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The integration of physical activity into students' daily routines is vital for improving both health and 

academic outcomes. To ensure the effectiveness of such activities, it is crucial to implement systems that 

can accurately monitor and analyze exercise data. This study proposes the Multi-Attribute Fuzzy 

Evaluation Model (MAFEM), which utilizes fuzzy logic and fuzzy sets to interpret complex sensor data 

and assess student health. The model incorporates preprocessing, fuzzification, defuzzification, and rule 

evaluation, optimized through adaptive thresholds for enhanced personalization. MAFEM was evaluated 

using the MM-Fit dataset, which includes synchronized multimodal data (e.g., accelerometer, gyroscope, 

and heart rate) collected from 30 university students performing standardized physical activities (walking, 

jogging, cycling, stair climbing, and resting). The system was benchmarked against three state-of-the-art 

methods: SHER, HAD, and HNN frameworks. Experimental validation involved 50 exercise sessions in 

both indoor and outdoor environments, with performance metrics computed based on standard evaluation 

protocols. MAFEM demonstrated high reliability, achieving 97.11% precision, 95.84% recall, and an 

RMSE of 0.23. Furthermore, it maintained low computational complexity (O (r.m.n)) and minimal energy 

consumption (approximately 65mAh during Wi-Fi-based operation), outperforming baseline models in 

both accuracy and resource efficiency. These findings highlight the robustness and practicality of fuzzy 

logic-driven multi-attribute frameworks for personalized, real-time physical activity monitoring in 

wearable health systems. 

Povzetek: Predstavljen je sistem za analizo študentskih vaj MAFEM. Je večatributni sistem z mehko logiko 

za spremljanje aktivnosti z nosljivimi senzorji. Na MM-Fit doseže dobre rezultate, primeren je za 

izobraževanje. 

 

 

1   Introduction  

Improvement of health and learning achievements are 

considered to be a result of regular exercises; however, 

due to a lack of motivation, constraints of time, or lack of 

knowledge about proper training, not everyone can stick 

to regular physical activities [1-4]. In recent times, 

wearable sensor devices have emerged as a promising 

solution that enables tracking of biomechanical and 

physiological data, including movement patterns, heart 

rate, and step count. These devices help in providing 

intensity, duration, and effectiveness insights of exercises 

to optimize fitness levels [5]. Traditional monitoring 

systems are challenged by data emanating from many 

sensors, usually noisy, with variability, and 

computational complexity introduced by fixed rules and 

thresholds [6] [7]. 

 

Advanced learning methods have been developed to 

overcome these challenges by incorporating adaptive 

techniques and data analysis on large datasets; these 

methods rely on self-learning and training for complex 

pattern spotting of features that enhance the accuracy of 

prediction and system robustness [8][9]. The barriers, 

however, are that most machine learning algorithms 

require a tremendous amount of data labeled and have 

serious challenges yet to be fully overcome when such 

sensor data bears imprecision or uncertainty [10-12]. All 

these further enhance the computational needs and limit 

personalization, for which traditional systems often fail in 

providing tailored feedback or recommendations [13]. 

The following research proposes a new framework, the 

Multi-Attribute Fuzzy Evaluation Model, for meeting 

these challenges. MAFEM will develop fuzzy logic that 

is multi-attribute and would be able to process imprecise 

and uncertain data robustly, accurately, and flexibly. 

Based on historical data analysis, the level of exercise 

intensity is analyzed, and individualized exercise 

suggestions are given to bridge the gap from data 

collection to practical application [14]. This model 

embeds processing, fuzzification, defuzzification, and 

rule evaluation to improve monitoring efficiency and 

adaptiveness in a dynamic environment. 
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The key contributions and novelty of this work include: 

 

• Development of a robust MAFEM framework 

that effectively handles data variability and 

uncertainty, improving the reliability of exercise 

monitoring systems. 

• Personalized exercise recommendations based 

on historical data, fitness levels, and user 

profiles, enhancing the system’s adaptability and 

effectiveness. 

