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The proliferation of Internet of Things (IoT) devices has increased the risk of botnet attacks due to the 

inherent vulnerabilities of IoT networks. To mitigate this threat, this study presents an anomaly-based 

intrusion detection framework that incorporates the Enhanced Kepler Optimization Algorithm (EKOA) 

for feature selection. EKOA integrates adaptive processes, such as dynamic adaptation, oscillatory 

chaotic force, crosswise solution formation, and optimization based on elites, in an effort to balance 

exploitation and exploration in favor of enhancing convergence speed alongside solution diversity. The 

selected features are evaluated using K-Nearest Neighbor (KNN) and Decision Tree (DT) classifiers. 

Experiments were conducted on typical IoT datasets, i.e., Mirai and Gafgyt. Accuracy, AUC, G-mean, 

and precision were also used for performance evaluation. The new system achieved detection accuracy 

greater than 99% and reduced the list of features by 35%. The new system exhibits good generalization 

capability, botnet attack resistance, and applicability in high-dimensional applications. The results show 

a good future for practical application in real-time intrusion detection on IoTs. 

Povzetek: EKOA (Enhanced Kepler Optimization Algorithm) za izbiro značilnic izboljša detekcijo vdorov 

(botnet) v IoT omrežjih. Dosega visoko odpornost proti napadom in deluje v realnem času. 

1 Introduction 
The Internet of Things (IoT) has revolutionized modern 

technology by connecting billions of devices across 

various domains, including healthcare, smart cities, and 

manufacturing [1]. This rapid growth in IoT has also led 

to serious vulnerabilities, particularly in botnet attacks [2]. 

Botnets are networks of compromised IoT devices under 

attacker control conducting large-scale malicious 

activities, including Distributed Denial of Service 

(DDoS), phishing, and stealing information [3]. As a 

general rule, low computational power, default 

configurations, and weak security protocols make IoT 

devices an easy target for attackers, posing a significant 

threat to network integrity and user privacy [4, 5]. 

Intrusion Detection Systems (IDSs) contribute to 

security issues in IoT networks by detecting hostile 

behavior and protecting against cyberattacks [6]. It 

contrasts with the traditional concept of security based on 

encryption techniques and authenticity, and this method 

analyzes network flow traffic and all flow patterns 

belonging to botnets for other types of cyberattacks [7]. 

Their nature being adaptive during evolution regarding 

attack pattern variations makes it essential regarding 

security in the case of IoTs [8]. In direct relation to this, 

the performance of the IDS framework heavily relies on 

selecting features that are both relevant and non-

redundant. Utilized features enhance detection 

performance by distinguishing patterns that distinguish 

normal and malicious traffic, while removing noisy or 

irrelevant features reduces the computational cost and  

 

protects against overfitting. Efficient feature selection is 

thus crucial for obtaining a detection performance-

resources utilization balance in IoT applications [9]. 

However, the field of IDS still faces numerous 

challenges. Traditional feature selection approaches often 

exhibit significant drawbacks when an IoT high-

dimensional dataset contains many irrelevant and 

redundant features, resulting in increased computational 

overhead and reduced detection accuracy [10]. Typical 

traditional brute-force methods, which select the most 

static subset features beforehand without any update 

strategy, tend to suffer from insufficient adaptability due 

to inefficiency when applied to general datasets or several 

diverse attack scenarios [11]. While some meta-heuristics 

proposed for optimizing feature subsets present state-of-

the-art performances, many face significant weaknesses, 

including imbalance in exploration and exploitation, 

which can converge at low speeds to the most optimized 

feature subsets [12]. 

The Enhanced Kepler Optimization Algorithm 

(EKOA) addresses these challenges by building on the 

foundations of the Kepler Optimization Algorithm 

(KOA). By incorporating Kepler's laws for the motion of 

planets, EKOA applies advanced techniques such as 

dynamic adaptation, oscillatory chaotic force, cross-

sectional solution generation, and elite-guided 

optimization. Such enhancements fine-tune the 

algorithm's balancing between exploration and 

exploitation, keeping the population diversity intact, and 

accelerating convergence. 
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EKOA's architecture comprises adaptive exploration-

exploitation control, chaotic force allocation to enhance 

population diversity improvement, and elite-based search 

for fine-tuning good solutions. These processes make 

EKOA capable of effectively handling IDS's high-

dimensional feature space problems, such as redundancy, 

irrelevance, and the risk of premature convergence. As a 

result, EKOA offers a strong foundation for selecting 

compact yet effective feature subsets that enhance 

detection performance. 

The primary objective of this study is to enhance 

intrusion detection performance in IoT networks by 

employing an efficient feature selection approach using an 

improved metaheuristic strategy. EKOA is employed to 

reduce dimensionality while preserving relevant 

indicators of malicious behavior. Based on this goal, the 

research is guided by the following questions: 

• RQ1: Can a multi-objective binary variant of the 

EKOA effectively reduce irrelevant features in IoT 

intrusion datasets while maintaining high detection 

accuracy?  

• RQ2: How does EKOA compare to other recent 

metaheuristic feature selection methods in terms of 

convergence speed, robustness to unseen attacks, 

and computational efficiency?  

• RQ3: Is the proposed IDS framework with EKOA 

suitable for real-time deployment in IoT 

environments with constrained resources and high-

volume traffic? 

Thanks to the inclusion of several adaptive processes, 

the proposed technique is the first to use a multi-objective 

binary realization of the EKOA in an IoT-based intrusion 

detection system. The proposed system differs from 

previous methods. It includes a binary-encoded, chaos-

driven optimization model coupled with an elite solution-

based directional guidance for choosing features, aiming 

mainly at problems posed by high-dimensional IoT data 

and adaptive attack behaviors. 

2 Related work 
This section presents outstanding works on IoT botnet 

detection and feature selection, focusing on metaheuristic 

optimization methods. They were selected under their 

appropriateness for the problems addressed in the present 

paper: dealing with high-dimensional feature spaces, 

improving detection accuracy, and reducing 

computational overhead. 

