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The integration of physical activity into students' daily routines is vital for improving both health and
academic outcomes. To ensure the effectiveness of such activities, it is crucial to implement systems that
can accurately monitor and analyze exercise data. This study proposes the Multi-Attribute Fuzzy
Evaluation Model (MAFEM), which utilizes fuzzy logic and fuzzy sets to interpret complex sensor data
and assess student health. The model incorporates preprocessing, fuzzification, defuzzification, and rule
evaluation, optimized through adaptive thresholds for enhanced personalization. MAFEM was evaluated
using the MM-Fit dataset, which includes synchronized multimodal data (e.g., accelerometer, gyroscope,
and heart rate) collected from 30 university students performing standardized physical activities (walking,
jogging, cycling, stair climbing, and resting). The system was benchmarked against three state-of-the-art
methods: SHER, HAD, and HNN frameworks. Experimental validation involved 50 exercise sessions in
both indoor and outdoor environments, with performance metrics computed based on standard evaluation
protocols. MAFEM demonstrated high reliability, achieving 97.11% precision, 95.84% recall, and an
RMSE of 0.23. Furthermore, it maintained low computational complexity (O (r.m.n)) and minimal energy
consumption (approximately 65mAh during Wi-Fi-based operation), outperforming baseline models in
both accuracy and resource efficiency. These findings highlight the robustness and practicality of fuzzy
logic-driven multi-attribute frameworks for personalized, real-time physical activity monitoring in
wearable health systems.

Povzetek: Predstavijen je sistem za analizo Studentskih vaj MAFEM. Je vecatributni sistem z mehko logiko
za spremljanje aktivnosti z nosljivimi senzorji. Na MM-Fit doseze dobre rezultate, primeren je za

izobrazevanje.

1 Introduction

Improvement of health and learning achievements are
considered to be a result of regular exercises; however,
due to a lack of motivation, constraints of time, or lack of
knowledge about proper training, not everyone can stick
to regular physical activities [1-4]. In recent times,
wearable sensor devices have emerged as a promising
solution that enables tracking of biomechanical and
physiological data, including movement patterns, heart
rate, and step count. These devices help in providing
intensity, duration, and effectiveness insights of exercises
to optimize fitness levels [5]. Traditional monitoring
systems are challenged by data emanating from many
sensors, usually noisy, with variability, and
computational complexity introduced by fixed rules and
thresholds [6] [7].

Advanced learning methods have been developed to
overcome these challenges by incorporating adaptive
techniques and data analysis on large datasets; these
methods rely on self-learning and training for complex

pattern spotting of features that enhance the accuracy of
prediction and system robustness [8][9]. The barriers,
however, are that most machine learning algorithms
require a tremendous amount of data labeled and have
serious challenges yet to be fully overcome when such
sensor data bears imprecision or uncertainty [10-12]. All
these further enhance the computational needs and limit
personalization, for which traditional systems often fail in
providing tailored feedback or recommendations [13].
The following research proposes a new framework, the
Multi-Attribute Fuzzy Evaluation Model, for meeting
these challenges. MAFEM will develop fuzzy logic that
is multi-attribute and would be able to process imprecise
and uncertain data robustly, accurately, and flexibly.
Based on historical data analysis, the level of exercise
intensity is analyzed, and individualized exercise
suggestions are given to bridge the gap from data
collection to practical application [14]. This model
embeds processing, fuzzification, defuzzification, and
rule evaluation to improve monitoring efficiency and
adaptiveness in a dynamic environment.
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The key contributions and novelty of this work include:

e Development of a robust MAFEM framework
that effectively handles data variability and
uncertainty, improving the reliability of exercise
monitoring systems.

e Personalized exercise recommendations based
on historical data, fitness levels, and user
profiles, enhancing the system’s adaptability and
effectiveness.

K. Luo et al.

2 Literature review

Wearable sensors integrated with computationally
advanced techniques have changed the paradigm of
monitoring physical activity and health [15][16]. Al
Shloul et al. [17] developed the quaternion filtering and
data fusion-based tool SHER. Using Fisher's linear
discriminant analysis, an extended Kalman filter with
neural networks classified the health status of their
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Figure 1: Workflow of the MAFEM-based exercise monitoring system using wearable sensors and fuzzy logic

e Optimization for resource-constrained devices,
minimizing computational complexity and
latency while delivering real-time feedback.

