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The proliferation of Internet of Things (IoT) devices has increased the risk of botnet attacks due to the
inherent vulnerabilities of 10T networks. To mitigate this threat, this study presents an anomaly-based
intrusion detection framework that incorporates the Enhanced Kepler Optimization Algorithm (EKOA)
for feature selection. EKOA integrates adaptive processes, such as dynamic adaptation, oscillatory
chaotic force, crosswise solution formation, and optimization based on elites, in an effort to balance
exploitation and exploration in favor of enhancing convergence speed alongside solution diversity. The
selected features are evaluated using K-Nearest Neighbor (KNN) and Decision Tree (DT) classifiers.
Experiments were conducted on typical 10T datasets, i.e., Mirai and Gafgyt. Accuracy, AUC, G-mean,
and precision were also used for performance evaluation. The new system achieved detection accuracy
greater than 99% and reduced the list of features by 35%. The new system exhibits good generalization
capability, botnet attack resistance, and applicability in high-dimensional applications. The results show
a good future for practical application in real-time intrusion detection on IoTs.

Povzetek: EKOA (Enhanced Kepler Optimization Algorithm) za izbiro znacilnic izboljsa detekcijo vdorov

(botnet) v IoT omrezjih. Dosega visoko odpornost proti napadom in deluje v realnem casu.

1 Introduction

The Internet of Things (IoT) has revolutionized modern
technology by connecting billions of devices across
various domains, including healthcare, smart cities, and
manufacturing [1]. This rapid growth in IoT has also led
to serious vulnerabilities, particularly in botnet attacks [2].
Botnets are networks of compromised I0T devices under
attacker control conducting large-scale malicious
activities, including Distributed Denial of Service
(DDoS), phishing, and stealing information [3]. As a
general rule, low computational power, default
configurations, and weak security protocols make loT
devices an easy target for attackers, posing a significant
threat to network integrity and user privacy [4, 5].
Intrusion Detection Systems (IDSs) contribute to
security issues in loT networks by detecting hostile
behavior and protecting against cyberattacks [6]. It
contrasts with the traditional concept of security based on
encryption techniques and authenticity, and this method
analyzes network flow traffic and all flow patterns
belonging to botnets for other types of cyberattacks [7].
Their nature being adaptive during evolution regarding
attack pattern variations makes it essential regarding
security in the case of 1oTs [8]. In direct relation to this,
the performance of the IDS framework heavily relies on
selecting features that are both relevant and non-
redundant.  Utilized features enhance detection
performance by distinguishing patterns that distinguish
normal and malicious traffic, while removing noisy or
irrelevant features reduces the computational cost and

protects against overfitting. Efficient feature selection is
thus crucial for obtaining a detection performance-
resources utilization balance in 10T applications [9].

However, the field of IDS still faces numerous
challenges. Traditional feature selection approaches often
exhibit significant drawbacks when an 10T high-
dimensional dataset contains many irrelevant and
redundant features, resulting in increased computational
overhead and reduced detection accuracy [10]. Typical
traditional brute-force methods, which select the most
static subset features beforehand without any update
strategy, tend to suffer from insufficient adaptability due
to inefficiency when applied to general datasets or several
diverse attack scenarios [11]. While some meta-heuristics
proposed for optimizing feature subsets present state-of-
the-art performances, many face significant weaknesses,
including imbalance in exploration and exploitation,
which can converge at low speeds to the most optimized
feature subsets [12].

The Enhanced Kepler Optimization Algorithm
(EKOA) addresses these challenges by building on the
foundations of the Kepler Optimization Algorithm
(KOA). By incorporating Kepler's laws for the motion of
planets, EKOA applies advanced techniques such as
dynamic adaptation, oscillatory chaotic force, cross-

sectional  solution  generation, and elite-guided
optimization. Such enhancements fine-tune the
algorithm's  balancing  between exploration and

exploitation, keeping the population diversity intact, and
accelerating convergence.
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EKOA's architecture comprises adaptive exploration-
exploitation control, chaotic force allocation to enhance
population diversity improvement, and elite-based search
for fine-tuning good solutions. These processes make
EKOA capable of effectively handling IDS's high-
dimensional feature space problems, such as redundancy,
irrelevance, and the risk of premature convergence. As a
result, EKOA offers a strong foundation for selecting
compact yet effective feature subsets that enhance
detection performance.

The primary objective of this study is to enhance
intrusion detection performance in loT networks by
employing an efficient feature selection approach using an
improved metaheuristic strategy. EKOA is employed to
reduce dimensionality while preserving relevant
indicators of malicious behavior. Based on this goal, the
research is guided by the following questions:

e RQL: Can a multi-objective binary variant of the
EKOA effectively reduce irrelevant features in 1oT
intrusion datasets while maintaining high detection
accuracy?

e RQ2: How does EKOA compare to other recent
metaheuristic feature selection methods in terms of
convergence speed, robustness to unseen attacks,
and computational efficiency?

e RQ3: Is the proposed IDS framework with EKOA
suitable for real-time deployment in loT
environments with constrained resources and high-
volume traffic?

Thanks to the inclusion of several adaptive processes,
the proposed technique is the first to use a multi-objective
binary realization of the EKOA in an loT-based intrusion
detection system. The proposed system differs from
previous methods. It includes a binary-encoded, chaos-
driven optimization model coupled with an elite solution-
based directional guidance for choosing features, aiming
mainly at problems posed by high-dimensional 10T data
and adaptive attack behaviors.