Haddadpajouh, et al. [13] proposed an integrated 

Support Vector Machine (SVM) for malware detection 

against IoT threats in cloud-edge gateways. The method 

utilized Gray Wolves Optimization (GWO) for the 

optimal selection of features based on Opcode and 

Bytecode datasets, which provided 99.72% accuracy at a 

lesser computational expense when compared to Deep 

Neural Networks (DNNs). Abu Khurma, et al. [14] 

proposed a hybrid method for the selection of features, 

which combines Ant Lion Optimization (ALO) and Salp 

Swarm Algorithm (SSA). Based on the N-BaIoT dataset, 

the method reported a 99.9% actual positive rate, besides 

resolving the issue of high-dimensional feature space. 

Hosseini, et al. [15] suggested botnet detection with a 

hybrid Slime Mold Algorithm (SMA) and SSA for 

choosing features. The algorithm utilized chaos theory to 

balance exploration and exploitation, achieving higher 

detection in UCI datasets. Gharehchopogh, et al. [16] 

suggested a binary Multi-Objective Dynamic Harris 

Hawks Optimization (MODHHO) algorithm for choosing 

features. The algorithm utilized mutation operators and 

different classifiers (KNN, SVM, MLP, DT), which 

showed higher speed and accuracy on five datasets. 

Alkhammash [17] offered a metaheuristic-based, 

blockchain-integrated model for DDoS attack detection 

(MHADMA-BCIDL). The model utilized Arctic Tern 

Optimization (ATO) for attribute selection and CNN-

BiLSTM for classification, achieving 99.32% accuracy on 

the BoT-IoT dataset. Maghrabi, et al. [18] proposed a 

hybrid deep learning-based model (BESO-HDLBD) that 

incorporated Bald Eagle Search Optimization (BESO) for 

selecting attributes and a CNN-BiLSTM-Attention for bot 

identification. The model worked best on benchmarked 

datasets, outperforming existing methods in speed and 

accuracy. 

Maazalahi and Hosseini [19] proposed a hybrid 

algorithm as a fusion between Whale Optimization 

Algorithm (WOA), Particle Swarm Optimization (PSO), 

and Sailfish Optimizer (SFO). The algorithm was tested 

on BoT-IoT and UNSW-NB15 datasets and achieved a 

detection accuracy of 99.8% in less execution time. 

Elsedimy and AboHashish [20] proposed FCM-SWA, an 

integration between fuzzy C-means clustering and Sperm 

Whale Algorithm (SWA), for IoT-driven innovative 

systems. The algorithm outperformed existing methods on 

BoT-IoT, NSL-KDD, and AWID datasets using adaptive 

threshold techniques in accuracy and precision. 

Despite the good performance encompassed in 

existing feature selection and classification techniques, as 

indicated in Table 1, typical weaknesses still hold. Some 

models incur an inefficient exploration-exploitation 

balance, leading to convergence in the latter parts or 

locally optimal sets of features. Others attain good 

detection accuracy but are computationally costly, 

especially on high-dimensional or IoT streaming datasets. 

Most research works provide limited assessment on the 

impact of the selected feature on the robustness and 

generalizability of models to unknown attacks. The paper 

bridges these gaps by introducing EKOA for feature 

selection, aiming at achieving computational 

effectiveness, convergence speed, and high detection 

accuracy. 

3 Materials 

3.1 Multi-objective optimization  

Multi-objective optimization aims to optimize multiple 

conflicting objectives, often resulting in trade-offs among 

them. Improving one objective can result in the 

deterioration of another, requiring solutions that balance 

these trade-offs. 



Anomaly-based Intrusion Detection in IoT using Enhanced Kepler… Informatica 49 (2025) 219–230 221 

Table 1: An overview of related works 

Reference Contribution Accuracy TPR Shortcoming 

[13] Suggested a multi-kernel SVM using GWO for feature 

selection, achieving 99.72% accuracy with reduced training 

time. 

99.72% - Limited evaluation datasets and focus on 

specific malware types (Cortex A9 samples). 

[14] Developed SSA–ALO hybrid for feature selection, 

achieving 99.9% TPR on N-BaIoT datasets with superior 

efficiency. 

- 99.9% High computational complexity for large-

scale datasets. 

[15] Introduced SMA + SSA with chaos theory for balanced 

exploration and exploitation in feature selection. 

- - Results lack comprehensive comparison with 

advanced optimization algorithms. 

[16] Presented MODHHO for multi-objective feature selection 
and versatile classification across multiple datasets. 

98.1% - Moderate accuracy improvement compared to 
existing approaches. 

[17] Proposed MHADMA-BCIDL with blockchain integration 

and CNN-BiLSTM for DDoS detection, achieving 99.32% 
accuracy. 

99.32% - Dependence on blockchain may introduce 

overhead in real-time systems. 

[18] Designed BESO-HDLBD with hybrid deep learning for 

spatial-temporal feature extraction and botnet detection. 

99.4% - The computational cost is due to the BiLSTM 

and attention mechanisms in large datasets. 
[19] Proposed SFO-WOA-PSO-K-means hybrid with 99.8% 

accuracy and low execution time for botnet detection. 

99.8% - Limited scalability for highly dynamic IoT 

environments. 

[20] Introduced FCM-SWA with enhanced clustering and global 

optimization for IoT-based innovative systems. 

98.9% - Lacks evaluation on diverse IoT network 

scenarios and attack types. 

The solutions to such problems are termed Pareto-

optimal solutions, also known as the Pareto front, in which 

no objective can be enhanced without compromising at 

least one other objective. The mathematical formulation of 

a multi-objective optimization problem can be stated as 

follows: 
𝑚𝑖𝑛𝐹 = {𝑓1(𝑋), 𝑓2(𝑋), . . . , 𝑓𝑀(𝑋)} (1) 

Subject to: 
𝑔𝑖(𝑋) ≤ 0,   𝑖 = 1,2, . . . , 𝑞 

ℎ𝑖(𝑋) ≤ 0,   𝑗 = 1,2, . . . , 𝑝 

X𝜖𝛺 

(2) 

Where 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝐷} represents a decision vector in 

a 𝐷-dimensional space, 𝑔𝑖(𝑋) and ℎ𝑖(𝑋) represent 

constraints of inequality and equality, respectively, and F 

is the set of 𝑀 objective functions to optimize, Ω defines 

the feasible decision space. 

