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With the growing demand for health monitoring in bridge engineering, non-contact displacement 

measurement techniques have received extensive attention. A novel bridge displacement monitoring 

method combining spatially constrained ORB feature extraction with kernel correlation filtering (KCF) 

and longshort-term tracking learning detection (TLD) algorithms is proposed in the study. The overall 

method is divided into two stages. First, the traditional ORB feature matching is improved by introducing 

spatial location constraints to enhance the accuracy of feature point detection and description. Second, 

the improved features are combined with the KCF tracking framework and a Gaussian pyramid (GP) is 

introduced to adapt to the scale change. Meanwhile, the TLD algorithm is integrated to deal with the 

occlusion problem to realize robust displacement tracking. The performance of the proposed method is 

experimentally validated on the OTB and LaSOT datasets. The results showed that with the optimal 

parameters (descriptor length of 256 and Gaussian scale number of 4), the feature extraction and 

tracking accuracy of the new model was close to 0.95, and the detection time was as short as 20ms. The 

tracking loss rate of the proposed model under 50% occlusion was reduced to 15%. Compared with the 

state-of-the-art models such as YOLOv5, Mask R-CNN, and Faster R-CNN, the proposed method 

performed better in terms of precision rate (92.56%), recall rate (90.11%), F1 score (91.10%), and 

average displacement error (0.01mm). The results show that the proposed method has higher precision, 

stronger robustness, and better detection efficiency in the complex bridge environment, which provides an 

effective and reliable technical path for bridge engineering displacement monitoring. 

Povzetek: Predlagana je metoda za brezkontaktno zaznavanje pomikov mostov, ki združuje prostorsko 

omejeni ORB, KCF s prilagoditvijo merila (GP) in TLD za robustno sledenje kljub okluzijam. 

 

1 Introduction 
Engineering surveying is an indispensable and important 

link in fields such as civil engineering, construction 

engineering, transportation, and energy engineering. Its 

task is to collect and analyze information on the 

geometric shape, location, and dimensions of terrain, 

buildings, structures, and various engineering facilities 

through scientific and precise measurement methods [1]. 

Engineering surveying not only provides basic data for 

the planning and design of projects but also supports 

positioning, layout, and monitoring after completion 

during the construction process. In this context, health 

monitoring and displacement measurement of bridge 

engineering have gradually become important application 

areas based on image processing technology. As an 

important transportation hub, the structural health of 

bridges is directly related to public safety. Traditional 

bridge displacement measurement often uses contact 

sensors such as displacement sensors, accelerometers, etc. 

However, these methods are affected by complex bridge 

environments, dynamic loads, and other factors in 

practical applications, making it difficult to achieve 

efficient and long-term monitoring [2]. In recent years,  

 

non-contact displacement measurement methods based on  

image processing has received wide attention in bridge  

health monitoring. Du et al. proposed a new strategy 

combining template matching and feature point detection  

for the problem of insufficient accuracy of traditional 

region-of-interest measurements. This strategy was 

experimentally verified to have good accuracy and 

stability in laboratory models, high-speed railroad bridges, 

and cable-stayed bridges [3]. Colombani and Andrawes 

improved feature-based image alignment parameters and 

proposed a new detection method that maintains 

measurement accuracy within the error range of 

traditional displacement sensors. The error of this method 

during laboratory testing was only 3.3% [4]. Han et al. 

combined adaptive regions of interest with adaptive 

binarization methods to construct a new detection model 

to address the issues of interference and large accuracy 

fluctuations in visual displacement measurement. This 

model performed well in infrastructure testing at different 

scales, with high accuracy and feasibility [5]. In addition, 

to enhance the long-term monitoring effectiveness, 

Shajihan et al. developed a wireless synchronized 

SmartVision system, which achieved 94.33% accuracy in 

the real test of cable-stayed bridges, verifying the 

mailto:maxiaolinww@126.com


2 Informatica 49 (2025) 1–14 X. Ma et al. 

feasibility of wireless visual monitoring [6]. For specific 

technical applications, kernel correlation filtering (KCF) 

has become a research hotspot in recent years for its 

efficient frequency domain target tracking capability [7-

8]. Liu et al. combined KCF with log-polar coordinate 

transformation in ship traveling tracking control, which 

effectively improved the tracking robustness and 

accuracy [9]. Oriented-fast and rotated brief (ORB), as a 

lightweight feature extraction and description algorithm, 

also shows its potential in bridge monitoring. For 

example, Bianchi et al. proposed rigid, deformable, and 

hybrid image alignment strategies based on ORB, which 

significantly improved the reliability of damage evolution 

monitoring [10]. Meanwhile, Du et al. designed a visual 

displacement measurement scheme adapted to different 

lighting environments by combining ORB with a UAV 

platform, which verified its efficiency and accuracy in 

bridge monitoring [11]. Overall, although the existing 

methods have made some progress in improving the 

accuracy of non-contact monitoring, there are still 

problems such as accuracy degradation and unstable 

tracking in complex environments, especially in coping 

with target scale changes and occlusion interference. In 

response to these shortcomings, this article proposes to 

improve ORB feature extraction by combining spatial 

constraints with KCF, Gaussian pyramid (GP), and 

tracking learning detection (TLD) algorithms. This article 

constructs a robust displacement detection framework for 

complex engineering scenarios to further enhance the 

adaptability and reliability of the system. The study gives 

a comparison summary table of the above different 

methods, as shown in Table 1. 

 

Table 1: Indicator test results for different models. 

