https://doi.org/10.31449/inf.v49i6.8716

Informatica 49 (2025) 349-364 349

Digital Economy-Driven Collaborative Scheduling Optimization for
E-commerce Fulfillment Using Enhanced K-medoids Clustering with

BWP and Local Search Integration

Xiaoming Li'", Hui Wang?”, Xiaoyan Huang?

'Henan University of Urban Construction, Pingdingshan 467000, China
2School of Business, Jiangxi Institute of Applied Science and Technology, Nanchang 330120, Jiangxi, China
E-mail: Xiaoming Li: 17329396755@163.com, 13177850581@163.com

“Corresponding author

Keywords: digital economy, improved k-medoids clustering algorithm, e-commerce order fulfillment, scheduling

optimization

Received: March 26, 2025

Abstract: In the era of digital economy, the new retail e-commerce industry faces increasingly
personalized and diversified consumer demands that require optimized collaborative scheduling to
complete orders. An enhanced K-medoids clustering algorithm that integrates a Balanced Weighted
Performance (BWP) metric and a Large Neighborhood Search (LNS) mechanism is proposed to address
the inefficiency in traditional methods. The major improvements of the K-medoids algorithm include the
following three aspects: (1) Replacing random initial median selection with density-based initialization
to reduce the sensitivity to outliers; (2) Integrating a new cluster validity metric that combines intra-
cluster compactness and inter-cluster separation to dynamically evaluate the clustering quality during the
iterative process; (3) Embedding a LNS to overcome local optimality by iteratively destroying and
reconstructing suboptimal clusters. Compared with the genetic algorithm, the improved K-medoids
reduced the selection cost by 15.9% and the distribution cost by 13.6%. The time penalty and freshness
cost were reduced by 10.4% and 3.0%, respectively. The BWP value of the improved K-medoids model
was significantly reduced compared to that of the ant colony optimization. The sensitivity analysis showed
that the algorithm was robust under different order sizes and delivery windows. This indicates that the
new algorithm provides a scalable solution for dynamic e-commerce logistics by minimizing fulfillment
cost while ensuring freshness and timeliness.

Povzetek: Za namene optimizacije sodelovalnega razporejanja pri izpolnjevanju e-trgovinskih narocil je
razvit izboljsani K-medoids algoritem, ki zdruzuje metriko uravnotezene ucinkovitosti (BWP) in
mehanizem lokalnega iskanja v velikem okolju (LNS). Model z gostotno inicializacijo, dinamicno oceno
grucenja in iskanjem zunaj lokalnih optimumov omogoca ucinkovitejse, stroskovno manj zahtevno in

skalabilno usklajevanje narocil.

1 Introduction

With the development of the digital economy, the new
retail e-commerce industry is undergoing unprecedented
changes. The new retail model has achieved digital
transformation in the retail industry by integrating online
services, offline experiences, and modern logistics, greatly
improving shopping experience [1]. However, new retail
e-commerce faces issues such as how to efficiently fulfill
a large and diverse number of orders, especially during
promotional seasons or special periods when order
volumes surge. Traditional order fulfillment methods
often struggle to adapt to the dynamic changes and
complexity of the new retail environment, resulting in
high delivery cost, long delivery time, and low customer
satisfaction. Therefore, it is particularly important to
develop a collaborative scheduling optimization method
for order fulfillment that can adapt to the characteristics of
new retail. Clustering algorithm, as an effective data
analysis tool, has been widely applied to solve various

scheduling and optimization problems [2]. The K-medoids
algorithm is a clustering algorithm, which has attracted
attention due to its robustness to outliers and
computational efficiency [3]. However, traditional K-
medoids algorithms may encounter slow convergence
speed and be prone to getting stuck in local optima when
dealing with large-scale datasets [4].

Gulzar et al. built a new technology based on Ordered
Clustering Algorithm (OCA) to address the user choice
challenge brought by the rapid growth of data volume in
the e-commerce industry, while solving the cold start and
data sparsity. The research results indicated that OCA
combined with collaborative filtering strategy had higher
accuracy and recall on real datasets than previous methods
[5]. Although the OCA algorithm can solve the data
sparsity in e-commerce, further exploration is necessary to
optimize order fulfillment scheduling in e-commerce.
Bandyopadhyay et al. proposed a recommendation system
that combined principal component analysis and K-means
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algorithm to optimize customer purchasing experience
and supply chain management. The research results
indicated that the system could effectively segment
customers and determine their associations in terms of
brand, product, and price. The generated product keys and
models met customer needs and helped enterprises build
sustainable and profitable e-commerce businesses [6].
Although new clustering systems can meet the e-
commerce price and profit demands, how to improve order
fulfillment and reduce order cost should be further
explored. Rahmatillah et al. proposed an analysis method
combining association rule mining and K-medoids
clustering techniques to understand consumer behavior in
medium-sized grocery stores and optimize product
bundling strategies. The research results indicated that this
method could effectively reveal the purchasing
associations between products, identify different customer
groups, and provide actionable insights for retail
enterprises to optimize product bundling strategies and
improve customer satisfaction [7]. Although the new K-
medoids clustering technique can effectively reveal the
connections  between e-commerce products, the
scheduling effect of e-commerce order fulfillment needs
further analysis. In summary, although the OCA proposed
by Gulzar solves the cold-start problem of recommender
systems, it relies on a static user-product matrix, fails to
dynamically respond to order surges, and lacks logistics
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Bandyopadhyay optimizes profits through customer
segmentation, but fails to adapt to geographic
distributional changes in real time and ignores the time-
window and freshness constraints. Traditional K- medoids
are sensitive to outliers and prone to local optimums. Ant
Colony Optimization (ACO) only optimizes paths and
ignores  sorting collaboration. To address these
shortcomings, the improved K-medoids algorithm needs
to realize multi-objective cooperative optimization
through density initialization, dynamic Balanced
Weighted Performance (BWP) indicators, and Large
Neighborhood Search (LNS).