• Optimization for resource-constrained devices, 

minimizing computational complexity and 

latency while delivering real-time feedback. 

 

By combining wearable technology with advanced fuzzy 

logic, MAFEM provides a comprehensive and 

personalized approach to exercise monitoring, fostering 

better health outcomes and supporting individuals in 

achieving their fitness goals. To formally guide the scope 

of this research, we define the following objectives: 

(i) To evaluate the effectiveness of fuzzy logic-based 

multi-attribute evaluation for handling uncertainty in 

wearable sensor data during physical activity monitoring; 

(ii) To measure the energy and computational efficiency 

of the MAFEM framework for real-time application on 

resource-constrained devices; 

(iii) To assess the personalization capability of MAFEM 

in adapting to user-specific fitness levels and activity 

patterns; 

(iv) To analyze the generalizability of the model across 

different types of physical exercises and its scalability 

toward real-world deployment scenarios. 

 

2   Literature review 

 Wearable sensors integrated with computationally 

advanced techniques have changed the paradigm of 

monitoring physical activity and health [15][16]. Al 

Shloul et al. [17] developed the quaternion filtering and 

data fusion-based tool SHER. Using Fisher's linear 

discriminant analysis, an extended Kalman filter with 

neural networks classified the health status of their 

approach with high accuracy. Similarly, Xiao et al. [18] 

have proposed the Hybrid Deep Approach, HAD, which 

combined LSTM networks with Bayesian optimization 

and realized an accuracy of 97.5% in activity recognition. 

These studies illustrate that sensor data combined with 

machine learning enhances health monitoring systems.      

 

Deep learning models have widely been adopted for 

activity recognition and health prediction. Zhou et al. [19] 

proposed HNN in order to analyze performance in 

aerobics students by showing the benefit of continuous 

training and optimization techniques. Li et al. [20] 

conducted research to find out the variation in heart rate 

with depression and anxiety using MLP, which proved to 

be quite accurate in determining mental health conditions. 

Besides, Omarov et al. [22] used DNN for monitoring 

sporting activities and generating real-time feedback for 

enhancing physical health. From these studies, the role of 

adaptive learning methodologies in managing complex 

datasets for better prediction accuracy has been 

highlighted. 

 

Figure 1: Workflow of the MAFEM-based exercise monitoring system using wearable sensors and fuzzy logic 
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Table 1: Summary of the Literature review.  

Despite such advancements, issues such as uncertainty in 

data, noise, and computational complexity still pose a 

challenge. Afsar et al. [23] addressed these issues by 

incorporating convolutional networks along with grey 

wolf optimization for recognizing sports activities with 

high accuracy. Guo et al. [24] mproved the fitness 

evaluation using LSTM and 1-D convolutional neural 

networks and showed that feature selection and data 

denoising are important. Traditional systems lack 

personalization and also fail in real time processing. As 

such, more recent research has hence focused on using 

fuzzy logic and multi-attribute evaluation models that are 

considered to provide more robust solutions in handling 

imprecise data for appropriate feedback. 

 

 

 

This collaboration between wearable sensors and 

sophisticated computation models has opened new 

frontiers for personalized health monitoring. Yang et al. 

[27] applied the BP neural network to predict and prevent 

sports injuries, illustrating wearable technology in real-

time action recognition. Li et al. [28] proposed Time-

aware Outlier Detection (TOD) for compressing 

physiological data in efficient anomaly detection.  

 

Ferrara [29] discussed large language models for human 

activity recognition and their contribution to improving 

data analysis and interpretation. These works underlined 

the importance of combining wearable sensors with 

adaptive algorithms in order to provide scalable, accurate, 

personalized health monitoring systems. These 

approaches will provide improvements in data uncertainty 

and real-time processing, thus enabling better exercise 

monitoring and health management. 

 

3   Methodology  

Therefore, a multi-attribute fuzzy evaluation model, 

called MAFEM, is proposed as a strong platform for 

observing college students' physical activities when 

wearing sensors. These wearable sensors include 

accelerators, heart rate monitors, and gyroscopes that 

measure real-time physiological and biomechanical 

activities of the body, including heart rate, step count, 

moving in different directions, and body temperature. 