Method Reference 
Precisio

n (%) 

Recall 

(%) 

F1 

Score 

(%) 

Average displacement 

error (ADE) 

Template Matching + Feature 

Detection 
Du et al. [3] 88.75% 

85.32

% 
86.99% 0.08mm 

Feature Image Registration Method 
Colombani 

Andrawes [4] 
94.67% 

92.43

% 
93.54% 0.04mm 

Adaptive Region of Interest and 

Binarization Method 
Han et al. [5] 91.20% 

89.50

% 
90.34% 0.10mm 

Wireless Synchronized SmartVision 

System 

Shajihan et al. 

[6] 
94.33% 

93.10

% 
93.71% 0.05mm 

KCF with Logarithmic Polar 

Coordinate Transformation 
Liu et al. [9] 89.35% 

87.14

% 
88.23% 0.12mm 

ORB Combined with Drone Du et al. [11] 91.88% 
90.12

% 
90.99% 0.06mm 

 

In summary, although there are various computer 

vision methods applied to bridge displacement detection, 

there are two major bottlenecks in the existing 

mainstream technologies. One of them is poor 

adaptability to changes in target scale. When the camera 

angle or target distance changes, the detection accuracy is 

prone to decrease. The second issue is that under partial 

target occlusion or environmental interference, the 

tracking robustness is insufficient, which can easily lead 

to loss or misidentification. These problems seriously 

limit the practicality and reliability of the visual 

displacement monitoring system in complex engineering 

environments. To address the above problems, this paper 

innovatively proposes a new bridge displacement 

detection method based on spatial constraints to improve 

ORB feature extraction, combining KCF with the long 

short-term TLD algorithm. The overall design is divided 

into two stages. Firstly, the ORB feature matching 

process was optimized by introducing a spatial position 

constraint mechanism, which improved the accuracy and 

anti-interference ability of feature detection and 

description. Secondly, the improved features are 

combined with the KCF framework and combined with  

 

GP to enhance the adaptability to scale changes, as well 

as the introduction of the TLD module to enhance the 

target recovery ability under occlusion conditions, 

thereby achieving robust displacement tracking in 

complex environments. In terms of methodology, this 

study prioritizes ORB and KCF algorithms that require 

less computation and are suitable for real-time 

applications, rather than deep detection methods that rely 

on large-scale data training. This study is mainly based 

on literature, indicating that ORB has excellent feature 

extraction speed and scalability, while KCF is both 

efficient and stable in small-scale target tracking, with 

flexible deployment and low cost. It should be noted that 

the research algorithm outperforms You Only Look Once 

version 5 (YOLOv5), Mask Region-Based Convolutional 

Neural Network (Mask R-CNN), and Faster Region-

Based CNN (Faster R-CNN) in most of the metrics in the 

OTB and LaSOT benchmarks. Meanwhile, some of the 

metrics such as Average Precision (AP) values are close 

to the other methods in lightly loaded scenarios, so they 

are not completely superior to other methods in all 
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comparisons. Focusing on the research motivation, this 

paper establishes three major objectives. The first is to 

improve the accuracy and robustness of ORB feature 

matching through spatial constraint strategies. The second 

is to integrate KCF with GP and TLD modules to build a 

robust tracking system adapted to scale change and 

occlusion environments. The third is to systematically 

evaluate the performance of the improved model under 

different loading, occlusion, and scale change conditions. 

Further specific research questions are proposed, 

including: how much does the introduction of GP 

improve the tracking robustness under multi-scale image 

conditions; The impact of TLD module fusion on 

detection and restoration under occlusion; The degree of 

improvement in feature extraction accuracy between 

spatial constraint matching strategy and standard ORB. 

Through system modeling, experimental verification, and 

comparative analysis, the aim is to provide a more 

accurate, robust, and real-time solution for non-contact 

displacement monitoring in bridge engineering. The 

purpose is to promote the application and development of 

structural health monitoring based on image processing 

technology in engineering practice. 

2 Methods and materials 

2.1 Feature extraction and description of 

engineering images based on improved 

ORB 

Bridge displacement monitoring is a vital component of 

the bridge health monitoring system. The purpose is to 

track the displacement of key parts of the bridge in real 

time, and detect and warn potential structural problems of 

the bridge promptly [12-13]. This study first simulates the 

distribution of real bridge structures and their key points. 

These monitoring points are mainly distributed in areas 

such as the support structure, mid-span, bridge deck, and 

connection points of the bridge that are prone to stress 

concentration and deformation. The simulation diagram is 

shown in Figure 1. 

(a) Bridge displacement measurement

(b) Simulated bridge and point distribution map
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Figure 1: Schematic diagram of bridge displacement simulation and distribution of monitoring points 