In multi-objective optimization, a solution 𝑈 =
{𝑢1, 𝑢2, . . . , 𝑢𝐷} is supposed to dominate another solution 

𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝐷}, denoted as 𝑈≺𝑉, if the following 

conditions are satisfied: 
𝑓𝑖(𝑈) ≤ 𝑓𝑖(𝑉),   ∀𝑖 𝜖 {1,2, . . . , 𝑀} 

𝑓𝑖(𝑈) < 𝑓𝑖(𝑉),   ∃𝑖 𝜖 {1,2, . . . , 𝑀} 
(3) 

Non-dominated or Pareto-optimal solutions are the 

ones not dominated by another. They constitute the Pareto 

front of the problem, which is said to be the best set of 

conflicting objective trade-off solutions. The feasible 

solution is said to be satisfying all the constraints and is in 

the set of non-dominated solutions if and only if it 

qualifies for the criteria outlined above. The Pareto front, 

thus, shows all the Pareto-optimal solutions for a problem. 

3.2 Feature selection 

Feature selection is a crucial step in data classification, 

where the target is to select a subset of features from the 

total feature set Fet, consisting of 𝐷 features and 𝑁 

samples, to maximize classification performance while 

minimizing computational cost [21]. The process can be 

formulated mathematically as follows: 

A feature subset 𝑋 is represented as a binary vector 

𝑋 = (𝑥1, 𝑥2, . . . , 𝑥𝐷), where 𝑥𝑗 ∈ {0,1} specifies whether 

the 𝑗th feature is selected (𝑥𝑗 = 1) or not (𝑥𝑗 = 0). The 

following equation can then describe the task of feature 

selection: 
𝑚𝑎𝑥𝐻(𝑋) (4) 

H(X) represents the objective function that evaluates 

the classification accuracy of the selected feature subset 𝑋. 

The classifier's running time is directly proportional 

to the selected number of features. With a larger set of 

features, the classifier is computationally costlier and runs 

slower, but classification accuracy is potentially lower for 

a smaller set. The compromise between optimizing 

accuracy and keeping the selected number of features 

small is thus required. The compromise can be framed as 

a bi-objective optimization problem: 
𝑚𝑖𝑛𝐹 = (𝐸𝑅𝑅(𝑋), |𝑋|) (5) 

Where ERR(X)=1−H(X) is the classification error for the 

selected feature set 𝑋 and ∣𝑋∣ is the number of selected 

features. 

3.3 Disruption operator 

The disruption operator is taken from astrophysical 

phenomena, which tries to enhance population diversity 

for optimization methods. Including variation in the 

population expands the search area and manages 

exploration and exploitation effectively. The disruption 

operator successfully enhances the performance of 

optimization methods to avoid premature convergence. 

The disruption operator is mathematically represented as: 
𝐷𝑜𝑝

= {

𝐷𝑖,𝑗 × 𝛿(−2,2),   𝑖𝑓 𝐷𝑖,𝑗,𝑏𝑒𝑠𝑡 ≥ 1    

1 + 𝐷𝑖,𝑗,𝑏𝑒𝑠𝑡 × 𝛿 (−
10−4

2
,
10−4

2
) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(6) 

Where 𝐷𝑖,𝑗 signifies the Euclidean distance between the 𝑖th 

and 𝑗th solutions in the population, 𝐷𝑖,𝑗,𝑏𝑒𝑠𝑡 denotes the 

Euclidean distance between the 𝑖th solution and the best 

solution identified so far, and 𝛿(𝑥, 𝑦) is a random value 

generated within the interval [𝑥, 𝑦]. 
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The operator dynamically adjusts its impact based on 

the proximity of solutions to the best-known solution. If 

𝐷𝑖,𝑗,𝑏𝑒𝑠𝑡 ≥ 1, a larger variation is introduced, allowing for 

greater exploration in the search space. Otherwise, a minor 

variation is applied, encouraging fine-tuned exploitation 

around the best solution. This design ensures that the 

algorithm strikes a balance between discovering new areas 

in the search space and refining existing solutions, thereby 

enhancing overall optimization performance. 

4 Methodology 
KOA is a physics-inspired metaheuristic algorithm based 

on Kepler’s laws of planetary motion. These laws define 

the motion of planets around the sun in elliptical orbits, 

the relationship between areas swept by the planets, and 

the proportionality between the square of their orbital 

period and the cube of their semi-major axis [22]. KOA 

applies these ideas to mimic optimization such that the 

planets are treated as potential solutions, while the sun is 

treated as the best. The algorithm starts by using an initial 

population of planets characterized by a given orbital 

eccentricity and spin period. The initialization is specified 

as below. 

𝑋𝑖
𝑗
= 𝑋𝑖,𝑙𝑏

𝑗
+ 𝑟𝑎𝑛𝑑 × (𝑋𝑖,𝑢𝑏

𝑗
− 𝑋𝑖,𝑙𝑏

𝑗
), 

i=1, 2, …, N;   j=1, 2, …, D 
(7) 

𝑒𝑖 = 𝑟𝑎𝑛𝑑, i=1, 2, …, N (8) 

𝑂𝑃𝑖 = |𝑟𝑎𝑛𝑑|, i=1, 2, …, N (9) 

Where 𝐷 represents the problem's dimensionality, 𝑁 is the 

population size, 𝑋𝑖,𝑙𝑏
𝑗

 and 𝑋𝑖,𝑢𝑏
𝑗

 are the lower and upper 

bounds for the 𝑗th variable, and rand is a random number 

in the interval [0, 1]. This reflects the binary nature of the 

feature selection problem, where each feature can either 

be included (1) or excluded (0) from the subset. These 

normalized bounds ensure that the optimization begins 

within a valid real-valued range before binary conversion 

via the sigmoid-based transformation.” 

