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Proactive monitoring of business processes has become a key competitive advantage for firms, enabling 

timely interventions to prevent workflow deviations. Process-aware information systems generate 

extensive logs, which serve as valuable resources for predictive analytics. In this context, this study 

presents a deep learning-based approach for predicting the next event in an ongoing process by analyzing 

historical execution logs. The proposed method formulates event prediction as a classification task, 

leveraging n-gram encoding and feature hashing for effective feature preprocessing. The model consists 

of a multi-stage deep learning framework, incorporating stacked autoencoders for unsupervised pre-

training, followed by a supervised fine-tuning phase to optimize classification accuracy. Experimental 

validation was conducted on six real-life event log datasets, including BPI Challenge 2012 (subsets A, O, 

W), BPI Challenge 2013 (Incidents, Problems), and Helpdesk logs. The proposed approach achieved up 

to 83.1% accuracy, 85.2% precision, and 92.3% AUC on the BPI 2012_A dataset, outperforming state-

of-the-art classifiers such as LSTM-based models and Bayesian regularized PFAs. Notably, it 

demonstrated a 6–11% improvement in recall over existing methods on key datasets. The results highlight 

the model’s ability to capture complex process dynamics and improve proactive situation awareness. 

Additionally, the study explores the impact of hyperparameter tuning and addresses data imbalance 

challenges using RBF-based synthetic data generation, contributing a robust framework for real-time 

decision support in business process management. 

Povzetek: V prispevku so opisani zloženi samokodirniki z n-gram/hashing kodiranjem za napoved 

naslednjega dogodka, ki presegajo LSTM/PFA in z RBF uravnoteževanjem izboljšajo redke razrede. 

 

1 Introduction  
     In practice, high-performance business processes 

remain as one of a handful of remaining sources of 

differentiation. Inclusion of predictive analytics into 

enterprise processes can bring a tremendous increment in 

business values. A process-aware Enterprise Information 

Systems (EIS) like workflow management systems 

(WMS), enterprise resource planning (ERP), customer 

relationship management (CRM), incident management 

(IM) generates log events when processes are being 

executed [1]. These logs are a rich source for predictive 

analytics, helping to make informed decisions due to their 

ability to predict future process behaviors. Well-designed 

and properly implemented predictive approaches enable 

business activities to proceed according to plans without 

predicted failures or deviations from the foreseen 

behavior of the processes. The data-driven predictive 

process analytics enable use cases such as real-time 

anomaly detection in processes, analysis of customer 

behavioral patterns for offering them individualized 

offers, risk management by prediction of compliance 

violations, and efficient resource allocation [2]. 

 

 

   The current focus of EIS is to enhance the ability of an 

organization in performing high-performing business 

processes. However, most of the systems are not effective 

enough because advanced predictive analytics is missing. 

Most of the integrated business intelligence tools work on 

descriptive analytics that can only support addressing 

demographic trends and performance-related issues. It is 

also not adequate for a business just to optimize its 

operational efficiency in order to remain competitive. 

According to Duan and Da Xu, the struggle by companies 

is in converting the gigantic amounts of data generated 

into useful insights that will help them in providing 

quality products and services [3]. For that reason, in the 

future, EIS have to go beyond diagnostic examination of 

historical data by providing proactive decisions based on 

predictive analytics. The process needs predictive 

capabilities embedded in the business processes. EIS form 

the basis in their role as process orchestration tools. A 

significant and developing related trend of IS research 

involves integrating advanced analytics with EIS [4]. 

Business process prediction involves the forecast of a 

target variable by extracting meaningful features from 

business process log data analysis. When the target 

variable is continuous, for instance, estimated time 
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remaining for the completion of a process, then the task 

falls under the category of regression analysis. Otherwise, 

if the events involve discrete values, such as predicting 

the next activity in an ongoing process, predicting the 

outcome of a process instance, or the likelihood of 

violating a service level agreement, the problem is dealt 

with as classification. This study focuses on predicting 

future events in a business process based on the sequence 

of previous events extracted from the given instance using  
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execution log data from already finished instances. 

This problem is of high importance in process analytics 

since these predictive results enable proactive actions to 

minimize undesired outcomes. As an answer to this 

challenge, we propose a multi-stage deep learning 

framework.  

 

    This paper is the first to apply a deep learning 

framework in business process management, which has 

been characterized by both an unsupervised pre-training 

phase using stacked autoencoders and a supervised fine-

tuning stage for multi-class classification tasks. The 

approach greatly enhances the state-of-the-art techniques 

on process prediction by initializing neural network 

parameters through employing greedy layer-wise pre-

training and optimizing a global training objective with 

labeled data. In this work, a solid data pre-processing 

pipeline is also introduced, which, for the first time in this 

domain, transforms event log data into numerical feature 

vectors using n-gram representation and feature hashing. 

Such encoding considers the sequential nature of process 

data and, at the same time, reduces the dimensionality, 

enhancing the inference speed of deep neural networks. 

Furthermore, the research addresses some of the key 

challenges such as hyperparameter optimization and 

handling data imbalance to improve the accuracy and 

precision of prediction. Based on the "exaptation" design 

science research approach by Gregor [5], this study adopts 

proven techniques such as stacked autoencoders and 

feature hashing to develop novel predictive analytics 

models for process data in EIS.  

 

To clarify the scope and objectives of this study, we 

define the outcome variable as the next activity label in a 

sequence of events from an ongoing business process 

instance. This transforms the task into a multi-class 

classification problem, where the input is a prefix of 

historical events and the target is the label of the next 

event in the sequence. The research is guided by the 

following key questions: 

• RQ1: Can the proposed deep learning 

framework, which incorporates stacked 

autoencoders and n-gram encoding with feature 

hashing, outperform traditional classification 

methods on standard business process log 

datasets? 