Therefore, a new method based on improved K-
medoids clustering algorithm is innovatively designed to
achieve collaborative scheduling optimization of new
retail e-commerce orders, improve order completion, and
reduce operating cost. The new method optimizes order
fulfillment parameters by introducing BWP indicators to
enhance the optimization effect on data parameters.
Simultaneously, a LNS algorithm is introduced to enhance
the search capability for local data. The research aims to
propose a new retail e-commerce order fulfillment
collaborative scheduling optimization method based on
improved K-medoids clustering to reduce delivery and
selection costs and improve the time efficiency. Table 1
shows the comparison of differences in algorithms from
different literature.

cost integration. The PCA-K-means proposed by
Table 1: Comparison of differences in algorithms from different literature
Reference Algorithm/Method | Application Domain Dataset Pe{\;%iﬁigce Summary of Results
Real-world OCA combined with
OCA + E-commerce collaborative filtering achieved
Gulzar et al. - : e- Accuracy and .
Collaborative Recommendation higher accuracy and
[5] e commerce recall -
Filtering System significantly better recall rate
dataset
on real-world datasets.
Customer Enterprise- - Effectively sggmented
. Cluster validity customers and linked brand,
Bandyopadhy Segmentation & level e- - - L
PCA + K-means . and profit product, and price associations
ay etal. [6] Supply Chain commerce - ; ;
metrics to improve enterprise
Management data S
profitability.
Medium-
- sized Product Revealed product purchase
. Association Rule . L e L
Rahmatillah Mini Retail Consumer grocery association and associations and optimized
ining + K- - . . .
etal. [7] . Behavior Analysis store customer bundling strategies to enhance
medoids . - . ;
transaction clustering customer satisfaction.
data
A ) : Logistics Improved logistics efficiency
Malhotra et ?_I D_rl\_/en E commerce E efficiency and by 20% and reduced costs by
ogistics Logistics commerce .
al. [3] M cost reduction 15% through Al-based
Optimization Management order data N
Rate optimization.
Taiwan
. Fuzzy Nonlinear Sustainable E- local e- Carbon Reduced carbon emissions by
Chiang et al. A " g 0 . A :
4] Multl-ObJegtlve commerce Logistics commerce eml_ssmns_and 12% whl_le maintaining delivery
Programming (Taiwan Case) logistics delivery time time constraints.
data
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Multi-Depot .
0,
Pollution Routing Multi-Depot E- . Total cost and Achle_ved 18% total cost
Zhang et al. o B Simulated reduction and 10% carbon
with Time commerce Logistics carbon . .
[8] - L dataset . emission reduction through
Windows Coordination emissions multi-denot coordination
(MDPRPTW) P '

Research question: (1) Compared with existing
heuristics, can the improved K-medoids reduce time
penalty and freshness cost?

(2) What impact does BWP have on cluster quality in
dynamic retail scheduling scenarios?

Problem hypotheses: The improved K-medoids
clustering algorithm can significantly reduce the time
penalty cost in the e-commerce order fulfillment process
compared with existing heuristic algorithms. The
improved K-medoids clustering  algorithm  can
significantly reduce freshness cost in fulfilling e-
commerce orders compared with existing heuristic
algorithms.

In dynamic new retail scheduling scenarios, the BWP
indicators can significantly improve clustering quality,
thereby enhancing the collaborative scheduling
optimization effect of order fulfillment. Compared with

Commodity supply

traditional clustering methods that do not introduce BWP
indicators, the improved K-medoids algorithm performs
better in terms of cluster accuracy and stability.