2 Related work

This section presents outstanding works on 10T botnet
detection and feature selection, focusing on metaheuristic
optimization methods. They were selected under their
appropriateness for the problems addressed in the present
paper: dealing with high-dimensional feature spaces,
improving  detection  accuracy, and  reducing
computational overhead.

Haddadpajouh, et al. [13] proposed an integrated
Support Vector Machine (SVM) for malware detection
against loT threats in cloud-edge gateways. The method
utilized Gray Wolves Optimization (GWO) for the
optimal selection of features based on Opcode and
Bytecode datasets, which provided 99.72% accuracy at a
lesser computational expense when compared to Deep
Neural Networks (DNNs). Abu Khurma, et al. [14]
proposed a hybrid method for the selection of features,
which combines Ant Lion Optimization (ALO) and Salp
Swarm Algorithm (SSA). Based on the N-BaloT dataset,
the method reported a 99.9% actual positive rate, besides
resolving the issue of high-dimensional feature space.
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Hosseini, et al. [15] suggested botnet detection with a
hybrid Slime Mold Algorithm (SMA) and SSA for
choosing features. The algorithm utilized chaos theory to
balance exploration and exploitation, achieving higher
detection in UCI datasets. Gharehchopogh, et al. [16]
suggested a binary Multi-Objective Dynamic Harris
Hawks Optimization (MODHHO) algorithm for choosing
features. The algorithm utilized mutation operators and
different classifiers (KNN, SVM, MLP, DT), which
showed higher speed and accuracy on five datasets.

Alkhammash [17] offered a metaheuristic-based,
blockchain-integrated model for DDoS attack detection
(MHADMA-BCIDL). The model utilized Arctic Tern
Optimization (ATO) for attribute selection and CNN-
BiLSTM for classification, achieving 99.32% accuracy on
the BoT-loT dataset. Maghrabi, et al. [18] proposed a
hybrid deep learning-based model (BESO-HDLBD) that
incorporated Bald Eagle Search Optimization (BESO) for
selecting attributes and a CNN-BiLSTM-Attention for bot
identification. The model worked best on benchmarked
datasets, outperforming existing methods in speed and
accuracy.

Maazalahi and Hosseini [19] proposed a hybrid
algorithm as a fusion between Whale Optimization
Algorithm (WOA), Particle Swarm Optimization (PSO),
and Sailfish Optimizer (SFO). The algorithm was tested
on BoT-lIoT and UNSW-NB15 datasets and achieved a
detection accuracy of 99.8% in less execution time.
Elsedimy and AboHashish [20] proposed FCM-SWA, an
integration between fuzzy C-means clustering and Sperm
Whale Algorithm (SWA), for loT-driven innovative
systems. The algorithm outperformed existing methods on
BoT-loT, NSL-KDD, and AWID datasets using adaptive
threshold techniques in accuracy and precision.

Despite the good performance encompassed in
existing feature selection and classification techniques, as
indicated in Table 1, typical weaknesses still hold. Some
models incur an inefficient exploration-exploitation
balance, leading to convergence in the latter parts or
locally optimal sets of features. Others attain good
detection accuracy but are computationally costly,
especially on high-dimensional or loT streaming datasets.
Most research works provide limited assessment on the
impact of the selected feature on the robustness and
generalizability of models to unknown attacks. The paper
bridges these gaps by introducing EKOA for feature
selection, aiming at achieving computational
effectiveness, convergence speed, and high detection
accuracy.

3 Materials

3.1 Multi-objective optimization

Multi-objective optimization aims to optimize multiple
conflicting objectives, often resulting in trade-offs among
them. Improving one objective can result in the
deterioration of another, requiring solutions that balance
these trade-offs.
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Table 1: An overview of related works

Reference  Contribution Accuracy TPR Shortcoming

[13] Suggested a multi-kernel SVM using GWO for feature  99.72% - Limited evaluation datasets and focus on
selection, achieving 99.72% accuracy with reduced training specific malware types (Cortex A9 samples).
time.

[14] Developed SSA-ALO hybrid for feature selection, - 99.9%  High computational complexity for large-
achieving 99.9% TPR on N-BaloT datasets with superior scale datasets.
efficiency.

[15] Introduced SMA + SSA with chaos theory for balanced - - Results lack comprehensive comparison with
exploration and exploitation in feature selection. advanced optimization algorithms.

[16] Presented MODHHO for multi-objective feature selection  98.1% - Moderate accuracy improvement compared to
and versatile classification across multiple datasets. existing approaches.

[17] Proposed MHADMA-BCIDL with blockchain integration  99.32% - Dependence on blockchain may introduce
and CNN-BiLSTM for DDoS detection, achieving 99.32% overhead in real-time systems.
accuracy.

[18] Designed BESO-HDLBD with hybrid deep learning for  99.4% - The computational cost is due to the BILSTM
spatial-temporal feature extraction and botnet detection. and attention mechanisms in large datasets.

[19] Proposed SFO-WOA-PSO-K-means hybrid with 99.8%  99.8% - Limited scalability for highly dynamic IoT
accuracy and low execution time for botnet detection. environments.