The planets rotate around the sun in elliptical orbits, 

undergoing two phases: moving closer to the sun and 

moving away. The gravitational force between the sun and 

a planet, which governs the planet's motion, is calculated 

as: 

𝐹𝑔𝑖(𝑡) = 𝑒𝑖 ⋅ μ(𝑡) ⋅
𝑀𝑠 ⋅ 𝑚𝑖

𝑅𝑖
2 + ϵ

+ 𝑟1 (10) 

Where Ms and 𝑚𝑖 represent the normalized masses of the 

sun and the planet, calculated as follows: 

𝑀𝑠 = 𝑟2 ⋅
fit𝑠(𝑡) − worst(𝑡)

∑ (fit𝑘(𝑡) − worst(𝑡))
𝑁
𝑘=1

 (11) 

𝑚𝑖 =
fit𝑖(𝑡) − worst(𝑡)

∑ (fit𝑘(𝑡) − worst(𝑡))
𝑁
𝑘=1

 (12) 

Where 𝜇(𝑡) = 𝜇0. 𝑒𝑥𝑝(−𝛾. 𝑡/𝑇) is the gravitational 

constant, 𝑅𝑖 = √∑ (𝑋𝑠𝑗(𝑡) − 𝑋𝑖𝑗(𝑡))
2

𝑑
𝑗=1  is the distance 

between the planet and the sun, and r1 and 𝑟2 are random 

values, and 𝜖 ϵ is a small constant.  

The velocity of a planet, influenced by its distance 

from the sun, is updated as follows: 

𝜐⃗𝑖(𝑡) 

{
 
 

 
 𝛿 ⋅ (2𝑟4 ⋅ 𝑋𝑖

⃗⃗⃗⃗ − 𝑋𝑏⃗⃗ ⃗⃗⃗) + 𝛿
′ ⋅ (𝑋𝑎⃗⃗ ⃗⃗ ⃗ − 𝑋𝑏⃗⃗ ⃗⃗⃗) + (1 − 𝑅norm(𝑡)).

𝜎 ⋅ 𝑈1⃗⃗⃗⃗⃗ ⋅ 𝑟5 ⋅ (𝑋𝑖,𝑢𝑏⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ − 𝑋𝑖,𝑙𝑏⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ),  𝑅norm(𝑡) ≤ 0.5

 𝑟4 ⋅ 𝜅 ⋅ (𝑋𝑎⃗⃗ ⃗⃗ ⃗ − 𝑋𝑖⃗⃗⃗⃗ ) + (1 − 𝑅norm(𝑡)) ⋅ 𝜎 ⋅

𝑈2⃗⃗⃗⃗ ⃗ ⋅ 𝑟5 ⋅ (𝑟3 ⋅ 𝑋𝑖,𝑢𝑏⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ − 𝑋𝑖,𝑙𝑏⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ),  otherwise

 
(13) 

The position is then updated as follows: 

𝑋𝑖⃗⃗⃗⃗ (𝑡 + 1) = 𝑋𝑖⃗⃗⃗⃗ (𝑡) + σ ⋅ 𝑣𝑖⃗⃗⃗ ⃗(𝑡) + (𝐹𝑔𝑖(𝑡) + |𝑟|) ⋅ 𝑈⃗⃗⃗

⋅ (𝑋𝑠⃗⃗⃗⃗⃗(𝑡) − 𝑋𝑖⃗⃗⃗⃗ (𝑡)) 
(14) 

In the second stage, KOA refines the planetary 

positions around the sun using an adaptive factor ℎ and the 

exploration formula: 

𝑋𝑖⃗⃗⃗⃗ (𝑡 + 1) = 𝑋𝑖⃗⃗⃗⃗ (𝑡) ⋅ 𝑈1⃗⃗⃗⃗⃗ + (1 − 𝑈1⃗⃗⃗⃗⃗)

⋅ (
𝑋𝑖⃗⃗⃗⃗ (𝑡) + 𝑋𝑗⃗⃗⃗⃗ (𝑡) + 𝑋𝑎⃗⃗ ⃗⃗ ⃗(𝑡)

3
+ ℎ

⋅ (
𝑋𝑖⃗⃗⃗⃗ (𝑡) + 𝑋𝑗⃗⃗⃗⃗ (𝑡) + 𝑋𝑎⃗⃗ ⃗⃗ ⃗(𝑡)

3

− 𝑋𝑏⃗⃗ ⃗⃗ ⃗(𝑡))) 

ℎ =
1

𝑒𝜂𝑟
 ,   𝜂 = (𝑙 − 1). 𝑟4 + 1,   𝑙

= −1 − 1. (
𝑡%𝑇

𝑇
.
𝑇

𝑇
) 

(15) 

Balancing exploration (broad search) and exploitation 

(fine-grained tuning), KOA effectively finds global 

optimum solutions in high-dimensional search spaces. Its 

physical inspiration maintains a balanced optimization 

process that can be applied to various applications. 

EKOA is an improvement on the traditional KOA. 

EKOA addresses the weakness in the first algorithm, i.e., 

poor convergence for high-dimensional issues, an 

insufficient balance between exploration and exploitation, 

and sub-standard handling of complex solution spaces. 

EKOA achieves higher accuracy, rapid convergence, and 

solution diversity by utilizing new strategies, i.e., dynamic 

fine-tuning, oscillatory chaotic force, cross-direction 

solution creation, and elite-based optimization. 

The adaptive adjusting policy dynamically updates 

the weight between exploration and exploitation in every 

iteration. At the initial phases, EKOA emphasizes 

exploration to thoroughly explore the search area. With 

increasing iterations, the algorithm transfers the focus step 

by step toward exploitation, adjusting the promising area 

for the optimum solution. The weighing is mathematically 

represented as: 

𝑤 = 𝑤min + (𝑤max − 𝑤min) ⋅
𝑡

𝑇
 (16) 

Where wmin and 𝑤max are the minimum and maximum 

weights, respectively, 𝑡 stands for the ongoing iteration, 

and 𝑇 is the total number of iterations. This adaptability 

prevents the algorithm from prematurely converging to 
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local optima, ensuring a more robust search across the 

solution space. 