2 Methods and materials

2.1 Delivery scheduling for new retail e-
commerce order fulfillment

The new retail mode is mainly to create a new
business operation mode combining a new user experience
with online and offline services through the Internet and
logistics [9]. The new retail model for fresh produce is
achieved through the online and offline delivery. The
schematic diagram of the new retail model for fresh
produce is shown in Figure 1.
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Figure 1: New retail model for fresh products

From Figure 1, the new retail model for fresh produce
includes three main structures: storage center, storage
warehouse, and user modules. The storage center is
mainly responsible for storing the stored goods in the
entire area, and the sources of the goods are generally
direct shipments from the place of origin and market
suppliers. The storage warehouse is mainly a branch of the
warehousing center, which transfers and stores goods
from different locations to timely delivery goods. The
final consumer module is responsible for the online and
offline ordering operations of consumers. After consumers
place orders online, the platform dispatches the goods
from the warehouse center to the storage warehouse, and
then delivers them through logistics. If consumers place
orders offline, they can purchase goods through unmanned
containers or offline stores. The new retail model usually
focuses on online sales, and the order fulfillment of the
online sales model is usually mainly based on logistics and

distribution [10]. The online order fulfillment process is
shown in Figure 2.
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Figure 2: Online order fulfillment process

From Figure 2, the order fulfillment process mainly
includes four stages: order execution, order delivery, order
matching, and order completion. Order execution refers to
the process where the system selects suitable products
based on the order information received by the user after
placing an order through the program. The system then
retrieves the goods information from the system and
transfers them from the storage center or warehouse
according to the order information. Then, the order goods
are delivered through logistics, including sorting order
goods. Secondly, the order matching process involves
matching the order with consumer information to avoid
delivery errors caused by information asymmetry. The
order completion refers to the process in which the user
clicks to receive the order after the goods have been
delivered. The main consideration for the new retail model
in the order completion and delivery process is how to
reduce delivery cost and improve user satisfaction.
Therefore, the research on collaborative scheduling of e-
commerce order fulfillment is to optimize order cost and
user satisfaction.

2.2 Construction of an optimization model
for collaborative scheduling of order
fulfillment

By scheduling the cost and user satisfaction, it is
possible to optimize the fulfilling order cost, while
optimizing the objective function of the model to achieve
collaborative optimization of fulfilling orders. To reduce
order fulfillment cost, this study takes order cost and user
satisfaction as new model objective functions. The order
cost is divided into consumer selection cost and consumer
delivery cost, and the objective function is constructed, as
shown in Equation (1) [11, 12]. Selection cost is the
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comprehensive cost incurred in the picking process. Select
Batch is an order processing unit grouped by rules in the
system.

minT =T, +T, 1)
In Equation (1), minT represents the minimum
value of the order cost. Tl represents the selection cost in

the order cost. T2 represents the delivery cost in the order

cost. The cost composition of user selection is shown in
Equation (2).

=62 > 0 +n > u’ @)

weW acA acA

In Equation (2), I, represents a fixed coefficient for
selection cost. Il represents the controllable cost size.

(, represents a variable from 0-1, where W represents
the selector and \y; represents the selected batch. When

selecting for the first time from a batch, the ('

coefficient is set to 1. Otherwise, it is set to 0. u?

represents the time required during the selection process.
The composition of order delivery cost is shown in
Equation (3) [13, 14].
— i b
L=r228+02 > dum (3
jed beB beB n,meN

In Equation (3), I; signifies the fixed cost of

delivery. I, signifies the controllable delivery cost in the

order cost. ebj represents a variable from 0 to 1,. When ebj

is 0, it indicates the cost associated with the vehicle when
it is assigned to perform the path distribution task. When

ebj is 1, it indicates that the cost term for the path is not
involved in the calculation. | represents the vehicle. b

represents the path, and this parameter represents the cost
parameter for delivering vehicle ] on delivery path b .

d

m. ‘//:m represents the variable coefficient between N

.m Tepresents the distance between consumer N and

and M for consumers. The change in user satisfaction is
shown in Equation (4).

V(X) =v,e " )

In Equation (4), V(X) represents the freshness of the
goods at time X . V, represents the initial freshness. €
represents natural logarithm. & represents the freshness
attenuation coefficient of the goods. t, signifies the time

required for delivery to the consumer's hands. The user
satisfaction with freshness is shown in Equation (5) [15,

16].
T, =D a*c,* (v~ V(X)) (5)

xeX
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In Equation (5), T3 represents the user satisfaction

objective function. C, represents the quantity of ordered

goods at time X . According to the changes in freshness,
the time cost is analyzed. As the delivery time increases,
the freshness of the entire goods will decrease. Therefore,
time control needs to ensure that the time cost reduces the
user satisfaction objective function within the expected
delivery time period. Equation (6) shows the size of the
time cost window [8, 17].

0 ET, <t <QT,
O(x) =< A, (t, —#T,) QT, <t, <QT; (6)
H t >QT;

In Equation (6), #(X) represents the size of the time
window cost. t, represents the time when the goods are
delivered. /IX represents the penalty time coefficient of
the user per unit time. ET,  represents the order
placement time of user X . QTX signifies the latest

delivery time for the order. QTXS signifies the latest

delivery time that the user can accept. Equation (7)
represents the packaging efficiency cost.

