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The current mechanical dynamic perception methods for rehabilitation-assisted robots have low 

accuracy and low efficiency. In response to this problem, a robot mechanical dynamic perception model 

based on multi-modal sensor fusion is proposed in the research. The interaction force sensor and 

weight sensor are used to collect the interaction force and weight loss values during the patients' 

motion process, with a sample size of 5,378 collected. Then, the Kalman filtering algorithm is used for 

data processing. Finally, the sensor information is fused using a weighted fusion method, and a 

probabilistic neural network is used to determine the patient's motion, thereby achieving intelligent 

dynamic perception in rehabilitation training. The probabilistic neural network architecture includes 

the input layer, the hidden layer, and the output layer. The experiment was simulated and analyzed 

using MATLAB, and five volunteers were selected to carry out practical experiments. The results 

showed that the mechanical dynamic perception model proposed in the study could accurately perceive 

the motion intention of the user through multi-modal sensors and make accurate judgments. Its 

judgment accuracy reached 95.52%, and the response time was only 0.85 seconds. Compared with 

traditional rehabilitation assisted robot mechanical dynamic perception methods, this model 

significantly improves accuracy and efficiency. The method proposed in the study can further enhance 

the dynamic perception ability of robots through multi-modal sensor fusion, thereby improving the 

intelligence of rehabilitation training. 

Povzetek: Predlagan je model dinamične zaznave rehabilitacijskega robota, ki s fuzijo interakcijskih in 

težnostnih senzorjev ter probabilističnim nevronskim omrežjem izboljša natančnost prepoznavanja 

pacientovega gibanja. 

 

1 Introduction 
The key technology for robots to achieve intelligent 

operation and motion control involves comprehensive 

perception of the environment and their own state, 

providing accurate information support for robot 

decision-making [1]. Driven by intelligent technology, 

the application of sensor technology in the field of 

robotics is becoming increasingly widespread. However, 

the information acquisition of a single sensor often has 

limitations and cannot meet the perception needs in 

complex environments. Therefore, multi-modal sensor 

fusion technology has emerged. The information from 

different sensors is integrated to improve the robot's 

perception accuracy of the external environment [2]. 

Challa et al. found that the stability of bipedal robots 

during walking was difficult to maintain. Therefore, a 

gait trajectory generation method based on long short-

term memory networks was built. This method adopted 

motion capture sensors to capture gait data of humans 

walking on a treadmill. Finally, the sensor data was 

applied to the gait trajectory generation model. This  

 

method could effectively reduce the swinging of bipedal 

robots during walking and improve walking stability [3]. 

Zan proposed a path planning method based on whale 

optimization algorithm and computer perception to  

improve the path planning performance of robots in 

complex environments. This method achieved path 

obstacle avoidance through visual sensors. The path 

efficiency and smoothness planned by this method were 

significantly improved [4]. Shi et al. combined ultrasonic 

sensors and flexible frictional electric sensors to assist 

robots in perceiving objects to improve their ability to 

recognize and judge captured objects. The method 

achieved a recognition accuracy of 92.48% for captured 

objects [5]. 

At present, robots with high requirements for 

mechanical dynamic perception are mainly used in high-

precision manufacturing, medical surgery, aerospace, and 

other fields. In these applications, robots need to be able 

to perceive and operate accurately to complete tasks [6-

8]. Rajendran et al. reviewed the current research 

challenges of the selective harvesting robot to enhance 

the dynamic perception capability. The improvement 
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effect of integrating artificial intelligence, soft robots, and 

data-driven methods on the perception ability was 

discussed. The results indicated that data-driven methods 

and integrated artificial intelligence could significantly 

enhance the dynamic perception ability of robots, 

especially when dealing with complex and changing 

environments [9]. Wang et al. found that currently most 

soft actuators only had a single driving element and 

lacked perception. A dielectric elastomer actuator with 

multi-degree of freedom driving and perception functions 

was proposed to address this issue. By stimulating the 

selective dynamic of electrodes, all-round braking and 

perception were achieved. After applying this method, the 

robot's grasping action was more flexible [10]. Chen et al. 

designed a multi-modal fusion method based on deep 

learning to explore the collaborative intention recognition 

of robots towards human colleagues. This method 

combined visual, auditory, and tactile sensors to predict 

the behavior and intention through deep learning models. 