• RQ2: How does the predictive performance of 

the proposed approach compare to state-of-the-

art deep learning models, such as LSTM-based 

architectures and Bayesian probabilistic finite 

automata? 

• RQ3: Can data imbalance in business process 

logs be effectively addressed using synthetic 

data generation through RBF-based neural 

network resampling, thereby improving 

prediction for rare but significant events? 

Figure 1: The stages of the proposed approach. 
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These questions directly shape our experimental 

design and analysis, as presented in the subsequent 

sections. 

2 Related works  
An increasing amount of research has focused on 

machine learning methods in the realm of business 

process management. We categorize these studies with 

respect to the type of the target variable they predict-

whether it is discrete or continuous-and discuss the 

problem types falling into these categories. 

    Approaches belonging to the first category address 

regression problems; the most common is the prediction 

of the remaining processing time of incomplete cases. For 

example, van Dongen et al. [6] estimated the remaining 

cycle time using event log data based on nonparametric 

regression techniques. Rogge-Solti [7] have proposed a 

stochastic Petri net with generally distributed transitions 

with the aim of foretelling execution time as a function of 

the time elapsed since the last observed event. Folino et 

al. [8] introduced a hybrid model in which PCT was 

combined with performance-annotated FSM to produce 

time predictions. The approach proposed by Senderovich 

et al. [9] used linear regression, random forests, and 

XGBoost with features extracted from process instances 

and global models for time prediction. 

   The other group targets classification problems, 

which are process outcome prediction, service level 

agreement violations, nominal attribute prediction, and 

next event prediction. Only a few papers address the next 

event prediction problem presented here. Le et al. [10] 

took this a step further with their enhanced Markov model 

and sequential k-nearest neighbor classification, 

outperforming traditional Markov and HMM. The other 

works proposed include the following: Unuvar et al. [11] 

designed a decision tree model to forecast the next activity 

in a process that contains parallel execution paths. 

Breuker et al. [12] proposed a PFA with Bayesian 

regularization and assessed its performance using both 

simulated and real datasets. Márquez-Chamorro et al. [13] 

proposed an evolutionary rule-based approach for next 

event prediction, featuring window-based feature 

encoding, which was evaluated over datasets such as the 

BPI Challenge 2013 and health services logs. 

More recent works on process prediction have 

abandoned explicit process models in favor of deep 

learning techniques. Among the very first proposals of 

RNNs with LSTM units, Evermann et al. [2] presented an 

approach that used word embeddings as a preprocessing 

step for the input features, adding to the case-specific and 

event-specific explanatory variables, greatly improving 

predictive performance. They evaluated their approach 

using the BPI Challenge 2012 and 2013 datasets. 

Similarly, Tax et al. [14] also used LSTMs for paying 

attention to the sequence of the activities and their 

corresponding timestamps. They represented input 

activities as a feature vector with one-hot encoding. Both 

investigated methods for the prediction of process activity 

durations. 

    This paper extends prior work in the following 

necessary areas: optimization of hyperparameter, 

handling imbalanced datasets, and enhancement of 

feature encoding. On the contrary to index-based 

encoding methods widely used in existing works, 

[9][13][15] we apply an n-gram-based encoding schema 

that captures interdependencies in sequential event data. 

We apply feature hashing to reduce the dimensionality of 

this high-dimensional feature space. Moreover, we 

perform hyperparameter optimization to ensure that better 

classification performance is achieved, which has not 

been taken into consideration yet in business process 

event prediction. To address the issue of imbalanced 

datasets-a challenge largely overlooked except in 

Márquez-Chamorro et al. [13], we balance the data by 

synthesizing new instances for the minority class using 

neural networks. This approach allows for better 

identification of rare events, which in most cases convey 

significant business implications. 

Figure 2: Deep learning with stacked autoencoders: unsupervised pre-training is shown on the left, while 

supervised fine-tuning is depicted on the right. 
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3 Methodology 
We formulate the prediction of the next process event 

as a classification problem. Our approach is outlined in 

Figure 1. Our approach applies deep learning algorithms 

on the feature matrix, which is directly extracted from 

data flow, control flow, resource, and organizational 

perspectives of the process via a preceding step of data 

preprocessing. Our approach extracts, in a sliding window 

fashion, the process events (or control flow) from event 

log data and encodes these into n-gram feature 

representations; see Figure 1. Afterwards, these n-grams 

are mapped to hash keys using feature hashing. Then, the 

hashed feature matrix is extended with data and resource 

features. This section elaborates on the proposed deep 

learning technique by predicting the upcoming process 

events after developing an extended feature matrix. It 

contains an unsupervised layer-wise pretraining module 

to generate higher-order features and a fine-tuning of the 

whole network in a supervised manner, accompanied by 

an output layer for multiclass classification at the top. 

A) Terminology  

      An event log consists of process traces, where one 

trace is the execution of a single process instance or case. 

A trace is basically a sequence of events, and these events 

contain attributes describing their properties according to 

the XES Standard 2016. Common attributes of an event 

include the name of the executed activity, the timestamp 

of the event, the lifecycle transition (such as "start" or 

"complete"), and the organizational resources or roles 

associated with the event. Events in a stream are ordered 

sequentially by their timestamps, and other attributes may 

have case-specific information. The event prediction 

problem tackled in this work is that of predicting both the 

next activity to be executed and its corresponding 

lifecycle transition for an ongoing trace. The sequence for 

such predictions is drawn using a fixed length prefix of 

previous events present within the trace. 