[20] Introduced FCM-SWA with enhanced clustering and global ~ 98.9% - Lacks evaluation on diverse IoT network

optimization for IoT-based innovative systems.

scenarios and attack types.

The solutions to such problems are termed Pareto-
optimal solutions, also known as the Pareto front, in which
no objective can be enhanced without compromising at
least one other objective. The mathematical formulation of
a multi-objective optimization problem can be stated as
follows:

minF = {f(X), L0, ..., fu ()} 1)
Subject to:
gX)<0, i=12,...,.q
h(X) <0, j=12,...,p )
Xef)

Where X = {x,,x,,...,xp} represents a decision vector in
a D-dimensional space, g;(X) and h;(X) represent
constraints of inequality and equality, respectively, and F
is the set of M objective functions to optimize, Q defines
the feasible decision space.

In multi-objective optimization, a solution U =
{uy, uy,...,up} is supposed to dominate another solution
V ={v4,v,,...,vp}, denoted as U<V, if the following
conditions are satisfied:

i) <), vie{1,2,...,.M}

i) < (W), Fie{1,2,....M}

Non-dominated or Pareto-optimal solutions are the
ones not dominated by another. They constitute the Pareto
front of the problem, which is said to be the best set of
conflicting objective trade-off solutions. The feasible
solution is said to be satisfying all the constraints and is in
the set of non-dominated solutions if and only if it
qualifies for the criteria outlined above. The Pareto front,
thus, shows all the Pareto-optimal solutions for a problem.

3)

3.2 Feature selection

Feature selection is a crucial step in data classification,
where the target is to select a subset of features from the
total feature set Fet, consisting of D features and N
samples, to maximize classification performance while
minimizing computational cost [21]. The process can be
formulated mathematically as follows:

A feature subset X is represented as a binary vector
X = (x1,%3,...,%p), Where x; € {0,1} specifies whether
the j*" feature is selected (x; = 1) or not (x; = 0). The
following equation can then describe the task of feature

selection:
max H(X) 4)

H(X) represents the objective function that evaluates
the classification accuracy of the selected feature subset X.

The classifier's running time is directly proportional
to the selected number of features. With a larger set of
features, the classifier is computationally costlier and runs
slower, but classification accuracy is potentially lower for
a smaller set. The compromise between optimizing
accuracy and keeping the selected number of features
small is thus required. The compromise can be framed as
a bi-objective optimization problem:

minF = (ERR(X), |X]) 5)

Where ERR(X)=1—H(X) is the classification error for the
selected feature set X and |X| is the number of selected
features.

3.3 Disruption operator

The disruption operator is taken from astrophysical
phenomena, which tries to enhance population diversity
for optimization methods. Including variation in the
population expands the search area and manages
exploration and exploitation effectively. The disruption
operator successfully enhances the performance of
optimization methods to avoid premature convergence.
The disruption operator is mathematically represented as:
Dy
Dij X 8(=2,2), if Dyjpest =1

107* 1074
2 2

(6)

1+ Djjpest X6 (— >,otherwise

Where D ; signifies the Euclidean distance between the i"
and j™ solutions in the population, D; ; ,.s; denotes the
Euclidean distance between the i solution and the best
solution identified so far, and &(x, y) is a random value
generated within the interval [x, y].
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The operator dynamically adjusts its impact based on
the proximity of solutions to the best-known solution. If
D; jpest = 1, alarger variation is introduced, allowing for
greater exploration in the search space. Otherwise, a minor
variation is applied, encouraging fine-tuned exploitation
around the best solution. This design ensures that the
algorithm strikes a balance between discovering new areas
in the search space and refining existing solutions, thereby
enhancing overall optimization performance.

4 Methodology

KOA is a physics-inspired metaheuristic algorithm based
on Kepler’s laws of planetary motion. These laws define
the motion of planets around the sun in elliptical orbits,
the relationship between areas swept by the planets, and
the proportionality between the square of their orbital
period and the cube of their semi-major axis [22]. KOA
applies these ideas to mimic optimization such that the
planets are treated as potential solutions, while the sun is
treated as the best. The algorithm starts by using an initial
population of planets characterized by a given orbital
eccentricity and spin period. The initialization is specified
as below.

X! =X}, +rand x (X/,, — x{},),

@)

i=1,2,..,N; j=1,2,..,D
e; =rand,i=1, 2, ... N ®)
OP; = |rand|,i=1, 2, ..., N ©)

Where D represents the problem's dimensionality, N is the
population size, Xi{lb and Xi{ub are the lower and upper
bounds for the j™" variable, and rand is a random number
in the interval [0, 1]. This reflects the binary nature of the
feature selection problem, where each feature can either
be included (1) or excluded (0) from the subset. These
normalized bounds ensure that the optimization begins
within a valid real-valued range before binary conversion
via the sigmoid-based transformation.”

The planets rotate around the sun in elliptical orbits,
undergoing two phases: moving closer to the sun and
moving away. The gravitational force between the sun and
a planet, which governs the planet's motion, is calculated
as:

M -m;
R} +e

+r (10)

Fgi(t) = €; - u(t) -

Where Ms and mu represent the normalized masses of the

sun and the planet, calculated as follows:
fits(t) — worst(t)

YN (fitg (£) — worst(t))

_ fity(t) — worsK(t) ’
e N_1(fity (t) — worst(t)) (12)

Where u(t) = po.exp(—y.t/T)
2
constant, R; = \/Zle (ij(t) — Xl-j(t)) is the distance

between the planet and the sun, and r, and r, are random
values, and € € is a small constant.