In traditional KOA, the gravitational constant 𝜇(𝑡) 
gradually decreases to focus the search around promising 

areas. EKOA improves this process by introducing an 

oscillatory chaotic force constant, which dynamically 

modulates gravitational force to increase diversity in 

solutions and prevent stagnation. The gravitational 

constant is updated as: 

𝜇(𝑡) = 𝑠map(𝑡) + 𝜇0 ⋅ 𝑒𝑥𝑝 (−
𝛾𝑡

𝑇
) (17) 

Where 𝑠𝑚𝑎𝑝(𝑡) is an oscillatory chaotic function 

calculated as follows. 

𝑠map(𝑡 + 1) = 𝛼 ⋅ 𝑠𝑖𝑛 (𝜋 ⋅ 𝑠map(𝑡)) (18) 

Where μ0 is the initial gravitational constant, 𝛾 is a decay 

factor, and 𝑇 represents the total cycle count. This chaotic 

mechanism ensures greater randomness in gravitational 

influence, allowing EKOA to escape local optima and 

maintain diverse solutions. 

The crosswise solution generation strategy 

accelerates convergence by improving population 

diversity and generating new candidate solutions. Based 

on their current positions, two "satellite" solutions are 

created around existing solutions. The crossover equations 

are: 
𝐾𝑋𝑎,𝑗(𝑡) = 𝑟1 ⋅ 𝑋𝑎,𝑗(𝑡) + (1 − 𝑟1) ⋅ 𝑋𝑏,𝑗(𝑡) + 𝑐1

⋅ (𝑋𝑎,𝑗(𝑡) − 𝑋𝑏,𝑗(𝑡)) 
(19) 

𝐾𝑋𝑏,𝑗(𝑡) = 𝑟1 ⋅ 𝑋𝑏,𝑗(𝑡) + (1 − 𝑟2) ⋅ 𝑋𝑎,𝑗(𝑡) + 𝑐2

⋅ (𝑋𝑏,𝑗(𝑡) − 𝑋𝑎,𝑗(𝑡)) 
(20) 

Where 𝑟1 and 𝑟2 are random values between [0, 1], and 𝑐1 

and 𝑐2 are constants controlling the influence of each 

parent solution. If the satellite solutions improve the 

fitness value, they replace their parent solutions, ensuring 

that the population progressively improves over iterations. 

The elite-driven optimization strategy focuses on 

refining the best solutions to enhance convergence 

accuracy and precision. It combines three sub-strategies: 

elite movement, elite cooperation, and elite-driven 

optimization. Elite movement refines elite solutions by 

adding perturbations based on their distance from non-

elite solutions: 
𝐺𝑋𝑖(𝑡) = 𝑋𝑖(𝑡) + 𝐴1 ⋅ 𝐷1 + 𝛥ℎ 

𝐴1 = 𝑙1. (𝑟1 − 0.5) + 1 

𝐷1 = 2 ⋅ 𝑟2 ⋅ 𝑋best(𝑡) − 𝑋𝑖(𝑡) 

(21) 

Where Δh is a refinement term derived from the Levy 

flight mechanism. 

Elite solutions collaborate by sharing information to 

improve population diversity: 
𝐺𝑋𝑖(𝑡) = 𝑋𝑟(𝑡) + 𝑟1 ⋅ 𝐷3 + 𝛥ℎ (22) 

Where 𝐷3 = 𝑋𝑎(𝑡) − 𝑋𝑏(𝑡) and 𝑋𝑟(𝑡) is a randomly 

selected elite solution. 

Elite-driven optimization focuses on aggressively 

refining elite solutions: 
𝐺𝑋𝑖(𝑡) = 𝑋𝑟(𝑡) + 𝐴2 ⋅ 𝐷2 + 𝛥ℎ (23) 

Where 𝐷2 = 𝑋𝑖(𝑡) − 𝑋𝑟(𝑡) and A2 is a randomly selected 

elite solution. 

As shown in Figures 1 and 2, the EKOA workflow 

begins with the initialization of the population, where the 

positions, velocities, and orbital parameters of the 

solutions are set within the defined bounds. The algorithm 

evaluates the fitness of each solution in light of the 

optimization objective. In subsequent iterations, the lateral 

crossover generates new candidate solutions, the 

oscillatory chaotic force changes the search region, and 

the adaptive weight allows for smooth movement between 

exploration and exploitation. Finally, the elite-driven 

optimization refines the top-performing solutions, 

consistently enhancing the population's quality. The loop 

terminates when the terminating criteria are met, e.g., a 

fixed number of iterations or a convergence point. 

The enhanced algorithm is a multi-target anomaly-

based IDS for IoT. The algorithm employs Pareto 

dominance to attain a practical compromise between 

conflicting objectives, e.g., enhancing classification 

accuracy but reducing the number of features chosen to be 

analyzed. Non-dominated solutions are preserved in each 

iteration through a repository-based structure, which 

presents different Pareto-optimal solutions. EKOA 

optimizes leader solutions in each iteration, chosen from 

the repository through a roulette-wheel selection 

algorithm in conjunction with hypercube scores and the 

Boltzmann function. The leader is therefore guaranteed to 

be a good choice for optimizing the process. 

The repository is divided into two components: the 

grid and the controller. The grid organizes solutions for 

easier assessment and diversity, and the controller decides 

whether new solutions are to be added to the repository. 

To improve the repository's quality, dominated solutions 

are purged at fixed intervals so that high-quality solutions 

are retained. This architecture promotes a well-distributed 

Pareto front for the opposing accuracy and feature 

reduction objectives. 

The algorithm initializes a randomly started 

population set of solutions and their positions, speeds, and 

gravity constants. Non-dominated solutions are moved 

apart in a repository, while dominated members are 

preserved in the base population. The leader solution is 

chosen in the initial step of every iteration from the 

repository through the roulette-wheel technique, under the 

governance of the Boltzmann function. The EKOA 

framework applies its mechanisms, including adaptive 

weight adjustment, oscillatory chaotic force, crosswise 

solution generation, and elite-driven optimization 

strategies, to effectively explore and exploit the solution 

space. Since feature selection is a binary problem, 

solutions are converted from the discrete domain to the 

binary domain using Eq. 24. 