Figure 1(a) shows the measured displacement of the 

bridge under actual stress conditions. The vertical 

displacement in the mid-span region is more obvious, 

showing the difference in stress distribution. Figure 1(b) 

shows the distribution of monitoring points of the 

simulated bridge. The reasonable distribution of points 

covers the support structure, the mid-span, and the deck 

area of the bridge, which can comprehensively reflect the 

displacement changes of the bridge under different stress 

conditions. Traditional contact sensors are limited by the 

environment and use. It is difficult to obtain accurate data 

for a long time and at a high frequency. This study 

provides a more efficient and stable solution through 

video monitoring technology. Traditional contact sensors 

are limited by environmental conditions and find it 

difficult to obtain accurate data over a long period of time 

and at high frequencies. To solve this problem, this study 

introduces video monitoring technology, which records 

the displacement changes of bridges under different load 

conditions through cameras, and combines image 

processing algorithms to automatically analyze the 

displacement data. Among them, ORB is a fast and robust 

feature extraction and matching algorithm. Compared 

with traditional algorithms, ORB has the advantages of 

low computational complexity and fast speed, mainly 

segmented into feature point detection and description 

[14-15]. Among them, the feature point detection part 

uses the features from the accelerated segment test 

(FAST) algorithm to detect corners in the image. Corner 

detection is shown in Figure 2 [16]. 
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Figure 2: Schematic diagram of FAST corner detection process 
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Figure 2 shows a schematic of the FAST corner point 

detection process. The working principle of this 

algorithm is to select a pixel point P in the image, draw a 

circle around it, and calculate the brightness difference 

between all pixels on the circle and point P. The 

algorithm is based on the number of pixel points in the 

circle. If the number of pixel points within that circle with 

a larger difference from point P exceeds 0.75 times the 

circumference of the circle, point P is considered as a key 

feature point. In this way, FAST corner point detection 

can effectively identify the significant feature points in an 

image and provide the basis for subsequent feature 

matching. The calculation formula for FAST corner 

detection is shown in equation (1). 

 

( ) ( )iI P I p T− ∣ ∣ (1) 

 

In equation (1), ( )I P  is the brightness value of pixel 

P . ( )I P  is the brightness value of the i -th pixel on the 

circumference. T  is the preset brightness difference 

threshold. The corners detected by FAST are further 

accelerated by ORB using an integral graph to calculate 

the principal direction of each corner and achieve 

rotational invariance, as shown in equation (2). 

 

1
( ( , ))

tan ( )
( ( , ))

y

x
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In equation (2),   and ( , )x y  are the main direction 

and coordinate position of the key point. ( , )I x y  is the 

pixel value of the image near the key point. After 

completing corner detection and main direction 

assignment, ORB uses the binary robust independent 

elementary features (BRIEF) algorithm to generate 

feature descriptors, as shown in equation (3) [17]. 
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In equation (3), 
ap  and 

bp  are the two pixels to be 

compared. ( )aI p  and ( )bI p  are the brightness values of 

pixels 
ap  and 

bp . However, when the distribution of 

feature points is sparse or the scene is complex, the 

matching accuracy of the ORB algorithm may be 

affected. Therefore, this study introduced SCD to 

improve ORB. The core idea of SCD is to add constraints 

on spatial position information during the feature point 

matching process, ensuring that the matched feature 

points are not only similar in descriptors but also have a 

certain degree of correlation in spatial position. The 

improved ORB engineering image feature extraction and 

description process is shown in Figure 3. 
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Figure 3: Improved ORB engineering image feature extraction and description process. 

In Figure 3, the first step is to use FAST corner 

detection to extract key points from the image, and set a 

brightness difference threshold 300T =  for corner 

detection. For the detected key points, the second step is 

to establish a spatial model, record their coordinate 

positions, and ensure that these points conform to the 

expected distribution within a 500-pixel range. Feature 

matching first uses BRIEF to generate feature descriptors, 

with a descriptor length set to 256 bits. By calculating the 

Hamming distance of descriptors, preliminary matching 

pairs are selected, and a matching threshold of 50 bits is 

set. Then, the spatial position information of the matching 

points is compared with the expected distribution. 

Matching points with a spatial distance exceeding 30 

pixels will be filtered out to ensure spatial consistency. 

The spatial distance constraint formula is shown in 

equation (4). 

2 2

1 2 1 2( ) ( )sd x x y y= − + − (4) 

In equation (4), 
sd  is the spatial distance between 

two matching points. 
1 1( , )x y  and 

2 2( , )x y  are the 

coordinates of the matching points in the two images. 

When the spatial distance 
sd  is less than the set 

threshold, such as 30 pixels, it indicates that the matching 

is effective. The calculation formula for measuring the 

similarity of feature descriptors using Hamming distance 

is shown in equation (5). 

1 2

1

( )
n

i i

h

i

d b b
=

=  (5) 

In equation (5), 
hd  is the Hamming distance between 

two descriptors. 1

ib  and 2

ib  are the i -th bits of descriptor 

1 and descriptor 2. n  is the length of the descriptor. 
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When the Hamming distance 
hd  is less than the set 

threshold, such as 50 bits, the matching is valid. 

2.2 Construction of engineering displacement 

tracking and detection model 

integrating KCF-ORB 

After completing the feature extraction and description of 

engineering images, this study introduces KCF for target 

tracking to meet the displacement monitoring 

requirements in bridge engineering. KCF has significant 

advantages over other tracking algorithms in fast 

computation speed and high tracking accuracy. The basic 

principle is to calculate the response map of the target in 

the image frequency domain through a correlation filter 

after initialization, and then find the optimal position of 

the target [18-20]. The learning formula for the relevant 

filter is expressed in equation (6). 

ˆ ˆ *ˆ
ˆ ˆ *

Y X
H

X X 


=

 +
(6) 

In equation (6), Ĥ  is the frequency domain of the 

filter. X̂  is the frequency domain feature of the target 

area. Ŷ  is the ideal output response diagram.   is the 

regularization parameter. *  is a complex conjugate. The 

formula for the target response graph is shown in 

equation (7). 
1 ˆ ˆ( )R H Z −=  (7) 

In equation (7), R  is the response graph of the target. 
1 −

 is the inverse fast Fourier transform. Ẑ  is the 

frequency domain feature of the target area in the current 

frame. The target update formula is shown in equation 

(8). 