By combining wearable technology with advanced fuzzy
logic, MAFEM provides a comprehensive and
personalized approach to exercise monitoring, fostering
better health outcomes and supporting individuals in
achieving their fitness goals. To formally guide the scope
of this research, we define the following objectives:

(i) To evaluate the effectiveness of fuzzy logic-based
multi-attribute evaluation for handling uncertainty in
wearable sensor data during physical activity monitoring;
(ii) To measure the energy and computational efficiency
of the MAFEM framework for real-time application on
resource-constrained devices;

(iii) To assess the personalization capability of MAFEM
in adapting to user-specific fitness levels and activity
patterns;

(iv) To analyze the generalizability of the model across
different types of physical exercises and its scalability
toward real-world deployment scenarios.

approach with high accuracy. Similarly, Xiao et al. [18]
have proposed the Hybrid Deep Approach, HAD, which
combined LSTM networks with Bayesian optimization
and realized an accuracy of 97.5% in activity recognition.
These studies illustrate that sensor data combined with
machine learning enhances health monitoring systems.

Deep learning models have widely been adopted for
activity recognition and health prediction. Zhou et al. [19]
proposed HNN in order to analyze performance in
aerobics students by showing the benefit of continuous
training and optimization techniques. Li et al. [20]
conducted research to find out the variation in heart rate
with depression and anxiety using MLP, which proved to
be quite accurate in determining mental health conditions.
Besides, Omarov et al. [22] used DNN for monitoring
sporting activities and generating real-time feedback for
enhancing physical health. From these studies, the role of
adaptive learning methodologies in managing complex
datasets for better prediction accuracy has been
highlighted.
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Figure 2: Low-pass filtering process for noise removal in accelerometer data

Despite such advancements, issues such as uncertainty in
data, noise, and computational complexity still pose a
challenge. Afsar et al. [23] addressed these issues by
incorporating convolutional networks along with grey
wolf optimization for recognizing sports activities with
high accuracy. Guo et al. [24] mproved the fitness
evaluation using LSTM and 1-D convolutional neural
networks and showed that feature selection and data
denoising are important. Traditional systems lack
personalization and also fail in real time processing. As

Ref Method Dataset Limitation
SHER
(LDA + No personal.;
[17] EKF + Custom no fuzzy
NN)
HAD
[18] (LSTM + Phone Heavy; no
Bayes accel. real-time
Opt.)
Aerobics No personal.;
[19] HNN students fixed rules
[23] CNN + Exergami High latency;
3 Grey Wolf ng data less adaptive
[24] 1D-CNN + Running Power-hungry;
4 LSTM PPG no personal.
[27] BP Neural Injury No adaptive
7 Net dataset fb.; no fuzzy

such, more recent research has hence focused on using
fuzzy logic and multi-attribute evaluation models that are

considered to provide more robust solutions in handling
imprecise data for appropriate feedback.

Table 1: Summary of the Literature review.

This collaboration between wearable sensors and
sophisticated computation models has opened new
frontiers for personalized health monitoring. Yang et al.
[27] applied the BP neural network to predict and prevent
sports injuries, illustrating wearable technology in real-
time action recognition. Li et al. [28] proposed Time-
aware Outlier Detection (TOD) for compressing
physiological data in efficient anomaly detection.

Ferrara [29] discussed large language models for human
activity recognition and their contribution to improving
data analysis and interpretation. These works underlined
the importance of combining wearable sensors with
adaptive algorithms in order to provide scalable, accurate,
personalized health monitoring systems. These
approaches will provide improvements in data uncertainty
and real-time processing, thus enabling better exercise
monitoring and health management.