B) Data Pre-processing 

 Most previous studies, except a few, have not paid 

much attention to the pre-processing of data. The stages 

involved in data preparation, such as cleaning, encoding, 

reduction, and extraction, play a major role in the 

performance of classifiers. 

N-gram encoding: First of all, our approach starts 

with the sequence encoding step. One relevant 

preprocessing step is the translation of character strings - 

such as the activity being executed in each event - to 

numerical input features. Leontjeva et al. [15] compared 

different techniques for encoding sequences with the goal 

of process outcome prediction and accentuated that 

choosing an appropriate encoding method is crucial since 

it strongly impacts the performance of a machine learning 

model. Event sequence data is intrinsically characterized 

by the presence of relations and dependencies among 

events. We employ n-gram encoding, which was 

underlined by Caragea et al. [16], a method that generates 

all continuous subsequences to capture relationships 

between adjacent items. By utilizing n-grams of different 

sizes, this model is able to capture both local and global 

patterns of event sequences. 

 

Definition 1: Given a sequence of events 𝐸 =

(𝑒1, 𝑒2, … , 𝑒𝑁+(𝑛−1)), where E is in an event universe ϕ 

and N and n are positive integers, an n-gram of E is any 

subsequence of n-consecutive events. There are N such n-

grams in E. The total number of possible unique n-grams 

in the event universe is  (|𝜙|)𝑛 , where |𝜙| denotes the 

total number of unique events in the process log data. 

 

      As such, consider an event sequence such as 𝐸 =
{𝐴, 𝐹, 𝐺, 𝐶, 𝐿, 𝐵, 𝐴, 𝐷, 𝐴, 𝑀}. Then, the 2gram or bigram 

features include all two-event combinations, that is 

{𝐴𝐹, 𝐹𝐺, 𝐺𝐶, … , 𝐴𝑀} . Also, the trigram or 3-gram 

features will include {𝐴𝐹𝐺, 𝐹𝐺𝐶, 𝐺𝐶𝐿, … , 𝐷𝐴𝑀}, and so 

on. In this representation, each input feature space 

combines multiple n-grams of different predefined sizes. 

That is, a 5-grams input feature space would include 

unigrams (1-gram), bigrams (2-grams), trigrams (3-

grams), quadragrams (4-grams), and pentagrams (5-

grams). Considering 15 unique events as the alphabet, the 

total size for features would be calculated as follows: 

 

𝑁total_features = 15 + 152 + 153 + 154 + 155 = 813,615 

     The n-grams approach represents a very 

comprehensive method, as the alphabet is known upfront, 

in this case, the set of unique activities executed in the 

process events. It applies to any domain, is rather efficient 

as one pass suffices, and at the same time is simple. 

Applications range from protein classification, 

information retrieval to process mining. Such an n-gram 

representation of event data automatically has the 

advantage that no further pre-processing, like aligning 

sequences of activities, has to be carried out. This method 

is especially effective because, in addition to encoding 

elements, it automatically captures the order. However, as 

can be seen from the example above, the size of the input 

feature set that will be generated for classification 

problems can get very large. The number of features 

increases exponentially with the length of the n-gram. It 

would be too costly to directly use all these features, and 

the sparsity of the input data could reduce the accuracy of 

the models. We employ feature hashing-a common 

technique for reducing dimensionality-to shrink the sizes 

of the n-gram feature vectors at limited expense to their 

utility. 

 

Feature hashing: It is a powerful method for 

dimensionality reduction, whereby a high-dimensional 

input space can be projected to a lower dimensional space. 

-Weinberger et al., 2009. It has seen applications with 

great success in many fields, especially on NLP tasks 

related to news categorization, spam filtering, sentiment 
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analysis of social networks, and on many areas of 

bioinformatics as discussed in [14] [16], Da Silva et al. 

[17]. In feature hashing, the central idea relies on the 

usage of hash functions to map the n-grams of events into 

features. These compact feature vectors can then be used 

as input for training machine learning classifiers. To 

determine an appropriate dimensionality for the hashed 

feature space, we empirically evaluated several bit sizes, 

including 8, 10, 12, and 14. A 10-bit hash space (i.e., 2¹⁰ 

= 1024 dimensions) was selected as it provided a balanced 

trade-off between model performance and computational 

efficiency. Lower values (e.g., 8-bit) resulted in excessive 

collisions that degraded predictive accuracy, while higher 

values (e.g., 12- or 14-bit) offered only marginal 

improvements in accuracy but significantly increased 

memory consumption and training time. Moreover, under 

Zipfian distributions common in event log sequences, 

most n-grams occur infrequently, and collisions among 

these low-frequency features are less likely to affect 

model performance. Thus, a 10-bit hash was found to be 

optimal in minimizing information loss while ensuring 

fast inference and reduced memory usage. 

 

Definition 2: Consider a set of hashable features 𝑁, 

which represents the n -grams derived from the process 

event sequences. Let ℎ be the first hash function, ℎ: 𝑁 →
{1, … , 𝑚} , and 𝜉  be the second hash function, 𝜉: 𝑁 →
{±1} . 

The combined feature hashing function 𝛷(ℎ,𝜉)  maps a 

high-dimensional input vector of size 𝑑  into a lower-

dimensional feature vector 𝒎 , where 𝑚 < 𝑑 . The 𝑖 -th 

element of 𝛷(ℎ,𝜉)(𝑥) is computed as: 

Φ𝑖
(ℎ,𝜉)

(𝑥) = ∑  

𝑗:ℎ(𝑗)=𝑖

𝜉(𝑗)𝑥𝑗 

where 𝑗 = 0, … , 𝑑 and 𝑖 = 0, … , 𝑚. 