Traditional monitoring systems can hardly handle such a 

level of complexity and variability in data, especially 

when dealing with uncertainties and individual 

differences in fitness levels. MAFEM introduces fuzzy 

logics that can interpret imprecise and subjective data, 

Ref Method Dataset Limitation 

[17] 

SHER 
(LDA + 
EKF + 
NN) 

Custom 
No personal.; 

no fuzzy 

[18] 

HAD 
(LSTM + 

Bayes 
Opt.) 

Phone 
accel. 

Heavy; no 
real-time 

[19] HNN 
Aerobics 
students 

No personal.; 
fixed rules 

[23] 
CNN + 

Grey Wolf 
Exergami
ng data 

High latency; 
less adaptive 

[24] 
1D-CNN + 

LSTM 
Running 

PPG 
Power-hungry; 

no personal. 

[27] 
BP Neural 

Net 
Injury 
dataset 

No adaptive 
fb.; no fuzzy 

Figure 2: Low-pass filtering process for noise removal in accelerometer data 
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hence suitable for personalized exercise monitoring. 

Measurement in MAFEM begins with data from wearable 

sensors embedded in the student's body. These sensors 

continuously capture physiological and biomechanical 

data throughout exercise motions. Such measurements 

will then be transmitted to a certain intelligent monitoring 

system that would clean the noise and outliers within the 

data stream, hence making normalization in enhancing the 

quality of the data streams. Feature-heart rate variability, 

step count, motion intensity, and many such other 

important parameters give the analysts necessary insight 

on a student while performance in relation to exercises. 

These features are assessed with fuzzy logic rules, which 

attach membership values to linguistic variables such as 

"low," "moderate," or "high." For example, one of the 

rules may read: "IF heart rate is high AND step count is 

low, THEN exercise intensity is moderate." This flexible 

approach enables the exact establishment of the fitness 

level of each student in a more individualized way. 

 

The membership functions may be pre-defined using 

triangular or Gaussian functions for mapping the input 

variables into fuzzy sets by the fuzzy logic system. In this 

way, it manages the variability and uncertainty inherent 

in human movement and physiology. According to the 

assessment, the MAFEM will produce an individual 

profile for each student by considering past performance 

records and statements of goals about fitness. This profile 

is used to give personalized tips for the optimization of 

exercises, minimizing injury risks, and improving health 

in general. It also provides real-time feedback to allow 

students to change their activities in order to achieve 

better performance levels with maximum safety. Figure 1 

illustrates the workflow of the MAFEM-based exercise 

monitoring system. Wearable sensors capture data during 

physical activities that are further processed and analyzed 

by fuzzy logic rules. The system will analyze the student's 

fitness level and store the results in a student profile. This 

is constantly updated and used for actionable insights and 

recommendations. MAFEM uses wearable technology 

that incorporates high-level fuzzy logic to make the 

complex system user-friendly. 

 

A) Sensor-Based Data Acquisition and Transmission 

 

The core of this wearable device layer in the student 

exercise monitoring system is made on a backbone of 

advanced sensors that acquire highly detailed 

physiological and biomechanical data: heart rate 

monitors, gyroscopes, accelerometers, temperature 

sensors, GPS modules, and electromyography sensors. 

They bear different functions: gyroscopes-alignment and 

posturing by tracking the angular velocity, 

accelerometers-speed, movement strength, or direction, 

while GPS modules detect the pace/distance in cases like 

running and cycling activities. Heart rate monitors assess 

heart cardiovascular activity based on the kind and 

duration of exercises, while temperature sensors record 

rises in human body temperature as a result of 

overheating. These devices were designed to be 

lightweight and unobtrusive, allowing for comfort while 

continuous raw data acquisition in the student 

performance evaluation for different exercises. The 

system takes advantage of the MM-Fit Dataset, openly 

available at the address https://mmfit.github.io/, 

representing a rich record of physical exercise data 

acquired using multiple wearable devices in time 

synchrony. In particular, this dataset includes the 

acquisition of 2D and 3D pose information captured by 

wearable earbuds, smartwatches, and smartphones. The 

data transmission layer will take responsibility for the 

transmission of data collected to the intelligent system 

through wireless protocols like Wi-Fi and Bluetooth. The 

data continuously and synchronously upload securely, 

with low latency and packet loss, supporting long-

duration activities. These synchronized data shall be 

forwarded to the central processing unit for analysis. 