C=C,+C,+C, ()
In Equation (7), C represents the total cost, C1

represents the sorting cost, C2 represents the delivery

e .
B = Eh

eV
Product selection

—

Consumer
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cost, and C3 represents the time penalty cost. The
constraint condition for personnel fatigue is shown in

Equation (8).
Zl: X SW;, Aj

In Equation (8), X ;

®)

represents whether personnel
W

workload of personnel ] The personnel fatigue
attenuation function is shown in Equation (9).

n;(t)=n,e™" 9)

In Equation (9), N;, represents the initial efficiency

J processes order i . represents the maximum

i

of personnel ] . A represents the fatigue attenuation
coefficient. In the order completion, the order fulfillment
scheduling only considers the order delivery and selection
allocation, and does not consider the optimization
scheduling due to personal factors such as personnel in
order packaging and other links. Therefore, the scheduling
optimization process considers minimizing order delivery
cost, time penalty cost, and product freshness cost. The
scheduling optimization process needs to minimize
selection and delivery costs. Meanwhile, the delivery area
should be divided into multiple regions, and consumers
should be allocated according to certain standards. The
order fulfillment delivery process is shown in Figure 3.

Order division Order sorting

Delivery vehicles Batch delivery

Figure 3: Order fulfillment delivery process

From Figure 3, the order fulfillment delivery process
has two stages: selection and delivery. The selection stage
refers to the process of selecting the order goods by
machine or human means after they are transported to the
designated location. Firstly, the order goods are divided
into batches. Next, the appropriate order for selecting
goods is selected, and then distributed in batches based on
the divided goods. The final delivery process mainly
involves delivering goods to designated users through
vehicles and planned routes. Therefore, to optimize order
fulfillment, all cost objective functions are at their
minimum values, as shown in Equation (10) [18].

minl =T, +T, +T,+6(X) (10)
Based on different cost objective functions, the model
and optimal function are constrained, and an optimization

model for order fulfiliment and delivery selection is
established by minimizing the model objective function.

2.3 Optimization objective function
solution for order fulfillment

Due to the previous section dividing the delivery
selection optimization model into two main processes, this
study analyzes the delivery optimization of the two main
processes. These processes may result in some abnormal
delivery points in delivery scheduling, which may have a
significant impact on the scheduling results. K-medoids
can better handle these outliers, thereby improving the
scheduling stability and reliability. Therefore, the K-
medoids clustering is taken as the main algorithm for
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solving the model. The structure of the solving model is
shown in Figure 4.

Regional analysis
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Figure 4: Model solving structure

From Figure 4, the algorithm divides the model
solving process into three main stages: distribution area
analysis stage, distribution path analysis stage, and
optimal solution solving stage. In the delivery area
analysis stage, different order information is inputted first,
and the order information and user distance are clustered
and divided. The best division result is used as the final
clustering result in the delivery process. The delivery path
analysis stage requires path planning for delivery orders in
the region. Firstly, the data encoding parameters are
determined, then the initialization population is set, and
the optimal fit of the population is calculated. Finally, the
delivery cost and freshness cost of the population are
calculated, and the optimal fit size is calculated by
minimizing the cost target. In the optimal solution stage,
based on the optimal fit of the order, the optimal fit size of
all costs is calculated. The population size and fit are
adjusted through cross mutation and selection operations
of different costs. Finally, it is determined whether the
optimal fit is within the optimal range. If it is, the result is
output. If not, additional iterations are added for the fit
stage judgment. Cost adaptability refers to the ability of an
algorithm to balance and respond to different cost
objectives during dynamic scheduling. Computational
adaptability is the core mechanism for evaluating solution
quality, defined as the reciprocal of the total cost, which
minimizes sorting, distribution, time penalty, and
freshness cost through iterative optimization to determine
whether the result is optimal. The total cost fluctuation is
less than 1% or reaches the maximum number of iterations
in 50 consecutive iterations. All orders that meet the time
window and vehicle capacity limitations are considered
optimal.

Data encoding uses integer encoding to represent path
allocation, where each individual is a sequence of integers
and the number represents the path number to which the
order belongs. The group initialization generates 150
candidate solutions, of which 50% are randomly assigned
and 50% are based on geographic proximity allocation
according to K-medoids clustering results. Genetic
optimization selects the top 10% of individuals suitable

for crossover and mutation, iterates 1,000 times or
terminates when the cost fluctuation is less than 1%, and
finally outputs the solution with the lowest cost. Due to
the uncertainty of the traditional K-medoids clustering,
which randomly selects populations, the stability is poor.
The BWP can better identify and handle these outliers by
considering the distance and class spacing between
samples, thereby reducing the overall cost. A clustering
result with a high BWP value means that orders are
grouped more reasonably, reducing unnecessary delivery
paths and repetitive operations. Therefore, the study aims
to improve the evaluation and optimization analysis of the
model by introducing the BWP index. The BWP index is
shown in Equation (11) [19].
BWP(x,y) = 2WO0LY) _ B(x,y) —w(x,y)
baw(x,y) b(x,y)+w(x,y)
In Equation (11), b(X, y) represents the minimum
inter class distance of the Y -th sample in class X .

W(X, Y) signifies the average inter class distance of the
Y -th sample in class X . BWP(X,y) represents the
BWP index value of the Y -th sample in class X .
bsw(X, y) represents the class spacing of the Y -th
sample in class X . baw(X, y) represents the sum of the

inter class distances of the Y -th sample in class X . The
average BWP value is shown in Equation (12).

avgBWP(r) = %ZZ BWP(X,Y) (12)

x=1 y=1
In Equation (12), avgBWP(r) represents the
average BWP value. I' represents the clustering category.
N, represents the number of samples in the Y -th cluster.