3 Methodology

Therefore, a multi-attribute fuzzy evaluation model,
called MAFEM, is proposed as a strong platform for
observing college students' physical activities when
wearing sensors. These wearable sensors include
accelerators, heart rate monitors, and gyroscopes that
measure real-time physiological and biomechanical
activities of the body, including heart rate, step count,
moving in different directions, and body temperature.
Traditional monitoring systems can hardly handle such a
level of complexity and variability in data, especially
when dealing with uncertainties and individual
differences in fitness levels. MAFEM introduces fuzzy
logics that can interpret imprecise and subjective data,
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Figure 3: Workflow of the fuzzy logic and rule analysis layer for evaluating exercise intensity

hence suitable for personalized exercise monitoring.
Measurement in MAFEM begins with data from wearable
sensors embedded in the student's body. These sensors
continuously capture physiological and biomechanical
data throughout exercise motions. Such measurements
will then be transmitted to a certain intelligent monitoring
system that would clean the noise and outliers within the
data stream, hence making normalization in enhancing the
quality of the data streams. Feature-heart rate variability,
step count, motion intensity, and many such other
important parameters give the analysts necessary insight
on a student while performance in relation to exercises.
These features are assessed with fuzzy logic rules, which
attach membership values to linguistic variables such as
"low," "moderate,” or "high." For example, one of the
rules may read: "IF heart rate is high AND step count is
low, THEN exercise intensity is moderate." This flexible
approach enables the exact establishment of the fitness
level of each student in a more individualized way.

The membership functions may be pre-defined using
triangular or Gaussian functions for mapping the input
variables into fuzzy sets by the fuzzy logic system. In this
way, it manages the variability and uncertainty inherent
in human movement and physiology. According to the
assessment, the MAFEM will produce an individual
profile for each student by considering past performance
records and statements of goals about fitness. This profile
is used to give personalized tips for the optimization of
exercises, minimizing injury risks, and improving health
in general. It also provides real-time feedback to allow
students to change their activities in order to achieve
better performance levels with maximum safety. Figure 1
illustrates the workflow of the MAFEM-based exercise
monitoring system. Wearable sensors capture data during
physical activities that are further processed and analyzed
by fuzzy logic rules. The system will analyze the student's
fitness level and store the results in a student profile. This
is constantly updated and used for actionable insights and
recommendations. MAFEM uses wearable technology
that incorporates high-level fuzzy logic to make the
complex system user-friendly.

A) Sensor-Based Data Acquisition and Transmission

The core of this wearable device layer in the student
exercise monitoring system is made on a backbone of

advanced sensors that acquire highly detailed
physiological and biomechanical data: heart rate
monitors, gyroscopes, accelerometers, temperature

sensors, GPS modules, and electromyography sensors.
They bear different functions: gyroscopes-alignment and
posturing by tracking the angular velocity,
accelerometers-speed, movement strength, or direction,
while GPS modules detect the pace/distance in cases like
running and cycling activities. Heart rate monitors assess
heart cardiovascular activity based on the kind and
duration of exercises, while temperature sensors record
rises in human body temperature as a result of
overheating. These devices were designed to be
lightweight and unobtrusive, allowing for comfort while
continuous raw data acquisition in the student
performance evaluation for different exercises. The
system takes advantage of the MM-Fit Dataset, openly
available at the address https://mmfit.github.io/,
representing a rich record of physical exercise data
acquired using multiple wearable devices in time
synchrony. In particular, this dataset includes the
acquisition of 2D and 3D pose information captured by
wearable earbuds, smartwatches, and smartphones. The
data transmission layer will take responsibility for the
transmission of data collected to the intelligent system
through wireless protocols like Wi-Fi and Bluetooth. The
data continuously and synchronously upload securely,
with low latency and packet loss, supporting long-
duration activities. These synchronized data shall be
forwarded to the central processing unit for analysis.

The next layer of the system is to extract meaningful
features from the data collected in order to make
decisions. Features from metrics such as heart rate
variability, motion intensity, and posture provide an
exercise performance assessment that can be used to yield
personalized recommendations. Within this system,
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wearable technology with advanced integrated data
processing aims at improving the academic and physical
performances of the students.