Feature hashing reduces computational cost and 

memory consumption by reducing the feature 

dimensionality. However, there is a risk of information 

loss arising from hash collisions where different n-grams 

may be mapped into the same hash key. Increase hash 

table size-that is, the bit size-and it minimizes the 

collisions. Optimal bit size depends on the vocabulary of 

the n-gram. By analyzing the n-grams of process 

sequences with Zipf's law, it can be found that most 

features are infrequent; thus, collisions usually happen 

between rare variables without causing significant 

information loss. To balance the dimensionality reduction 

and information retention, we use the 32-bit murmur Hash 

function by Langford et al. [18] and a binary hash function 

to preserve an unbiased hash kernel as suggested by 

Weinberger et al. [19]. 

B) Deep Learning Model 

Artificial neural networks (ANNs) have many 

advantages compared to other machine learning methods 

for supervised learning tasks. They require less formal 

statistical modeling, can learn complex nonlinear 

relationships between variables, capture 

interdependencies between predictors, and offer a wide 

range of training algorithms. Their superior performance 

has been demonstrated by several comparative research 

studies and competitive analyses [16][20]. Historically, 

ANNs-especially deep neural networks-have been trained 

by directly optimizing the loss function using stochastic 

gradient descent with randomly initialized weights. 

However, this approach can lead to long training times 

and lower accuracy. In the mid-2000s, more effective 

training methods, such as deep belief networks (DBN) 

and autoencoder architectures, were introduced [21]. The 

methodologies in question comprise two distinct phases: 

(1) unsupervised layerwise pre-training, during which 

self-supervised learning acquires high-level abstractions 

via non-linear transformations, and (2) supervised fine-

tuning, which refines the pre-trained weights to reduce 

classification errors through gradient-based optimization. 

Research indicates that neural networks benefiting from 

unsupervised pre-training demonstrate superior 

performance compared to their counterparts lacking this 

component. This technique yields improved initial weight 

distributions, identifies intrinsic dependencies, mitigates 

variance, and exceeds the efficacy of conventional 

regularization strategieS. We employ in our work stacked 

autoencoders for unsupervised layerwise pre-training to 

extract high-level features. Fine-tuning is then carried out 

with the addition of a logistic regression layer at the 

output to ensure accurate classification. The full process, 

including pre-training with stacked autoencoders and the 

addition of the output layer, is illustrated in Figure 2. 

Unsupervised pre-training with stacked 

autoencoders: Autoencoders are a nonlinear version of 

PCA, as developed specifically for modeling nonlinear 

interdependencies between features, following Hinton 

and Salakhutdinov [22]. It consists of three layers: the 

input layer, the hidden layer, also known as the encoding 

layer, and the output layer, which is also the decoding 

layer. By employing the nonlinear activation function, 𝑓𝜃, 

the high dimensional input vector, 𝑥 ∈ [0,1]𝑑 , is firstly 

mapped into a hidden layer through the encoder, which is 

consisting of: To promote sparse representation and 

reduce the risk of vanishing gradient problems, ReLU is 

used here as the activation function of encoding:  

ℎ = 𝑓𝜃(𝑥) = 𝜎(𝑊𝑥 + 𝑏) 

Here, 𝜃 = {𝑊, 𝑏}  denotes the encoder's parameter 

set, where W is a weight matrix of size 𝑑′ × 𝑑 , and b 

denotes the bias. The output, ℎ ∈ [0,1]𝑑′
, is the encoded 

representation in the hidden layer. Further, the decoder 

reconstructs the input by mapping the hidden layer 

representation back to a reconstructed vector 𝑧 ∈ [0,1]𝑑 

using the mapping function 𝑔𝜃′ : 

𝑧 = 𝑔𝜃𝑟(ℎ) = 𝜎(𝑊′ℎ + 𝑏′) 
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The training objective is to optimize the parameter 

sets 𝜃 = {𝑊, 𝑏} for the encoder and 𝜃′ = {𝑊′, 𝑏′} for the 

decoder to minimize the reconstruction loss. The 

reconstruction loss is defined as the squared error: 

𝐿(𝑥, 𝑧) =∥ 𝑥 − 𝑧 ∥2= ∥∥𝑥 − 𝜎(𝑊′(𝜎(𝑊𝑥 + 𝑏)) + 𝑏′)∥∥
2
 

This is solved as an optimization problem using the 

mini-batch stochastic gradient descent method.  

Stacked Autoencoders: They are a greedy, layer-wise 

procedure for multi-phase feature extraction. The features 

extracted by one autoencoder-the hidden layer 

representation-serve as the input to the next autoencoder 

as shown on the left side of Figure 2. Each autoencoder is 

trained in isolation to initialize weights for the subsequent 

stage of supervised fine-tuning. In this work, we use a 

form of undercomplete autoencoder-a network with 

progressively narrowing hidden layers-to approach the 

process prediction problem. 

Supervised Fine-Tuning: The weights obtained from 

unsupervised reconstruction-based learning of the 

network are fine-tuned using logistic regression so as to 

map the output onto class labels (conceptually illustrated 

on the right side of Figure 2). Here, the decoding parts of 

the stacked auto-encoders are discarded, a logistic 

regression layer is added atop the trained encoding layers. 

The layer added for the multi-class classification task will 

contain Softmax units in order to compute an estimate of 

class probabilities.  