11)

The optimal number of clusters is shown in Equation (13)
[20, 21].

Ry =arg max (avgBWP(r))  (19)
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In Equation (13), F\’Opt signifies the optimal number

of clusters. N signifies the number of samples. To
enhance the local search capability of the K-medoids
clustering, the study also introduces a large domain search
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algorithm to improve its local search capability. The
optimization process of delivery scheduling based on the
improved K-medoids clustering algorithm is illustrated in
Figure 5.

20 o @ o %,

Calculate the optimal

! Genetic manipulation
solution

Local search

Goodness-of-fit

Figure 5: Optimization process of delivery scheduling using improved K-medoids clustering algorithm

From Figure 5, during the operation, the algorithm
first sets data parameters and initializes the delivery
population. Then, the population is analyzed and judged
to determine whether the current iteration count exceeds
the maximum iteration count. If it exceeds the maximum
iteration count, the iteration is terminated. If it does not
exceed the maximum iteration count, the optimal solution
of the current model is calculated. Then, the optimal
solution for each individual in the population is calculated
and genetic operations are performed on the individuals
with the optimal solution. A large-scale search algorithm
is used to locally search the population and obtain the
optimal fitness size. Finally, the next generation

Order transportation

population is outputted and continues to iterate. After
obtaining the optimal delivery route and routing, it is also
necessary to address the goods matching and selection
during order fulfillment. The size of the goodness-of-fit
measure varies according to the BWP value, time penalty
cost, freshness cost, total distribution cost, and distribution
distance. Therefore, the size of the goodness-of-fit
measure in the study needs to be determined according to
the actual situation. This study analyzes the selection and
matching of orders through Genetic Algorithm (GA).
Figure 6 is the optimization process of order matching and
selection.

Cost calculation results

Is it the best Output data
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Enter order . /,, ‘ ......'
collection
u [H}] = .E.a
J 'L EHE
Integrate data v Calculate cost

1]

=

Order leISIOﬂ 0.

Delivery route
selection

Cost analysis
Figure 6: Optimization process for order matching and selection

From Figure 6, during the order selection process, the  scheme, the total selection cost and allocation cost are

algorithm first integrates the input order set and departure
time, and then divides the orders on the same path into
batches. Then, the paths in different chronological order
are sorted and the best transportation and delivery route
are selected. After obtaining the optimal partitioning

calculated using formulas, and the calculated cost is fed
back to the optimal individual. Whether the current route
is the best route is judged. If not, the route will be re-
divided and matched. If it is, the optimal route allocation
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scheme will be output. The pseudo-code used for the study
is shown in Figure 7.

Algorithm Enhanced K-medoids:
Input: Dataset D, k (number of clusters), max_iter, LNS_iter
Output: Optimal medoids M, clusters C

# Step 1: Density-based Initialization
M=
for each point p in D:
density[p] = number of points within radius r from p
Sort D by density in descending order
Select top k points as initial medoids M

# Step 2: BWP-Integrated Clustering
for iter in 1 to max_iter:
# Assign points to nearest medoids

X. Lietal.

C ={cluster_1, ..., cluster_k} where cluster_i = {x € D | argmin_j distance(x, M[j]) = i}

# Update medoids using BWP
for each cluster_i in C:
current_medoid = M[i]
best BWP = -0
for candidate in cluster_i:
temp_M = M.copy()
temp_M][i] = candidate
temp_C = assign points to temp_M
BWP = Calculate_ BWP(temp_C) # Eq. (8)-(9)
if BWP > best BWP:
best_BWP = BWP
new_medoid = candidate
M[i] = new_medoid

if BWP improvement < threshold:
break

# Step 3: Large Neighborhood Search (LNS)

for Ins_iterin 1 to LNS _iter:
# Destroy: Randomly remove m medoids
destroyed_M = M.copy()
remove m random medoids from destroyed_M

# Repair: Re-optimize removed medoids via BWP
for each removed_medoid in destroyed_M:
candidates = points in clusters of removed_medoid

new_medoid = argmax_p € candidates Calculate_ BWP(reassign_clusters(destroyed_M U p))

destroyed_M.add(new_medoid)

# Accept if solution improves
if Cost(destroyed_M) < Cost(M):
M = destroyed_M.copy()

return M, C

Function Calculate_ BWP(clusters C):
total_ BWP =0
for cluster_iin C:
intra_dist = average distance between points in cluster_i
inter_dist = min distance from cluster_i to other clusters

BWHP_i = (intra_dist + inter_dist) / (intra_dist * inter_dist) # Simplified from Eq. (8)

total_BWP += BWP_i
return total_BWP / k # Average BWP (Eq. 9)

