
https://doi.org/10.31449/inf.v49i30.8697 Informatica 49 (2025) 199–210 199

Next Event Prediction in Business Process Logs Using Stacked

Autoencoders with N-gram Encoding and Feature Hashing

Rongming Li

Computer Science and Technology, Zhoukou Vocational College of Arts and Sciences, Zhoukou, Henan, China

E-mail: leerongming@163.com

Keywords: business process prediction, stacked autoencoders, deep learning, hyperparameter optimization, process

event prediction, N-gram encoding

Received: March 25, 2025

Proactive monitoring of business processes has become a key competitive advantage for firms, enabling

timely interventions to prevent workflow deviations. Process-aware information systems generate

extensive logs, which serve as valuable resources for predictive analytics. In this context, this study

presents a deep learning-based approach for predicting the next event in an ongoing process by analyzing

historical execution logs. The proposed method formulates event prediction as a classification task,

leveraging n-gram encoding and feature hashing for effective feature preprocessing. The model consists

of a multi-stage deep learning framework, incorporating stacked autoencoders for unsupervised pre-

training, followed by a supervised fine-tuning phase to optimize classification accuracy. Experimental

validation was conducted on six real-life event log datasets, including BPI Challenge 2012 (subsets A, O,

W), BPI Challenge 2013 (Incidents, Problems), and Helpdesk logs. The proposed approach achieved up

to 83.1% accuracy, 85.2% precision, and 92.3% AUC on the BPI 2012_A dataset, outperforming state-

of-the-art classifiers such as LSTM-based models and Bayesian regularized PFAs. Notably, it

demonstrated a 6–11% improvement in recall over existing methods on key datasets. The results highlight

the model’s ability to capture complex process dynamics and improve proactive situation awareness.

Additionally, the study explores the impact of hyperparameter tuning and addresses data imbalance

challenges using RBF-based synthetic data generation, contributing a robust framework for real-time

decision support in business process management.

Povzetek: V prispevku so opisani zloženi samokodirniki z n-gram/hashing kodiranjem za napoved

naslednjega dogodka, ki presegajo LSTM/PFA in z RBF uravnoteževanjem izboljšajo redke razrede.

1 Introduction
 In practice, high-performance business processes

remain as one of a handful of remaining sources of

differentiation. Inclusion of predictive analytics into

enterprise processes can bring a tremendous increment in

business values. A process-aware Enterprise Information

Systems (EIS) like workflow management systems

(WMS), enterprise resource planning (ERP), customer

relationship management (CRM), incident management

(IM) generates log events when processes are being

executed [1]. These logs are a rich source for predictive

analytics, helping to make informed decisions due to their

ability to predict future process behaviors. Well-designed

and properly implemented predictive approaches enable

business activities to proceed according to plans without

predicted failures or deviations from the foreseen

behavior of the processes. The data-driven predictive

process analytics enable use cases such as real-time

anomaly detection in processes, analysis of customer

behavioral patterns for offering them individualized

offers, risk management by prediction of compliance

violations, and efficient resource allocation [2].

 The current focus of EIS is to enhance the ability of an

organization in performing high-performing business

processes. However, most of the systems are not effective

enough because advanced predictive analytics is missing.

Most of the integrated business intelligence tools work on

descriptive analytics that can only support addressing

demographic trends and performance-related issues. It is

also not adequate for a business just to optimize its

operational efficiency in order to remain competitive.

According to Duan and Da Xu, the struggle by companies

is in converting the gigantic amounts of data generated

into useful insights that will help them in providing

quality products and services [3]. For that reason, in the

future, EIS have to go beyond diagnostic examination of

historical data by providing proactive decisions based on

predictive analytics. The process needs predictive

capabilities embedded in the business processes. EIS form

the basis in their role as process orchestration tools. A

significant and developing related trend of IS research

involves integrating advanced analytics with EIS [4].

Business process prediction involves the forecast of a

target variable by extracting meaningful features from

business process log data analysis. When the target

variable is continuous, for instance, estimated time

200 Informatica 49 (2025) 199–210 R. Li et al.

remaining for the completion of a process, then the task

falls under the category of regression analysis. Otherwise,

if the events involve discrete values, such as predicting

the next activity in an ongoing process, predicting the

outcome of a process instance, or the likelihood of

violating a service level agreement, the problem is dealt

with as classification. This study focuses on predicting

future events in a business process based on the sequence

of previous events extracted from the given instance using

Table 1: Summary of prior work on process prediction

St

udy

Meth

od

Dat

aset

M

etrics

Ac

curacy

(%)
[2] LSTM

with
embeddings

BPI

2012, 2013

Pre

cision

~76

–79

[1

2]

Bayes

ian PFA

BPI

2012, 2013

Ac

curacy,
AUC

~71

–76

[1

4]

LSTM

with

timestamps

BPI

2012,

Helpdesk

Ac

curacy

~71

–73

[1

3]

Evo.

Rule-based

BPI

2013

F-

score

~69

–72

[1

0]

HMM

+ k-NN

Simu

lated logs

Ac

curacy

~70

Pr

oposed

Approa
ch

Stacke

d

Autoencode
rs + N-gram

Hashing

BPI

2012,

2013,
Helpdesk

Ac

c, Prec,

AUC

Up

to 83.1

execution log data from already finished instances.

This problem is of high importance in process analytics

since these predictive results enable proactive actions to

minimize undesired outcomes. As an answer to this

challenge, we propose a multi-stage deep learning

framework.

 This paper is the first to apply a deep learning

framework in business process management, which has

been characterized by both an unsupervised pre-training

phase using stacked autoencoders and a supervised fine-

tuning stage for multi-class classification tasks. The

approach greatly enhances the state-of-the-art techniques

on process prediction by initializing neural network

parameters through employing greedy layer-wise pre-

training and optimizing a global training objective with

labeled data. In this work, a solid data pre-processing

pipeline is also introduced, which, for the first time in this

domain, transforms event log data into numerical feature

vectors using n-gram representation and feature hashing.

Such encoding considers the sequential nature of process

data and, at the same time, reduces the dimensionality,

enhancing the inference speed of deep neural networks.

Furthermore, the research addresses some of the key

challenges such as hyperparameter optimization and

handling data imbalance to improve the accuracy and

precision of prediction. Based on the "exaptation" design

science research approach by Gregor [5], this study adopts

proven techniques such as stacked autoencoders and

feature hashing to develop novel predictive analytics

models for process data in EIS.