𝑃(𝑦 = 𝑗 ∣ 𝑥) =
𝑒𝜃𝑗

∑  𝑘
𝑖=1 𝑒𝜃𝑖

 

The probability of the target class 𝑦  being class 𝑗 , 

given the input 𝑥, is computed using the input vector 𝑥 

and a set of weighting vectors 𝑤𝑗 , where ℎ𝑗 = 𝑤𝑗
𝑇𝑥 

represents the inner product of 𝑤𝑗  and 𝑥. The combined 

network is trained as a standard multi-layer perceptron to 

minimize prediction error. It minimizes the cost function 

through stochastic gradient descent, using a lock-free 

scheme to parallelize the process of SGD; several cores 

are hence allowed to participate in contributing their share 

in gradient updates simultaneously, by [18] [22]. To 

enhance reproducibility, the architecture of the stacked 

autoencoders used in this study is summarized as follows. 

For each dataset, we used a consistent architecture 

comprising four hidden layers with progressively 

decreasing neurons: 425 → 400 → 390 → 300, followed 

by an output softmax layer for multi-class classification. 

The ReLU activation function was used for all hidden 

layers to promote sparsity and mitigate vanishing gradient 

issues, while the output layer used softmax for probability 

estimation. This architecture was selected based on 

extensive tuning on the BPI 2012_A dataset and applied 

across other datasets due to its stable performance. For 

transparency, a detailed per-dataset configuration table 

will be included in future versions. 

4 Evaluation 

 

Table 2: Features of the dataset. 

Datasets 

# 

of 

uniqu

e 

event 

types 

# of 

events 

BPI_2012_W_Complet

ed 
6 

72,41

3 

BPI_2012_O 7 
31,24

4 

BPI_2012_A 
1

0 

60,84

9 

BPI_2013_Problems 7 9011 

BPI_2013_Incidents 
1

3 

65,53

3 

Helpdesk 9 
13,71

0 

 

The performance of the proposed deep learning 

approach was evaluated by conducting experiments with 

variations in datasets, configurations, and evaluation 

objectives. The study focused on three main research 

questions: (RQ1) whether the multi-stage deep learning 

approach outperforms existing classification methods 

across multiple evaluation metrics, (RQ2) how it 

compares to alternative methods, such as LSTM-based 

models by Evermann et al. [2] and Tax et al. [14] or the 

Bayesian-regularized probabilistic finite automaton 

(PFA) by Breuker et al. [12], and (RQ3) whether data 

balancing can improve predictions for rare events. Since 

most business processes include infrequent but important 

activities, leading to imbalanced event logs, we 

investigated data balancing techniques that could improve 

the predictive accuracy of such infrequent events. 

Traditional resampling methods tend to overfit and do not 

provide enough information for cost-sensitive learning. 

To address this challenge, we applied RBF neural 

networks, which are efficient in enhancing classification 

performance related to imbalanced datasets according to 

[21]. Experiments were done on an Intel i7-5500U 2.0 

GHz processor with 16 GB RAM. Data preprocessing 

was done in R using the dplyr library. N-grams were 

generated by an in-house application implemented in Java 

while feature hashing was carried out on Microsoft Azure 

ML with the Vowpal Wabbit library. Both pre-trained 

stacked autoencoders and the supervised learning models 

were implemented using the H2O open source 

framework. Classical classification experiments were 

executed with the Weka toolkit. 
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A) Datasets 

These experiments have been performed on three 

real-life datasets: BPI Challenge 2012, by van Dongen 

[6]; BPI Challenge 2013, by [14]. All these datasets are 

described in Table 1, which defines the number of unique 

event types for output classes of a multi-class 

classification problem. The BPI Challenge 2012 dataset 

contains 262,000 events originating from 13,087 cases of 

a loan application process of a Dutch financial institute. 

The process is divided into three sub-processes: 

application activities (A), work items (W), and offers (O). 

Following previous studies [2][12][14], only the 

completion events were used, resulting in three datasets: 

BPI_2012_A, BPI_2012_O, and 

BPI_2012_W_Completed. 

The BPI Challenge 2013 dataset is based on Volvo 

IT's incident and problem management system. The 

incident subset includes 65,533 events (13 types) for 7554 

cases, the open problems subset includes 2351 events (5 

types), and the closed problems subset includes 6660 

events (7 types). Merging the open and closed subsets 

resulted in 9011 events for consistency with other studies. 

The Helpdesk dataset includes 13,710 events originating 

from 3804 cases emanating from the ticketing system of 

an Italian software company. Resource IDs, loan amount, 

problem priority, functional divisions, and process owner 

details were some other organizational and case attributes 

that were added. It was added from BPI 2012 and BPI 

2013, respectively. Feature vectors created through n-

grams and feature hashing, to which this extra 

information was added so as to enrich the feature set. 

B) Evaluation metrics 

 

The following metrics were computed to compare the 

performance of our deep learning approach with other 

classification algorithms, and the respective average 

accuracy, precision, recall, F-measure, Matthews 

correlation coefficient (MCC), and the area under the 

ROC curve (AUC), all adapted for multi-class 

classification, are reported in Table 2. True positives-

(𝑡𝑝𝑖),: gives the total number of events that belonged to 

class 𝑖  correctly classified as class 𝑖 , whereas; false 

positives-𝑓𝑝𝑖  counts those events that do not belong to 

class i but were classified as class 𝑖, true negatives-tni are 

the number of events not of class i that were correctly 

classified as not from class i; finally, false negatives, 𝑓𝑛𝑖, 

are events of class 𝑖 which have been misclassified as not 

of class 𝑖 . Accuracy was the proportion of correctly 

classified instances with respect to all instances. Precision 

was the proportion of correctly classified events of that 

particular class given all predictions for that class, 

whereas recall was the true positive rate for any class. The 

F-measure was the harmonic mean of precision and recall. 