This method had high accuracy in human colleague 

collaboration intention recognition and could effectively 

improve the collaboration efficiency between robots and 

human colleagues [11]. Yan et al. proposed a robot with 

dynamic perception to assist surgeons in surgical 

procedures. The robot system predicted and perceived the 

insertion status of the guide wire through force feedback 

perception. The robot system assisted physicians in 

judging surgical progress and making intelligent 

decisions based on prediction and perception results. The 

perception accuracy reached 93.62% [12]. The 

comparison and summary of the performance indicators 

of the existing related work are shown in Table 1. 

Table 1: Comparison and summary of the existing related work 

Document 

Number 
Title of Literature 

Response 

time (s) 

Perception 

accuracy (%) 

[3] 
An optimized-LSTM and RGB-D sensor-based human gait trajectory 

generator for bipedal robot walking 
0.73 85.46 

[4] 
Research on robot path perception and optimization technology based on 

whale optimization algorithm 
0.68 89.77 

[5] 
Soft robotic perception system with ultrasonic auto-positioning and 

multimodal sensory intelligence 
0.71 90.12 

[6] 
Tacto: A fast, flexible, and open-source simulator for high-resolution 

vision-based tactile sensors 
0.65 90.35 

[9] 
Towards autonomous selective harvesting: A review of robot perception, 

robot design, motion planning and control 
0.66 90.74 

[10] 
Electroactive polymer-based soft actuator with integrated functions of 

multi-degree-of-freedom motion and perception 
0.69 87.11 

[11] 
Influence of mobile robots on human safety perception and system 

productivity in wholesale and retail trade environments: A pilot study 
0.70 90.23 

[12] 
Machine learning-based surgical state perception and collaborative control 

for a vascular interventional robot 
0.77 89.56 

 

As shown in Table 1, the current mechanical dynamic 

perception model still has problems such as low accuracy 

and poor real-time performance in perceiving the 

operator's motion intention in the process of assisting 

rehabilitation medical treatment [13]. Existing perception 

models have problems such as single sensor mode, 

insufficient multi-modal fusion, and low efficiency in 

PNN applications, which limit their perception accuracy 

and real-time performance in complex environments, 

making it difficult to meet the requirements of efficient 

collaboration and precise operation. This is because the 

sensor data fusion algorithm is not optimized enough, 

fails to make full use of multi-source information, and the 

PNN has low computational efficiency when processing 

large-scale data, resulting in the response speed and 

accuracy of the model in a dynamic environment being 

difficult to meet the clinical application standards. 

Therefore, multi-modal sensing information is combined 

to further enhance the dynamic perception capability of 

machinery. A robot mechanical dynamic perception 

model based on multi-modal sensors is proposed. This 

model analyzes the gait of patients and uses multiple 

sensors to identify and judge the intentions, further 

achieving the intelligence of rehabilitation training. The  

 

 

 

 

innovation of the research lies in taking the interaction 

force sensor and the weight sensor as the main features in 

the dynamic perception process of the robot. The 

accuracy of dynamic perception is further improved 

through the feature fusion of multi-modal sensors. 

Furthermore, the research proposed a mechanical motion 

pattern judgment model based on probabilistic neural 

networks, further enhancing machine's power sensing 

capability and assisting it in determining the appropriate 

next action. The research aims to improve the response 

speed and accuracy of the model in complex 

environments through multi-modal fusion and 

probabilistic neural network optimization, meet the 

requirements of clinical applications, and ultimately 

achieve efficient and precise rehabilitation training 

assistance. This is to address the bottleneck of perception 

accuracy and real-time performance caused by 

insufficient fusion of single perception mode and multiple 

modalities in current research, ensuring that the model 
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can quickly and accurately identify the patient's intention 

in a dynamic environment, and improving the 

effectiveness and safety of rehabilitation training. 

 

 

2 Methods and materials 
To assist users in motion, a robot mechanical dynamic 

perception model based on multi-modal sensor fusion is 

proposed. This model combines interaction force sensors 

and weight sensors to perceive the patient's motion 

intention, thereby assisting users in exercise training. 

2.1 Perception data acquisition and signal 

processing based on multi-modal 

sensor fusion 

Conventional image perception acquisition methods 

generally suffer from low acquisition accuracy. 

Therefore, the study first takes a gait analyzer to 

accurately divide the support phase and swing phase 

during walking [14-15]. In addition, interaction force 

sensors are used to obtain human-machine interaction 

force to evaluate the dynamic state of robot users during 

motion. To obtain more accurate dynamic perception 

data, the weight sensor is combined to further analyze the 

gait characteristics of users by monitoring the changes in 

their lower limb weight-bearing capacity. The placement 

position, sensor accuracy, sampling rate, and data range 

of each sensor are shown in Table 2. 