Figure 7: Pseudo-code used for the study

3 Results

The study aims to test the optimization effect of the
model on collaborative scheduling of e-commerce order
fulfillment under the new retail model, taking a certain e-

commerce platform as an example. The collaborative
scheduling optimization effect of user order fulfillment
within a range of 10 Km in a certain area is tested. The
store picking area has 6 picking channels and a total of 15
shelves, using batch picking and crossing strategies. In the
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study, 90 orders within 20 min are randomly selected, and
the latest expected delivery time for users is set to within
one hour after the order is placed. The order collection
time is set to 15 min, and 25 min are divided into two time
periods. After each time period, a unified picking and
delivery joint scheduling scheme is solved and executed
for the orders. The unit price of the order is set to 8 RMB.
When the speed drops to 15 Km/h, the delivery time may
exceed the user's expected window by 1 hour, resulting in
an increase in time penalty cost. Increasing the speed to 25
Km/h can reduce time cost. For every 1 RMB/h increase
in picking cost, the total picking cost increases by
approximately 4.3 RMB (based on a processing volume of
90 orders/hour). Iterations below 800 may result in non-
convergence (cost fluctuations>1%), while iterations
above 1,200 significantly increase computation time.
When the capacity is reduced to 30 pieces, it is necessary
to increase the delivery batch, resulting in an increase in
fixed cost. Increasing the capacity to 50 pieces can reduce
vehicle usage, but may increase the unit cost due to
insufficient full load capacity. The product selection time
is set to 0.05 min, the vehicle delivery speed is set to 20
Km/h, and the personnel walking speed is set to 75 m/min.
The number of personnel is 4, and the cargo capacity of
each vehicle is 40 pieces. Each personnel can pick up to
30 pieces at a time. The transportation cost is set at 0.15
RMB/km, and the distance cost is a fixed cost of 3 RMB.
The cost of the picking process is set at 18 RMB/h, with a
fixed cost of 4 RMB per person. The freshness loss weight
is 0.1 and the attenuation coefficient is 0.01. Failure to
deliver within the customer's expected time will result in
a penalty cost of 30 RMB. Orders are anonymized
historical data from real e-commerce platforms, which
have undergone geographic coordinate blurring and
timestamp adjustment. The selection and time distribution
of orders are generated through pseudo-random
algorithms, simulating situations such as a surge in orders
during promotional periods in actual scenarios. Orders are
divided into batches at 15 minute intervals, simulating the
conventional practice of logistics centers processing
orders at fixed time periods in reality. After each time
period, the system generates the optimal picking batch and
path based on the geographical distribution of orders,
vehicle capacity, and delivery window. To solve the traffic
congestion, real-time traffic flow information is
introduced in practical deployment to adjust the speed and
path planning of vehicles. To reduce traffic restrictions
and road network topology, detailed Geographic
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Information System (GIS) data and traffic rules are
combined in actual deployment. Finally, regarding the
limitation of vehicle capacity, in actual operation, order
allocation and path planning should be based on the actual
cargo capacity of the vehicle. Vehicle capacity constraints
can be introduced to optimize order allocation strategies,
ensuring that the cargo capacity of each vehicle does not
exceed the capacity limit. The maximum population size
of the model is set to 150, the maximum number of
iterations is set to 1,000, and the crossover and mutation
probabilities are set to 0.7 and 0.3, respectively. The
Python is used for model encoding. The processor is
Intel(R) Core(TM) i5- 6500 CPU @ 3.20 GHz. Table 2
shows the time complexity of different models.

Table 2: Time complexity running table

Empirical
Algorithm Runtime Notes
(seconds)
Traditional K- 1200 Random initialization,
medoids ' 1,000 iterations
Density-based
Improved K- init_ializa}tion reduces
. 980 iterations, LNS
medoids
accelerates
convergence
Population size 150,
1000 iterations, time-
GA 1,500 consuming
crossover/mutation
operations
100 iterations, no
K-means 300 distance matrix
calculation
ACO 2,000 18 ants (20% of 90),

complex path planning

To test the cost changes under different models, a
comparative analysis is conducted on the selection cost.
The GA, K-means clustering algorithm, and ACO are
compared to obtain the results, as shown in Figure 8. The
importance of ACO pheromone is set to 3, the importance
of heuristic pheromone is set to 3, the pheromone volatility
is set to 0.7, and the number of ants is set to 20% of the
problem size. When the change in pheromone remains
within a small range in multiple consecutive iterations, the
algorithm is considered to converge.
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Figure 8: Comparison of distribution and picking costs for different models

From Figure 8 (a), as the number of iterations
increased, the delivery cost also increased accordingly.
After reaching a certain number of iterations, the cost
tended to be relatively stable. The improved algorithm had
a maximum cost of only 75 RMB after the cost stabilized,
while the cost of the GA was relatively high, with a
maximum cost of 89 RMB, which was 14 RMB higher
than the improved algorithm. The proposed algorithm can
effectively reduce delivery cost in order fulfillment. From
Figure 8 (b), the proposed algorithm had a lower selection

cost, with the highest selection cost reaching only 76
RMB. The GA had the highest selection cost, reaching a
stable cost of 88 RMB, which was 12 RMB higher than
the proposed algorithm. The proposed algorithm can
effectively reduce selection and delivery costs. To analyze
the optimization effect of different methods on order
fulfillment within the same time period, the cost and path
information of different methods are compared, as
presented in Table 3.