MCC calculated the correlation between true values and 

predicted classifications, while AUC represented the area 

under the receiver operating characteristic curve. Each 

metric is computed for an individual class; overall scores 

are obtained by weighting class-specific metrics 

according to the true class size. 

Table 2: Performance metrics used for multi-class 

classification evaluation 

Met

rics 
Formula 

Acc

uracy 

1

𝑛
∑𝑖=1

𝑙  𝑠𝑖

𝑡𝑝𝑖 + 𝑡𝑛

𝑡𝑝𝑖 + 𝑓𝑛𝑖 + 𝑡𝑛𝑖 + 𝑓𝑝𝑖

 

Pre

cision 

1

𝑛
∑𝑖=1

𝑙  𝑠𝑖

𝑡𝑝𝑝𝑖

𝑡𝑝𝑖 + 𝑓𝑝𝑖

 

Rec

all 

1

𝑛
∑𝑖=1

𝑙  𝑠𝑖

𝑡𝑝𝑖

𝑡𝑝𝑖 + 𝑓𝑛𝑖

 

F-

measure 

1

𝑛
∑𝑖=1

𝑙  𝑠𝑖

𝑝𝑖  recision 𝑛𝑖 ×  recall 

 precision 
+ 

MC

C 

1

𝑛
∑𝑖=1

𝑙  𝑠𝑖

𝑡𝑝𝑖 × 𝑡𝑙𝑖

√(𝑡𝑝𝑖 + 𝑓𝑝𝑖)(𝑡𝑝𝑖 × 𝑓𝑝𝑖 + 𝑓𝑛𝑖)(𝑡𝑛𝑖 + 𝑓𝑝𝑖)(𝑡𝑛𝑖 + 𝑓𝑛𝑖)
 

AU

C 

1

𝑛
∑𝑖=1

𝑙  𝑠𝑖∫0

1
 𝑡𝑝𝑟𝑖𝑑(𝑓𝑟𝑖) 

 

For the experiments, 80% of each dataset was used 

for training and 20% for testing. Unsupervised pre-

training followed by supervised fine-tuning was 

performed on the deep learning model in the training 

phase. In the process, tenfold cross-validation was applied 

for training the model. The overall flow was based on 

splitting the entire training dataset into 10 subsets, where 

one subset was held out for validation, while the other 

nine subsets were used for training at a time. This was 

repeated 10 times to make the results robust and to yield 

the best hyperparameter configuration of Vincent et al. 

[21]. At the end, test results were used for comparison 

with other approaches. 

C) Hyperparameter optimization 

 

Deep neural networks can involve over 50 

hyperparameters, and optimizing them is crucial for 

improving learning and prediction performance. 

Traditional manual search relies on expert intuition to 

define hyperparameter values (e.g., number of hidden 

layers, neurons, learning rate) and test combinations 

through multiple training sessions. However, this process 

is time-consuming and explores only a limited number of 

combinations, often failing to achieve optimal results in 

high-dimensional spaces. Grid search is a brute-force 

approach to train models for all possible combinations of 

hyper-parameters with a predefined range. It produces 

better results compared to the manual search in the same 

computational time [23]. However, it suffers from the 

"curse of dimensionality," as the number of combinations 

grows exponentially with the number of hyperparameters. 

For this, [23] have proposed random search: randomly 



 

 

206   Informatica 49 (2025) 199–210                                                                                                                                      R. Li et al. 

 

 

 

choose hyperparameter combinations and train models 

within a given computational budget. Random search has 

been empirically found to outperform grid search in 

several studies. Here, for hyperparameter optimization, 

we will use random search. The key settings' parameter 

ranges were defined: the number of hidden layers, 3-10; 

neurons per layer, 10-500; sparse data handling, 

True/False; initial weight  

Table 3: Table of Optimal Hyperparameters for BPI 

Challenge 2012_A Dataset with Pre-Training and Whole 

Network Parameters. 

Parameters Pre-Training 

Values 

Whole 

Network 

Values 

Hidden Layers 

(Neurons) 

425, 400, 390, 

300 

6 Layers (4 

Hidden) 

Weight 

Initialization 

Normal 

Distribution 

- 

Sparsity True N/A 

Learning Rate 0.005 Adaptive 

(Smoothing 

Factor: 1e-8) 

Momentum 

Coefficient 

0.9 Adaptive 

(Decay Factor: 

0.99) 

Annealing 

Parameter 

104 - 

Epochs - 100 

Activation 

Function 

- ReLU 

Output Layer 

Activation 

- Softmax 

Batch Size - 20 

Regularization 

Penalty (L2) 

- 0 

Loss Criterion - Cross-Entropy 

 

distribution, uniform/normal; training epochs, 10-

1000; and learning rates, 0.0001-1. For adaptive learning, 

parameters included time decay factor, 0.99, and 

smoothing factor, 1e −8. Annealing rates, if adaptive 

learning was turned off, were between 10 and 10−6 . 

Training was stopped early if the relative improvement in 

log-loss was below 0.001, or after 200 models were 

trained for a dataset. Table 3 provides a summary of the 

optimal hyperparameter configuration on BPI_2012_A 

data set. For all the remaining datasets, hyper-parameter 

optimisation is conducted but optimal values are not 

provided here due to space limitations. 