 
Table 2: Details of sensor placement 

Serial 

number 

Placement 

position 
Type Accuracy 

Samplin

g rate (Hz) 
Data range 

1 Servo motor 

Interacti

on force 

sensor 

±0.5N 100 
The full cycle of 

walking 

2 Hip joint ±0.5N 100 
The full cycle of 

walking 

3 Thigh link ±0.5N 100 
The full cycle of 

walking 

4 Gaiters ±0.5N 100 
The full cycle of 

walking 

5 Knee joint ±0.5N 100 
The full cycle of 

walking 

6 
Shank 

connecting rod 
±0.5N 100 

The full cycle of 

walking 

7 
Spring 

device 
±0.5N 100 

The full cycle of 

walking 

8~9 

At the left 

and right pull 

rods 

Weight 

sensor 
±0.1kg 50 

The full cycle of 

walking 

 

The dynamic perception robot proposed in the study and 

the fixed method acting on the patient's motion stage are 

shown in Figure 1.

 



18 Informatica 49 (2025) 15–28 L. Gui et al. 

Servo motor

Hip joint

Thigh link

Gaiters

Knee joint

Shank 

connecting rod
Spring device

Hip

Knee 

joint

Ankle

Thigh 

strap

Calf 

strap

(a) Lower limb rehabilitation 

robot structure

(b) The fixed pattern of the rehabilitation 

training phase
 

Figure 1: The proposed dynamic perception robot and the fixed mode acting on the patient's motion stage. 

 

In Figure 1 (a), the robot in the study has an 

adjustable fixing device for adjusting between users of 

different heights and body types. Multiple sensor 

interfaces are also equipped in the structure to connect 

gait analyzers, interaction force sensors, and weight 

sensors, ensuring accurate data collection and 

transmission. In Figure 1 (b), the robot is bound to the 

user through leg warmers and straps. The interaction 

torque between the lower limbs and the machine is 

transmitted to the user's legs through the leg warmers. 

Therefore, the leg warmer is taken to design interaction 

force sensors that extract the interaction force during the 

motion. The dynamic equation of the motion perception 

robot is shown in equation (1). 

( ) ( ) ( ),M C g         = + + −              (1) 

 

In equation (1),  ,  , and   represent the swing 

angle of the rehabilitation robot and its first and second 

derivatives. ( ),C    is the acceleration of the robotic 

arm. ( )g   is the gravity matrix. ( )M   is the Coriolis 

acceleration matrix.   is the joint torque of the 

rehabilitation robot arm.   is the interaction force 

between humans and machines. The interaction force 

between humans and machines is shown in equation (2). 
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   (2) 

 

In equation (2), 3S  represents the distance from the 

patient's hip joint to the thigh binding rod. 
3L  represents 

the length of the thigh and the thigh connecting rod. 4S  

represents the distance from the knee joint to the calf 

connecting rod.   represents the angle between the hip 

joint of the leg and the hip joint of the machine relative to 

the vertical line of the ground.   represents the angle 

between the knee joint of the human and the machine 

relative to the thigh connecting rod.   represents the 

stiffness coefficient of the binding rod. It is set as a 

constant value in the research. The value is 1,000 N/m. 

3x  and 4x  are respectively the displacements of the 

centroids of the thigh connecting rod and the calf 

connecting rod. Based on the interaction force calculation 

method and interaction force sensor data, the current 

motion status of rehabilitation training is perceived. Due 

to the high accuracy, wide measurement range, and long 

lifespan of resistance strain gauges, they are chosen for 

research to achieve interaction force perception. The 

circuit and installation location of the resistance strain 

gauge used in the study are shown in Figure 2. 
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Figure 2: Circuit of resistance strain gauge and installation position. 

 

As shown in Figure 2 (a), a full bridge circuit is taken 

to connect resistance strain gauges to improve 

measurement accuracy and stability. This circuit can 

eliminate the influence of environmental factors such as 

temperature and ensure the accuracy of interaction force 

data. As shown in Figure 2 (b), four strain gauges are 

placed on each leg rod. These strain gauges can sense the 

slight deformation of the leg rod under force and convert 

it into a change in resistance value. During the user's 

motion, there are interactions with the machine, causing 

deformation of the strain gauge and resulting in a change 

in its resistance value. By measuring the changes in these 

resistance values, the interaction force between the user 

and the machine can be indirectly obtained. The specific 

process of resistance change is shown in equation (3). 