𝑦𝑖
𝑗+1

= 𝑓(𝑥) {
1,   𝑖𝑓 𝑤(𝑥𝑖

𝑗+1
) ≥ 𝑟𝑟𝑎𝑛𝑑

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑤(𝑎) =
1

1 + 𝑒10(𝑎−0.5)
 

(24) 

This change ensures the algorithm yields a binary 

code for the feature subset. The optimization step is 

followed by adding new non-dominated points to the 
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repository and eliminating dominated ones. If the 

repository size exceeds, the lesser-quality points are 

eliminated in favor of higher-quality points. The 

disruption operator is called at regular intervals to 

introduce controlled randomness to prevent stagnation. 

The algorithm terminates when the maximum iterations 

are exceeded or a predetermined convergence criteria are 

met. 

5 Results 
To evaluate the performance of the proposed EKOA-

based intrusion detection system, experiments were 

 

Figure 1: Flowchart of EKOA 

 

 
Figure 2: Pseudo-code 
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conducted on three datasets: Mirai and Gafgyt. The 

datasets were normalized and encoded according to 

standard preprocessing and labeling methods. Feature 

selection was performed according to the proposed binary 

multi-objective EKOA algorithm. Table 2 shows the 

complete set of algorithms and classifier hyperparameters, 

like population size, number of iterations, and crossover 

coefficients. The levels for these variables were selected 

after preliminary tuning for stable convergence and 

desirable search behavior. The 5-fold cross-validation 

method was chosen for statistical robustness. The 

experiments were repeated five times, and the means were 

calculated across performance metrics. 

EKOA was evaluated on ten feature selection datasets 

and nine botnet detection datasets, as indicated in Tables 

3 and 4. The datasets had at least 100,000 samples, and 

some even exceeded a million. Table 5 provides the nature 

of the datasets, e.g., normal/abnormal class ratios. 

Mirai botnet attacks were utilized for the training set 

(70%), while Gafgyt botnet attacks comprised the test set 

(30%). This was to keep the model robust, as we are 

training on attacks, we are aware of, but testing on the 

ability to identify new patterns previously unseen. The test 

was performed in MATLAB on an Intel Core i5-8400 

processor computer, running 8 GB of RAM. 

Feature selection experiments compared EKOA 

against five multi-objective algorithms: MOHHOFOA 

[23], NSGA-IIFS [24], B-MOABCFS [25], and 

MOPSOFS [26]. The Hyper-Volume (HV) and several 

feature subsets (FN) metrics were used to evaluate 

performance. Table 6 presents the HV results for the ten 

datasets, which measure solution convergence and 

diversity. Table 7 reports the FN values (average and 

standard deviation) to assess the effectiveness of 

dimensionality reduction. EKOA's classification relies on 

K-Nearest Neighbors (KNN) and Leave-One-Out 

Correlation (LOOCV) scores to measure classification 

errors. Experiments demonstrated EKOA's ability to 

effectively optimize high classification accuracy feature 

subsets and outperform traditional multi-objective 

algorithms. 

EKOA optimized both the anomaly detection and 

feature selection for botnet detection. Non-dominated 

solutions with lowest error rates in each iteration were 

saved in a second external archive. Table 8 is a 

comparison between EKOA and other algorithms, which 

indicates that EKOA performs better than all the 

algorithms in all metrics: True Positive Rate (TPR), True 

Negative Rate (TNR), False Alarm Rate (FAR), accuracy, 

Area Under the Curve (AUC), and Geometric Mean (G-

mean) 

Accuracy measures the proportion of correctly 

labeled records, combining True Negatives (TNs) and 

True Positives (TPs) over the total population: 

𝐴 =
𝑇𝑁 + 𝑇𝑃

𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁 + 𝑇𝑃
 (25) 

FAR evaluates the proportion of False Positives (FPs) 

among standard samples: 

𝐹𝐴𝑅 =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
 (26) 

TPR or sensitivity quantifies the percent of true 

positives identified successfully: 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (27) 

TNR or specificity determines the percentage of true 

negatives recorded: 

𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (28) 

G-mean balances sensitivity and specificity, 

providing a harmonic mean between TPR and TNR. AUC 

measures the relationship between TPR and FAR over a 

range of classification thresholds: 

𝐴𝑈𝐶 =
𝑇𝑃𝑅. 𝐹𝐴𝑅

2
+
(1 + 𝑇𝑃𝑅). (1 − 𝐹𝐴𝑅)

2
 (29) 

The consistently superior performance of EKOA 

across datasets is primarily due to its hybrid optimization 

Table 2: Hyperparameter settings for algorithms and 

classifiers 

Component Parameter Range Description 

EKOA 𝜇0 0.1 Initial gravitational 

constant for 

attraction force  
𝛾 15 Gravitational decay 

factor controlling 

convergence speed  
𝑤𝑚𝑖𝑛 0.4 Minimum adaptive 

weight for 

exploration  
𝑤𝑚𝑎𝑥 0.9 Maximum adaptive 

weight for 
exploitation  

𝑐1 and 𝑐2 Uniform 

[–1, 1] 

Crossover 

coefficients in 
lateral crossover 

mechanism  
Population 
size 

30 Number of 
individuals in the 

population  
Max 
iterations 

100 Maximum number 
of optimization 

iterations 

KNN k-value 3 Number of 
neighbors used for 

classification 

Decision 
tree 

Max depth None 
(default) 

Tree expansion 
continues until full 

purity or constraint 

SVM Kernel RBF Radial basis 
function kernel for 

non-linear 

classification 

 

Table 3: Summary of datasets used for feature 

selection 

Dataset No. of 
features 

No. of 
classes 

No. of 
samples 

Yale_64 1024 15 165 

CNAE-9 857 9 540 
LSVT 309 2 126 

Musk 167 2 476 

Urban land cover 148 9 507 
Hill-valley 100 2 606 

Sonar 60 2 208 

Ionosphere 34 2 351 
Vehicle 18 4 846 

Vowel 10 11 990 
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structure, which is well-aligned with the nature of IoT 

botnet detection. EKOA's adaptive strategy dynamically 

shifts the focus from exploration to exploitation, 

improving convergence without overfitting. Sinusoidal 

chaotic force addition introduces controlled randomness 

to enhance population diversity, which is crucial in 

avoiding a local optimum because of redundancy or noise 

that is common in high-dimensional data from IoT. The 

elite-guided aspect also introduces localized optimization 

for possibly good candidates, in such a way that compact 

and effective sub-sets of features are chosen, leading to 

higher accuracy in the classifier. 

