequency as the
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dominant frequency, and its amplitude is set at a ratio of
1.6 times the energy reference. This scale factor is verified
through the energy conservation constraint to ensure that
no false energy is introduced during the decomposition
process.

Verified by the Monte Carlo experiment, when the
amplitude proportionality factor is within the range of 1.4-
1.8, the modal aliasing index can be stably lower than 0.1.
Exceeding this range will lead to a sharp increase in MAI.
Therefore, the energy-weighted mean is adopted to reduce
the frequency positioning error.

2.4 PSO-SVM based multi-frequency
mutation detection for broadband
electronic signals

The steady state components and mutation
components of broadband electronic signals have obvious
differences in instantaneous frequencies and instantaneous
energies. Therefore, the feature set for multi-frequency
mutation detection of broadband electronic signals is
constructed by applying the Hilbert transform to each IMF
component extracted in subsection 2.3, and calculating the
instantaneous frequencies and instantaneous energies of
the corresponding components, so as to capture the
different characteristics of the steady state components
and mutation components of the signals. The feature set is
used as the input of the PSO-SVM-based detection model
to realize the accurate differentiation and identification of
the steady-state and mutation components of broadband
electronic  signals in  complex communication
environments.

Support Vector Machine (SVM) is a machine
learning method [15], which is based on the statistical
learning theory created by Vapnik. The statistical learning
theory adopts the structural risk minimization criterion,
which minimizes the structural risk while minimizing the
error of the sample points, improves the generalization
ability of the model, and has no limitation on the number
of dimensions of the data. When SVM performs linear
classification, the classification surface is taken in the
place where the distance between two types of samples is
larger; when it performs nonlinear classification, it
transforms the nonlinear classification into the linear
classification in the high-dimensional space through the
transformation of the high-dimensional space.

Set the broadband electronic signal multi-frequency

mutation detection feature set denoted as ( ;(i,yj),
i=12,---,n , eigenvectors y e RY , category tags
ye {—1,1}. The general form of a linear discriminant

function in ad dimensional space is ¢ (}() =W-y+ b,
the categorical surface equation is described by the
following equation:
w-y+b=0 (19)
Where: the weight vector is denoted as W ; the bias
parameter is expressed asb .
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Normalizing the discriminant function and then
adjusting the parameters W and b in equal proportions,
such that all samples of both classes are satisfied

2
|g (;()| >1 , at which point the classifier interval is M

. This changes the search for the interval maximum into a
search for ||W|| minimum.

Satisfy the sample point of ‘g(;()‘:l is the

smallest distance from the classification surface. These
sample points determine the optimal classification surface,
which is called the support vector, and the problem of
optimal classification surface is transformed into an
optimization problem, which is calculated as follows:

min ® (w) = 27wl =27 (w-w
(w)=2 o =27 (w-w) 0)

st. y,[(w-x+b)]-1=0

The optimization problem of Eq. (20) can be
transformed into a dyadic problem of the following form:

minQ(a)=2"> ey, (1Y) - 2 e
ij=1 i=1

st. ¢ =0,(i=12,---,n)

Zn:ylai =0

i=1

Of which, & is the Lagrange multiplier.
For the convenience of description and solution, the
above equation is rewritten in matrix form as follows:
minQ(a)=2"a'Aa-b"a

st. ¢ >0(i=12,n)

(21)

(22)
ya=0
Where: az(al,az,---,an)T : b:(l,l,---,l)T :

y=(y1, Yorroe, yn).A= YiY; (;(i)(j). This leads to
the optimal classification function:

() =san {30l (1,2) 10
i=1
Of which, K (;(i , )() is the kernel function.

(23)

In SVM, since the non-support vectors satisfy
o, = 0, therefore, non-support vectors do not play a role
in the solution of optimization problems [16]. The optimal
function and the intercept term h” are solved by means of

support vectors that can accomplish multi-frequency
mutation detection of broadband electronic signals in

complex communication environments. h” can be derived

from the constraints on the support vectors.