To clarify the scope and objectives of this study, we

define the outcome variable as the next activity label in a

sequence of events from an ongoing business process

instance. This transforms the task into a multi-class

classification problem, where the input is a prefix of

historical events and the target is the label of the next

event in the sequence. The research is guided by the

following key questions:

• RQ1: Can the proposed deep learning

framework, which incorporates stacked

autoencoders and n-gram encoding with feature

hashing, outperform traditional classification

methods on standard business process log

datasets?

• RQ2: How does the predictive performance of

the proposed approach compare to state-of-the-

art deep learning models, such as LSTM-based

architectures and Bayesian probabilistic finite

automata?

• RQ3: Can data imbalance in business process

logs be effectively addressed using synthetic

data generation through RBF-based neural

network resampling, thereby improving

prediction for rare but significant events?

Figure 1: The stages of the proposed approach.

Next Event Prediction in Business Process Logs Using Stacked… Informatica 49 (2025) 199–210 201

These questions directly shape our experimental

design and analysis, as presented in the subsequent

sections.

2 Related works
An increasing amount of research has focused on

machine learning methods in the realm of business

process management. We categorize these studies with

respect to the type of the target variable they predict-

whether it is discrete or continuous-and discuss the

problem types falling into these categories.

 Approaches belonging to the first category address

regression problems; the most common is the prediction

of the remaining processing time of incomplete cases. For

example, van Dongen et al. [6] estimated the remaining

cycle time using event log data based on nonparametric

regression techniques. Rogge-Solti [7] have proposed a

stochastic Petri net with generally distributed transitions

with the aim of foretelling execution time as a function of

the time elapsed since the last observed event. Folino et

al. [8] introduced a hybrid model in which PCT was

combined with performance-annotated FSM to produce

time predictions. The approach proposed by Senderovich

et al. [9] used linear regression, random forests, and

XGBoost with features extracted from process instances

and global models for time prediction.

 The other group targets classification problems,

which are process outcome prediction, service level

agreement violations, nominal attribute prediction, and

next event prediction. Only a few papers address the next

event prediction problem presented here. Le et al. [10]

took this a step further with their enhanced Markov model

and sequential k-nearest neighbor classification,

outperforming traditional Markov and HMM. The other

works proposed include the following: Unuvar et al. [11]

designed a decision tree model to forecast the next activity

in a process that contains parallel execution paths.

Breuker et al. [12] proposed a PFA with Bayesian

regularization and assessed its performance using both

simulated and real datasets. Márquez-Chamorro et al. [13]

proposed an evolutionary rule-based approach for next

event prediction, featuring window-based feature

encoding, which was evaluated over datasets such as the

BPI Challenge 2013 and health services logs.

More recent works on process prediction have

abandoned explicit process models in favor of deep

learning techniques. Among the very first proposals of

RNNs with LSTM units, Evermann et al. [2] presented an

approach that used word embeddings as a preprocessing

step for the input features, adding to the case-specific and

event-specific explanatory variables, greatly improving

predictive performance. They evaluated their approach

using the BPI Challenge 2012 and 2013 datasets.

Similarly, Tax et al. [14] also used LSTMs for paying

attention to the sequence of the activities and their

corresponding timestamps. They represented input

activities as a feature vector with one-hot encoding. Both

investigated methods for the prediction of process activity

durations.

 This paper extends prior work in the following

necessary areas: optimization of hyperparameter,

handling imbalanced datasets, and enhancement of

feature encoding. On the contrary to index-based

encoding methods widely used in existing works,

[9][13][15] we apply an n-gram-based encoding schema

that captures interdependencies in sequential event data.

We apply feature hashing to reduce the dimensionality of

this high-dimensional feature space. Moreover, we

perform hyperparameter optimization to ensure that better

classification performance is achieved, which has not

been taken into consideration yet in business process

event prediction. To address the issue of imbalanced

datasets-a challenge largely overlooked except in

Márquez-Chamorro et al. [13], we balance the data by

synthesizing new instances for the minority class using

neural networks. This approach allows for better

identification of rare events, which in most cases convey

significant business implications.

Figure 2: Deep learning with stacked autoencoders: unsupervised pre-training is shown on the left, while

supervised fine-tuning is depicted on the right.

202 Informatica 49 (2025) 199–210 R. Li et al.

3 Methodology
We formulate the prediction of the next process event

as a classification problem. Our approach is outlined in

Figure 1. Our approach applies deep learning algorithms

on the feature matrix, which is directly extracted from

data flow, control flow, resource, and organizational

perspectives of the process via a preceding step of data

preprocessing. Our approach extracts, in a sliding window

fashion, the process events (or control flow) from event

log data and encodes these into n-gram feature

representations; see Figure 1. Afterwards, these n-grams

are mapped to hash keys using feature hashing. Then, the

hashed feature matrix is extended with data and resource

features. This section elaborates on the proposed deep

learning technique by predicting the upcoming process

events after developing an extended feature matrix. It

contains an unsupervised layer-wise pretraining module

to generate higher-order features and a fine-tuning of the

whole network in a supervised manner, accompanied by

an output layer for multiclass classification at the top.

A) Terminology

 An event log consists of process traces, where one

trace is the execution of a single process instance or case.

A trace is basically a sequence of events, and these events

contain attributes describing their properties according to

the XES Standard 2016. Common attributes of an event

include the name of the executed activity, the timestamp

of the event, the lifecycle transition (such as "start" or

"complete"), and the organizational resources or roles

associated with the event. Events in a stream are ordered

sequentially by their timestamps, and other attributes may

have case-specific information. The event prediction

problem tackled in this work is that of predicting both the

next activity to be executed and its corresponding

lifecycle transition for an ongoing trace. The sequence for

such predictions is drawn using a fixed length prefix of

previous events present within the trace.

B) Data Pre-processing

 Most previous studies, except a few, have not paid

much attention to the pre-processing of data. The stages

involved in data preparation, such as cleaning, encoding,

reduction, and extraction, play a major role in the

performance of classifiers.