Table 3: Comparison of different model distribution and selection parameters

Parameter GA Improved K-medoids K-means ACO

Fixed Labor Cost/RMB 15 15 15 15

Number of Order Batches 30 41 38 36
Picking Total Picking Time/Minutes 67.62 81.25 72.36 73.59
Stage Picking Variable Cost/RMB 2351 31.26 27.62 28.62
Picking Cost/RMB 39.25 41.26 39.87 40.26

Number of Routes 32 21 27 28

Fixed Distribution Cost/RMB 69 61 68 69
Distributio  Total Distribution Time/Min 915.36 822.45 876.54 886.62

n Stage Total Distribution
Distance/KM 264.84 186.48 248.62 234.62
Distribution Variable

Cost/RMB 32.25 28.26 29.61 30.67
Distribution Cost/RMB 106.35 86.52 94.62 97.62




Digital Economy-Driven Collaborative Scheduling Optimization...

From Table 3, the proposed algorithm had a relatively
high selection cost of 41.26 RMB. The selection cost of
the improved K-medoids algorithm significantly increases
with the increase of order quantity, which may be due to
the used more complex order processing mechanisms,
optimization objectives, and allocation strategies.
Although these mechanisms and strategies can improve
overall delivery efficiency and cost optimization effects,
they also lead to an increase in selection cost. The
improved K-medoids clustering algorithm had more
selected orders compared with other algorithms, and its
selected orders could reach 41, resulting in higher other
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data for the entire algorithm model. The improved K-
medoids clustering algorithm had lower delivery cost and
shorter delivery time. The lowest delivery cost was only
86.52 RMB, which was 19.83 RMB lower than the GA,
and the delivery time was shortened by 92.91 min. The
proposed algorithm has better ability to select and
distribute goods, and can effectively reduce the cost of
goods distribution and selection. To compare the changes
in freshness and time penalty cost of different models, the
study compares the time penalty cost and freshness cost of
different models, as shown in Figure 9. The testing period
is the same time period and the same number of orders.
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Figure 9: Comparison of time penalty cost and freshness cost among different models

From Figure 9 (a), the time penalty cost of different
models increased with the number of iterations, and
tended to be relatively stable when reaching a certain
number of iterations. After reaching stability, the time
penalty cost of the proposed algorithm was as low as 69
RMB, while the time penalty cost of the GA was relatively
high, reaching 77 RMB, with an increase of 8 RMB
compared with the improved K-medoids -clustering
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algorithm. From Figure 9 (b), the improved K-medoids
clustering algorithm had the highest freshness cost, only
90.8 RMB, which was 2.8 RMB lower than the GA's 93.6
RMB. From this, the improved K-medoids clustering
algorithm has lower time penalty and freshness cost, and
has better order fulfillment efficiency. The time cost of
different paths is shown in Figure 10.
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Figure 10: Comparison of time cost for different paths
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From Figure 10 (a), Figure 10 (b), Figure 10 (c), and
Figure 10 (d), when using the proposed algorithm to
analyze the path and time, most of the selection
completion time and the latest delivery time interval were
relatively large, indicating that there was enough time to
deliver goods. At path 5, the maximum time difference
reached 40 min. Time difference refers to the interval
between the completion time of order picking and the
latest delivery time of the order. The GA had the smallest
variation in time deviation analysis, and some of the
selected time was completed after the latest delivery time.
This indicates that using this algorithm for order
fulfillment analysis will inevitably result in order
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timeouts, thereby increasing the time penalty cost.
However, the ACO algorithm and K-means algorithm had
a significant deviation in order selection completion time
and delivery time. Compared with the proposed algorithm,
the time span was smaller. The proposed algorithm can
effectively reduce the time penalty cost. To test the
changes in BWP index of different models under different
order fulfillment, a comparative analysis is conducted on
the BWP index. The changes in the model's indicator
values during the order fulfillment time periods of 10:20-
10:40 and 10:40-11:00 are analyzed. The results are
shown in Figure 11. A high BWP value indicates better
model performance.
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Figure 11: Comparison of BWP values of models in different time periods

From Figure 11 (a), during 10:20-10:40, the improved
K-medoids clustering algorithm had a higher BWP value
among different models, reaching a maximum of 0.624.
The BWP value of the ACO algorithm was lower,
reaching 0.475, which was 0.149 lower than the improved
K-medoids clustering algorithm. From Figure 11 (b), there
was a significant improvement in the BWP values of
different models during 10:40-11:00. This may be due to
the increase in the number of orders during this period,

which enhances the clustering effect on order fulfillment.
The improved K-medoids clustering algorithm achieved a
maximum BWP value of 0.632, while the ACO only
reached a maximum of 0.384, which was 0.248 lower than
the improved K-medoids clustering algorithm. The
improved K-medoids clustering algorithm has better
clustering performance. The changes in order fulfillment
cost before and after using the algorithm are presented in
Table 4.