The velocity of a planet, influenced by its distance
from the sun, is updated as follows:

Mg=r,-

(11)

is the gravitational
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Ui (t)

(6-(2r, X, = X) + 68" (Xg — Xp) + (1 = Ryormn ().

ag: Ul) *Ts e (m - T,lb)! Rnorm(t) <05 (13)
r4'K'(X_)a_Z) + (1_Rnorm(t)) to0
L U; Ts - (r3 -m —m), otherwise
The position is then updated as follows:
Xt+D)=XO+0 70+ (Fu®) +Irl)-U
(14)

(X ©®-X0)

In the second stage, KOA refines the planetary
positions around the sun using an adaptive factor 4 and the
exploration formula:

X +1)=X0 U +(1-Tr)

X,(t) + X, (t) + X, (t)

3 +h

. (Y;(ﬂ +X0 + Ko

3
- x_’b(t)>
1

h=m, n=0U-1.1,+1, 1

t%T T
=1 1'( T '?)

Balancing exploration (broad search) and exploitation
(fine-grained tuning), KOA effectively finds global
optimum solutions in high-dimensional search spaces. Its
physical inspiration maintains a balanced optimization
process that can be applied to various applications.

EKOA is an improvement on the traditional KOA.
EKOA addresses the weakness in the first algorithm, i.e.,
poor convergence for high-dimensional issues, an
insufficient balance between exploration and exploitation,
and sub-standard handling of complex solution spaces.
EKOA achieves higher accuracy, rapid convergence, and
solution diversity by utilizing new strategies, i.e., dynamic
fine-tuning, oscillatory chaotic force, cross-direction
solution creation, and elite-based optimization.

The adaptive adjusting policy dynamically updates
the weight between exploration and exploitation in every
iteration. At the initial phases, EKOA emphasizes
exploration to thoroughly explore the search area. With
increasing iterations, the algorithm transfers the focus step
by step toward exploitation, adjusting the promising area
for the optimum solution. The weighing is mathematically
represented as:

(15)

(16)

t
W = Wiin + Winax — Winin) - ?

Where Wmin and wmax are the minimum and maximum
weights, respectively, t stands for the ongoing iteration,
and T is the total number of iterations. This adaptability
prevents the algorithm from prematurely converging to



Anomaly-based Intrusion Detection in 10T using Enhanced Kepler...

local optima, ensuring a more robust search across the
solution space.

In traditional KOA, the gravitational constant u(t)
gradually decreases to focus the search around promising
areas. EKOA improves this process by introducing an
oscillatory chaotic force constant, which dynamically
modulates gravitational force to increase diversity in
solutions and prevent stagnation. The gravitational
constant is updated as:

.u(t) = Smap(t) + U - exp (_ y_t) 17)

T

Where  s,,,,,(t) is an oscillatory chaotic function
calculated as follows.

Smap(t +1) = a - sin (n . s,,,ap(t)) (18)

Where w0 is the initial gravitational constant, y is a decay
factor, and T represents the total cycle count. This chaotic
mechanism ensures greater randomness in gravitational
influence, allowing EKOA to escape local optima and
maintain diverse solutions.

The crosswise solution generation strategy
accelerates convergence by improving population
diversity and generating new candidate solutions. Based
on their current positions, two “satellite" solutions are
created around existing solutions. The crossover equations
are:

KXa,j(t) =n 'Xa,j(t) +(1=-r)- Xb,j(t) +c

(X0, (0) = X,,5(0))
KXb,j(t) =n 'Xb,j(t) +(1-r)- Xa,j(t) +c;

(X, (0) = X ()

Where r1 and r are random values between [0, 1], and c1
and c; are constants controlling the influence of each
parent solution. If the satellite solutions improve the
fitness value, they replace their parent solutions, ensuring
that the population progressively improves over iterations.

The elite-driven optimization strategy focuses on
refining the best solutions to enhance convergence
accuracy and precision. It combines three sub-strategies:
elite  movement, elite cooperation, and elite-driven
optimization. Elite movement refines elite solutions by
adding perturbations based on their distance from non-
elite solutions:

A1 = ll' (Tl - 0.5) +1
Dy =213 - Xpest(t) — X;(2)

(19)

(20)

@n

Where Ah is a refinement term derived from the Levy
flight mechanism.
Elite solutions collaborate by sharing information to
improve population diversity:
GX;(t) = X,(t) + 1, - D3 + Ah (22)

Where D; = X,(t) — X,(t) and X,.(t) is a randomly
selected elite solution.

Elite-driven optimization focuses on aggressively
refining elite solutions:

GX;() = X, (t) + Ay - Dy + Ah (23)
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Where D, = X;(t) — X,(t) and A; is a randomly selected
elite solution.