Choosing a suitable kernel function is the key to
improve the performance of SVM algorithm, synthesizing
the number of support vectors, the degree of influence on
the order, and consider choosing the radial basis kernel
function as the kernel function of the support vector
machine. At the same time, by adjusting the kernel

function parameters 0 , the penalty parameter £ , it can
improve the effect of multi-frequency mutation detection

Informatica 49 (2025) 419-432 425

of broadband electronic  signals in  complex
communication environment. In this paper, the parameters

o and ¢ are optimized using particle swarm algorithm.

Particle Swarm Optimization (PSO) is an
optimization algorithm based on group intelligence [17],
which characterizes the particles (SVM parameters) by
their velocity, position and fitness values, firstly, initialize
the particle velocity and position in the feasible solution
space, and then compute its fitness value by the fitness
function, and then update the individual extreme value and
group extreme value by the fitness value, and then update
the particle position and velocity using the individual
extreme value and group extreme value, which is
calculated as follows:

Vit =Ny + A (Ps = Xi )+ 400, (P - X5 ) (24)
X5 = XE +V e (25)

Where: P =(P,,P,,---,Py) s the individual

extreme, P = (Pgl, Py2r P
extreme of the population, @ is the inertia weight,
d=12,---,D,i=12,---,n; k is the current number

T
) is the population

of iterations. V,, is the velocity of the particle motion;

X,q is the current position of the particle. 4, and A, are
the acceleration factor, whose value is a non-negative
constant. I, and I, are random numbers distributed in the

interval [0,1]. Determine whether the number of iterations
meets the maximum number of iterations condition, if so,
the algorithm terminates, otherwise, continue the loop
iteration.

The particle swarm algorithm uses a k-fold cross-
validation method to compute an average accuracy metric
B, » Which will be used as the fitness function, the
kernel function parameter & (the width of the radial basis
function) and the penalty parameter { of the SVM
classifier are optimized, improve the classification
accuracy and practical performance of SVM. The
optimization steps of SVM parameters based on PSO are
as follows.

(2) Initialize the particle swarm, determine the SVM
parameter  optimization  termination  conditions,
population size, and set the upper limit of the number of
iterations as T and inertia weights as @ .

2 Calculate the average

Kk
Beo =1- k_lZ(l—ei) using the Kk-fold cross-
i=1

accuracy

validation method, as a fitness function, where €, is the

accuracy of i -th cross-validation, the larger the S,

value, the better the effect of multi-frequency mutation
detection of broadband electronic signal. According to the
fitness function to calculate the fitness value, the
individual extreme value corresponding to the particle
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with the optimal fitness value is used as the initial global
extreme value.

(3) Update the velocity and position of the particle
using Egs. (24) and (25).

(4) Determine whether the termination condition is
satisfied, if so, the optimal combination of parameters

(O‘, é’) will be output, and endow the SVM for training;

otherwise, continue the loop iteration.

(5) Learning of test feature samples using trained
support vector machines to realize multi-frequency
mutation detection of broadband electronic signals.

3 Experimental analysis

In order to verify the effectiveness of the broadband
electronic signal multi-frequency mutation detection
method proposed in the paper for complex communication
environments, the original broadband electronic signal is
collected through a high-precision signal acquisition
device of model XYZ-01. The collection environment is
set as a laboratory environment with a specific
electromagnetic interference intensity, an interference
source intensity of 45 dBm, and an interference frequency
range of 30 Hz. The sampling frequency of the acquisition
equipment is set to 1000 Hz, the sampling duration is 5
minutes, and a total of the original signal samples are
collected. The study is carried out in an experimental area
of 1500mx1500m in size for complex wireless
communication networks. In this experimental scenario,
10 broadband electronic signal collectors are deployed to
capture and record the electronic signals in the network, 2
signal transceivers are set up to simulate the transmission
and reception of signals in the actual communication
process, and 1 FM station is configured to be in charge of
the management and scheduling of signal frequencies. The
detailed parameters involved in the experiment are shown
in Table 1. 100,000 broadband electronic signals are
randomly selected to construct the experimental data set,
of which 64,850 are normal signals and the rest are
broadband electronic signals with multi-frequency
mutation, and all the broadband electronic signals are
divided into two groups of A and B according to the ratio
of 4:1, with the signal samples of group A used for the
training of the detection model, and the signal samples of
group B used for the testing of the detection model.