 

The next layer of the system is to extract meaningful 

features from the data collected in order to make 

decisions. Features from metrics such as heart rate 

variability, motion intensity, and posture provide an 

exercise performance assessment that can be used to yield 

personalized recommendations. Within this system, 

Figure 3: Workflow of the fuzzy logic and rule analysis layer for evaluating exercise intensity 
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wearable technology with advanced integrated data 

processing aims at improving the academic and physical 

performances of the students. 

 

 

 

B) Data Processing and Feature Extraction 

 

The raw sensor data collected from wearable devices 

undergoes a series of preprocessing steps to ensure 

accuracy and reliability. Environmental interferences, 

sensor errors, and inconsistencies in user movements can 

affect the quality of the data. To address these issues, the 

data processing layer applies cleaning, filtering, and 

normalization techniques. A low-pass filter is employed 

to remove noise from accelerometer data, preserving 

essential information like body movements while 

eliminating irrelevant signals such as environmental noise 

and sensor glitches. The structure of the low-pass filtering 

process is illustrated in Figure 2. The filtering process 

uses an exponential moving average filter, defined by the 

equation: 

𝑦(𝑡) = 𝛼𝑥(𝑡) + (1 − 𝛼)𝑦(𝑡 − 1) 

Here, 𝑦(𝑡) represents the filtered signal at time 𝑡, 𝑥(𝑡) is 

the raw input signal, 𝑦(𝑡 − 1) is the filtered signal from 

the previous time step, and 𝛼  is the smoothing factor, 

which determines the responsiveness of the filter. The 

value of 𝛼 is adjusted based on the noise characteristics 

and the desired level of smoothing. The filtered data is 

then normalized using the min-max normalization 

method, scaling the values to a consistent range of [0,1]. 

This ensures that all features contribute equally to the 

analysis, preventing any single feature from 

disproportionately influencing the results. 

Once the data is preprocessed, features are extracted 

relevant to the estimation of physiological states and 

performance in exercise. Some key features are step 

count, speed, heart rate variability, and cadence. Step 

count, as extracted from accelerometer data, shows 

walking and running patterns. Speed is calculated by GPS 

data, showing the velocity of movement and exercise 

intensity. Heart rate variability is the variation between 

consecutive heartbeats, providing information about 

cardiovascular activity. Cadence and gait features from 

gyroscope and accelerometer data help analyze running 

and walking rhythms. These all contribute to 

(a) 

(b) 
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comprehensive insight into every single exercise activity 

for each student and thus may allow the detection of 

anomalies to offer personalized suggestions for 

improvement. 

C) Fuzzy Logic and Rule Analysis 

TThe layer for fuzzy logic and rule analysis plays an 

important role in the management of variability and 

uncertainty that characterizes sensor data. This layer 

assesses a set of features such as step count, speed, and 

heart rate using fuzzy rules in a scalable and flexible 

manner for better decision-making. These features were 

chosen based on extensive evidence in the literature 

supporting their relevance for monitoring physical 

exertion and physiological responses during activity. For 

instance, HRV is a widely recognized biomarker for 

cardiovascular workload and autonomic nervous system 

response, making it a reliable indicator of exercise 

intensity. Similarly, cadence and step count are strongly 

correlated with gait dynamics and physical effort, while 

speed and motion intensity reflect real-time exertion 

levels. Posture, derived from orientation data using 

gyroscope and accelerometer readings, further informs 

activity classification, particularly in differentiating 

between static and dynamic movements. The use of these 

features also aligns with prior studies on wearable sensor-

based monitoring systems, which highlight their 

effectiveness in interpreting physical performance [7] [8]. 