As shown in Figures 1 and 2, the EKOA workflow
begins with the initialization of the population, where the
positions, velocities, and orbital parameters of the
solutions are set within the defined bounds. The algorithm
evaluates the fitness of each solution in light of the
optimization objective. In subsequent iterations, the lateral
crossover generates new candidate solutions, the
oscillatory chaotic force changes the search region, and
the adaptive weight allows for smooth movement between
exploration and exploitation. Finally, the elite-driven
optimization refines the top-performing solutions,
consistently enhancing the population's quality. The loop
terminates when the terminating criteria are met, e.g., a
fixed number of iterations or a convergence point.

The enhanced algorithm is a multi-target anomaly-
based IDS for loT. The algorithm employs Pareto
dominance to attain a practical compromise between
conflicting objectives, e.g., enhancing classification
accuracy but reducing the number of features chosen to be
analyzed. Non-dominated solutions are preserved in each
iteration through a repository-based structure, which
presents different Pareto-optimal solutions. EKOA
optimizes leader solutions in each iteration, chosen from
the repository through a roulette-wheel selection
algorithm in conjunction with hypercube scores and the
Boltzmann function. The leader is therefore guaranteed to
be a good choice for optimizing the process.

The repository is divided into two components: the
grid and the controller. The grid organizes solutions for
easier assessment and diversity, and the controller decides
whether new solutions are to be added to the repository.
To improve the repository's quality, dominated solutions
are purged at fixed intervals so that high-quality solutions
are retained. This architecture promotes a well-distributed
Pareto front for the opposing accuracy and feature
reduction objectives.

The algorithm initializes a randomly started
population set of solutions and their positions, speeds, and
gravity constants. Non-dominated solutions are moved
apart in a repository, while dominated members are
preserved in the base population. The leader solution is
chosen in the initial step of every iteration from the
repository through the roulette-wheel technique, under the
governance of the Boltzmann function. The EKOA
framework applies its mechanisms, including adaptive
weight adjustment, oscillatory chaotic force, crosswise
solution generation, and elite-driven optimization
strategies, to effectively explore and exploit the solution
space. Since feature selection is a binary problem,
solutions are converted from the discrete domain to the
binary domain using Eq. 24.

yin =f0) {1, if W(xi“l) 'erand
0, otherwise 24)
1

W(a) = 1+ elO(a—().S)

This change ensures the algorithm yields a binary
code for the feature subset. The optimization step is
followed by adding new non-dominated points to the



224 Informatica 49 (2025) 219-230 L. ZHANG

Start Initialize the Calculate fitness values and

. EKOA parameters determine X,,o; and fp o5
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Update planetary
position bylequatlon 15 Calculate fitness values and select
»  individuals with small fitness
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Figure 1: Flowchart of EKOA

repository and eliminating dominated ones. If the are exceeded or a predetermined convergence criteria are
repository size exceeds, the lesser-quality points are  met.

eliminated in favor of higher-quality points. The

disruption operator is called at regular intervals to 5§ Resylts

introduce controlled randomness to prevent stagnation.

The algorithm terminates when the maximum iterations 10 evaluate the performance of the proposed EKOA-
based intrusion detection system, experiments were

Input:
Population size N
Maximum number of iterations T
Search space dimensionality D
Output:
Optimal solution X,
Best fitness value fj ¢
Initialize parameters: gravitational constant p,, decay factor y, and total iterations T
Generate initial population using Eq. 7; assign orbital eccentricity using Eq. 8, and compute orbital period via Eq. 9
Evaluate the initial fitness for each candidate; identify the best individual, and set its fitness; initialize iteration count
Repeatuntil ¢ = T:
For each individual i = 1 to N:
Compute gravitational attraction using Eq. 10
Measure distance to the current best solution using Eq. 12
Determine velocity using Eq. 13
If a random number < threshold:
Update position with Eq. 14
Else:
Use Eq. 15 for position update
Recalculate fitness; if this new fitness improves upon fj.¢;, Update both f;,..; and Xj,qq;
Increment iteration count: t =t + 1
End

Figure 2: Pseudo-code
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conducted on three datasets: Mirai and Gafgyt. The
datasets were normalized and encoded according to
standard preprocessing and labeling methods. Feature
selection was performed according to the proposed binary
multi-objective EKOA algorithm. Table 2 shows the
complete set of algorithms and classifier hyperparameters,
like population size, number of iterations, and crossover
coefficients. The levels for these variables were selected
after preliminary tuning for stable convergence and
desirable search behavior. The 5-fold cross-validation
method was chosen for statistical robustness. The
experiments were repeated five times, and the means were
calculated across performance metrics.

EKOA was evaluated on ten feature selection datasets
and nine botnet detection datasets, as indicated in Tables
3 and 4. The datasets had at least 100,000 samples, and
some even exceeded a million. Table 5 provides the nature
of the datasets, e.g., normal/abnormal class ratios.

Mirai botnet attacks were utilized for the training set
(70%), while Gafgyt botnet attacks comprised the test set
(30%). This was to keep the model robust, as we are
training on attacks, we are aware of, but testing on the
ability to identify new patterns previously unseen. The test
was performed in MATLAB on an Intel Core i5-8400
processor computer, running 8 GB of RAM.