Table 1: Experimental parameter settings

Experimental . .
Specific numerical values

parameters

Electronic

communication 68M

channel width

Unit step size 28Hz

Signal  transmission 90mV

power

Signal COVerage | 4o 150m

range of collector

Test Interval 40s
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Signal transmission

930-950MHz
frequency

The samples of broadband electronic signals are all
generated by simulation. The modulation types adopted
include Phase shift keying (PSK), orthogonal amplitude
modulation (QAM), etc. The channel model selected is the
Rayleigh fading channel model to fit the complex
communication environment. In terms of embedding
mutation points, frequency values are randomly selected
within the signal frequency range (930-950MHz), and the
signal frequency is switched at specific moments to
simulate multi-frequency mutations. Normal signals keep
parameters such as frequency relatively stable.

A 5-time repeated experimental design was adopted.
In each experiment, the training set was randomly re-
divided, and each division ensured that the proportion of
various types of samples remained consistent. Set the
number of PSO parameter particles to 50, the learning
factor to 1.5, the inertia weight from 0.9 to 0.4, and the
maximum number of iterations to 100. The penalty
coefficient of the SVM classifier is set to 2.73, the kernel
parameter is 0.018, and the tolerance is 0.001. In order to
verify the convergence of PSO, the percentage difference
from the optimal solution is taken as the evaluation index.
As the number of iterations changes, if this percentage
gradually decreases and approaches 0, it indicates that the
algorithm is converging to the optimal solution. The
convergence results of PSO are shown in Figure 1.

12

The PSO algorithm was not used

Fedicdokdok PSO algorithm

The percentage difference from the optimal solution /%
>

o L o T T T

0 10 20 30 40 50 60 70 80 90 100
Iteration times/times

Figure 1: Original broadband electronic signal

The results in Figure 1 show that with the increase of
the number of iterations, the gap percentage
corresponding to the proposed method can decrease more
rapidly and stably; After the verification of five repeated
random divisions, the proposed method demonstrated
stable detection performance. The PSO optimization
process showed good convergence characteristics,
verifying the rationality of the algorithm parameter
Settings. Finally, the obtained SVM classifier exhibited
excellent generalization performance on the test set.

Taking the original broadband electronic signal
shown in Figure 2 as an example, the research method is
applied to denoise it, and the denoising performance of the
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research method is verified by comparatively analyzing
the changes in the waveforms of the broadband electronic
signal before and after denoising, and the experimental
results are shown in Figure 3.
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Figure 2: Original broadband electronic signal
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Figure 3: Broadband electronic signal after denoising

Analyzing Figure 2 and Figure 3, it can be seen that
the original broadband electronic signals collected under
the complex communication environment are interfered
by a variety of noise sources, resulting in a large amount
of noise mixed in the signal. The presence of noise makes
the effective components of the signal submerged, which
is difficult to identify accurately, affecting the signal
quality and increasing the difficulty of subsequent signal
processing and analysis. After the denoising of the original
broadband electronic signal by applying the research
method, the real appearance of the signal is restored. The
broadband electronic signal waveform collected in the
first 190s shows the uniform distribution characteristics as
a whole, and the amplitude of the signal is stable without
obvious fluctuations; in the time period of 190s-400s, the
signal undergoes the complex multi-frequency mutation,
which leads to the wide range of fluctuations in the
amplitude of the broadband electronic signal collected and
shows great irregularity as a whole. The overall
irregularity is very large. The experimental results
demonstrate that the proposed method effectively
denoises the original broadband electronic signals of
broadband electronic signals, which can realize the
effective recovery and restoration of the real signals.