These features were selected not only for their 

physiological relevance but also for their compatibility 

with fuzzy rule construction and linguistic interpretation 

in the MAFEM framework. Fuzzy logic works with 

partial membership values that normalize data within the 

interval between 0 and 1 for accurate and context-

sensitive decisions. The entire process of this layer is 

shown in Figure 3. Fuzzy sets are defined for the attributes 

such as heart rate, speed, and cadence. For instance, the 

Figure 4: Membership functions for (a) heart rate, speed, and cadence, and (b) exercise intensity derived from fuzzy 

rule processing 

Figure 5: Precision analysis of the MAFEM-based exercise 

monitoring system: (a) comparison with existing methods 

and (b) precision trends across different exercise intensities. 

(a) (b) 
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heart rate is divided into low, medium, and high fuzzy sets 

with μ "low ", μ "medium ", and μ "high ". These 

functions map input values to truth degrees using a 

triangular membership function defined as given in 

Equation 2: 

𝜇𝐴(𝑥) =

{
 
 

 
 
0  if 𝑥 ≤ 𝑎
𝑥 − 𝑎

𝑏 − 𝑎
 if 𝑎 < 𝑥 ≤ 𝑏

𝑐 − 𝑥

𝑐 − 𝑏
 if 𝑏 < 𝑥 ≤ 𝑐

0  if 𝑥 ≥ 𝑐

 

Here, 𝑎, 𝑏 , and 𝑐  define the triangular shape of the 

membership function. Further, fuzzy rules are applied 

which integrate these membership values. For example, a 

student's heart rate and speed are high, the intensity of the 

exercise is high. These can be framed using if-then 

conditions as: 

• Rule 1: If heart rate is high and speed is high, 

then exercise intensity is high. 

• Rule 2: If heart rate is medium and speed is 

medium, then exercise intensity is medium. 

• Rule 3: If heart rate is low and speed is low, then 

exercise intensity is low. 

Logical operators like AND, OR, and NOT are used to 

combine multiple attributes, ensuring smooth transitions 

and accurate outputs. This multi-attribute decision-

making system integrates factors like gait, cadence, 

speed, and heart rate to provide a comprehensive 

assessment of exercise performance.  

The inference engine processes include fuzzification, rule 

evaluation, and defuzzification. During fuzzification, 

input values are converted into fuzzy values using 

membership functions. Rule evaluation applies the AND 

operator to determine output values, as shown in Equation 

(3): 

𝜇intensity_high = min (𝜇high_hr (𝑥), 𝜇high_s (𝑦)) 

𝜇intensity_medium 

= min(𝜇medium_hr 
 (𝑥), 𝜇medium_s (𝑦) 

(𝜇intensity_low = min(𝜇low_hr  
(𝑥), 𝜇low_s (𝑦)). 

Defuzzification converts fuzzy values into crisp outputs 

using the centroid method, which calculates the center of 

gravity for aggregated fuzzy values. The final crisp output 

determines the student's exercise intensity level. The 

membership functions for speed, heart rate, and exercise 

intensity are graphically represented in Figure 4, 

demonstrating how fuzzy rules process sensor data 

variations and uncertainties. 

D) Adaptive and Personalized Recommendations 

The system's adaptive and personalized layer evaluates 

each student's performance and provides tailored 

recommendations. A user profile is created, storing 

details such as fitness level (e.g., resting heart rate, VO2 

max), goals (e.g., weight loss, muscle gain), and historical 

achievements (e.g., past workouts, progress over time). 

This profile helps the system understand the student's 

starting point and track progress. The adaptive procedure 

uses a neural network model to analyze current trends and 

predict feedback. Threshold values are adjusted based on 

the student's fitness level, as defined in Equation (4): 

𝑁thre = 𝑂Thre + 𝐾 ∗ (𝐶𝑓 − 𝐼𝑓) 

Figure 6: Recall analysis of the MAFEM-based exercise 

monitoring system: (a) comparison with existing methods 

and (b) recall trends across different student activity levels. 