R
K

R


=                                (3) 

In equation (3), R  signifies the original resistance, 

measured in Ω. R  is the change in resistance, measured 

in Ω. K  is the sensitivity coefficient of the resistance 

strain gauge, which is dimensionless. In addition to 

interaction force perception, the weight sensor is taken to 

detect changes in the user's body center of gravity and 

lower limb weight-bearing capacity. The weight 

perception proposed in the study is achieved through 

tension sensors arranged at different positions. The screw 

sensor is used to measure weight loss data during 

walking. After wearing the weight loss suit, the user 

connects the weight loss rope on the suit to the simple 

tension sensor on the weight reducing arm. By measuring 

the tension of the weight loss rope during the patient's 

walking process through a tension sensor, the weight-

bearing capacity of the affected limb can be indirectly 

obtained. To avoid interference signals during the 

perception process, the Kalman filtering algorithm is used 

to preprocess sensor signals. The structure of the Kalman 

filter is shown in Figure 3. 
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Figure 3: Kalman filter structure. 

 

In Figure 3, the Kalman filter algorithm can 

effectively remove noise and interference, improve signal 

accuracy and reliability through prediction and update. In 

the prediction stage, the algorithm estimates the current 

state based on the state of the previous moment. In the 

update phase, the algorithm combines the current 

observation values to correct the prediction results and 

obtain the optimal state estimation. Based on this 

approach, the study ensures the stability and accuracy of 

sensor signals, providing a reliable data foundation for 

subsequent power perception models. 

2.2 Mechanical dynamic perception model 

based on probabilistic neural network 

and multi-modal sensors 

After setting up sensors and introducing filtering 

algorithms to process sensor signals, the probabilistic 

neural network is introduced to achieve mechanical 
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dynamic perception of robots. Through dynamic 

perception, robots assist users in motion. The user's 

motion mode includes two types: active and passive, 

which are classified according to the user's autonomous 

walking ability [16]. To enhance the applicability of the 

proposed robot, the information obtained from multi-

modal sensors is utilized to achieve mechanical dynamic 

perception, and uses probabilistic neural networks to 

determine the user's motion pattern. The data during the 

training process is collected in real time through multi-

modal sensors, including parameters such as force, 

displacement, and velocity. After preprocessing, it is 

input into the probabilistic neural network. The dataset is 

divided into the training set and the test set with a ratio of 

7:3. The training process is subjected to ten-fold cross-

validation to ensure the generalization ability of the 

model. The study takes high-performance computers for 

model training, equipped with Intel i9 processors, 64GB 

of memory, and NVIDIA RTX 3080 graphics cards. The 

operating system is Windows 11, the programming 

environment is Python 3.9, and the main dependency 

libraries include TensorFlow and Scikit learn. The sensor 

calibration program uses standard weights for static 

calibration to ensure measurement accuracy. The model 

parameters are optimized through grid search, and the 

final number of hidden layer nodes is determined to be 20 

with a learning rate of 0.01. During the training process, 

the changes in the loss function are monitored in real-

time to avoid over-fitting. To fuse multi-modal 

perception information, the weighted summation method 

is taken to integrate the feature information from different 

sensors. The specific process of the sensor data fusion 

method used in the study is shown in Figure 4. 
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Figure 4: The specific process of sensor data fusion method. 

 

In Figure 4, firstly, the data collected by multiple 

sensors is pieced together to obtain the overall motion 

data of the patient. Then, the weight assignment is 

performed based on the weight values of each sensor to 

further achieve feature fusion. The weight calculation 

method for sensors is shown in equation (4). 
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2
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1n

i i i
i

w 
=

 
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 

                              (4) 

 

In equation (4), 
i  is the measurement variance of 

the sensor. i  is the sensor serial number. n  is the number 

of sensors. 
iw  signifies the weight of the corresponding 

sensor. The measurement variance of the sensor is 

calculated based on multiple experimental data during the 

training process. The benchmark data adopted in the 

study is the kinematic model established by healthy 

subjects performing standard motions, which serves as a 

reference standard for auxiliary rehabilitation training. 

After obtaining the corresponding interaction force and 

weight loss value generated by the user during the gait 

cycle through data fusion, the probabilistic neural 

network is used to judge their motion patterns and further 

enhance the intelligence. Probabilistic neural network is a 

radial basis function network, which includes an input 

layer, a pattern layer, a summation layer, and an output 

layer [17]. Figure 5 displays the structure of the 

probabilistic neural network. 
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Figure 5: The structure of probabilistic neural network. 