After obtaining the denoised broadband electronic
signal, the research method is applied to decompose it and
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the generated IMF components of each order are shown in

Figure 4.
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Figure 4: IMF components of each order after denoising
broadband electronic signal decomposition

After analyzing Figure 4, five intrinsic mode function
(IMF) components, IMF1-IMF5, are obtained from the
EMD decomposition of the denoised broadband electronic
signals with improved masks, and each IMF component
clearly shows the characteristics of the broadband
electronic signals in different frequency bands. From
IMF1 to IMFS5, the frequency of the components gradually
decreases, and the fluctuation amplitude also decreases,
which indicates that almost all the effective information of
the broadband electronic signal is covered in IMF1-IMF5.
The signal decomposition effectively improves the time-
frequency characteristics of the broadband electronic
signals and provides a data basis for analyzing the signal
performance in different frequency ranges.

To analyze the performance advantages of the
research method in signal decomposition, the traditional
EMD method and the mask EMD decomposition method
are taken as the comparison methods.
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The average error, average decomposition time and
Dimensional inconsistency phenomenon of the restored
signal and the original signal of the three methods are
taken as the indicators. In this research context, the
Dimensional inconsistency phenomenon measures the
possible mismatch or anomaly of signal characteristics at
the dimensional level that may occur during the
processing of denoised wideband electronic signals and
their EMD. Throughout the process, the Dimensional
inconsistency phenomenon metric focuses on the
dimensional performance of the signal when constructing
the mask signal and decomposing the electronic signal and
other operations. The differences in the indicators are
shown in Table 2.

Table 2: Comparison of signal decomposition
performance of different methods

The

avera

ge

error

betwe . .

en the Dimensio

Average Modal nal

restor . . .
Metho ed decompos | aliasing inconsiste
d . ition phenome | ncy

signal | ..

time/s non phenomen

and on

the

origin

al

signal

1%
rRC(?]sea Ver Controllab

0.008 | 5.28 Y le  and
metho seldom
q stable
EMD Uncontroll
metho | 1.425 | 5.15 Genera able and
d unstable
:\EA&S; Controllab

1.007 | 5.62 Less le and
metho
q stable

Analyzing Table 2, it is concluded that compared with
the EMD method and the mask EMD decomposition
method, the investigated method shows significant
performance advantages in signal decomposition. The
average error between the recovered signal and the
original signal is only 0.008%, which is much lower than
that of the EMD method (1.425%) and the mask EMD
method (1.007%); the average decomposition time is
slightly longer than that of the EMD method, but much
shorter than that of the mask EMD method, and the
efficiency of decomposition is still acceptable. The
method also performs well in reducing modal aliasing and
dimensional inconsistency, with very few modal aliasing
and controlled and stable dimensional inconsistency. In
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conclusion, the research method is better than the
comparison method in terms of accuracy, stability and
controllability of signal decomposition, and has higher
application value.

Considering the situation where various types of noise
and interference occur simultaneously in different
scenarios, ablation experiments are set up. Experimental
analyses were carried out under four types of compound
interference scenarios (scenarios A-D) by using only SVD
denoising (Scheme 1), SVD+ traditional EMD (Scheme
2), SVD+ improved mask EMD (Scheme 3), and the
complete method (SVD+ improved mask EMD+PSO-
SVM) (Scheme 4). The settings of the four types of
compound interference scenarios are as follows:

Scene A: Gaussian white noise + co-frequency
interference + Phase jitter (Signal-to-noise Ratio
SNR=8dB)

Scene B: Impulse noise + adjacent frequency
interference + Frequency drift (SNR=6dB)

Scene C: Narrowband interference + Multipath effect
+ Quantization noise (SNR=4dB)

Scene D: All the above interferences are mixed
(SNR=2dB)

Taking F1 score, effective instantaneous bandwidth
and signal-to-noise ratio as indicators, the results of the
ablation experiment are shown in Table 3.