1
ˆ ˆ ˆ(1 )t t newH H H + = − + (8) 

In equation (8), 1
ˆ

tH +  is the filter for frame 1t + .   is 

the learning rate. ˆ
newH  means the novel filter learned in 

the current frame. The KCF algorithm typically describes 

the appearance of the target object through ahistogram of 

oriented gradient (HOG) features. HOG only calculates 

gradient histograms for local grid images at a single 

scale, and its computational efficiency is generally poor 

when the scale is variable. Therefore, this study 

introduces the theory of scale space. This theory uses GP, 

which means gradually reducing the image and applying 

Gaussian smoothing to form multiple levels of image 

hierarchy, each of which can be used to track the target 

[21-22]. The GP structure diagram is shown in Figure 4. 
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Figure 4: GP principal schematic. 

In Figure 4, GP downsamples the original image 

multiple times to generate hierarchical images of different 

scales step by step. During the downsampling process, 

each level of theimage undergoes Gaussian smoothing to 

remove noise and detail information, ensuring that larger 

image features remain clear and visible in higher-scale 

images. Specifically, as the scale increases, the resolution 

of the image gradually decreases, and the features in the 

image are also gradually simplified. The GP construction 

formula is equation (9). 

, , , , ,( ) ( ) ( )L x y G x y I x y =  (9) 

In equation (9), ( ), ,L x y   denotes the image in the 

scale space. ( ), ,G x y   is a Gaussian kernel.   is the 

standard deviation. The calculation formula for 

downsampling is shown in equation (10). 

 

, 2 ,2 ,( ) ( )downL x y L x y = (10) 

 

In equation (10), ( , )downL x y  is the downsampled 

image. 2 ,2 ,( )L x y   is the image after Gaussian 

smoothing, and the selected pixel coordinates are 

sampled every two pixels of the original image. In 
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addition, to solve the occlusion problem of the KCF 

algorithm in displacement image feature tracking and 

detection of bridge engineering, TLD is introduced in this 

study. Compared to other methods, the learning module 

in TLD can dynamically update the model based on 

changes in the appearance of the target during tracking, 

adapting to changes in features such as shape, brightness, 

and texture of the target. The KCF-TLD process after 

combining the two is shown in Figure 5. 
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Figure 5: KCF-TLD process. 

In Figure 5, step 1 is to conduct a preliminary 

analysis of the input video and use KCF to initialize and 

track the target. When there is no obstruction or obvious 

appearance change of the target, KCF can track the target 

stably and quickly. However, the KCF algorithm may fail 

in the presence of target scale changes or partial 

occlusion. For example, in some test sequences, when the 

target undergoes rapid motion or is partially occluded, the 

response value of the KCF may decrease below a 

threshold, resulting in tracking failure. In this case, the 

detection module of the TLD is triggered to relocate the 

target by comparing the similarity with the initial frame. 

The similarity is usually calculated by cosine similarity or 

Euclidean distance, and if the similarity is high, the target 

is considered to be successfully recovered. The key 

parameters of TLD include the learning rate, the 

similarity threshold, and the occlusion area threshold. In 

this study, the learning rate is set to 0.1, the similarity 

threshold is 0.8, and the occlusion area threshold is 

50%.Next, if the TLD detector successfully finds the 

target, the TLD learning module will learn and update the 

appearance features of the new target to adapt to 

subsequent changes in the appearance of the target, 

ensuring the accuracy of subsequent tracking. Finally, the 

successfully updated target information will be fed back 

to KCF for stable target tracking. If the detection fails, 

the process will end. TLD relocates the target during the 

detection phase by comparing the similarity between the 

target in the present and the initial frames. The similarity 

is calculated as in equation (11). 

 
*

1

* *2 2

1 1

( ( ) ( ))

( ( )) ( ( ))

n

current referencei

n n

current referencei i

F i F i
S

F i F i

=

= =


=





 
(11) 

 

In equation (11), S  is the similarity value between 

the current and reference frames, that is, the initial frame. 

( )currentF i  is the feature vector of the target area in the 

current frame. ( )referenceF i  is the feature vector of the 

target area in the reference frame. *n  is the dimension of 

the eigenvector. In addition, the expression for updating 

the objectives of online learning is shown in equation 

(12). 

 

( )1new old currentM M F = − + (12) 

 

In equation (12), 
newM  and 

oldM  are the updated and 

previous frame's target models.   is the learning rate. In 

summary, this study combines the improved ORB and 

improved KCF to propose a novel engineering 

displacement tracking and detection model, as shown in 

Figure 6. 
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Figure 6: New engineering displacement tracking detection modeling process. 

In Figure 6, the processing flow of the new model is 

mainly separated into 7 steps. Step 1 is to construct a 

geometric model of the bridge, simulating the stress and 

deformation of the bridge under actual operating 

conditions. Step 2 is to identify the key monitoring areas 

of the bridge, including supporting structures, spans, and 

bridge decks, to ensure that displacement detection 

covers critical areas. Step 3 is to use SCD to improve the 

ORB algorithm, extract key feature points from the image 

through FAST corner detection, and generate BRIEF 

descriptors. Step 4 is to calculate the Hamming distance 

of feature points and introduce spatial position constraints 

to ensure the accuracy and robustness of feature point 

matching. Step 5 is to use the KCF algorithm to track the 

extracted feature points in real time and handle the scale 

change problem through GP. Step 6, when KCF tracking 

fails or the target is occluded, the TLD module relocates 

the target through similarity detection. Step 7, the TLD 

learning module conducts online learning on changes in 

the appearance of the target, dynamically updates the 

target model, and ensures the accuracy of subsequent 

tracking. The pseudo-code of the algorithm for improving 

ORB-KCF-GP-TLD is shown in Figure 7. 