N-gram encoding: First of all, our approach starts

with the sequence encoding step. One relevant

preprocessing step is the translation of character strings -

such as the activity being executed in each event - to

numerical input features. Leontjeva et al. [15] compared

different techniques for encoding sequences with the goal

of process outcome prediction and accentuated that

choosing an appropriate encoding method is crucial since

it strongly impacts the performance of a machine learning

model. Event sequence data is intrinsically characterized

by the presence of relations and dependencies among

events. We employ n-gram encoding, which was

underlined by Caragea et al. [16], a method that generates

all continuous subsequences to capture relationships

between adjacent items. By utilizing n-grams of different

sizes, this model is able to capture both local and global

patterns of event sequences.

Definition 1: Given a sequence of events 𝐸 =

(𝑒1, 𝑒2, … , 𝑒𝑁+(𝑛−1)), where E is in an event universe ϕ

and N and n are positive integers, an n-gram of E is any

subsequence of n-consecutive events. There are N such n-

grams in E. The total number of possible unique n-grams

in the event universe is (|𝜙|)𝑛 , where |𝜙| denotes the

total number of unique events in the process log data.

 As such, consider an event sequence such as 𝐸 =
{𝐴, 𝐹, 𝐺, 𝐶, 𝐿, 𝐵, 𝐴, 𝐷, 𝐴, 𝑀}. Then, the 2gram or bigram

features include all two-event combinations, that is

{𝐴𝐹, 𝐹𝐺, 𝐺𝐶, … , 𝐴𝑀} . Also, the trigram or 3-gram

features will include {𝐴𝐹𝐺, 𝐹𝐺𝐶, 𝐺𝐶𝐿, … , 𝐷𝐴𝑀}, and so

on. In this representation, each input feature space

combines multiple n-grams of different predefined sizes.

That is, a 5-grams input feature space would include

unigrams (1-gram), bigrams (2-grams), trigrams (3-

grams), quadragrams (4-grams), and pentagrams (5-

grams). Considering 15 unique events as the alphabet, the

total size for features would be calculated as follows:

𝑁total_features = 15 + 152 + 153 + 154 + 155 = 813,615

 The n-grams approach represents a very

comprehensive method, as the alphabet is known upfront,

in this case, the set of unique activities executed in the

process events. It applies to any domain, is rather efficient

as one pass suffices, and at the same time is simple.

Applications range from protein classification,

information retrieval to process mining. Such an n-gram

representation of event data automatically has the

advantage that no further pre-processing, like aligning

sequences of activities, has to be carried out. This method

is especially effective because, in addition to encoding

elements, it automatically captures the order. However, as

can be seen from the example above, the size of the input

feature set that will be generated for classification

problems can get very large. The number of features

increases exponentially with the length of the n-gram. It

would be too costly to directly use all these features, and

the sparsity of the input data could reduce the accuracy of

the models. We employ feature hashing-a common

technique for reducing dimensionality-to shrink the sizes

of the n-gram feature vectors at limited expense to their

utility.

Feature hashing: It is a powerful method for

dimensionality reduction, whereby a high-dimensional

input space can be projected to a lower dimensional space.

-Weinberger et al., 2009. It has seen applications with

great success in many fields, especially on NLP tasks

related to news categorization, spam filtering, sentiment

Next Event Prediction in Business Process Logs Using Stacked… Informatica 49 (2025) 199–210 203

analysis of social networks, and on many areas of

bioinformatics as discussed in [14] [16], Da Silva et al.

[17]. In feature hashing, the central idea relies on the

usage of hash functions to map the n-grams of events into

features. These compact feature vectors can then be used

as input for training machine learning classifiers. To

determine an appropriate dimensionality for the hashed

feature space, we empirically evaluated several bit sizes,

including 8, 10, 12, and 14. A 10-bit hash space (i.e., 2¹⁰

= 1024 dimensions) was selected as it provided a balanced

trade-off between model performance and computational

efficiency. Lower values (e.g., 8-bit) resulted in excessive

collisions that degraded predictive accuracy, while higher

values (e.g., 12- or 14-bit) offered only marginal

improvements in accuracy but significantly increased

memory consumption and training time. Moreover, under

Zipfian distributions common in event log sequences,

most n-grams occur infrequently, and collisions among

these low-frequency features are less likely to affect

model performance. Thus, a 10-bit hash was found to be

optimal in minimizing information loss while ensuring

fast inference and reduced memory usage.

Definition 2: Consider a set of hashable features 𝑁,

which represents the n -grams derived from the process

event sequences. Let ℎ be the first hash function, ℎ: 𝑁 →
{1, … , 𝑚} , and 𝜉 be the second hash function, 𝜉: 𝑁 →
{±1} .

The combined feature hashing function 𝛷(ℎ,𝜉) maps a

high-dimensional input vector of size 𝑑 into a lower-

dimensional feature vector 𝒎 , where 𝑚 < 𝑑 . The 𝑖 -th

element of 𝛷(ℎ,𝜉)(𝑥) is computed as:

Φ𝑖
(ℎ,𝜉)

(𝑥) = ∑  

𝑗:ℎ(𝑗)=𝑖

𝜉(𝑗)𝑥𝑗

where 𝑗 = 0, … , 𝑑 and 𝑖 = 0, … , 𝑚.

Feature hashing reduces computational cost and

memory consumption by reducing the feature

dimensionality. However, there is a risk of information

loss arising from hash collisions where different n-grams

may be mapped into the same hash key. Increase hash

table size-that is, the bit size-and it minimizes the

collisions. Optimal bit size depends on the vocabulary of

the n-gram. By analyzing the n-grams of process

sequences with Zipf's law, it can be found that most

features are infrequent; thus, collisions usually happen

between rare variables without causing significant

information loss. To balance the dimensionality reduction

and information retention, we use the 32-bit murmur Hash

function by Langford et al. [18] and a binary hash function

to preserve an unbiased hash kernel as suggested by

Weinberger et al. [19].

B) Deep Learning Model

Artificial neural networks (ANNs) have many

advantages compared to other machine learning methods

for supervised learning tasks. They require less formal

statistical modeling, can learn complex nonlinear

relationships between variables, capture

interdependencies between predictors, and offer a wide

range of training algorithms. Their superior performance

has been demonstrated by several comparative research

studies and competitive analyses [16][20]. Historically,

ANNs-especially deep neural networks-have been trained

by directly optimizing the loss function using stochastic

gradient descent with randomly initialized weights.