To assess the proposed framework’s ability to 

generalize across unseen botnet types, a cross-family 

evaluation was conducted. Specifically, two scenarios 

were tested: 

• Scenario 1: Training on Mirai samples and testing on 

Gafgyt samples  

• Scenario 2: Training on Gafgyt samples and testing 

on Mirai samples 

These setups simulate real-world IoT environments 

where the intrusion detection system must detect novel 

attack variants without prior exposure during training. The 

results for both scenarios using KNN and DT classifiers 

are summarized in Table 9. 

These results consolidate that the resultant EKOA-

based feature selection method facilitates successful 

generalizability in new attack patterns. Surprisingly, the 

performance is marginally higher for the KNN classifier 

under domain shift scenarios. The reason is that EKOA 

can weed out noise in the datasets and emphasize 

behavior-centric patterns usable for different families of 

botnets. 

6 Discussion 
The proposed EKOA-based intrusion detection system 

exhibits clear comparative benefits compared to the 

diversity of state-of-the-art methods in Table 1. The 

different methods all contribute to metaheuristic-based 

feature choice or hybrid detection methods. Nevertheless, 

EKOA presents clear performance benefits in various 

dimensions, such as generalizability, convergence speed, 

and deployability. 

In experiments on typical test datasets such as Mirai 

and Gafgyt, the EKOA framework always achieved 

detection accuracy greater than 99% and reduced the set 

of features by 35%. This is on par with methods such as 

GWO-SVM and MHADMA-BCIDL, which performed 

with high accuracy in narrow-use cases but were evaluated 

on less inclusive datasets or a few malware types. EKOA's 

consistent performance on diverse attack types, e.g., 

DDoS, data exfiltration, and command-and-control traffic, 

shows higher generalizability to new threats. 

From an algorithmic point of view, EKOA addresses 

several weaknesses characteristic of metaheuristic-based 

detection systems. Such approaches as SSA–ALO and 

Table 4: Summary of datasets used for botnet detection 

Dataset Bashlite (%) Mirai (%) Anomaly (%) Normal (%) No. of records No. of features 

Ennio doorbell 89 0 89 11 3,55,506 115 
Samsung webcam 86 0 86 14 3,75,228 115 

Monitoring equipment XC1003 39 59 98 3 8,15,237 115 

Monitoring equipment XC1002 37 58 94 6 8,29,079 115 
Ecobee thermostat 38 61 98 2 8,35,887 115 

Monitoring equipment PT838 37 51 88 12 8,36,902 115 

Monitoring equipment PT737 40 52 92 7 8,28,271 115 
Danmini doorbell 31 64 95 5 10,18,309 115 

Baby monitor 28 55 84 16 10,98,688 115 

 

Table 5: Distribution of botnet-related classes in training and testing sets 

Dataset Testing set (%) Training set (%) 

First class Second class First class Second class 

Monitoring equipment XC1003 Gafgyt (95) Normal (5) Mirai (96) Normal (4) 

Monitoring equipment XC1002 Gafgyt (85) Normal (15) Mirai (92) Normal (8) 

Ecobee thermostat Gafgyt (94) Normal (6) Mirai (96) Normal (4) 
Monitoring equipment PT838 Gafgyt (76) Normal (14) Mirai (82) Normal (18) 

Monitoring equipment PT737 Gafgyt (84) Normal (16) Mirai (86) Normal (14) 

Danmini doorbell Gafgyt (85) Normal (15) Mirai (91) Normal (9) 
Baby monitor Gafgyt (65) Normal (35) Mirai (78) Normal (22) 

Table 6: HV results for feature selection experiments 

HV MOHHOFOA  B-MOABCFS  NSGA-IIFS  MOPSOFS  EKOA 

Std/average Std/average Std/average Std/average Std/average 

Yale_64 0.009/0.687 0.003/0.752 0.0135/0.448 0.005/0.645 0.002/0.771 
CNAE-9 0.011/0.823 0.011/0.834 0.019/0.487 0.008/0.755 0.006/0.852 

LSVT 0.029/0.768 0.072/0.822 0.006/0.404 0.004/0.752 0.025/0.881 

Musk 0.005/0.936 0.008/0.942 0.014/0.618 0.022/0.894 0.003/0.957 
Urban land cover 0.005/0.884 0.007/0.871 0.024/0.596 0.011/0.836 0.003/0.892 

Hill-valley 0.004/0.649 0.021/0.631 0.017/0.531 0.007/0.652 0.002/0.932 

Sonar 0.004/0.91 0.005/0.913 0.021/0.699 0.016/0.891 0.003/0.922 
Ionosphere 0.002/0.93 0.003/0.927 0.091/0.841 0.003/0.922 0.003/0.944 

Vehicle 0.006/0.684 0.006/0.693 0.033/0.613 0.007/0.692 0.003/0.724 

Vowel 0.001/0.826 0.001/0.828 0.03/0.815 0.009/0.826 0.009/0.839 
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MODHHO are typically susceptible to premature 

convergence or limited diversity in solution space, 

potentially inhibiting precision or becoming unstable. 

EKOA integrates four strategic enhancements to 

overcome such shortcomings: 

• Dynamic adjustment strategy: adapts parameters 

dynamically based on search progress, balancing 

stably between exploration and exploitation.  

• Oscillatory chaotic force: introduces controlled 

randomness to prevent stagnation and enhance 

escape from local optima.  

• Crosswise Solution Generation: enhances diversity 

in candidate solutions in later iterations.  

• Elite-driven optimization: ensures that high-

performance solutions control the evolutionary 

process, increasing the likelihood of a global 

optimum. 

Such processes cause EKOA to converge faster than 

classical evolutionary techniques but without a loss in 

solution quality. For example, in comparison with BESO-

HDLBD and SFO-WOA-PSO, which involve the use of 

high-level neural structures or multi-level optimization 

steps, EKOA discovers optimal or near-optimal ensembles 

of features in fewer iterations and with much less 

computational expenditure. 