# Step 1: ORB Feature Extraction with Spatial Constraints

def extract_orb_features(image):

    keypoints = detect_keypoints(image)     # Detect keypoints using FAST

    descriptors = compute_orb_descriptors(keypoints)  # Compute ORB descriptors

    constrained_keypoints = apply_spatial_constraint(keypoints)  # Apply spatial constraints

    return constrained_keypoints, descriptors

# Step 2: KCF Tracking

def track_with_kcf(image, target):

    tracker = initialize_kcf_tracker(image, target)  # Initialize KCF tracker

    position = track_target(tracker, image)  # Track the target

    if tracking_failed(position):

        return None  # KCF fails

    return position

# Step 3: TLD for Occlusion Recovery

def recover_with_tld(image, last_position):

    detector = initialize_tld_detector(image, last_position)  # Initialize TLD

    position = detect_target_with_tld(detector, image)  # Detect with TLD

    if position is not None:

        return position

    return None

# Step 4: GP for Scale Adjustment

def adjust_scale_with_gp(image):

    return apply_gaussian_pyramid(image)  # Generate image pyramid for scale change

# Step 5: Combine ORB, KCF, TLD, and GP

def robust_tracking(image, target):

    keypoints, descriptors = extract_orb_features(image)  # Extract ORB features

    kcf_result = track_with_kcf(image, target)  # Track with KCF

    

    if kcf_result is None:

        tld_result = recover_with_tld(image, target)  # Recover with TLD if KCF fails

        return tld_result if tld_result else None

    

    # Scale adjustment with GP

    scaled_images = adjust_scale_with_gp(image)

    for img in scaled_images:

        kcf_result = track_with_kcf(img, target)  # Re-track at different scales

        if kcf_result:

            return kcf_result

    

    return None  # Return None if tracking fails

# Example usage

image = load_image("bridge_frame.jpg")  # Load image

target = define_target(image)  # Define target region

# Run robust tracking

result = robust_tracking(image, target)

if result:

    print("Tracking successful:", result)

else:

    print("Tracking failed.")

Figure7: Algorithmic Pseudocode for Improving ORB-

KCF-GP-TLD 



8 Informatica 49 (2025) 1–14 X. Ma et al. 

3 Results 

3.1 Performance testing of engineering 

displacement tracking detection model 

This study sets up a suitable experimental environment, 

with Intel Core i7-12700K CPU, NVIDIA GeForce RTX 

3080 GPU, 32GB DDR4 memory, and Windows 10 64 

bit operating system. The Object Tracking Benchmark 

(OTB) and Large-scale Single Object Tracking Dataset 

(LaSOT) are used as test data sources. The OTB dataset 

contains video sequences of 50 different scenarios, and 

the LaSOT dataset contains 1,400 video sequences 

covering a wide range of target classes and complex 

environments. The experimental equipment includes a 

20-megapixel Basler ace acA2040-55um industrial 

camera equipped with a 25-mm lens, a frame rate of 30 

fps, and a resolution of 1920×1080. In addition, the 

bridge model simulated in the experiment adopts standard 

industrial design. The lighting conditions are natural 

ambient light and adjustable artificial light sources to 

ensure experimental accuracy. The programming 

language used for the model is Python 3.8, and the 

OpenCV library is used for image processing. The 

experimental environment and parameters are shown in 

Table 2. 

 

 

 

 

Table 2: Experimental environment and parameter situation

Parameter 

Symbol 

Algorithm 

Component 
Parameter Description Setting Value/Explanation 

γ (gamma) KCF Learning rate used for target update 
Default value: 0.2, optimized 

selection 

λ (lambda) KCF 
Regularization parameter controlling filter 

update smoothness 
Default value: 0.01 

α (alpha) KCF 
Learning rate for target response, affecting 

accuracy and stability 

Default value: 0.01, optimized 

value: 0.05 

T (threshold) KCF, ORB 
Matching distance threshold for target 

matching 

KCF: 50-bit Hamming distance, 

ORB: 50-bit (optimized choice) 

KCF Kernel KCF 
Type of kernel function used for the 

correlation filter 
Gaussian kernel (Gaussian Kernel) 

ORB Pyramid 

Levels 
ORB 

Number of pyramid levels for handling 

scale variation 

4 levels (optimal choice based on 

experiments) 

ORB Feature 

Count 
ORB Maximum number of features to extract 

500 features (optimal choice for 

speed and accuracy) 

ORB Descriptor 

Length 
ORB 

Length of ORB descriptors, affecting 

matching accuracy and computation speed 

256 bits (optimal choice after 

experiment) 

Gaussian 

Pyramid σ 

(sigma) 

Gaussian 

Pyramid 

(GP) 

Standard deviation for Gaussian smoothing 

in pyramid image generation 
Set σ = 1.0 as the standard value 

Gaussian 

Pyramid Levels 

Gaussian 

Pyramid 

(GP) 

Number of levels in the GP 
4 levels (providing good scale 

adaptability in experiments) 

ORB Spatial 

Constraint 

Range 

ORB 
Spatial constraint range for feature 

matching consistency 

30 pixels (spatial constraint when 

matching features) 

 

From Table 2, first, the learning rate γ of the KCF 

algorithm is set to 0.2, a setting that effectively balances 

the speed and accuracy of the target update. The 

regularization parameter λ is 0.01, which aims to ensure 

smoothness and prevent overfitting during filter updating. 