(a) 
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Here, 𝑁thre  is the new threshold, 𝑂Thre  is the old 

threshold, 𝐶𝑓  is the current fitness level, 𝐼𝑓  is the initial 

fitness level, and 𝐾  is a constant regulating threshold 

adjustments. For example, if a student improves their 

cardiovascular fitness, the system adjusts their heart rate 

zones accordingly. Initially, the heart rate zones might be 

defined as low intensity ( 60 to 100 bpm), medium 

intensity ( 100 to 140 bpm ), and high intensity ( 140 to 

180 bpm ). As the student's fitness improves, the system 

updates these zones to low intensity ( 65 to 105 bpm), 

medium intensity (105 to 145 bpm ), and high intensity ( 

145 to 185 bpm). This adaptive approach ensures that 

students continue to progress and avoid stagnation. By 

combining fuzzy logic with adaptive algorithms, the 

system provides personalized feedback, helping students 

improve their exercise routines and overall health, which 

positively impacts their academic performance. In the 

current implementation of MAFEM, the adaptive and 

personalized recommendation mechanism is realized 

through a rule-based approach rather than a neural 

network model. Although a neural network is mentioned 

conceptually as a possible enhancement, no such model 

was implemented or trained in this version. 

Personalization is achieved through dynamic adjustment 

of threshold values that define exercise intensity zones 

(low, medium, high), as described in Equation (4). These 

thresholds are updated over time based on changes in 

individual fitness indicators, such as average heart rate, 

heart rate recovery trends, and observed intensity 

classification patterns across sessions. The update 

mechanism uses a weighted average strategy that blends 

previous threshold values with current performance 

metrics, allowing the system to adapt progressively 

without requiring supervised learning. This adaptive 

thresholding contributes to improved accuracy in 

borderline cases and ensures that recommendations 

remain aligned with the user’s evolving fitness level. 

4   Results and discussion 

This section underlines the efficiency analysis of the 

Multi-Attribute Fuzzy Evaluation Model in the 

monitoring exercises done by students. The analysis, 

based on the MM-Fit Dataset [25], after going through 

multi-layer processing via wearable sensors, fuzzy logics-

based rule analysis, and adaptive personalization 

mechanisms, proceeds to measure performance along 

various dimensions such as accuracy, user satisfaction, 

adaptiveness, and efficiency of operation. For comparison 

and setting a benchmark, MAFEM is compared against 

some existing methodologies such as SHER: Student 

Health Exercise Recognition [17], Hybrid Deep 

Approach-HAD [18], and Hybrid Neural Networks-HNN 

[19]. To evaluate the performance of the proposed 

MAFEM framework, a session-based evaluation strategy 

was adopted, where training and testing data were drawn 

from separate exercise sessions to ensure generalizability. 

Standard evaluation metrics were used, including 

precision, recall, F1-score, RMSE, and MSE. These were 

computed based on comparisons between predicted and 

actual exercise intensity levels. From the MM-Fit dataset, 

only data from accelerometer, gyroscope, and heart rate 

sensors were used, obtained from smartwatches and 

smartphones. Sessions with incomplete or noisy sensor 

data were excluded during preprocessing. This strategy 

yielded consistent results across sessions, including a 

precision of 97.11% and RMSE of 0.23, demonstrating 

the robustness and accuracy of the proposed method. 

 

It is compared with three traditional methods for exercise 

monitoring: rule-based assessment wearable sensors, GPS 

and heart rate monitoring, and a hybrid approach. In this 

work, the system was tested for accuracy, responsiveness, 

user comfort, and flexibility in various scenarios of 

exercises: aerobic workouts, strength training, and mixed. 

Figure 7: (a) Computational complexity analysis of MAFEM 

across preprocessing, fuzzification, rule evaluation, and 

defuzzification stages. (b) Latency assessment showing a 

total system delay of approximately 70ms for real-time 

exercise monitoring and feedback. 