 

In Figure 5, in the probabilistic neural network, the 

input layer is responsible for receiving fused data from 

sensors. The pattern layer calculates the similarity 

between the input data and each training sample. The 

summation layer weights and sums the similarity to 

obtain probability estimates for each category. The output 

layer determines the final classification result based on 

the probability estimate. When using the probabilistic 

neural network for classification, the losses and risks in 

practical applications are considered. Probabilistic neural 

networks are sensitive to smoothing factors and data 

distribution, and need to be finely adjusted to optimize 

the classification effect. Therefore, the grid search 

method is taken to determine its smoothing parameters. 

The research conducts grid search, traverses different 

combinations of smooth parameters, evaluates the 

classification accuracy, and finally selects the optimal 

parameters. The input-output relationship determined in 

the hidden layer is shown in equation (5). 

 

( )
( )( )

2
1

2

T

kj kjx x x x

d

kj x e  

− −
− −

 = 
 

                (5) 

In equation (5), ( )ij x  is the output of the hidden 

layer. d  is the dimension value of the sample space. x  

signifies the sample value. k  and j  are the sample 

category and sample number, respectively. After 

outputting the hidden layer, the summation layer is used 

to weight the outputs of neurons belonging to the same 

type of hidden layer. The specific calculation process is 

shown in equation (6). 

1

N

kj

j

k
N




=

=


                               (6) 

In equation (6), N  signifies the number of samples 

in that category. kj  is a weighted value.   is the output 

result of the summation layer. The specific process of the 

proposed motion mode judgment method is shown in 

Figure 6. 
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Figure 6: The specific process of the proposed motion mode judgment method. 

 

As shown in Figure 6, the study inputs the interaction 

force data of each node and the data measured by weight 

sensors into the network model. The input variables also 

include the phase of each joint. These data are 

standardized after pre-processing steps to ensure that data 

of different dimensions can be compared at the same 

scale. These input variables can comprehensively reflect 

the dynamic state and motion characteristics. In the 

training phase, the research utilizes rich historical data to 

train the network to learn the mapping relationship 

between different motion patterns and sensor data. The 

probability density function for each motion mode is 

presented in equation (7). 

 

( ) ( )
, 22

T

i i

x

x x
f 

 




 − −
=                          (7) 

 

In equation (7),    signifies the connection weight. 

  signifies the smoothing factor. xf  ，  is the probability 

density function for each motion mode. Based on the 

probability density calculation results, the motion mode 
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that best matches the current sensor data can be 

determined. Firstly, a large amount of rehabilitation 

training data is classified and labeled through the manual 

labeling method to ensure the accuracy and reliability of 

the data. The categories of motion intentions include 

standing, walking, sitting, standing, etc., and each 

category corresponds to a specific sensor data pattern. 

Subsequently, these annotated data are used for model 

training, gradually optimizing network parameters and 

improving recognition accuracy. 

3 Results 
To test the perception ability and application effect of the 

proposed mechanical dynamic perception model, a series 

of experiments are designed to analyze. 

3.1 Analysis of data acquisition and 

processing effectiveness based on multi-

modal perception and kalman filter 

To test the perception ability and application effect of the 

method proposed in the research, simulation experiments 

and field operation experiments were designed for the 

research. The specific experimental setup process is 

shown in Figure 7. 

Experimental 

Design

Simulation 

experiment

Field operation 

experiment

The data is denoised 

through the Kalman 

filtering algorithm

The study invited five patients with lower 

extremity dysfunction and five normal patients 

as volunteers to participate in the experiment.

The gait data of patients 

collected by the sensors 

were fitted using MATLAB

The processed data is input into the probabilistic neural network for pattern recognition 

to verify the applicability and accuracy of the model at different rehabilitation stages .

The volunteers put on the 

weight-loss suits and 

connected each sensor 

properly.

The experimenters recorded the sensor data of the volunteers 

under different walking speeds, different gaits and movement 

patterns, and processed and analyzed the data using five 

models to determine the movement patterns of the volunteers
 

Figure7: The specific experimental setup process 

As shown in Figure 7, the MATLAB was taken to fit 

the patient gait data collected by the sensor. Then, the 

Kalman filter algorithm was used to denoise data to 

ensure its accuracy and reliability. Subsequently, the 

processed data was input into the probabilistic neural 

network for pattern recognition to validate the 

applicability and accuracy of the model at different 

rehabilitation stages. In the field operation experiment, 

five patients with lower extremity dysfunction and five 

normal patients were invited as volunteers to participate 

in the experiment. During the experiment, volunteers put 

on weight-loss suits and correctly connected each sensor. 