Table 3: Comparison of signal decomposition
performance of different methods

F1- Instantaneous A

Scene | Plan score | bandwidth (Hz) .
(dB)

Plani | 0.72 | 8.23 95

Scene | Plan2 | 0.81 | 10.15 11.2
A Plan3 | 0.89 | 11.87 13.6
Pland | 0.93 | 12.61 143

Planl | 0.68 | 7.85 8.1

Scene | Plan2 | 0.76 | 9.42 9.8
B Plan3 | 0.86 | 11.03 12.4
Pland | 0.91 | 12.54 13.9

Planl | 0.63 | 6.97 6.8

Scene Plan2 | 0.71 8.26 8.5
c Plan3 | 0.82 | 10.12 10.7
Pland | 0.89 | 12.49 12.3

Planl | 051 |5.34 5.2

D" | plan2 | 062 | 6.88 6.5
Plan3 | 0.75 | 8.95 8.9
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Plan4 | 0.84 | 11.72 10.8

It can be known from Table 3 that the improved mask
EMD increased the Fl-score by an average of 17.5%
(compared with Scheme 2), verifying its modal aliasing
suppression effect. The PSO-SVM classifier still
maintains an F1-score of 0.84 in the extreme scenario D,
demonstrating strong robustness. The A SNR of the
complete scheme is up to 14.3dB at most, among which
SVD denoising contributes the basic gain (~8dB). The
instantaneous bandwidth was stable at 11.72-12.61Hz in
all scenarios, proving that the improved mask EMD can
effectively maintain the integrity of the high-frequency
components of the signal. In the ultra-complex scenario D,
the complete solution increased the F1-score by 64.7%
compared to the baseline (Scenario 1), indicating that
multi-module collaboration has a significant ability to
resolve complex disturbances.

After the decomposition of broadband electronic
signals, different IMF components correspond to different
frequency components of the signals, and IMF3 and IMF4
are located in the middle and high frequency bands, which
contain more complex frequency components and
dynamic characteristics. The marginal spectra of IMF3
and IMF4 components obtained by the above three
methods are analyzed to verify the performance
advantages of the studied methods in suppressing modal
aliasing, and the experimental results are shown in Figure
5.
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(c) The marginal spectra of IMF3 and IMF4 after
decomposition of research methods

Figure 5: Comparative analysis of marginal spectra of
IMF3 and IMF4 under different methods

After analyzing Figure 5, the marginal spectra of
IMF3 and IMF4 components of broadband electronic
signals decomposed by EMD show significant
overlapping problems in the frequency interval from 0 Hz
to 320 Hz. In contrast, the overlap of the marginal spectra
of IMF3 and IMF4 components after mask EMD
decomposition is effectively suppressed, and there is only
a slight overlap in the frequency interval from 130 Hz to
180 Hz; after broadband electronic signal decomposition
using the research method, the marginal spectra of IMF3
and IMF4 components do not observe mode aliasing
throughout the entire frequency interval, which proves the
excellent performance of the research method in
suppressing mode aliasing. This demonstrates the
excellent performance of the investigated method in
suppressing modal aliasing.

The Hilbert transform is applied to each IMF
component after the decomposition of broadband
electronic signals, and the multi-frequency instantaneous
frequency and instantaneous energy are extracted to
construct the feature set, which is detected by using the
research method, the approximate computing-based
detection method, and the machine-learning-based non-
orthogonal signal detection method, respectively, and the
results are summarized in the following table by
comparing the instantaneous bandwidth (reflecting the
ability to capture the frequency mutations of the
broadband electronic signals), the frequency resolution
(reflecting the ability to discriminate between neighboring
mutation frequencies), dynamic range (reflecting the
detection performance of signals with different
amplitudes), and F1 score (which is the reconciled average
of the precision rate and the recall rate, reflecting the
overall performance of the detection model) under the
different methods, we verified the detection performance
of the research methods, and the experimental results are
shown in Table 4.
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Table 4: Performance of multi frequency mutation
detection of broadband electronic signals under different