However, this approach can lead to long training times

and lower accuracy. In the mid-2000s, more effective

training methods, such as deep belief networks (DBN)

and autoencoder architectures, were introduced [21]. The

methodologies in question comprise two distinct phases:

(1) unsupervised layerwise pre-training, during which

self-supervised learning acquires high-level abstractions

via non-linear transformations, and (2) supervised fine-

tuning, which refines the pre-trained weights to reduce

classification errors through gradient-based optimization.

Research indicates that neural networks benefiting from

unsupervised pre-training demonstrate superior

performance compared to their counterparts lacking this

component. This technique yields improved initial weight

distributions, identifies intrinsic dependencies, mitigates

variance, and exceeds the efficacy of conventional

regularization strategieS. We employ in our work stacked

autoencoders for unsupervised layerwise pre-training to

extract high-level features. Fine-tuning is then carried out

with the addition of a logistic regression layer at the

output to ensure accurate classification. The full process,

including pre-training with stacked autoencoders and the

addition of the output layer, is illustrated in Figure 2.

Unsupervised pre-training with stacked

autoencoders: Autoencoders are a nonlinear version of

PCA, as developed specifically for modeling nonlinear

interdependencies between features, following Hinton

and Salakhutdinov [22]. It consists of three layers: the

input layer, the hidden layer, also known as the encoding

layer, and the output layer, which is also the decoding

layer. By employing the nonlinear activation function, 𝑓𝜃,

the high dimensional input vector, 𝑥 ∈ [0,1]𝑑 , is firstly

mapped into a hidden layer through the encoder, which is

consisting of: To promote sparse representation and

reduce the risk of vanishing gradient problems, ReLU is

used here as the activation function of encoding:

ℎ = 𝑓𝜃(𝑥) = 𝜎(𝑊𝑥 + 𝑏)

Here, 𝜃 = {𝑊, 𝑏} denotes the encoder's parameter

set, where W is a weight matrix of size 𝑑′ × 𝑑 , and b

denotes the bias. The output, ℎ ∈ [0,1]𝑑′
, is the encoded

representation in the hidden layer. Further, the decoder

reconstructs the input by mapping the hidden layer

representation back to a reconstructed vector 𝑧 ∈ [0,1]𝑑

using the mapping function 𝑔𝜃′ :

𝑧 = 𝑔𝜃𝑟(ℎ) = 𝜎(𝑊′ℎ + 𝑏′)

204 Informatica 49 (2025) 199–210 R. Li et al.

The training objective is to optimize the parameter

sets 𝜃 = {𝑊, 𝑏} for the encoder and 𝜃′ = {𝑊′, 𝑏′} for the

decoder to minimize the reconstruction loss. The

reconstruction loss is defined as the squared error:

𝐿(𝑥, 𝑧) =∥ 𝑥 − 𝑧 ∥2= ∥∥𝑥 − 𝜎(𝑊′(𝜎(𝑊𝑥 + 𝑏)) + 𝑏′)∥∥
2

This is solved as an optimization problem using the

mini-batch stochastic gradient descent method.

Stacked Autoencoders: They are a greedy, layer-wise

procedure for multi-phase feature extraction. The features

extracted by one autoencoder-the hidden layer

representation-serve as the input to the next autoencoder

as shown on the left side of Figure 2. Each autoencoder is

trained in isolation to initialize weights for the subsequent

stage of supervised fine-tuning. In this work, we use a

form of undercomplete autoencoder-a network with

progressively narrowing hidden layers-to approach the

process prediction problem.

Supervised Fine-Tuning: The weights obtained from

unsupervised reconstruction-based learning of the

network are fine-tuned using logistic regression so as to

map the output onto class labels (conceptually illustrated

on the right side of Figure 2). Here, the decoding parts of

the stacked auto-encoders are discarded, a logistic

regression layer is added atop the trained encoding layers.

The layer added for the multi-class classification task will

contain Softmax units in order to compute an estimate of

class probabilities.

𝑃(𝑦 = 𝑗 ∣ 𝑥) =
𝑒𝜃𝑗

∑  𝑘
𝑖=1 𝑒𝜃𝑖

The probability of the target class 𝑦 being class 𝑗 ,

given the input 𝑥, is computed using the input vector 𝑥

and a set of weighting vectors 𝑤𝑗 , where ℎ𝑗 = 𝑤𝑗
𝑇𝑥

represents the inner product of 𝑤𝑗 and 𝑥. The combined

network is trained as a standard multi-layer perceptron to

minimize prediction error. It minimizes the cost function

through stochastic gradient descent, using a lock-free

scheme to parallelize the process of SGD; several cores

are hence allowed to participate in contributing their share

in gradient updates simultaneously, by [18] [22]. To

enhance reproducibility, the architecture of the stacked

autoencoders used in this study is summarized as follows.

For each dataset, we used a consistent architecture

comprising four hidden layers with progressively

decreasing neurons: 425 → 400 → 390 → 300, followed

by an output softmax layer for multi-class classification.

The ReLU activation function was used for all hidden

layers to promote sparsity and mitigate vanishing gradient

issues, while the output layer used softmax for probability

estimation. This architecture was selected based on

extensive tuning on the BPI 2012_A dataset and applied

across other datasets due to its stable performance. For

transparency, a detailed per-dataset configuration table

will be included in future versions.

4 Evaluation

Table 2: Features of the dataset.

Datasets

of

uniqu

e

event

types

of

events

BPI_2012_W_Complet

ed
6

72,41

3

BPI_2012_O 7
31,24

4

BPI_2012_A
1

0

60,84

9

BPI_2013_Problems 7 9011

BPI_2013_Incidents
1

3

65,53

3

Helpdesk 9
13,71

0

The performance of the proposed deep learning

approach was evaluated by conducting experiments with

variations in datasets, configurations, and evaluation

objectives. The study focused on three main research

questions: (RQ1) whether the multi-stage deep learning

approach outperforms existing classification methods

across multiple evaluation metrics, (RQ2) how it

compares to alternative methods, such as LSTM-based

models by Evermann et al. [2] and Tax et al. [14] or the

Bayesian-regularized probabilistic finite automaton

(PFA) by Breuker et al. [12], and (RQ3) whether data

balancing can improve predictions for rare events. Since

most business processes include infrequent but important

activities, leading to imbalanced event logs, we

investigated data balancing techniques that could improve

the predictive accuracy of such infrequent events.