Feature selection experiments compared EKOA
against five multi-objective algorithms: MOHHOFOA
[23], NSGA-IIFS [24], B-MOABCFS [25], and
MOPSOFS [26]. The Hyper-Volume (HV) and several
feature subsets (FN) metrics were used to evaluate

Table 2: Hyperparameter settings for algorithms and
classifiers

Component  Parameter Range
EKOA o 0.1

Description

Initial gravitational
constant for
attraction force
Gravitational decay
factor controlling
convergence speed
Minimum adaptive
weight for
exploration
Maximum adaptive
weight for
exploitation
Crossover
coefficients in
lateral crossover
mechanism
Population 30 Number of

size individuals in the
population
Maximum number
of optimization
iterations

Number of
neighbors used for
classification

Tree expansion
continues until full
purity or constraint
Radial basis
function kernel for
non-linear
classification

Y 15

Winin 0.4

Winax 0.9

Uniform
[-1,1]

¢, and c,

Max 100
iterations

KNN k-value 3

Decision Max depth  None
tree (default)
SVM

Kernel RBF
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Table 3: Summary of datasets used for feature

selection
Dataset No. of No. of No. of
features classes samples
Yale 64 1024 15 165
CNAE-9 857 9 540
LSVT 309 2 126
Musk 167 2 476
Urban land cover 148 9 507
Hill-valley 100 2 606
Sonar 60 2 208
Ionosphere 34 2 351
Vehicle 18 4 846
Vowel 10 11 990

performance. Table 6 presents the HV results for the ten
datasets, which measure solution convergence and
diversity. Table 7 reports the FN values (average and
standard deviation) to assess the effectiveness of
dimensionality reduction. EKOA's classification relies on
K-Nearest Neighbors (KNN) and Leave-One-Out
Correlation (LOOCV) scores to measure classification
errors. Experiments demonstrated EKOA's ability to
effectively optimize high classification accuracy feature
subsets and outperform traditional multi-objective
algorithms.

EKOA optimized both the anomaly detection and
feature selection for botnet detection. Non-dominated
solutions with lowest error rates in each iteration were
saved in a second external archive. Table 8 is a
comparison between EKOA and other algorithms, which
indicates that EKOA performs better than all the
algorithms in all metrics: True Positive Rate (TPR), True
Negative Rate (TNR), False Alarm Rate (FAR), accuracy,
Area Under the Curve (AUC), and Geometric Mean (G-
mean)

Accuracy measures the proportion of correctly
labeled records, combining True Negatives (TNs) and
True Positives (TPs) over the total population:

4 TN + TP

“FN+FP+TN+TP

FAR evaluates the proportion of False Positives (FPs)
among standard samples:

FAR = ki
" TN +FP

TPR or sensitivity quantifies the percent of true

positives identified successfully:
TP

TP +FN

TNR or specificity determines the percentage of true
negatives recorded:

(25

(26)

TPR = 27)

TN
= 28
TNR TN + FP (28)
G-mean balances sensitivity and specificity,

providing a harmonic mean between TPR and TNR. AUC
measures the relationship between TPR and FAR over a
range of classification thresholds:
TPR.FAR (1+TPR).(1—-FAR)
2 2

The consistently superior performance of EKOA
across datasets is primarily due to its hybrid optimization

AUC (29)
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Table 4: Summary of datasets used for botnet detection

Dataset Bashlite (%) Mirai (%) Anomaly (%)  Normal (%) No. of records  No. of features
Ennio doorbell 89 0 89 11 3,55,506 115
Samsung webcam 86 0 86 14 3,75,228 115
Monitoring equipment XC1003 39 59 98 3 8,15,237 115
Monitoring equipment XC1002 37 58 94 6 8,29,079 115
Ecobee thermostat 38 61 98 2 8,35,887 115
Monitoring equipment PT838 37 51 88 12 8,36,902 115
Monitoring equipment PT737 40 52 92 7 8,28,271 115
Danmini doorbell 31 64 95 5 10,18,309 115
Baby monitor 28 55 84 16 10,98,688 115

structure, which is well-aligned with the nature of loT
botnet detection. EKOA's adaptive strategy dynamically
shifts the focus from exploration to exploitation,
improving convergence without overfitting. Sinusoidal
chaotic force addition introduces controlled randomness
to enhance population diversity, which is crucial in
avoiding a local optimum because of redundancy or noise
that is common in high-dimensional data from loT. The
elite-guided aspect also introduces localized optimization
for possibly good candidates, in such a way that compact
and effective sub-sets of features are chosen, leading to
higher accuracy in the classifier.

To assess the proposed framework’s ability to
generalize across unseen botnet types, a cross-family
evaluation was conducted. Specifically, two scenarios
were tested:

e Scenario 1: Training on Mirai samples and testing on
Gafgyt samples

e Scenario 2: Training on Gafgyt samples and testing
on Mirai samples

These setups simulate real-world 10T environments
where the intrusion detection system must detect novel
attack variants without prior exposure during training. The
results for both scenarios using KNN and DT classifiers
are summarized in Table 9.

These results consolidate that the resultant EKOA-
based feature selection method facilitates successful
generalizability in new attack patterns. Surprisingly, the

performance is marginally higher for the KNN classifier
under domain shift scenarios. The reason is that EKOA
can weed out noise in the datasets and emphasize
behavior-centric patterns usable for different families of
botnets.

6 Discussion

The proposed EKOA-based intrusion detection system
exhibits clear comparative benefits compared to the
diversity of state-of-the-art methods in Table 1. The
different methods all contribute to metaheuristic-based
feature choice or hybrid detection methods. Nevertheless,
EKOA presents clear performance benefits in various
dimensions, such as generalizability, convergence speed,
and deployability.