methods
Instantane Dyna
method bandwidth/ Hy range/ o
Hz dB

Research 0.9
method 12.58 0.18 100 5
Non

orthogona

| signal

detection 0.8
method 10.14 0.20 85 5
based on

machine

learning

Approxim

ate

computin 0.8
g-based 15.32 0.05 110 8
detection

method

Analyzing Table 3, the research method has
outstanding performance in the four indexes of
instantaneous bandwidth, frequency resolution, dynamic
range and F1 score, i.e., its instantaneous bandwidth index
value reaches 12.58 Hz, which effectively broadens the
capture range of frequency mutation and highlights the
strong frequency mutation detection capability; the
frequency resolution reaches 0.18 Hz, which ensures the
accurate distinction of adjacent mutation frequencies. At
the same time, the method has a wide dynamic range, and
has good detection performance for signals of different
amplitudes. The F1 score of the method reaches 0.92,
which indicates that the method achieves an excellent
balance between precision and recall, and outperforms the
two comparative methods. In conclusion, the method has
high application value in the detection of multi-frequency
mutations in broadband electronic signals. Through 10
independent and repeated experiments, the mean values of
each performance index and their 95% confidence
intervals (such as F1=0.92+0.03, instantaneous bandwidth
=12.58+0.35 Hz) were calculated, indicating that the
experimental results have high stability and repeatability.
The paired sample t-test (significance level o=0.05) was
used to statistically analyze the performance differences
of different methods. The results show that this method is
significantly superior to the comparison methods in key
indicators such as F1 score and instantaneous bandwidth
(all p values <0.05), further verifying the scientific nature
of the research conclusion.

4 Discussion

(1) Modal aliasing suppression and frequency
resolution improvement

As shown in Figure 3(c), this method eliminates the
marginal spectral overlap of IMF3/IMF4 in the full
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frequency band of 0-320Hz, while the traditional EMD
(Figure 3a) and mask EMD (Figure 3b) have global and
local modal aliasing respectively. This improvement
explains the reason why the frequency resolution (0.18Hz)
in Table 3 is superior to the machine learning non-
orthogonal detection method (0.20Hz): Modal aliasing can
lead to the blurriness of instantaneous frequency features,
and the resolution of the DDBN-SVM model is limited by
the degree of aliasing of the original signal because the
intrinsic modal decomposition quality is not considered.

(2) Trade-off between dynamic range and noise
robustness

Although the energy-saving detection method is
slightly superior to this method (100dB) in the dynamic
range (110dB), the significant degradation of its frequency
resolution (0.05Hz) reveals a key trade-off - when this
method reduces energy consumption through approximate
calculation, it sacrifices the sensitivity to weak frequency
mutations. This method, through the Hilbert instantaneous
energy feature enhancement amplitude normalization
processing, can still detect weak signal mutations below -
90dB while maintaining a dynamic range of 100dB.

5 Conclusion

The multi-frequency mutation detection method of
broadband electronic signals used in complex
communication environments combines the singular value
decomposition method, the improved mask EMD method,
and the PSO-SVM detection model, which not only
effectively reduces the noise and interference in the
complex communication environments, but also realizes
the effective capture of the multi-frequency mutation
characteristics of the signals, and provides valuable data
support for the PSO-SVM detection model. The PSO
algorithm enhances detection accuracy by optimizing
SVM parameters, thereby improving multi-frequency
mutation detection in broadband electronic signals. In the
future, it is expected to realize applications in a wider
range of communication scenarios and promote the further
development of broadband electronic signal processing
technology.

Although this study has achieved certain results in the
detection of multi-frequency sudden changes of
broadband electronic signals in complex communication
environments, there are still some limitations. PSO has
potential scalability issues. With the further expansion of
the scale of the signal data set, whether the performance
and computational efficiency of PSO can remain stable in
more complex signal processing tasks has not been deeply
explored yet. In this study, regarding the signal
processing, the focus is mainly on adding an improved
mask function to the wideband electronic signal after
denoising to eliminate the overlapping problem of EMD
decomposition modes. Other factors that may affect the
signal processing effect and detection accuracy have not
been comprehensively considered. Subsequent research
can consider conducting tests in various actual
communication scenarios to deeply evaluate the
effectiveness and stability of the method. Meanwhile, in
the future, it will target different signal types, covering
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sine wave signals, square wave signals, random noise
signals, and actual wideband electronic signals, etc. To
accurately measure the effect of the improved mask EMD
method in reducing modal aliasing, quantitative analysis
is conducted using indicators such as spectral leakage
ratio.
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