5 Results 
A) Comparative Analysis (RQ 1 and RQ 2) 

We started by comparing our proposed approach to 

traditional classification algorithms such as support 

vector machines (SVM), random forests, naïve Bayes, k-

nearest neighbors (kNN), and C4.5 decision trees, which 

are considered efficient and popular methods by Wu et al. 

[24]. Table 4: Next event prediction, with prefix length = 

5, n-gram size = 3, and feature hashing bit size = 10. Our 

method consistently outperforms these traditional 

approaches in different metrics. Among them, the best 

performance was achieved by SVM and got closest to our 

approach. On the BPI 2013 dataset, most methods, except 

naïve Bayes, have similar performances, while on BPI 

2012 and Helpdesk, our approach has much larger 

performance gaps. These results show that our deep 

learning model is much better in making predictions, 

especially for complex datasets. Therefore, we can see 

that our proposed approach performs the best among 

traditional classifiers, thus answering RQ1. 

To answer RQ2, we compared our approach with 

three recent next-event prediction approaches. In Table 5, 

it is shown that on all the BPI 2012 datasets our approach 

performs better than its alternatives. For instance, in the 

case of the BPI_2012_W_Completed dataset, the 

accuracy obtained by our method is 0.831, while by 

Breuker et al. (2016), it is 0.719 and 0.760 [14]. Our 

method has performed much better in terms of recall 

compared to that of Breuker et al. (2016). Precision results 

also show the superiority of our approach, reaching 0.811 

compared to 0.658 by Evermann et al. [2]. For other 

datasets like BPI_2012_A and BPI_2012_O, our 

approach is always better for all metrics. For the 

BPI_2013_Incident dataset, the results are not so 

straightforward. Breuker et al. [14] reported a slightly 

better accuracy, 0.714 versus 0.663, but our approach 

reaches a considerably higher recall, 0.664 versus 0.377. 

Similarly, Evermann et al. [2] have higher precision but, 

in general, our approach is better when tested on the 

BPI_2013_Problem’s dataset. In the case of the Helpdesk  
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Table 4: The performance metrics of various models on different datasets. Each value is reported as **Accuracy / 

Precision / Recall / F-score / MCC / AUC**. 

Metric BPI 2012_A BPI2013_Incidents Helpdesk 

SVM 0.817 / 0.856 / 0.822 / 

0.817 / 0.748 / 0.895 

0.652 / 0.599 / 0.653 / 0.622 / 

0.350 / 0.730 

0.715 / 0.605 / 0.716 / 

0.652 / 0.389 / 0.725 

RF 0.720 / 0.714 / 0.721 / 

0.712 / 0.566 / 0.888 

0.615 / 0.626 / 0.616 / 0.524 / 

0.508 / 0.895 

0.601 / 0.619 / 0.601 / 

0.606 / 0.278 / 0.688 

Naïve 

Bayes 

0.612 / 0.633 / 0.612 / 

0.555 / 0.485 / 0.772 

0.576 / 0.618 / 0.577 / 0.590 / 

0.519 / 0.879 

0.631 / 0.634 / 0.631 / 

0.622 / 0.323 / 0.733 

C4.5 0.708 / 0.744 / 0.709 / 

0.705 / 0.674 / 0.931 

0.659 / 0.558 / 0.659 / 0.582 / 

0.564 / 0.900 

0.613 / 0.534 / 0.614 / 

0.569 / 0.214 / 0.602 

Deep 

Learning 

0.824 / 0.852 / 0.824 / 

0.817 / 0.751 / 0.923 

0.663 / 0.648 / 0.664 / 0.647 / 

0.583 / 0.862 

0.782 / 0.632 / 0.781 / 

0.711 / 0.412 / 0.762 

Table 5: Comparison against benchmark approaches (higher numbers are better) 

Dataset Breuker et al. 

[14] 

Evermann et al. 

[2] 

Tax et al. [12] Proposed 

Approach 

BPI 2012_W Accuracy: 0.719 

Recall: 0.578 

Precision: - 

Recall: - 

Accuracy: 

0.760 

Recall: - 

Accuracy: 0.831 

Precision: 0.811 

Recall: 0.832 

BPI 2012_A Accuracy: 0.801 

Recall: 0.723 

Precision: 0.832 

Recall: - 

- Accuracy: 0.824 

Precision: 0.852 

Recall: 0.824 

BPI 2012_O Accuracy: 0.811 

Recall: 0.647 

Precision: 0.836 

Recall: - 

- Accuracy: 0.821 

Precision: 0.847 

Recall: 0.822 

BPI 

2013_Incidents 

Accuracy: 0.714 

Recall: 0.377 

Precision: 0.735 

Recall: - 

- Accuracy: 0.663 

Precision: 0.648 

Recall: 0.664 

BPI 

2013_Problems 

Accuracy: 0.690 

Recall: 0.521 

Precision: 0.628 

Recall: - 

- Accuracy: 0.662 

Precision: 0.641 

Recall: 0.662 

Helpdesk - - Accuracy: 

0.712 

Accuracy: 0.782 

Precision: 0.632 

Recall: 0.781 

 

dataset, our approach outperforms Tax et al. [12] by a fair 

margin in terms of accuracy: 0.782 versus 0.712. 

Furthermore, random hyperparameter optimization 

instead of a manual search shows dramatic improvements 

over our previous work. We also examine the impact of 

different sizes of n-grams and bit size of feature hashing 

on performance. As it turned out, on many datasets, 

including BPI 2012 and Helpdesk, increasing the size of 

n-grams above 5 does not bring about noticeable accuracy 

improvements while noticeably increases computational  

costs. For instance, in BPI_2012_A dataset with prefix 

length of 5, the accuracy is between 0.829 and 0.831 with 

n-gram size ranging from 2 to 5, which is almost no 

improvement. Also, increased feature hashing bit size 

above 10 does not contribute more considerably because 

hash collisions among less frequent n-grams take 

precedence. This will come according to Zipf's law, which 

states that only a few input features are high-frequency 

ones.  