In experiments on typical test datasets such as Mirai
and Gafgyt, the EKOA framework always achieved
detection accuracy greater than 99% and reduced the set
of features by 35%. This is on par with methods such as
GWO-SVM and MHADMA-BCIDL, which performed
with high accuracy in narrow-use cases but were evaluated
on less inclusive datasets or a few malware types. EKOA's
consistent performance on diverse attack types, e.g.,
DDosS, data exfiltration, and command-and-control traffic,
shows higher generalizability to new threats.

From an algorithmic point of view, EKOA addresses
several weaknesses characteristic of metaheuristic-based
detection systems. Such approaches as SSA-ALO and

Table 5: Distribution of botnet-related classes in training and testing sets

Dataset Testing set (%) Training set (%)
First class Second class First class Second class
Monitoring equipment XC1003 Gafgyt (95) Normal (5) Mirai (96) Normal (4)
Monitoring equipment XC1002  Gafgyt (85) Normal (15) Mirai (92) Normal (8)
Ecobee thermostat Gafgyt (94) Normal (6) Mirai (96) Normal (4)
Monitoring equipment PT838 Gafgyt (76) Normal (14) Mirai (82) Normal (18)
Monitoring equipment PT737 Gafgyt (84) Normal (16) Mirai (86) Normal (14)
Danmini doorbell Gafgyt (85) Normal (15) Mirai (91) Normal (9)
Baby monitor Gafgyt (65) Normal (35) Mirai (78) Normal (22)
Table 6: HV results for feature selection experiments

HV MOHHOFOA B-MOABCFS NSGA-IIFS MOPSOFS EKOA

Std/average Std/average Std/average Std/average Std/average
Yale 64 0.009/0.687 0.003/0.752 0.0135/0.448 0.005/0.645 0.002/0.771
CNAE-9 0.011/0.823 0.011/0.834 0.019/0.487 0.008/0.755 0.006/0.852
LSVT 0.029/0.768 0.072/0.822 0.006/0.404 0.004/0.752 0.025/0.881
Musk 0.005/0.936 0.008/0.942 0.014/0.618 0.022/0.894 0.003/0.957
Urban land cover 0.005/0.884 0.007/0.871 0.024/0.596 0.011/0.836 0.003/0.892
Hill-valley 0.004/0.649 0.021/0.631 0.017/0.531 0.007/0.652 0.002/0.932
Sonar 0.004/0.91 0.005/0.913 0.021/0.699 0.016/0.891 0.003/0.922
Tonosphere 0.002/0.93 0.003/0.927 0.091/0.841 0.003/0.922 0.003/0.944
Vehicle 0.006/0.684 0.006/0.693 0.033/0.613 0.007/0.692 0.003/0.724
Vowel 0.001/0.826 0.001/0.828 0.03/0.815 0.009/0.826 0.009/0.839
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Table 7. Feature subset results for feature selection experiments

FN MOHHOFOA B-MOABCFS NSGA-IIFS MOPSOEFS EKOA
Std/average Std/average Std/average Std/average Std/average
Yale 64 1.27/8.45 2.46/12.56 1.91/5.55 1.66/3.45 1.11/10.28
CNAE-9 2.15/8.92 3.66/9.29 2.44/7.41 0.44/5.53 2.66/10.49
LSVT 1.04/5.23 1.25/4.51 0.83/3.39 3.45/5.02 1.26/6.23
Musk 1.73/14.03 2.75/10.86 3.55/6.8 1.42/10.05 1.99/15.74
Urban land cover 2.01/14.05 2.53/11.42 2.56/9.22 1.88/10.55 1.13/14.53
Hill-valley 1.21/9.15 2.76/9.26 1.11/7.02 2.71/8.25 0.45/9.21
Sonar 1.42/11.1 1.76/11.02 1.63/5.81 1.96/10.23 2.28/12.18
Ionosphere 0.71/7.22 0.88/7.26 1.15/5.22 0.71/6.41 0.41/7.56
Vehicle 0.47/5.23 0.36/5.42 0.22/4.13 0.41/5.35 0.31/5.91
Vowel 0/9.01 0/9.01 0.19/8.34 0.44/8.44 0/9
Table 8: Comparative performance analysis of EKOA and other algorithms for botnet detection
Datasets Algorithms AUC G-mean TPR TNR FAR Accuracy
Monitoring MOHHOFOA 0.88 0.87 0.94 0.82 0.18 0.89
equipment XC1003 NSGA-IIFS 0.68 0.67 0.84 0.54 0.47 0.69
B-MOABCFS 0.83 0.82 0.91 0.74 0.26 0.84
MOPSOFS 0.67 0.65 0.83 0.52 0.48 0.68
EKOA 0.98 0.98 0.97 0.99 0.08 0.98
Monitoring MOHHOFOA 0.89 0.87 0.92 0.86 0.14 0.89
equipment XC1002 NSGA-IIFS 0.68 0.67 0.73 0.62 0.39 0.68
B-MOABCFS 0.74 0.73 0.61 0.87 0.14 0.69
MOPSOFS 0.62 0.61 0.78 0.48 0.53 0.64
EKOA 0.98 0.98 0.98 0.98 0.02 0.97
Ecobee thermostat MOHHOFOA 0.89 0.88 0.94 0.85 0.17 0.9
NSGA-IIFS 0.72 0.71 0.87 0.57 0.44 0.72
B-MOABCFS 0.85 0.86 0.91 0.82 0.18 0.87
MOPSOFS 0.77 0.77 0.78 0.73 0.28 0.78
EKOA 0.99 0.99 0.99 0.98 0.05 0.98
Monitoring MOHHOFOA 0.9 0.9 0.95 0.85 0.16 091
equipment PT838 NSGA-IIFS 0.76 0.74 0.92 0.58 0.41 0.78
B-MOABCFS 0.81 0.81 0.9 0.7 0.28 0.82
MOPSOFS 0.77 0.77 0.86 0.67 0.34 0.78
EKOA 0.98 0.98 0.96 0.98 0.009 0.98
Monitoring MOHHOFOA 0.79 0.79 0.92 0.68 0.33 0.82
equipment PT737 NSGA-IIFS 0.65 0.63 0.82 0.49 0.51 0.66
B-MOABCFS 0.76 0.75 0.88 0.64 0.36 0.78
MOPSOFS 0.64 0.61 0.84 0.44 0.55 0.65
EKOA 0.97 0.97 0.98 0.95 0.08 0.97
Danmini doorbell MOHHOFOA 0.87 0.86 0.93 0.82 0.19 0.88
NSGA-IIFS 0.66 0.63 0.88 0.44 0.56 0.69
B-MOABCFS 0.77 0.74 0.93 0.59 0.41 0.84
MOPSOFS 0.69 0.67 0.87 0.52 0.48 0.71
EKOA 0.98 0.98 0.97 0.91 0.04 0.98
Baby monitor MOHHOFOA 0.92 0.92 0.96 0.88 0.12 0.92
NSGA-IIFS 0.68 0.68 0.76 0.62 0.39 0.67
B-MOABCFS 0.83 0.83 0.79 0.89 0.11 0.83
MOPSOFS 0.71 0.71 0.61 0.82 0.18 0.71
EKOA 0.97 0.97 0.99 0.94 0.06 0.97