Experimenters recorded sensor data from volunteers at 

different walking speeds, gaits, and motion modes, and 

used five models to process and analyze the data to 

determine the volunteers' motion mode. A total of 10 

field operation experiments were conducted, each lasting 

for 30 minutes, to ensure the data diversity and 

repeatability. The patients were divided into two groups: 

normal patients and those with lower extremity 

dysfunction. They were grouped according to the severity 

of the patients' conditions and the rehabilitation stage to 

ensure the scientificity and comparability of the 

experimental results. The experimental results of the 10 

patients did not differ much, and the results before and 

after the experiment were basically consistent. 

To validate the accuracy of data collection from 

interaction force sensors, taking the rehabilitation training 

robot as an example, the patient gait data collected by the 

sensors is fitted using MATLAB. The simulation results 

of the exercise status of the same patient participating in 

rehabilitation training are compared with the actual 

measurement results collected by sensors. The results are 

shown in Figure 8. 
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Figure 8: Accuracy analysis of interaction force perception data. 

 

In Figure 8 (a), the simulation results of thigh 

interaction force were basically consistent with the data 

curve collected by the sensor, reaching 0.95. As shown in 

Figure 8 (b), the simulation and measured data of leg 

interaction force also showed high consistency, further 

confirming the reliability of data collection. 

Weight sensors were employed to determine the gait 

cycle of patients during the rehabilitation process, thereby 

assisting in dynamic perception. To validate the accuracy 

of the weight sensor installation method and the data 

reliability, a dummy model is used and weights of 1, 2, 3, 

4, 5, 6, 7, 8, and 9kg are sequentially added to the dummy 

model to simulate patients of different weights. Then, the 

data from the weight sensor is collected at each weight. 

The original weight of the dummy is 10kg. The 

measurement results of four weight sensors and the 

changes in weight loss values of normal patients with 

walking status are shown in Figure 9. 
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Figure 9: Measurement curves of four weight sensors with different weights. 

 

As shown in Figure 9 (a), with the increase of 

weights, the tension value detected by the sensor 

gradually increased, and the curve fitting between its 

measured value and the actual weight value of the 

dummy reached 0.97. As shown in Figure 9 (b), the 

measurement results of weight loss values also exhibited 

periodic changes over time. In the early stage of the 

supporting phase, the weight loss value gradually 

increased, which corresponded to the process of the 

patient gradually transferring their body center of gravity 

to the weight loss device. After entering the mid support 

phase, the weight loss value remained stable. At the end 

of the supporting phase, the weight loss value gradually 

decreased, as the patient begins to shift their body weight 

from the weight loss device back to their own legs. This 

indicates that the weight loss measurement of the weight 

sensor can further assist the robot in determining the 

current motion status of the patient. 

3.2 Perception effect analysis based on multi-

modal sensor fusion 

To process the collected data and avoid interference noise 

affecting the accuracy of dynamic perception, the Kalman 

filter is used for data preprocessing. To validate the 

rationality of the proposed data processing method 

(Method 1), the study compares it with the currently 

popular data preprocessing methods. The comparative 
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methods include sliding average filtering (Method 2), 

median filtering (Method 3), and wavelet transform 

denoising (Method 4). The study first simulates sensor 

data containing different levels of noise, and then applies 

these four methods for preprocessing. The Mean Square 

Error (MSE) and R-squared (R value) of the interaction 

force perceived by the model after four processing 

methods are taken to evaluate the performance, as 

displayed in Table 3. 

 

Table 3: Quality comparison of sensor data before and after noise reduction. 

Project 
SNR=10dB SNR=20dB SNR=30dB 

MSE R value MSE R value MSE R value 

Method 1 0.05 0.93 0.03 0.95 0.01 0.97 

Method 2 0.10 0.87 0.09 0.89 0.07 0.90 

Method 3 0.09 0.88 0.08 0.90 0.06 0.91 

Method 4 0.07 0.90 0.05 0.92 0.04 0.93 

Method 5 0.12 0.85 0.11 0.87 0.08 0.88 

 

As shown in Table 3, Method 1 outperformed other 

comparison methods on MSE and R-squared under SNR 

of 10dB, 20dB, and 30dB. Especially, at SNR=10dB, 

Method 1 had the lowest MSE of only 0.01 and the 

highest R value, reaching 0.97. 

To further verify the rationality of the sensor fusion 

method, the study uses data before and after fusion for 

dynamic perception, judges the patient's motion mode, 

and compares the results. The accuracy and running time 

of the motion mode judgment of the research model 

before and after data fusion are shown in Figure 10. 
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Figure 10: The accuracy and running time before and after the fusion data. 