 

 

 

 

 B) Imbalanced Classification (RQ 3) Class 

imbalance problem has always been one of the important 

challenges  

faced by machine learning techniques, as the latter may 

fail to recognize the minority class examples. Wang and 

Yao, 2012 proposed several data-level techniques such as 

under/oversampling and algorithm-level approaches 

including cost-sensitive learning and boosting. Sun et al., 

[4] resampling techniques such as SMOTE by Huang et 

al., 2016 synthesize artificial samples to reduce class 

imbalance. However, resampling techniques might 

introduce noise. Cost-sensitive methods can be effective 

but usually require expert knowledge to determine the 

appropriate costs. In our study, we utilized the RBF neural 
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network-based data generation method in order to balance 

the dataset. Unlike other methods, RBF maintains 

dependencies among input variables by extracting 

Gaussian kernels and generates data proportional to the 

minority class distribution. Hence, it would have better 

representation for the minority class without loss of 

information. The pseudo-code and details can be found in 

[8]. Due to rare but critical "Wait user" events, in case of 

the BPI Challenge 2013 Incidents data we have 

reformulated the problem into a binary classification 

problem. An RBF-based method was employed in 

rebalancing of the dataset prior to using our prediction 

model. We performed result comparisons on the 

imbalanced data-without rebalancing-and RBF-

rebalanced data. Since accuracy is not suitable for 

imbalanced datasets, the AUC was used as the evaluation 

metric for this work [17]. Figure 3 shows the ROC curves 

of both cases, where the AUC increases from 0.855 in the 

case of imbalanced data to 0.932 in the case of RBF-

rebalanced data. 

6 Discussion 
This paper, for the first time, investigates the 

effectiveness of a deep learning approach based on 

stacked autoencoders for future event prediction in 

ongoing process instances. Our approach is compared to 

three recent methods, including two LSTM-based models 

[2, 14] and a Bayesian PFA [12], as summarized in Table 

1. The comparative analysis shows that our approach 

consistently outperforms prior methods on most datasets, 

with up to 83.1% accuracy, 85.2% precision, and 92.3% 

AUC. For instance, while Breuker et al. [12] achieved a 

maximum of 76.0% accuracy, our method improved this 

by over 7 percentage points on the BPI 2012_W dataset. 

Similar trends are observed across BPI 2012_A, 2012_O, 

and the Helpdesk dataset. This improvement is largely due 

to the multi-stage architecture of our model, which 

combines effective feature encoding (n-grams with feature 

hashing), unsupervised pre-training, and hyperparameter 

optimization. Our use of n-gram encoding captures both 

local and long-range dependencies in event sequences, 

unlike the traditional one-hot encoding used in earlier 

LSTM models. Furthermore, feature hashing reduces 

dimensionality while preserving semantic relevance, 

enabling real-time inference. The unsupervised pre-

training using stacked autoencoders helps in extracting 

higher-order representations and better weight 

initialization for the supervised fine-tuning phase. 

Despite these advantages, our method does show 

some limitations. For the BPI 2013_Incident’s dataset, 

Breuker et al. [12] slightly outperformed us in accuracy 

(71.4% vs. our 66.3%). This performance drop may be 

attributed to the rarity of certain event types and the 

dynamic nature of incident management processes, which 

exhibit high variance in sequential patterns. In such 

scenarios, deeper models like LSTMs may generalize 

better when sequence lengths vary significantly. We also 

note that increasing n-gram size or feature hashing bit size 

beyond optimal thresholds (e.g., n=5, bit size=10) does not 

yield further performance gains and can even degrade 

accuracy due to increased sparsity and hash collisions. 

Thus, our model’s performance is sensitive to 

hyperparameter tuning, although random search mitigates 

this challenge to a large extent. 

In terms of generalizability, our framework 

demonstrates strong results across six diverse real-world 

datasets. However, our method assumes stationary process 

behavior, meaning it does not adapt to concept drift or 

evolving process dynamics. This limits its applicability in 

highly dynamic environments without retraining. 

Moreover, while the model performs well on numerical 

event log attributes, it does not yet incorporate textual or 

unstructured data, such as freeform user comments or 

emails, which may contain rich contextual information. 

 

 

 

 

Figure 3: ROC curves for (a) imbalanced datasets and (b) balanced datasets. The ROC curve represents the 

relationship between the true positive rate (TPR) and the false positive rate (FPR). 
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7 Concluions 
 

This study introduced a novel deep learning 

framework using stacked autoencoders and n-gram-based 

feature hashing for predicting next events in business 

process logs. Extensive experiments on multiple real-

world datasets confirmed the superior performance of the 

proposed approach over state-of-the-art methods. The 

integration of unsupervised pre-training, effective 

sequence encoding, and robust hyperparameter 

optimization contributes to its enhanced predictive 

capabilities. 

Additionally, our approach addressed the issue of 

imbalanced datasets through RBF-based synthetic data 

generation, which significantly improved the AUC for 

rare class prediction. The methodological contributions, 

combined with empirical validations, underline the 

feasibility of applying advanced deep learning techniques 

in the domain of business process monitoring. 

Future research will focus on addressing concept drift, 

incorporating unstructured data, and improving model 

interpretability. Utility-based evaluations and 

explainability modules will be explored to support 

deployment in real-world enterprise settings where 

decision accountability is critical. 
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