The learning rate α of the target response is selected to be 

0.01 and optimized to be 0.05 to ensure the accuracy and 

stability of tracking. The distance threshold T for 

matching is an important parameter in the KCF and ORB 

algorithms. For KCF, the threshold is set to 50-bit 

Hamming distance, and the matching threshold for ORB 

is also 50-bit, which is optimized through experiments to 

ensure high efficiency and accuracy of target matching. 

For the KCF kernel function, Gaussian Kernel is chosen  

 

because it has better smoothing, which can reduce the 

influence of noise in the target tracking process and 

improve robustness. The pyramid level of the ORB 

algorithm is set to 4 layers, which makes the algorithm 

better adapt to changes in the scale of the target and 

improves the adaptive ability to multi-scale targets. The 

number of features is set to 500, which is an 

experimentally verified balance point that ensures speed 

and accuracy without over-consuming computational 

resources. The descriptor length of ORB is set to 256 bits, 

a setting that provides high matching accuracy as well as 

good computational efficiency. The standard deviation 

(σ) in the GP is set to 1.0, and the image after Gaussian 

smoothing can effectively remove the noise and highlight 
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the larger scale features, which helps the algorithm to 

better deal with scale changes. The number of layers in 

the GP is set to 4, which is the optimal value chosen 

based on the experimental results and helps to improve 

the scale adaptation and image smoothing. The spatial 

constraint range of the ORB is set to 30 pixels, and this 

constraint helps to maintain the spatial consistency during 

the feature matching process, avoiding the mis-matching 

due to the positional differences. This study first conducts 

value selection tests on two types of hyperparameters, the 

BRIEF descriptor length and the GP scale number, to 

ensure the optimal testing performance of the final model. 

The result is shown in Figure 8. 
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Figure 8: Hyperparameter selection test. 

Figures 8 (a) and (b) show the test results of selecting 

values for BRIEF descriptor length and GP degree. In 

Figure 8 (a), when the descriptor length of BRIEF is 256, 

the feature extraction accuracy rapidly improves after 100 

iterations and maintains high accuracy above 0.95 in 

subsequent training, demonstrating good stability and 

convergence. The descriptor with a length of 128 also 

achieves an accuracy close to 0.90, but its performance is 

slightly inferior compared to 256. The other two types of 

BRIEF descriptors perform poorly, especially in terms of 

64-bit accuracy and stability. In Figure 8 (b), when the 

scale of GP is 4, the feature tracking accuracy rapidly 

improves and stabilizes at around 0.95 in subsequent 

training, demonstrating the best feature tracking 

performance. When the scale is 3, 4, and 5, although the 

accuracy is higher, the overall performance is slightly 

lower than when the scale is 4. In summary, the optimal 

length for the BRIEF descriptor is 256, and the optimal 

number of scales for GP is 4. Under the setting of these 

two types of hyperparameters, the model achieves 

optimal performance in feature extraction and tracking 

accuracy. Figure 9 displays the ablation test results of the 

final model. Among them, the loss rate is defined as the 

ratio of the number of frames in which the model fails to 

successfully identify the target position in the current 

frame during continuous tracking to the total number of 

frames. That is, when the intersection integral ratio (IoU) 

is less than 0.3, the target area is considered a tracking 

failure area. 
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Figure 9: Ablation test results. 
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Figure 9(a) shows the results of the ablation test in 

terms of detection time and Figure 9(b) shows the results 

in terms of target loss rate. The detection time increases 

linearly as the video frame rate increases. At 30fps, the 

detection time of the improved ORB model is 35ms, 

which decreases to 30ms with the addition of KCF, 25ms 

with the addition of GP, and 20ms with the combination 

of TLD, showing the significant effect of the combination 

of KCF, GP, and TLD in improving the efficiency. In 

Figure 9(b), the target loss rate increases as the occlusion 

area increases. Under 20% occlusion, the loss rate of the 

improved ORB model is 25%, which decreases to 15.4% 

with the addition of KCF, GP, and TLD. Under 50% 

occlusion, the loss rate of the improved ORB is %, while 

the loss rate of the combination of TLD is 15.0%. These 

results show that TLD effectively reduces target loss in 

the occlusion case. Spatial constraint distribution (SCD) 

significantly improves the stability of feature matching, 

especially under occlusion and motion blur conditions. 

SCD reduces mis-matching and enhances robustness by 

ensuring the spatial consistency of the matched 

features.KCF performs excellently in tracking accuracy 

and real-time performance. GP enhances the adaptability 

of the system to targets of different scales. The TLD 

module effectively solves the occlusion problem. The 

three together improve the stability and accuracy of the 

model in complex environments. In addition, the paper 

utilizes precision (P), recall (R), F1 score, and average 

displacement error (ADE) as indicators to introduce a 

more cash-based algorithm model for comparison. For 

example, YOLOv5, Mask R-CNN, and Faster R-CNN are 

tested. Table 3 lists the specific results. Among them, the 

parameters of YOLOv5 are set, withan input size of 

640×640, batch size of 16, learning rate of 0.001, using 

default pre-training weights. Mask R-CNN uses 

ResNet50 backbone, with an input size of 800×800, batch 

size of 16, learning rate of 0.0025, using COCO pre-

training weights. Faster R-CNN uses ResNet50 backbone, 

withan input size of 800×800, batch size of 16, learning 

rate of 0.0025, using ImageNet pre-training weights. 