MODHHO are typically susceptible to premature
convergence or limited diversity in solution space,
potentially inhibiting precision or becoming unstable.
EKOA integrates four strategic enhancements to
overcome such shortcomings:

e Dynamic adjustment strategy: adapts parameters
dynamically based on search progress, balancing
stably between exploration and exploitation.

e Oscillatory chaotic force: introduces controlled
randomness to prevent stagnation and enhance
escape from local optima.

e Crosswise Solution Generation: enhances diversity
in candidate solutions in later iterations.

e Elite-driven optimization: ensures that high-
performance solutions control the evolutionary

process, increasing the likelihood of a global
optimum.

Such processes cause EKOA to converge faster than
classical evolutionary techniques but without a loss in
solution quality. For example, in comparison with BESO-
HDLBD and SFO-WOA-PSO, which involve the use of
high-level neural structures or multi-level optimization
steps, EKOA discovers optimal or near-optimal ensembles
of features in fewer iterations and with much less
computational expenditure.

Feasibility in practical deployments is of concern for
loT-driven intrusion detection systems, which are usually
resource-limited and need a low-latency response. EKOA
is suitable for such an environment because:
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Table 9: Cross-attack generalization results using EKOA-selected features

Scenario Classifier Accuracy TPR (Recall) FAR TNR G-Mean  AUC

Train: Mirai — Test: Gafgyt KNN 96.7% 95.6% 43% 95.7% 95.6% 95.5%
Train: Mirai — Test: Gafgyt DT 95.4% 93.7% 51% 94.9% 94.3% 94.1%
Train: Gafgyt — Test: Mirai KNN 97.2% 96.0% 3.8% 96.2% 96.1% 95.9%
Train: Gafgyt — Test: Mirai DT 95.8% 94.3% 4.7% 95.3% 94.8% 94.6%

e Low execution time: Feature selection using EKOA
is computationally lightweight and does not depend
on deep learning backbones or large ensemble
models.

o Classifier compatibility: The system leverages
efficient classifiers (KNN and decision tree), which
are known for fast inference times and ease of
integration on edge devices.

e Scalability: The modular design allows the
framework to be deployed on distributed or
hierarchical architectures such as cloud-edge
systems, 10T gateways, and embedded devices.

These advantages make EKOA a compelling and
high-performance substitute for more advanced or
specialized intrusion detection methods. It perfectly
balances speed, accuracy, and scalability, the essential
properties for real-time loT network security in high-
speed applications.

7 Conclusion

This paper proposed an EKOA-driven optimal loT
security feature selection intrusion detection system.
EKOA incorporates adaptive control, chaotic force
modulation, cross-sectional solution construction, and
elite-based fine-tuning to promote convergence and
robustness. Experimental verifications demonstrated
higher detection accuracy and reduced feature
dimensionality against state-of-the-art contemporary
multi-objective methods on standard benchmark sets.
Future work will extend the system for real-time intrusion
detection based on online learning models. Secondly,
realization in realistic-edge scenarios and exploring
transfer learning methods between 10T applications will
be attempted to enhance adaptability and scalability.
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