Traditional resampling methods tend to overfit and do not

provide enough information for cost-sensitive learning.

To address this challenge, we applied RBF neural

networks, which are efficient in enhancing classification

performance related to imbalanced datasets according to

[21]. Experiments were done on an Intel i7-5500U 2.0

GHz processor with 16 GB RAM. Data preprocessing

was done in R using the dplyr library. N-grams were

generated by an in-house application implemented in Java

while feature hashing was carried out on Microsoft Azure

ML with the Vowpal Wabbit library. Both pre-trained

stacked autoencoders and the supervised learning models

were implemented using the H2O open source

framework. Classical classification experiments were

executed with the Weka toolkit.

Next Event Prediction in Business Process Logs Using Stacked… Informatica 49 (2025) 199–210 205

A) Datasets

These experiments have been performed on three

real-life datasets: BPI Challenge 2012, by van Dongen

[6]; BPI Challenge 2013, by [14]. All these datasets are

described in Table 1, which defines the number of unique

event types for output classes of a multi-class

classification problem. The BPI Challenge 2012 dataset

contains 262,000 events originating from 13,087 cases of

a loan application process of a Dutch financial institute.

The process is divided into three sub-processes:

application activities (A), work items (W), and offers (O).

Following previous studies [2][12][14], only the

completion events were used, resulting in three datasets:

BPI_2012_A, BPI_2012_O, and

BPI_2012_W_Completed.

The BPI Challenge 2013 dataset is based on Volvo

IT's incident and problem management system. The

incident subset includes 65,533 events (13 types) for 7554

cases, the open problems subset includes 2351 events (5

types), and the closed problems subset includes 6660

events (7 types). Merging the open and closed subsets

resulted in 9011 events for consistency with other studies.

The Helpdesk dataset includes 13,710 events originating

from 3804 cases emanating from the ticketing system of

an Italian software company. Resource IDs, loan amount,

problem priority, functional divisions, and process owner

details were some other organizational and case attributes

that were added. It was added from BPI 2012 and BPI

2013, respectively. Feature vectors created through n-

grams and feature hashing, to which this extra

information was added so as to enrich the feature set.

B) Evaluation metrics

The following metrics were computed to compare the

performance of our deep learning approach with other

classification algorithms, and the respective average

accuracy, precision, recall, F-measure, Matthews

correlation coefficient (MCC), and the area under the

ROC curve (AUC), all adapted for multi-class

classification, are reported in Table 2. True positives-

(𝑡𝑝𝑖),: gives the total number of events that belonged to

class 𝑖 correctly classified as class 𝑖 , whereas; false

positives-𝑓𝑝𝑖 counts those events that do not belong to

class i but were classified as class 𝑖, true negatives-tni are

the number of events not of class i that were correctly

classified as not from class i; finally, false negatives, 𝑓𝑛𝑖,

are events of class 𝑖 which have been misclassified as not

of class 𝑖 . Accuracy was the proportion of correctly

classified instances with respect to all instances. Precision

was the proportion of correctly classified events of that

particular class given all predictions for that class,

whereas recall was the true positive rate for any class. The

F-measure was the harmonic mean of precision and recall.

MCC calculated the correlation between true values and

predicted classifications, while AUC represented the area

under the receiver operating characteristic curve. Each

metric is computed for an individual class; overall scores

are obtained by weighting class-specific metrics

according to the true class size.

Table 2: Performance metrics used for multi-class

classification evaluation

Met

rics
Formula

Acc

uracy

1

𝑛
∑𝑖=1

𝑙  𝑠𝑖

𝑡𝑝𝑖 + 𝑡𝑛

𝑡𝑝𝑖 + 𝑓𝑛𝑖 + 𝑡𝑛𝑖 + 𝑓𝑝𝑖

Pre

cision

1

𝑛
∑𝑖=1

𝑙  𝑠𝑖

𝑡𝑝𝑝𝑖

𝑡𝑝𝑖 + 𝑓𝑝𝑖

Rec

all

1

𝑛
∑𝑖=1

𝑙  𝑠𝑖

𝑡𝑝𝑖

𝑡𝑝𝑖 + 𝑓𝑛𝑖

F-

measure

1

𝑛
∑𝑖=1

𝑙  𝑠𝑖

𝑝𝑖 recision 𝑛𝑖 × recall

 precision
+

MC

C

1

𝑛
∑𝑖=1

𝑙  𝑠𝑖

𝑡𝑝𝑖 × 𝑡𝑙𝑖

√(𝑡𝑝𝑖 + 𝑓𝑝𝑖)(𝑡𝑝𝑖 × 𝑓𝑝𝑖 + 𝑓𝑛𝑖)(𝑡𝑛𝑖 + 𝑓𝑝𝑖)(𝑡𝑛𝑖 + 𝑓𝑛𝑖)

AU

C

1

𝑛
∑𝑖=1

𝑙  𝑠𝑖∫0

1
 𝑡𝑝𝑟𝑖𝑑(𝑓𝑟𝑖)

For the experiments, 80% of each dataset was used

for training and 20% for testing. Unsupervised pre-

training followed by supervised fine-tuning was

performed on the deep learning model in the training

phase. In the process, tenfold cross-validation was applied

for training the model. The overall flow was based on

splitting the entire training dataset into 10 subsets, where

one subset was held out for validation, while the other

nine subsets were used for training at a time. This was

repeated 10 times to make the results robust and to yield

the best hyperparameter configuration of Vincent et al.

[21]. At the end, test results were used for comparison

with other approaches.

C) Hyperparameter optimization

Deep neural networks can involve over 50

hyperparameters, and optimizing them is crucial for

improving learning and prediction performance.

Traditional manual search relies on expert intuition to

define hyperparameter values (e.g., number of hidden

layers, neurons, learning rate) and test combinations

through multiple training sessions. However, this process

is time-consuming and explores only a limited number of

combinations, often failing to achieve optimal results in

high-dimensional spaces. Grid search is a brute-force

approach to train models for all possible combinations of

hyper-parameters with a predefined range. It produces

better results compared to the manual search in the same

computational time [23]. However, it suffers from the

"curse of dimensionality," as the number of combinations

grows exponentially with the number of hyperparameters.