CNN uses a ResNet50 backbone with an input size of 

600×600, batch size of 8, learning rate of 0.001, using 

ImageNet pre-training weights. The parameters of all 

baseline methods are kept in the same training conditions 

to ensure a fair comparison. 

Table 3: Indicator test results for different models. 

Data set Model P/% R/% F1/% ADE/mm p 

OTB 

YOLOv5 87.91 88.71 88.31 0.02 0.003 

Mask R-CNN 89.84 86.52 88.18 0.02 0.006 

Faster R-CNN 90.17 88.45 89.31 0.03 0.012 

Research model 92.56 89.29 90.93 0.01 / 

LaSOT 

YOLOv5 88.24 85.27 86.76 0.02 0.004 

Mask R-CNN 90.63 86.58 88.61 0.02 0.009 

Faster R-CNN 90.89 88.72 89.81 0.02 0.015 

Research model 92.08 90.11 91.10 0.02 / 

 

As shown in Table 3, the proposed model 

demonstrates superior performance on both OTB and 

LaSOT datasets. On the OTB dataset, the accuracy of the 

proposed model is 92.56%, the recall is 89.29%, the F1 

score reaches 90.93%, and the ADE is only 0.01 mm. On 

the LaSOT dataset, the P value is 92.08%, the R value is 

90.11%, and the F1 score is 91.10%. Compared with the 

state-of-the-art methods such as YOLOv5, Mask R-CNN, 

and Faster R-CNN, the present model shows significant 

advantages in the two key indexes, namely, F1 score and 

ADE. It is further verified by t-test that there are 

statistically significant differences in multiple 

performance metrics at the p<0.01 level, indicating that 

the present model possesses stronger displacement 

tracking accuracy and robustness in complex 

environments. 

3.2 Simulation testing of engineering 

displacement tracking detection model 

In this study, the experimental simulation is conducted 

using a 20-megapixel industrial camera equipped with a  

 

25mm lens, model Basler ace acA2040-55um, with a 

frame rate of 30fps and a resolution of 1920×1080.This 

camera is used to simulate the displacement variations of 

the bridge structure under different stress conditions. The 

simulation environment is built based on the Unity 3D 

engine and simulates various forces and environmental 

conditions of the bridge, including light load, medium 

load, and heavy load. The experimental simulation 

scenario is exhibited in Figure 10. Light, middle, and 

heavy loads represent different bridge stresses. Light and 

small loads simulate the stress of bridges under normal 

traffic flow. Middle load refers to simulating the stress of 

a bridge under high traffic flow or when light vehicles 

pass through it with a medium load. Heavy load 

represents simulating the stress of bridges under heavy 

vehicles or extreme weather conditions using large loads. 
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Based on this environment, this study conducts tests 

using AP and actual monitoring time as indicators. Figure 

11 shows the detection comparison of four models. 

Figure10: Experimental simulation scenarios.  
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Figure 11: Displacement monitoring tests under different loads. 

Figures 11 (a), (b), and (c) show the test results of 

model indicators under light, middle, and heavy loads. In 

Figure 11, under light load conditions, the AP values of 

YOLOv5, Mask R-CNN, and Faster R-CNN are 88.21%, 

89.34%, and 89.91%, respectively. The research model 

reaches 92.17%, which is about 2.5% higher than the 

average, while the detection time is 15ms, which is about 

40% faster than the average time of other models. Under 

middle load conditions, the AP values of YOLOv5 and 

Mask R-CNN are 85.38% and 86.72%, respectively, 

while the AP value of Faster R-CNN is 90.03%. The AP 

value of the research model is 92.06%, leading by about 

1.5% to 6.5% respectively. The detection time is 30ms, 

which is nearly 25% faster than the average of the other 

three. Under heavy load environment, the APs of 

YOLOv5 and Mask R-CNN are 83.41% and 85.14% 

respectively, and 88.06% for Faster R-CNN. The research 

model still reaches 91.33%, with a lead of up to 7.9%, 

and the detection time is controlled at 40ms, which is 

much lower than the other models with a processing 

delay of about 55ms. Overall, the research model 

maintains high detection accuracy and fast operational 

efficiency under all three load conditions. Especially with 

the increase of load, its accuracy advantage becomes 

more significant, indicating that this method has stronger 

robustness and engineering adaptability to complex stress 

scenarios. This study tests displacement and absolute 

error (AE) as indicators, as listed in Table 4. 
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Table 4: Displacement and absolute error testing. 

Condition

al 
Model 

True displacement 

value/mm 

Monitoring of displacement 

values/mm 

AE/m

m 
p 

Light load 

YOLOv5 3.91 3.14 0.37 
0.00

7 

Mask R-CNN 3.91 3.43 0.26 
0.02

1 

Faster R-CNN 3.91 3.77 0.18 
0.06

3 

Research 

model 
o 3.89 0.07 

0.00

0 

Middle 

load 

YOLOv5 9.24 9.01 0.28 
0.00

9 

Mask R-CNN 9.24 9.12 0.16 
0.02

5 

Faster R-CNN 9.24 9.33 0.15 
0.03

9 

Research 

model 
9.24 9.18 0.09 

0.00

2 

Heavy 

load 

YOLOv5 18.87 18.21 0.44 
0.00

6 

Mask R-CNN 18.87 18.64 0.28 
0.01

4 

Faster R-CNN 18.87 18.57 0.31 
0.01

8 

Research 

model 
18.87 18.81 0.11 

0.00

1 

 

From Table 4, under light loading conditions, the 

monitored displacement values of the research model are 

closest to the real values, with an AE of 0.07 mm, 

p=0.000, which is significantly better than the other 

models, and the YOLOv5 error is the largest of 0.37 mm. 