 

In Figure 10 (a), the accuracy of data judgment 

before fusion was relatively low. Especially at the patient 

motion mode transition, the model was prone to 

misjudgment, with an average accuracy of 85.47%. The 

fused data significantly improved the judgment accuracy, 

with an accuracy of 95.84%, which enabled more 

accurate identification of the patient's motion intention. 

As shown in Figure 10 (b), the model's running time was 

reduced by 0.28s after data fusion, indicating that the 

sensor fusion method not only improved the judgment 

accuracy, but also enhanced the running efficiency. 

3.3 Analysis of the practical application 

effect of dynamic perception model 

To test the performance of the proposed multi-modal 

perception fusion robot mechanical dynamic perception 

model (Model 1), a comparative experiment is conducted 

on Model 2 in reference [18], Model 3 in reference [19], 

Model 4 in reference [20], and Model 5 in reference [21]. 

Model 2 focuses on the adaptability of soft robot skin and 

enhances the interactive ability of collaborative robots 

through body tactile perception. Model 3 combines 

machine learning and artificial synapses to accurately 

respond to intelligent flexible sensing systems. Model 4 

utilizes active visual tactile interaction to optimize object 

pose estimation. Model 5 is based on neural network 

assisted filtering to improve the robustness of multi-

modal indirect sensing in soft robots. These five models 

are applied to the perception process of robot 

rehabilitation training. Five patients with lower limb 

dysfunction and five normal patients are recruited as 

volunteers to participate in the experiment. During the 

experiment, volunteers wear weight loss clothing and 

connect various sensors. The experimenters record the 

sensor data of volunteers at different walking speeds, 

gaits, and motion patterns, and use five models to process 

and analyze the data to determine the volunteers' motion 

patterns. The motion mode refers to active walking and 

passive walking for patients. Motion intention recognition 
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refers to accurately identifying the volunteer's motion 

intention, including actions such as starting, accelerating, 

decelerating, and stopping. The method for determining 

the ground conditions is to measure the ground reaction 

force through high-precision pressure sensors, capture the 

ground texture information in combination with visual 

sensors, and comprehensively judge parameters such as 

ground hardness and friction coefficient to ensure that the 

model can accurately identify the motion intention under 

different ground conditions. During the experiment, the 

accuracy of motion mode judgment for five models is 

recorded, and the results are shown in Figure 11. 
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Figure 11: Motion mode judgment accuracy of five models. 

 

In Figure 11 (a), the accuracy of each model in 

judging the motion mode of patients with lower limb 

dysfunction gradually decreased with the increase of 

testing times. However, the overall judgment 

performance of Model 1 was significantly higher than 

other methods, with a judgment accuracy rate 

consistently above 92%. As shown in Figure 11 (b), for 

normal patients, the accuracy of the five models was 

relatively higher, with Model 1 having the highest 

accuracy, at 96.88%. 

To further test the practical application effect, 

volunteers were asked to judge their walking speed, gait 

characteristics, and motion modes during rehabilitation 

training in different scenarios, and the accuracy and 

stability were evaluated. The experimental scenarios 

include walking on flat ground, crossing obstacles, and 

going up and down stairs. Volunteers wear weight loss 

clothing and connect sensors to carry out rehabilitation 

training activities according to instructions. The accuracy 

and response time for each model in three scenarios are 

presented in Table 4. 

 

Table 4: Motion intention recognition accuracy and response time of each model under three scenarios. 

Projec

t 

Walking on flat ground Crossing obstacles Going up and down stairs 

Intention 

recognition 

accuracy (%) 

Response time 

(s) 

Intention 

recognition 

accuracy (%) 

Response time 

(s) 

Intention 

recognition 

accuracy (%) 

Response time 

(s) 

Model 

1 

95.48±1.55*&

%# 

0.85±0.09*&

%# 

95.72±1.69*&

%# 

0.89±0.08*&

%# 

95.36±1.47*&

%# 

0.82±0.07*&

%# 

Model 

2 
85.69±2.43 1.62±0.12 85.71±1.40 1.68±0.12 85.65±1.68 1.77±0.14 

Model 

3 
90.34±1.78 1.05±0.09 91.00±1.83 1.08±0.10 90.52±1.63 1.07±0.11 

Model 

4 
83.54±1.49 1.81±0.10 84.00±1.74 1.82±0.12 84.11±1.72 1.80±0.13 

Model 

5 
88.45±2.00 1.21±0.11 88.90±1.69 1.12±0.11 88.23±1.88 1.36±0.12 

Note: In Table 4, * indicates that the comparison results between Model 1 and Model 2 are different (p<0.05). & 

Indicates that the comparison results between Model 1 and Model 3 are different (p<0.05). % Indicates that there is a 

difference in the comparison results between Model 1 and Model 4 (p<0.05). # Indicates that the comparison results 

between Model 1 and Model 5 are different (p<0.05). 