For this, [23] have proposed random search: randomly

206 Informatica 49 (2025) 199–210 R. Li et al.

choose hyperparameter combinations and train models

within a given computational budget. Random search has

been empirically found to outperform grid search in

several studies. Here, for hyperparameter optimization,

we will use random search. The key settings' parameter

ranges were defined: the number of hidden layers, 3-10;

neurons per layer, 10-500; sparse data handling,

True/False; initial weight

Table 3: Table of Optimal Hyperparameters for BPI

Challenge 2012_A Dataset with Pre-Training and Whole

Network Parameters.

Parameters Pre-Training

Values

Whole

Network

Values

Hidden Layers

(Neurons)

425, 400, 390,

300

6 Layers (4

Hidden)

Weight

Initialization

Normal

Distribution

-

Sparsity True N/A

Learning Rate 0.005 Adaptive

(Smoothing

Factor: 1e-8)

Momentum

Coefficient

0.9 Adaptive

(Decay Factor:

0.99)

Annealing

Parameter

104 -

Epochs - 100

Activation

Function

- ReLU

Output Layer

Activation

- Softmax

Batch Size - 20

Regularization

Penalty (L2)

- 0

Loss Criterion - Cross-Entropy

distribution, uniform/normal; training epochs, 10-

1000; and learning rates, 0.0001-1. For adaptive learning,

parameters included time decay factor, 0.99, and

smoothing factor, 1e −8. Annealing rates, if adaptive

learning was turned off, were between 10 and 10−6 .

Training was stopped early if the relative improvement in

log-loss was below 0.001, or after 200 models were

trained for a dataset. Table 3 provides a summary of the

optimal hyperparameter configuration on BPI_2012_A

data set. For all the remaining datasets, hyper-parameter

optimisation is conducted but optimal values are not

provided here due to space limitations.

5 Results
A) Comparative Analysis (RQ 1 and RQ 2)

We started by comparing our proposed approach to

traditional classification algorithms such as support

vector machines (SVM), random forests, naïve Bayes, k-

nearest neighbors (kNN), and C4.5 decision trees, which

are considered efficient and popular methods by Wu et al.

[24]. Table 4: Next event prediction, with prefix length =

5, n-gram size = 3, and feature hashing bit size = 10. Our

method consistently outperforms these traditional

approaches in different metrics. Among them, the best

performance was achieved by SVM and got closest to our

approach. On the BPI 2013 dataset, most methods, except

naïve Bayes, have similar performances, while on BPI

2012 and Helpdesk, our approach has much larger

performance gaps. These results show that our deep

learning model is much better in making predictions,

especially for complex datasets. Therefore, we can see

that our proposed approach performs the best among

traditional classifiers, thus answering RQ1.

To answer RQ2, we compared our approach with

three recent next-event prediction approaches. In Table 5,

it is shown that on all the BPI 2012 datasets our approach

performs better than its alternatives. For instance, in the

case of the BPI_2012_W_Completed dataset, the

accuracy obtained by our method is 0.831, while by

Breuker et al. (2016), it is 0.719 and 0.760 [14]. Our

method has performed much better in terms of recall

compared to that of Breuker et al. (2016). Precision results

also show the superiority of our approach, reaching 0.811

compared to 0.658 by Evermann et al. [2]. For other

datasets like BPI_2012_A and BPI_2012_O, our

approach is always better for all metrics. For the

BPI_2013_Incident dataset, the results are not so

straightforward. Breuker et al. [14] reported a slightly

better accuracy, 0.714 versus 0.663, but our approach

reaches a considerably higher recall, 0.664 versus 0.377.

Similarly, Evermann et al. [2] have higher precision but,

in general, our approach is better when tested on the

BPI_2013_Problem’s dataset. In the case of the Helpdesk

Next Event Prediction in Business Process Logs Using Stacked… Informatica 49 (2025) 199–210 207

Table 4: The performance metrics of various models on different datasets. Each value is reported as **Accuracy /

Precision / Recall / F-score / MCC / AUC**.

Metric BPI 2012_A BPI2013_Incidents Helpdesk

SVM 0.817 / 0.856 / 0.822 /

0.817 / 0.748 / 0.895

0.652 / 0.599 / 0.653 / 0.622 /

0.350 / 0.730

0.715 / 0.605 / 0.716 /

0.652 / 0.389 / 0.725

RF 0.720 / 0.714 / 0.721 /

0.712 / 0.566 / 0.888

0.615 / 0.626 / 0.616 / 0.524 /

0.508 / 0.895

0.601 / 0.619 / 0.601 /

0.606 / 0.278 / 0.688

Naïve

Bayes

0.612 / 0.633 / 0.612 /

0.555 / 0.485 / 0.772

0.576 / 0.618 / 0.577 / 0.590 /

0.519 / 0.879

0.631 / 0.634 / 0.631 /

0.622 / 0.323 / 0.733

C4.5 0.708 / 0.744 / 0.709 /

0.705 / 0.674 / 0.931

0.659 / 0.558 / 0.659 / 0.582 /

0.564 / 0.900

0.613 / 0.534 / 0.614 /

0.569 / 0.214 / 0.602

Deep

Learning

0.824 / 0.852 / 0.824 /

0.817 / 0.751 / 0.923

0.663 / 0.648 / 0.664 / 0.647 /

0.583 / 0.862

0.782 / 0.632 / 0.781 /

0.711 / 0.412 / 0.762

Table 5: Comparison against benchmark approaches (higher numbers are better)

Dataset Breuker et al.

[14]

Evermann et al.

[2]

Tax et al. [12] Proposed

Approach

BPI 2012_W Accuracy: 0.719

Recall: 0.578

Precision: -

Recall: -

Accuracy:

0.760

Recall: -

Accuracy: 0.831

Precision: 0.811

Recall: 0.832

BPI 2012_A Accuracy: 0.801

Recall: 0.723

Precision: 0.832

Recall: -

- Accuracy: 0.824

Precision: 0.852

Recall: 0.824

BPI 2012_O Accuracy: 0.811

Recall: 0.647

Precision: 0.836

Recall: -

- Accuracy: 0.821

Precision: 0.847

Recall: 0.822

BPI

2013_Incidents

Accuracy: 0.714

Recall: 0.377

Precision: 0.735

Recall: -

- Accuracy: 0.663

Precision: 0.648

Recall: 0.664

BPI

2013_Problems

Accuracy: 0.690

Recall: 0.521

Precision: 0.628

Recall: -

- Accuracy: 0.662

Precision: 0.641

Recall: 0.662

Helpdesk - - Accuracy:

0.712

Accuracy: 0.782

Precision: 0.632

Recall: 0.781

dataset, our approach outperforms Tax et al. [12] by a fair

margin in terms of accuracy: 0.782 versus 0.712.