Feasibility in practical deployments is of concern for 

IoT-driven intrusion detection systems, which are usually 

resource-limited and need a low-latency response. EKOA 

is suitable for such an environment because: 

Table 7. Feature subset results for feature selection experiments 

FN MOHHOFOA  B-MOABCFS  NSGA-IIFS  MOPSOFS  EKOA 

Std/average Std/average Std/average Std/average Std/average 

Yale_64 1.27/8.45 2.46/12.56 1.91/5.55 1.66/3.45 1.11/10.28 

CNAE-9 2.15/8.92 3.66/9.29 2.44/7.41 0.44/5.53 2.66/10.49 

LSVT 1.04/5.23 1.25/4.51 0.83/3.39 3.45/5.02 1.26/6.23 
Musk 1.73/14.03 2.75/10.86 3.55/6.8 1.42/10.05 1.99/15.74 

Urban land cover 2.01/14.05 2.53/11.42 2.56/9.22 1.88/10.55 1.13/14.53 

Hill-valley 1.21/9.15 2.76/9.26 1.11/7.02 2.71/8.25 0.45/9.21 
Sonar 1.42/11.1 1.76/11.02 1.63/5.81 1.96/10.23 2.28/12.18 

Ionosphere 0.71/7.22 0.88/7.26 1.15/5.22 0.71/6.41 0.41/7.56 

Vehicle 0.47/5.23 0.36/5.42 0.22/4.13 0.41/5.35 0.31/5.91 
Vowel 0/9.01 0/9.01 0.19/8.34 0.44/8.44 0/9 

Table 8: Comparative performance analysis of EKOA and other algorithms for botnet detection 

Datasets Algorithms AUC G-mean TPR TNR FAR Accuracy 

Monitoring 

equipment XC1003 

MOHHOFOA  0.88 0.87 0.94 0.82 0.18 0.89 

NSGA-IIFS  0.68 0.67 0.84 0.54 0.47 0.69 
B-MOABCFS  0.83 0.82 0.91 0.74 0.26 0.84 

MOPSOFS  0.67 0.65 0.83 0.52 0.48 0.68 

EKOA 0.98 0.98 0.97 0.99 0.08 0.98 
Monitoring 

equipment XC1002 

MOHHOFOA  0.89 0.87 0.92 0.86 0.14 0.89 

NSGA-IIFS  0.68 0.67 0.73 0.62 0.39 0.68 

B-MOABCFS  0.74 0.73 0.61 0.87 0.14 0.69 
MOPSOFS  0.62 0.61 0.78 0.48 0.53 0.64 

EKOA 0.98 0.98 0.98 0.98 0.02 0.97 

Ecobee thermostat MOHHOFOA  0.89 0.88 0.94 0.85 0.17 0.9 
NSGA-IIFS  0.72 0.71 0.87 0.57 0.44 0.72 

B-MOABCFS  0.85 0.86 0.91 0.82 0.18 0.87 

MOPSOFS  0.77 0.77 0.78 0.73 0.28 0.78 
EKOA 0.99 0.99 0.99 0.98 0.05 0.98 

Monitoring 

equipment PT838 

MOHHOFOA  0.9 0.9 0.95 0.85 0.16 0.91 

NSGA-IIFS  0.76 0.74 0.92 0.58 0.41 0.78 
B-MOABCFS  0.81 0.81 0.9 0.7 0.28 0.82 

MOPSOFS  0.77 0.77 0.86 0.67 0.34 0.78 

EKOA 0.98 0.98 0.96 0.98 0.009 0.98 
Monitoring 

equipment PT737 

MOHHOFOA  0.79 0.79 0.92 0.68 0.33 0.82 

NSGA-IIFS  0.65 0.63 0.82 0.49 0.51 0.66 
B-MOABCFS  0.76 0.75 0.88 0.64 0.36 0.78 

MOPSOFS  0.64 0.61 0.84 0.44 0.55 0.65 

EKOA 0.97 0.97 0.98 0.95 0.08 0.97 
Danmini doorbell MOHHOFOA  0.87 0.86 0.93 0.82 0.19 0.88 

NSGA-IIFS  0.66 0.63 0.88 0.44 0.56 0.69 

B-MOABCFS  0.77 0.74 0.93 0.59 0.41 0.84 
MOPSOFS  0.69 0.67 0.87 0.52 0.48 0.71 

EKOA 0.98 0.98 0.97 0.91 0.04 0.98 

Baby monitor MOHHOFOA  0.92 0.92 0.96 0.88 0.12 0.92 

 NSGA-IIFS  0.68 0.68 0.76 0.62 0.39 0.67 

 B-MOABCFS  0.83 0.83 0.79 0.89 0.11 0.83 

 MOPSOFS  0.71 0.71 0.61 0.82 0.18 0.71 

 EKOA 0.97 0.97 0.99 0.94 0.06 0.97 
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• Low execution time: Feature selection using EKOA 

is computationally lightweight and does not depend 

on deep learning backbones or large ensemble 

models.  

• Classifier compatibility: The system leverages 

efficient classifiers (KNN and decision tree), which 

are known for fast inference times and ease of 

integration on edge devices.  

• Scalability: The modular design allows the 

framework to be deployed on distributed or 

hierarchical architectures such as cloud-edge 

systems, IoT gateways, and embedded devices. 

These advantages make EKOA a compelling and 

high-performance substitute for more advanced or 

specialized intrusion detection methods. It perfectly 

balances speed, accuracy, and scalability, the essential 

properties for real-time IoT network security in high-

speed applications. 

7 Conclusion 
This paper proposed an EKOA-driven optimal IoT 

security feature selection intrusion detection system. 

EKOA incorporates adaptive control, chaotic force 

modulation, cross-sectional solution construction, and 

elite-based fine-tuning to promote convergence and 

robustness. Experimental verifications demonstrated 

higher detection accuracy and reduced feature 

dimensionality against state-of-the-art contemporary 

multi-objective methods on standard benchmark sets. 

Future work will extend the system for real-time intrusion 

detection based on online learning models. Secondly, 

realization in realistic-edge scenarios and exploring 

transfer learning methods between IoT applications will 

be attempted to enhance adaptability and scalability. 
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