 

According to Table 4, the intention recognition 

accuracy of Model 1 was significantly higher than the 

other four models in these three scenarios, reaching 

95.48%, 95.72%, and 95.36%, respectively. Meanwhile, 
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the response time of Model 1 was relatively short, at 

0.85s, 0.89s, and 0.82s respectively, indicating its high 

real-time performance. In contrast, the other models had 

lower accuracy in intent recognition and longer response 

time. Especially in complex scenarios such as crossing 

obstacles and going up and down stairs, Model 1 had 

more obvious advantages, with an intention recognition 

accuracy about 10% higher than other models and a 

response time shortened by nearly 50%. This indicates 

that Model 1 can quickly and accurately perceive the 

patient's motion intention, providing timely and effective 

auxiliary support for the robot. In addition, Model 1 has 

demonstrated good stability and adaptability, and can 

maintain high accuracy in different patients and 

rehabilitation stages. 

To test the effectiveness of the proposed intent 

recognition model applying Kalman filtering and multi-

sensor fusion in the research, ablation experiments are 

conducted on the model. The Kalman filter and sensor 

fusion modules are removed separately for testing. The 

comparison results are shown in Table 5. 

 
Table 5: Ablation experiments of the intention recognition model 

Project 
Module 

Accuracy (%) 
Kalman filter Multi-sensor fusion Basic model 

1 - - √ 87.47 

2 - √ √ 90.36 

3 √ - √ 90.11 

4 √ √ √ 95.48 

 

As shown in Table 5, when using the multi-sensor fusion 

or Kalman filter module alone, the model accuracy was 

improved, but did not reach the level of Model 1. The 

combination of the two can significantly improve the 

accuracy and real-time performance of intent recognition, 

verifying the effectiveness of the research method. 

Further analysis shows that Kalman filtering effectively 

reduces noise interference, while multi-sensor fusion 

enhances data integrity. The synergistic effect of the two 

significantly improves the performance of the model in 

complex scenarios. 

4 Discussion and conclusion 
Traditional rehabilitation training methods for lower limb 

dysfunction often rely on the therapist's experience and 

judgment, lacking objective and accurate evaluation 

methods. Therefore, a robot mechanical dynamic 

perception model based on multi-modal sensor fusion 

was proposed, providing a new solution for rehabilitation 

training of patients with lower limb dysfunction. A set of 

behavior recognition input variables was constructed by 

collecting patient interaction force perception data and 

weight loss value data. Afterwards, the probabilistic 

neural network was taken to recognize the patient's 

motion intention, assisting the robot to generate correct 

responses to the patient's motions. The fitting degree 

between the interaction force perception data and the 

measured data reached 0.95, and the data changes 

transmitted through the weight sensor could accurately 

determine the patient's motion phase. The R-squared of 

the data processed by Model 1 remained above 0.93 and 

the MSE did not exceed 0.05 at 10dB, 20dB, and 30dB. 

In practical applications, the perception model proposed 

in the research can accurately perceive the motion 

intentions of patients and thereby achieve accurate 

auxiliary training. Its average recognition accuracy 

reached 95.52%, and the average response time was only 

0.85 seconds. The recognition accuracy of the other four 

models reached 95.48%, 95.72% and 95.36% 

respectively. The response time was 0.85s, 0.89s and 

0.82s, respectively. Compared with these four models, the 

model proposed in the study has higher real-time 

performance and accuracy. The performance difference 

occurs because the research combines Kalman filtering 

and multi-modal data fusion technology, effectively 

reducing noise interference and improving the accuracy 

and efficiency of data processing. The Kalman filtering  

 

algorithm optimizes the sensor data in real time, ensuring 

the intention recognition accuracy. Meanwhile, multi-

modal fusion enhances the adaptability of the model to 

different scenarios, enabling Model 1 to maintain 

excellent performance in complex environments. This 

indicates that the proposed model not only improves the 

accuracy of motion intention recognition, but also 

shortens response time, providing patients with more 

timely and effective auxiliary support. At present, the 

research has not considered eliminating signal 

interference through machine structures. In the future, 

mechanical structure optimization will be considered to 

further improve the accuracy and stability of data 

acquisition. 
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