Furthermore, random hyperparameter optimization

instead of a manual search shows dramatic improvements

over our previous work. We also examine the impact of

different sizes of n-grams and bit size of feature hashing

on performance. As it turned out, on many datasets,

including BPI 2012 and Helpdesk, increasing the size of

n-grams above 5 does not bring about noticeable accuracy

improvements while noticeably increases computational

costs. For instance, in BPI_2012_A dataset with prefix

length of 5, the accuracy is between 0.829 and 0.831 with

n-gram size ranging from 2 to 5, which is almost no

improvement. Also, increased feature hashing bit size

above 10 does not contribute more considerably because

hash collisions among less frequent n-grams take

precedence. This will come according to Zipf's law, which

states that only a few input features are high-frequency

ones.

 B) Imbalanced Classification (RQ 3) Class

imbalance problem has always been one of the important

challenges

faced by machine learning techniques, as the latter may

fail to recognize the minority class examples. Wang and

Yao, 2012 proposed several data-level techniques such as

under/oversampling and algorithm-level approaches

including cost-sensitive learning and boosting. Sun et al.,

[4] resampling techniques such as SMOTE by Huang et

al., 2016 synthesize artificial samples to reduce class

imbalance. However, resampling techniques might

introduce noise. Cost-sensitive methods can be effective

but usually require expert knowledge to determine the

appropriate costs. In our study, we utilized the RBF neural

208 Informatica 49 (2025) 199–210 R. Li et al.

network-based data generation method in order to balance

the dataset. Unlike other methods, RBF maintains

dependencies among input variables by extracting

Gaussian kernels and generates data proportional to the

minority class distribution. Hence, it would have better

representation for the minority class without loss of

information. The pseudo-code and details can be found in

[8]. Due to rare but critical "Wait user" events, in case of

the BPI Challenge 2013 Incidents data we have

reformulated the problem into a binary classification

problem. An RBF-based method was employed in

rebalancing of the dataset prior to using our prediction

model. We performed result comparisons on the

imbalanced data-without rebalancing-and RBF-

rebalanced data. Since accuracy is not suitable for

imbalanced datasets, the AUC was used as the evaluation

metric for this work [17]. Figure 3 shows the ROC curves

of both cases, where the AUC increases from 0.855 in the

case of imbalanced data to 0.932 in the case of RBF-

rebalanced data.

6 Discussion
This paper, for the first time, investigates the

effectiveness of a deep learning approach based on

stacked autoencoders for future event prediction in

ongoing process instances. Our approach is compared to

three recent methods, including two LSTM-based models

[2, 14] and a Bayesian PFA [12], as summarized in Table

1. The comparative analysis shows that our approach

consistently outperforms prior methods on most datasets,

with up to 83.1% accuracy, 85.2% precision, and 92.3%

AUC. For instance, while Breuker et al. [12] achieved a

maximum of 76.0% accuracy, our method improved this

by over 7 percentage points on the BPI 2012_W dataset.

Similar trends are observed across BPI 2012_A, 2012_O,

and the Helpdesk dataset. This improvement is largely due

to the multi-stage architecture of our model, which

combines effective feature encoding (n-grams with feature

hashing), unsupervised pre-training, and hyperparameter

optimization. Our use of n-gram encoding captures both

local and long-range dependencies in event sequences,

unlike the traditional one-hot encoding used in earlier

LSTM models. Furthermore, feature hashing reduces

dimensionality while preserving semantic relevance,

enabling real-time inference. The unsupervised pre-

training using stacked autoencoders helps in extracting

higher-order representations and better weight

initialization for the supervised fine-tuning phase.

Despite these advantages, our method does show

some limitations. For the BPI 2013_Incident’s dataset,

Breuker et al. [12] slightly outperformed us in accuracy

(71.4% vs. our 66.3%). This performance drop may be

attributed to the rarity of certain event types and the

dynamic nature of incident management processes, which

exhibit high variance in sequential patterns. In such

scenarios, deeper models like LSTMs may generalize

better when sequence lengths vary significantly. We also

note that increasing n-gram size or feature hashing bit size

beyond optimal thresholds (e.g., n=5, bit size=10) does not

yield further performance gains and can even degrade

accuracy due to increased sparsity and hash collisions.

Thus, our model’s performance is sensitive to

hyperparameter tuning, although random search mitigates

this challenge to a large extent.

In terms of generalizability, our framework

demonstrates strong results across six diverse real-world

datasets. However, our method assumes stationary process

behavior, meaning it does not adapt to concept drift or

evolving process dynamics. This limits its applicability in

highly dynamic environments without retraining.

Moreover, while the model performs well on numerical

event log attributes, it does not yet incorporate textual or

unstructured data, such as freeform user comments or

emails, which may contain rich contextual information.

Figure 3: ROC curves for (a) imbalanced datasets and (b) balanced datasets. The ROC curve represents the

relationship between the true positive rate (TPR) and the false positive rate (FPR).

Next Event Prediction in Business Process Logs Using Stacked… Informatica 49 (2025) 199–210 209

7 Concluions

This study introduced a novel deep learning

framework using stacked autoencoders and n-gram-based

feature hashing for predicting next events in business

process logs. Extensive experiments on multiple real-

world datasets confirmed the superior performance of the

proposed approach over state-of-the-art methods. The

integration of unsupervised pre-training, effective

sequence encoding, and robust hyperparameter

optimization contributes to its enhanced predictive

capabilities.

Additionally, our approach addressed the issue of

imbalanced datasets through RBF-based synthetic data

generation, which significantly improved the AUC for

rare class prediction. The methodological contributions,

combined with empirical validations, underline the

feasibility of applying advanced deep learning techniques

in the domain of business process monitoring.

Future research will focus on addressing concept drift,

incorporating unstructured data, and improving model

interpretability. Utility-based evaluations and

explainability modules will be explored to support

deployment in real-world enterprise settings where

decision accountability is critical.