Under middle loading conditions, the AE of the research 

model is 0.09 mm, p=0.002, which is lower than that of 

Mask R-CNN (0.16 mm, p=0.025) and Faster R-CNN 

(0.15 mm, p=0.039), and the error of YOLOv5 is still 

high at 0.28 mm. Under heavy loading, the AE of the 

research model is 0.11 mm (p=0.001), which still has a 

higher error than that of YOLOv5 (0.44 mm), Mask R-

CNN (0.28 mm), and Faster R-CNN (0.31 mm). This 

indicates that its displacement measurement accuracy and 

consistency under multi-load conditions are better than 

the comparison models. Under the same loading 

conditions and shooting angles, the deviation of the 

simulation data from the measured data in terms of the 

number of features extracted at key points is less than 4%, 

and the ADE is controlled within 0.15 mm. This indicates 

that the constructed simulation environment has good 

engineering realism, and it can be an effective alternative 

to some of the real test scenarios for the verification of 

the algorithm. Overall, the research model has the highest 

displacement monitoring accuracy and the smallest AE 

under different loads, indicating that it has stronger 

displacement detection capability and robustness. 

4 Discussion 
The proposed displacement detection model based 

on spatial constrained ORB feature matching combined 

with KCF-GP-TLD exhibits performance advantages 

over existing mainstream methods in multiple indicators, 

mainly due to the introduction of three key improvements. 

First, the spatial constrained strategy effectively enhances 

the accuracy and noise resistance of ORB feature point 

matching, especially in the presence of motion blur or 

complex background texture, significantly reducing the 

false matching rate. Second, the GP structure improves 

the stability of KCF under target scale changes, ensuring 

that high tracking accuracy can still be maintained under 

different camera distances, viewpoints, or target scaling. 

Third, the fusion of the TLD module improves the 

recovery ability of the model in occluded scenes, and the 

loss rate is still lower than 20% when the occluded area 

reaches 50% in the experiments, which is significantly 

better than that of the model without the introduction of 

TLD. In the comparison with advanced models such as 

YOLOv5, Mask R-CNN, and Faster R-CNN, the research 

model has more than 2% advantages in AP value and F1 

score on both OTB and LaSOT datasets. ADE has been 

reduced by approximately 0.01-0.02 mm, and the fastest 

detection time can reach 20 ms, achieving a better 

balance between accuracy, real-time performance, and 

robustness. This performance improvement does not 

come from deep learning training, but relies on the 

optimized combination among lightweight algorithms, 

which is particularly suitable for real-time engineering 

monitoring scenarios. In addition, the model performs 

particularly well in simulating heavy loads and obstructed 

environments, maintaining high accuracy and low error 

even under high-stress or low-visibility conditions. This 

indicates its applicability and low engineering 
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deployment cost, particularly suitable for embedded 

monitoring systems in small and medium-sized bridge 

sites. 

However, this study did not introduce real video data 

from real bridge engineering. At present, the 

experimental evidence mainly comes from the OTB and 

LaSOT standard datasets, as well as the comprehensive 

simulation platform built on Unity 3D, which cannot fully 

cover the effects of real problems such as sensor noise, 

lighting changes, and viewpoint occlusion. Therefore, 

future research should be further extended to practical 

engineering scenarios, and cross-environment 

generalization validation should be performed in 

combination with real surveillance devices to further 

verify the practicality and scalability of the method. 

5 Conclusion 
In response to the shortcomings of traditional 

displacement measurement techniques in complex 

environments in bridge engineering, this study introduced 

the ORB feature matching technology of SCD and 

combines GP and TLD with KCF to optimize feature 

point detection and tracking. A new non-contact 

displacement monitoring method has been proposed. The 

experiments showed that the feature extraction accuracy 

and feature tracking accuracy of the model could reach 

about 0.95 in the OBR dataset with the settings of BRIEF 

descriptor length of 256 and the number of GP layers of 

4. The ablation experiment further validated the 

performance improvement of the sub-module. The 

complete model that integrated KCF, GP, and TLD had 

the best performance under occlusion and scale change 

conditions, with a detection time of the shortest 20 ms 

and an average target loss rate of 15%. In the OTB and 

LaSOT datasets, the model had the highest detection 

precision of 92.56%, the highest recall of 90.11%, the 

highest F1score of 91.10%, and the lowest ADE of 0.01 

mm, which is better than the mainstream models such as 

YOLOv5, Mask R-CNN, and Faster R-CNN.This 

indicated that the new model had higher tracking 

accuracy and smaller displacement detection errors in 

complex scenarios. Simulation tests have found that the 

monitoring AP value and monitoring time of the research 

model are significantly better under light, middle, and 

heavy load environments. Especially under heavy load 

conditions, the average error was only 0.11mm, which 

was better than traditional algorithms such as YOLOv5 

and Faster R-CNN. Although the research model has 

significantly improved in performance, there are still 

some robustness issues when dealing with extreme 

lighting changes and prolonged monitoring. Future 

research will continue to optimize the model's light 

adaptability and further integrate more intelligent 

detection algorithms to improve the system's performance 

in complex dynamic environments. 
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