B) Data Processing and Feature Extraction

The raw sensor data collected from wearable devices
undergoes a series of preprocessing steps to ensure
accuracy and reliability. Environmental interferences,
sensor errors, and inconsistencies in user movements can
affect the quality of the data. To address these issues, the
data processing layer applies cleaning, filtering, and
normalization techniques. A low-pass filter is employed
to remove noise from accelerometer data, preserving
essential information like body movements while
eliminating irrelevant signals such as environmental noise
and sensor glitches. The structure of the low-pass filtering
process is illustrated in Figure 2. The filtering process

uses an exponential moving average filter, defined by the
equation:

y@®) =ax(t) + (1 -a)y(t-1)

Here, y(t) represents the filtered signal at time ¢, x(¢t) is
the raw input signal, y(t — 1) is the filtered signal from
the previous time step, and a is the smoothing factor,
which determines the responsiveness of the filter. The
value of « is adjusted based on the noise characteristics
and the desired level of smoothing. The filtered data is
then normalized using the min-max normalization
method, scaling the values to a consistent range of [0,1].

This ensures that all features contribute equally to the
analysis, preventing any single feature from
disproportionately influencing the results.

Once the data is preprocessed, features are extracted
relevant to the estimation of physiological states and
performance in exercise. Some key features are step
count, speed, heart rate variability, and cadence. Step
count, as extracted from accelerometer data, shows
walking and running patterns. Speed is calculated by GPS
data, showing the velocity of movement and exercise
intensity. Heart rate variability is the variation between
consecutive heartbeats, providing information about
cardiovascular activity. Cadence and gait features from
gyroscope and accelerometer data help analyze running
and walking rhythms. These all contribute to

(@)
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comprehensive insight into every single exercise activity
for each student and thus may allow the detection of
anomalies to offer personalized suggestions for
improvement.

C) Fuzzy Logic and Rule Analysis

TThe layer for fuzzy logic and rule analysis plays an
important role in the management of variability and
uncertainty that characterizes sensor data. This layer
assesses a set of features such as step count, speed, and
heart rate using fuzzy rules in a scalable and flexible
manner for better decision-making. These features were
chosen based on extensive evidence in the literature
supporting their relevance for monitoring physical
exertion and physiological responses during activity. For
instance, HRV is a widely recognized biomarker for
cardiovascular workload and autonomic nervous system
response, making it a reliable indicator of exercise
intensity. Similarly, cadence and step count are strongly
correlated with gait dynamics and physical effort, while
speed and motion intensity reflect real-time exertion
levels. Posture, derived from orientation data using
gyroscope and accelerometer readings, further informs
activity classification, particularly in differentiating
between static and dynamic movements. The use of these

96

95

Precision (%)

94

93

0.6
Threshold

Figure 5: Precision analysis of the MAFEM-based exercise
monitoring system: (a) comparison with existing methods
and (b) precision trends across different exercise intensities.

features also aligns with prior studies on wearable sensor-
based monitoring systems, which highlight their
effectiveness in interpreting physical performance [7] [8].
These features were selected not only for their
physiological relevance but also for their compatibility
with fuzzy rule construction and linguistic interpretation
in the MAFEM framework. Fuzzy logic works with
partial membership values that normalize data within the
interval between 0 and 1 for accurate and context-
sensitive decisions. The entire process of this layer is
shown in Figure 3. Fuzzy sets are defined for the attributes
such as heart rate, speed, and cadence. For instance, the

(b)
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heart rate is divided into low, medium, and high fuzzy sets
with p "low ", p "medium ", and p "high ". These
functions map input values to truth degrees using a
triangular membership function defined as given in
Equation 2:

(0 ifx<a
xX—a
P ifa<x<b
pa(x) = c—Xx
ifb<x<c
c—>b
0 ifx>c

Here, a,b, and c define the triangular shape of the
membership function. Further, fuzzy rules are applied
which integrate these membership values. For example, a
student's heart rate and speed are high, the intensity of the
exercise is high. These can be framed using if-then
conditions as:

e Rule 1: If heart rate is high and speed is high,
then exercise intensity is high.

e Rule 2: If heart rate is medium and speed is
medium, then exercise intensity is medium.

e Rule 3: If heart rate is low and speed is low, then
exercise intensity is low.

Logical operators like AND, OR, and NOT are used to
combine multiple attributes, ensuring smooth transitions
and accurate outputs. This multi-attribute decision-
making system integrates factors like gait, cadence,
speed, and heart rate to provide a comprehensive
assessment of exercise performance.