(b) 

(a) 

(b) 
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The obtained results show that MAFEM is much better in 

comparison with traditional methods. For instance, the 6-

week aerobic fitness program with 25 students 

participating in running and cycling exercises recorded 

that MAFEM was 20% more accurate in detecting 

changes in speed and intensity, especially during interval 

training. Besides, the feedback provided by the system 

was faster by 30%, while a user satisfaction rate was 15% 

higher because of its adaptiveness and unobtrusiveness. 

 

A) Accuracy Metric Analysis 

 

Precision, recall, MAE, and RMSE are various measures 

of accuracy taken to assess MAFEM. The result in 

precision analysis has been depicted in Figure 5 and 

presented to depict the performance of the MAFEM on 

the effectiveness in monitoring students' exercise 

activities. From here, results proved that MAFEM could 

present the best with 97.11% for the precision of. This 

high level of precision is based on how well the model 

handled multi-dimensional sensor data. MAFEM deals 

with data variability and uncertainty because of the inbuilt 

fuzzy sets, rules, and logic that provide robust and flexible 

data interpretation. Integration of the various attributes-

pace, speed, and heart rate-would increase the evaluation 

capability of this system for critical exercise performance, 

as well as high accuracy in quantifying the intensities of 

different exercises. Additionally, the inference engine 

within MAFEM ensures actionable and precise 

recommendations, further improving the system’s 

reliability. 

 

Figure 6 shows the recall analysis of the MAFEM-based 

exercise monitoring system. The model has a high recall 

value, which indicates the efficiency of the model in 

retrieving relevant student activities. This is achieved by 

incorporating multiple attributes in the process of exercise 

evaluation to minimize false negatives and enhance 

recognition accuracy. The fuzzy rules analyze the 

relationship between the biomechanical and physiological 

parameters for a comprehensive understanding of the 

pattern of exercises. The system deploys adaptive 

algorithms in rating the feedback given by students with 

regard to data like historical fitness level and exercise 

routines. This will enhance the ability of the system for 

improved recall values in tracking the progress of a 

student over time. 

 

Such results follow the use of a low-pass filtering 

technique in removing noise and incomplete data from 

raw sensor inputs. Normalization further refines the data 

by scaling them in the same range, hence reducing the 

impact of outliers. Moreover, MAFEM achieves low error 

rates at the mean square error of 0.26 and a root mean 

square error of 0.23. This in turn means that the 

application of fuzzy sets, rules, and logic on extracted 

Figure 8. (a) Overall computational complexity of MAFEM across different processing stages. (b) System latency 

breakdown, showing the time taken for data acquisition, processing, and feedback generation. (c) Energy consumption 

analysis for Bluetooth-based communication. (d) Energy consumption analysis for Wi-Fi-based communication. 
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features minimizes uncertainty in the data interpretation, 

hence the improved accuracy. Dynamic adjustment of 

thresholds, therefore, based on students' progress and past 

performances reduces discrepancy between the actual and 

forecasted value. This adaptive nature keeps the system 

always correct and true to a particular student as seen in 

Figure 7. 

 

B) Efficiency Analysis of MAFEM 

 

Efficiency of MAFEM is calculated in terms of 

computational complexity, latency, and energy 

consumption. Every step in MAFEM-processing, 

fuzzification, rule evaluation, and defuzzification-are 

scrutinized for its computational requirements. 

Preprocessing can be considered a process comprising 

data cleaning, normalization, and filtering, which 

therefore requires a time complexity of O(n), with n 

representing the number of data points from each sensor.  

 

Fuzzification, where triangular membership functions are 

applied to the data, is of order O(m.n), with m being the 

number of fuzzy sets and n the total amount of data. 

Likewise, rule evaluation has a complexity of 𝑂(𝑟.𝑚. 𝑛), 
as it examines multiple fuzzy sets and attributes. Finally, 

the defuzzification step, which computes weighted 

averages, has a linear complexity of 𝑂(𝑛).  Overall, 

MAFEM achieves a total computational complexity of 

𝑂(𝑟.𝑚. 𝑛), as illustrated in Figure 8(a).   