References

[1] Yuan, Z., 2024. Consumer behavior prediction and

enterprise precision marketing strategy based on

deep learning. Informatica, 48(15). DOI:

10.31449/inf. v48i15.6260

[2] Evermann, J., Rehse, J.R. and Fettke, P., 2017.

Predicting process behaviour using deep

learning. Decision Support Systems, 100, pp.129-

140. DOI: 10.1016/j.dss.2017.04.003

[3] Jing, L., 2024. Evolutionary deep learning for

sequential data processing in music

education. Informatica, 48(8). DOI: 10.31449/inf.

v48i8.5444

[4] Karna, H., Gotovac, S. and Vicković, L., 2020. Data

mining approach to effort modeling on agile

software projects. Informatica, 44(2). DOI:

10.31449/inf. v44i2.2759

[5] Gregor, S. and Hevner, A.R., 2013. Positioning and

presenting design science research for maximum

impact. MIS quarterly, pp.337-355. DOI:

10.25300/MISQ/2013/37.2.01

[6] Van Dongen, B.F., 2015. Bpi challenge 2015.

In 11th International Workshop on Business Process

Intelligence (BPI 2015). DOI:

10.4121/uuid:31a308ef-c844-48da-948c-

305d167a0ec1

[7] Rogge-Solti, A. and Weske, M., 2013. Prediction of

remaining service execution time using stochastic

petri nets with arbitrary firing delays. In Service-

Oriented Computing: 11th International

Conference, ICSOC 2013, Berlin, Germany,

December 2-5, 2013, Proceedings 11 (pp. 389-403).

Springer Berlin Heidelberg. OI: 10.1007/978-3-642-

45005-1_27

[8] Forman, G. and Kirshenbaum, E., 2008, October.

Extremely fast text feature extraction for

classification and indexing. In Proceedings of the

17th ACM conference on Information and knowledge

management (pp. 1221-1230). DOI:

10.1145/1458082.1458243

[9] Senderovich, A., Di Francescomarino, C., Ghidini,

C., Jorbina, K. and Maggi, F.M., 2017. Intra and

inter-case features in predictive process monitoring:

A tale of two dimensions. In Business Process

Management: 15th International Conference, BPM

2017, Barcelona, Spain, September 10–15, 2017,

Proceedings 15 (pp. 306-323). Springer

International Publishing. DOI: 10.1007/978-3-319-

65000-5_20

[10] Le, M., Gabrys, B. and Nauck, D., 2017. A hybrid

model for business process event and outcome

prediction. Expert Systems, 34(5), p.e12079. DOI:

10.1111/exsy.12079

[11] Unuvar, M., Lakshmanan, G.T. and Doganata, Y.N.,

2016. Leveraging path information to generate

predictions for parallel business

processes. Knowledge and Information Systems, 47,

pp.433-461. DOI: 10.1007/s10115-015-0896-2

[12] Breuker, D., Matzner, M., Delfmann, P. and Becker,

J., 2016. Comprehensible predictive models for

business processes. Mis Quarterly, 40(4), pp.1009-

1034. DOI: 10.25300/MISQ/2016/40.4.06

[13] Márquez-Chamorro, A.E., Resinas, M., Ruiz-Cortés,

A. and Toro, M., 2017. Run-time prediction of

business process indicators using evolutionary

decision rules. Expert Systems with Applications, 87,

pp.1-14. DOI: 10.1016/j.eswa.2017.05.037

[14] Tax, N., Verenich, I., La Rosa, M. and Dumas, M.,

2017. Predictive business process monitoring with

LSTM neural networks. In Advanced Information

Systems Engineering: 29th International

Conference, CAiSE 2017, Essen, Germany, June 12-

16, 2017, Proceedings 29 (pp. 477-492). Springer

International Publishing. DOI: 10.1007/978-3-319-

59536-8_30

[15] Leontjeva, Anna, and Fabrizio Maria Maggi.

"Complex symbolic sequence encodings for

predictive monitoring of business processes."

In Business Process Management: 13th

International Conference, BPM 2015, Innsbruck,

Austria, August 31--September 3, 2015, Proceedings

13, pp. 297-313. Springer International Publishing,

2015. DOI: 10.1007/978-3-319-23063-4_19

[16] Caragea, C., Silvescu, A. and Mitra, P., 2011,

November. Protein sequence classification using

feature hashing. In 2011 IEEE International

Conference on Bioinformatics and Biomedicine (pp.

538-543). IEEE. DOI: 10.1109/BIBM.2011.61

210 Informatica 49 (2025) 199–210 R. Li et al.

[17] Da Silva, N.F., Hruschka, E.R. and Hruschka Jr, E.R.,

2014. Tweet sentiment analysis with classifier

ensembles. Decision support systems, 66, pp.170-

179. DOI: 10.1016/j.dss.2014.07.003

[18] Langford, J., Li, L. and Strehl, A., 2007. Vowpal

wabbit online learning project. Vowpal Wabbit

online learning project.

[19] Weinberger, K., Dasgupta, A., Langford, J., Smola,

A. and Attenberg, J., 2009, June. Feature hashing for

large scale multitask learning. In Proceedings of the

26th annual international conference on machine

learning (pp. 1113-1120). DOI:

10.1145/1553374.1553516

[20] Caruana, R. and Niculescu-Mizil, A., 2006, June. An

empirical comparison of supervised learning

algorithms. In Proceedings of the 23rd international

conference on Machine learning (pp. 161-168).

DOI: 10.1145/1143844.1143865

[21] Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y.,

Manzagol, P.A. and Bottou, L., 2010. Stacked

denoising autoencoders: Learning useful

representations in a deep network with a local

denoising criterion. Journal of machine learning

research, 11(12). DOI:

10.1162/neco.2006.18.7.1527

[22] Hinton, G.E., 2006. A Fast-Learning Algorithm for

Deep Belief Nets. Neural Computation.

[23] Bergstra, J. and Bengio, Y., 2012. Random search for

hyper-parameter optimization. Journal of machine

learning research, 13(2). DOI:

10.1162/neco.2006.18.7.1527

[24] Wu, X., Kumar, V., Ross Quinlan, J., Ghosh, J.,

Yang, Q., Motoda, H., McLachlan, G.J., Ng, A., Liu,

B., Yu, P.S. and Zhou, Z.H., 2008. Top 10 algorithms

in data mining. Knowledge and information

systems, 14, pp.1-37.