The inference engine processes include fuzzification, rule
evaluation, and defuzzification. During fuzzification,
input values are converted into fuzzy values using
membership functions. Rule evaluation applies the AND
operator to determine output values, as shown in Equation

3):
Hintensity high = min (.Uhigh_hr (%), Hnigh_s (3’))

.uintensity_medium

= min(.umedium_hr (), Hmedium _s )

(.uintensity_low = min(:ulow_hr (x), .ulow_s (y ))

Defuzzification converts fuzzy values into crisp outputs
using the centroid method, which calculates the center of
gravity for aggregated fuzzy values. The final crisp output
determines the student's exercise intensity level. The
membership functions for speed, heart rate, and exercise
intensity are graphically represented in Figure 4,
demonstrating how fuzzy rules process sensor data
variations and uncertainties.

D) Adaptive and Personalized Recommendations

Recall (%)
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Figure 6: Recall analysis of the MAFEM-based exercise
monitoring system: (a) comparison with existing methods
and (b) recall trends across different student activity levels.

The system's adaptive and personalized layer evaluates
each student's performance and provides tailored
recommendations. A user profile is created, storing
details such as fitness level (e.g., resting heart rate, VO2
max), goals (e.g., weight loss, muscle gain), and historical
achievements (e.g., past workouts, progress over time).
This profile helps the system understand the student's
starting point and track progress. The adaptive procedure
uses a neural network model to analyze current trends and
predict feedback. Threshold values are adjusted based on
the student's fitness level, as defined in Equation (4):

Nthre = OThre + K+ (Cf - If)
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Here, Ny, is the new threshold, Or,. Iis the old
threshold, C; is the current fitness level, I is the initial
fitness level, and K is a constant regulating threshold
adjustments. For example, if a student improves their
cardiovascular fitness, the system adjusts their heart rate
zones accordingly. Initially, the heart rate zones might be
defined as low intensity ( 60 to 100 bpm), medium
intensity ( 100 to 140 bpm ), and high intensity ( 140 to
180 bpm ). As the student's fitness improves, the system
updates these zones to low intensity ( 65 to 105 bpm),
medium intensity (105 to 145 bpm ), and high intensity (
145 to 185 bpm). This adaptive approach ensures that
students continue to progress and avoid stagnation. By
combining fuzzy logic with adaptive algorithms, the
system provides personalized feedback, helping students
improve their exercise routines and overall health, which
positively impacts their academic performance. In the
current implementation of MAFEM, the adaptive and
personalized recommendation mechanism is realized
through a rule-based approach rather than a neural
network model. Although a neural network is mentioned
conceptually as a possible enhancement, no such model
was implemented or trained in this version.
Personalization is achieved through dynamic adjustment
of threshold values that define exercise intensity zones
(low, medium, high), as described in Equation (4). These
thresholds are updated over time based on changes in
individual fitness indicators, such as average heart rate,
heart rate recovery trends, and observed intensity
classification patterns across sessions. The update
mechanism uses a weighted average strategy that blends
previous threshold values with current performance
metrics, allowing the system to adapt progressively
without requiring supervised learning. This adaptive
thresholding contributes to improved accuracy in
borderline cases and ensures that recommendations
remain aligned with the user’s evolving fitness level.

4 Results and discussion

This section underlines the efficiency analysis of the
Multi-Attribute  Fuzzy Evaluation Model in the
monitoring exercises done by students. The analysis,
based on the MM-Fit Dataset [25], after going through
multi-layer processing via wearable sensors, fuzzy logics-
based rule analysis, and adaptive personalization
mechanisms, proceeds to measure performance along
various dimensions such as accuracy, user satisfaction,
adaptiveness, and efficiency of operation. For comparison
and setting a benchmark, MAFEM is compared against
some existing methodologies such as SHER: Student
Health Exercise Recognition [17], Hybrid Deep
Approach-HAD [18], and Hybrid Neural Networks-HNN
[19]. To evaluate the performance of the proposed
MAFEM framework, a session-based evaluation strategy
was adopted, where training and testing data were drawn
from separate exercise sessions to ensure generalizability.
Standard evaluation metrics were used, including
precision, recall, F1-score, RMSE, and MSE. These were
computed based on comparisons between predicted and
actual exercise intensity levels. From the MM-Fit dataset,
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Figure 7: (a) Computational complexity analysis of MAFEM
across preprocessing, fuzzification, rule evaluation, and
defuzzification stages. (b) Latency assessment showing a
total system delay of approximately 70ms for real-time
exercise monitoring and feedback.