 

Another important factor in the evaluation of the system's 

efficiency is the latency. The overall latency covers data 

gathering, processing, and feedback delivery time. Data 

gathering depends on the sensor sampling rate and usually 

is a few milliseconds. Preprocessing requires about 10ms, 

20ms for fuzzification, rule evaluation requires 30ms, 

while defuzzification requires 10ms. Feedback delivery 

time, which shall be dependent on the protocols applied, 

may range from a few milliseconds to tens of 

milliseconds. Therefore, the total latency for MAFEM is 

around 70ms, which is efficient for real-time monitoring 

and generation of feedback, as illustrated in Figure 8(b). 

Energy consumption is another critical factor in wearable 

devices. The whole process can be divided into three 

stages: data acquisition (DA), data transmission (DT), and 

data processing (DP). Data acquisition consumes about 

10mAh due to the low-power design of the sensors. Data 

transmission depends on the protocol and consumes 

15mAh for Bluetooth and 25mAh for Wi-Fi. Data 

processing involves several tasks like preprocessing, 

fuzzification, rule evaluation, and defuzzification and 

consumes about 30mAh. Hence, the total energy 

consumption is 55mAh for Bluetooth and 65mAh for Wi-

Fi as shown in Figure 8(c) and Figure 8(d) respectively. 

The results here indicate that MAFEM successfully 

monitors student exercise activities with a high degree of 

accuracy while keeping computational overhead low. 

Integration of fuzzy logic with rules ensures a robust 

treatment of data uncertainty, hence increasing user 

satisfaction and personalization. 

 

C) Potential Applications and Challenges 

 

MAFEM can be used in higher education institutions to 

monitor and enhance students' physical activity as part of 

the course requirements. For instance, it can be applied 

within PE classes to offer immediate feedback regarding 

exercise performance and thus allow personalized 

routines that balance challenge and safety. These are 

accompanied by challenges in the cost of wearable 

devices, data privacy, and the need for further updates of 

fuzzy logic rules if the deployment is to be sustainable. 

The discussion of such challenges will provide deep 

insight into its long-term adoptive potential. 

 

While MAFEM has demonstrated strong performance on 

the MM-Fit dataset, we acknowledge that its current 

evaluation is limited to this specific dataset. Cross-dataset 

validation was not performed in this study, which may 

affect the generalizability of the results to other 

populations, sensor types, or physical activity settings. In 

future work, we plan to explore domain adaptation 

techniques or transfer learning frameworks to assess how 

MAFEM can be adapted to new datasets with minimal 

reconfiguration. 

 

5   Conclusion  

The present paper now presents a detailed analysis of the 

MAFEM for monitoring student exercise activities. In this 

study, MM-Fit data is used, which consists of a set of data 

created by the use of different sensors while tracking 

students' movements and physiological responses. The 

raw data are first preprocessed by a low-pass filtering 

approach to remove noise and ensure data quality. 

Further, data normalization is done so that the data get 

standardized in a regular format for further analysis. The 

main features, such as step count, heart rate variability, 

and speed, are extracted to estimate exercise intensity and 

performance. The system adopts fuzzy sets and rules for 

analyzing the relationship among these features; thus, it 

handles uncertainty and imprecision in data effectively. 

MAFEM integrates multiple attributes to enhance overall 

efficiency and accuracy in the monitoring process. The 

processed data is stored in user profiles that, with the 

continuous evaluation by adaptive algorithms, are used to 

generate recommendations. This ensures that the system 

is adaptative to the needs of each individual student, 

offering feedback that is able to be acted on. MAFEM is 

evaluated through several metrics, including 97.11% 

precision, 0.23 RMSE, and 0.26 MSE. This framework 

also depicts lesser computational complexity (O(r.m.n)) 

with very minimal latency (≈70ms) and hence should be 

suitable for real-time applications. However, the 

applicability of the proposed system is not general and 

seems to be good only for few datasets. Furthermore, it 

faces challenges while considering real-time analysis due 

to a lot of computations. Future optimization of learning 

techniques will help enhance the adaptiveness of the 

presented system to various real-time situations. 
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