only data from accelerometer, gyroscope, and heart rate
sensors were used, obtained from smartwatches and
smartphones. Sessions with incomplete or noisy sensor
data were excluded during preprocessing. This strategy
yielded consistent results across sessions, including a
precision of 97.11% and RMSE of 0.23, demonstrating
the robustness and accuracy of the proposed method.

It is compared with three traditional methods for exercise
monitoring: rule-based assessment wearable sensors, GPS
and heart rate monitoring, and a hybrid approach. In this
work, the system was tested for accuracy, responsiveness,
user comfort, and flexibility in various scenarios of
exercises: aerobic workouts, strength training, and mixed.
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Time Complexity of MAFEM Process Steps
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The obtained results show that MAFEM is much better in
comparison with traditional methods. For instance, the 6-
week aerobic fitness program with 25 students
participating in running and cycling exercises recorded
that MAFEM was 20% more accurate in detecting
changes in speed and intensity, especially during interval
training. Besides, the feedback provided by the system
was faster by 30%, while a user satisfaction rate was 15%
higher because of its adaptiveness and unobtrusiveness.

A) Accuracy Metric Analysis

Precision, recall, MAE, and RMSE are various measures
of accuracy taken to assess MAFEM. The result in
precision analysis has been depicted in Figure 5 and
presented to depict the performance of the MAFEM on
the effectiveness in monitoring students' exercise
activities. From here, results proved that MAFEM could
present the best with 97.11% for the precision of. This
high level of precision is based on how well the model
handled multi-dimensional sensor data. MAFEM deals
with data variability and uncertainty because of the inbuilt
fuzzy sets, rules, and logic that provide robust and flexible
data interpretation. Integration of the various attributes-
pace, speed, and heart rate-would increase the evaluation
capability of this system for critical exercise performance,
as well as high accuracy in quantifying the intensities of
different exercises. Additionally, the inference engine

within  MAFEM ensures actionable and precise
recommendations, further improving the system’s
reliability.

Figure 6 shows the recall analysis of the MAFEM-based
exercise monitoring system. The model has a high recall
value, which indicates the efficiency of the model in
retrieving relevant student activities. This is achieved by
incorporating multiple attributes in the process of exercise
evaluation to minimize false negatives and enhance
recognition accuracy. The fuzzy rules analyze the
relationship between the biomechanical and physiological
parameters for a comprehensive understanding of the
pattern of exercises. The system deploys adaptive
algorithms in rating the feedback given by students with
regard to data like historical fitness level and exercise
routines. This will enhance the ability of the system for
improved recall values in tracking the progress of a
student over time.

Such results follow the use of a low-pass filtering
technique in removing noise and incomplete data from
raw sensor inputs. Normalization further refines the data
by scaling them in the same range, hence reducing the
impact of outliers. Moreover, MAFEM achieves low error
rates at the mean square error of 0.26 and a root mean
square error of 0.23. This in turn means that the
application of fuzzy sets, rules, and logic on extracted
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features minimizes uncertainty in the data interpretation,
hence the improved accuracy. Dynamic adjustment of
thresholds, therefore, based on students' progress and past
performances reduces discrepancy between the actual and
forecasted value. This adaptive nature keeps the system
always correct and true to a particular student as seen in
Figure 7.

B) Efficiency Analysis of MAFEM

is calculated in terms of
computational complexity, latency, and energy
consumption. Every step in MAFEM-processing,
fuzzification, rule evaluation, and defuzzification-are
scrutinized for its computational requirements.
Preprocessing can be considered a process comprising
data cleaning, normalization, and filtering, which
therefore requires a time complexity of O(n), with n
representing the number of data points from each sensor.

Efficiency of MAFEM

Fuzzification, where triangular membership functions are
applied to the data, is of order O(m.n), with m being the
number of fuzzy sets and n the total amount of data.
Likewise, rule evaluation has a complexity of O (r.m.n),
as it examines multiple fuzzy sets and attributes. Finally,
the defuzzification step, which computes weighted
averages, has a linear complexity of O(n). Overall,
MAFEM achieves a total computational complexity of
O(r.m.n), as illustrated in Figure 8(a).

Another important factor in the evaluation of the system's
efficiency is the latency. The overall latency covers data
gathering, processing, and feedback delivery time. Data
gathering depends on the sensor sampling rate and usually
is a few milliseconds. Preprocessing requires about 10ms,
20ms for fuzzification, rule evaluation requires 30ms,
while defuzzification requires 10ms. Feedback delivery
time, which shall be dependent on the protocols applied,
may range from a few milliseconds to tens of
milliseconds. Therefore, the total latency for MAFEM is
around 70ms, which is efficient for real-time monitoring
and generation of feedback, as illustrated in Figure 8(b).
Energy consumption is another critical factor in wearable
devices. The whole process can be divided into three
stages: data acquisition (DA), data transmission (DT), and
data processing (DP). Data acquisition consumes about
10mAh due to the low-power design of the sensors. Data
transmission depends on the protocol and consumes
15mAh for Bluetooth and 25mAh for Wi-Fi. Data
processing involves several tasks like preprocessing,
fuzzification, rule evaluation, and defuzzification and
consumes about 30mAh. Hence, the total energy
consumption is 55mAh for Bluetooth and 65mAh for Wi-
Fi as shown in Figure 8(c) and Figure 8(d) respectively.
The results here indicate that MAFEM successfully
monitors student exercise activities with a high degree of
accuracy while keeping computational overhead low.
Integration of fuzzy logic with rules ensures a robust
treatment of data uncertainty, hence increasing user
satisfaction and personalization.

K. Luo et al.

C) Potential Applications and Challenges

MAFEM can be used in higher education institutions to
monitor and enhance students' physical activity as part of
the course requirements. For instance, it can be applied
within PE classes to offer immediate feedback regarding
exercise performance and thus allow personalized
routines that balance challenge and safety. These are
accompanied by challenges in the cost of wearable
devices, data privacy, and the need for further updates of
fuzzy logic rules if the deployment is to be sustainable.
The discussion of such challenges will provide deep
insight into its long-term adoptive potential.

While MAFEM has demonstrated strong performance on
the MM-Fit dataset, we acknowledge that its current
evaluation is limited to this specific dataset. Cross-dataset
validation was not performed in this study, which may
affect the generalizability of the results to other
populations, sensor types, or physical activity settings. In
future work, we plan to explore domain adaptation
techniques or transfer learning frameworks to assess how
MAFEM can be adapted to new datasets with minimal
reconfiguration.

5 Conclusion

The present paper now presents a detailed analysis of the
MAFEM for monitoring student exercise activities. In this
study, MM-Fit data is used, which consists of a set of data
created by the use of different sensors while tracking
students' movements and physiological responses. The
raw data are first preprocessed by a low-pass filtering
approach to remove noise and ensure data quality.
Further, data normalization is done so that the data get
standardized in a regular format for further analysis. The
main features, such as step count, heart rate variability,
and speed, are extracted to estimate exercise intensity and
performance. The system adopts fuzzy sets and rules for
analyzing the relationship among these features; thus, it
handles uncertainty and imprecision in data effectively.
MAFEM integrates multiple attributes to enhance overall
efficiency and accuracy in the monitoring process. The
processed data is stored in user profiles that, with the
continuous evaluation by adaptive algorithms, are used to
generate recommendations. This ensures that the system
is adaptative to the needs of each individual student,
offering feedback that is able to be acted on. MAFEM is
evaluated through several metrics, including 97.11%
precision, 0.23 RMSE, and 0.26 MSE. This framework
also depicts lesser computational complexity (O(r.m.n))
with very minimal latency (/=70ms) and hence should be
suitable for real-time applications. However, the
applicability of the proposed system is not general and
seems to be good only for few datasets. Furthermore, it
faces challenges while considering real-time analysis due
to a lot of computations. Future optimization of learning
techniques will help enhance the adaptiveness of the
presented system to various real-time situations.
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