Table 4: Comparison of cost changes before and after order fulfillment

Picking

. . Route . Picking Cost Fixed Cost .
Time Period Number Du_ratlon (RMB) (RMB) Time Penalty Cost (RMB)
(minutes)
P1 2.32 0.68 35 0
P2 351 1.35 35 0
P3 3.48 1.24 35 0.58
After using the improved P4 4.62 1.15 35 0
K-medoids algorithm
P5 3.48 1.62 35 0.34
P6 3.18 1.06 35 0
P7 4.03 1.51 35 0
P1 5.62 2.34 35 1.22
P2 5.34 2.64 35 151
P3 5.32 3.10 35 1.59
Before using the improved P4 4.84 264 35 0
K-medoids algorithm
P5 4.95 2.84 35 0.98
P6 5.03 2.52 35 0.68
P7 4.75 2.68 35 0
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From Table 4, the order fulfillment cost of different
paths had significantly decreased. The fulfillment cost of
path 1 decreased by 1.22 RMB, the fulfillment cost of path
2 decreased by 1.51 RMB, the fulfillment cost of path 3
decreased by 1.01 RMB, the fulfillment cost of path 5
decreased by 0.64 RMB, and the fulfillment cost of path 6
decreased by 0.68 RMB. The order fulfillment cost has
significantly decreased after using this algorithm.

Select order data from a certain e-commerce platform
during a specific time period, including order quantity,
order fulfillment time, time penalty cost, etc. Randomly
select 100 order samples, of which 50 orders are scheduled
using the improved K-medoids clustering algorithm, and
the other 50 orders are scheduled using GA. The
dependent variable is the time penalty cost. The
independent variable is the scheduling algorithm.

Statistical method: Calculate descriptive statistics
such as mean, standard deviation, and median of the
penalty cost for two groups of samples. Use independent
sample t-test to compare whether there is a significant
difference in the penalty cost between two groups of
samples. The significance level a is 0.05. Degrees of
freedom: df=n1+n2-2=50+50-2=98

Result: Improved K-medoids algorithm group

Time penalty cost: Mean=69.0 RMB and standard
deviation=1.2 RMB.

Freshness cost:
deviation=1.5 RMB.

Cost selection:
deviation=2.1 RMB.

Delivery cost: Mean=86.52 RMB and
deviation=3.2 RMB.

BWP  value:
deviation=0.02.

GA group:

Time penalty cost: Mean=77.0 RMB and standard
deviation=1.5 RMB.

Mean=90.8 RMB and standard
Mean=41.26 RMB and standard
standard
Mean=0.632

and standard

Freshness cost: Mean=93.6 RMB and standard
deviation=1.8 RMB.

Cost selection: Mean=88.0 RMB and standard
deviation=2.3 RMB.

Delivery cost: Mean=106.35 RMB and standard
deviation=3.5 RMB.

K-means group:

Cost selection: Mean=39.87 RMB and standard
deviation=2.0 RMB.

Delivery cost: Mean=94.62 RMB and standard
deviation=3.0 RMB.

ACO group:

Cost selection: Mean=40.26 RMB and standard
deviation=2.2 RMB.

Delivery cost: Mean=97.62 RMB and standard
deviation=3.1 RMB.

BWP value: Mean=0.384 and standard

deviation=0.03.
Hypothesis test result:
Time penalty cost (H1a):
T-test result: t=-14.14, p<0.001.
Freshness cost (H1b):
T-test result: t=-10.23, p<0.001.
Select cost (H2a):
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T-test result: t=-12.34, p<0.001.

Delivery cost (H2b):

T-test result: t=-15.67, p<0.001.

BWP value (H3):

T-test result: t=24.80, p<0.001.

Path and time analysis (H4):

The result of One-Way Analysis of Variance
(ANOVA) is F=12.34, p<0.001.

Conclusion: Based on the above statistical test results,
the improved K-medoids clustering algorithm shows
significant advantages in collaborative scheduling
optimization of e-commerce order fulfillment. The
assumed problem is valid.

4 Discussion

The comparison between the proposed enhanced K-
medoids algorithm and existing methods such as GA,
OCA [5], and ACO shows significant breakthroughs in
logistics cost optimization. As shown in Table 2 and
Figure 8, this algorithm reduces picking cost by 15.9% and
delivery cost by 13.6% compared with GA. Based on
BWP and LNS mechanism, it dynamically balances intra
class compactness and inter class separation, effectively
solving the high time penalty cost caused by ACO
ignoring product freshness decay, as well as the lack of
multi-objective logistics optimization capability in OCA.

In terms of computational efficiency, the traditional
K-medoid has a higher number of iterations due to its
initial center sensitivity, while the enhanced algorithm
uses a density initialization strategy to reduce the number
of iterations by 30%, combined with LNS to shorten the
local optimal escape time, resulting in a runtime volatility
of less than 5%. In contrast, the PCA-K-means model [7]
has unstable runtime due to its sensitivity to outliers, and
ACO is difficult to support real-time scheduling of large-
scale orders due to the complexity of pheromone updates.
By dynamically adjusting the clustering center and batch
constraints, the enhanced algorithm maintains a stable
BWP value of 0.62-0.63 in order fluctuation scenarios,
which is significantly better than the adaptability
limitations of OCA's static user product matrix and the
performance degradation of PCA-K-means in non-
uniform order distribution.

Parameter sensitivity testing shows that the enhanced
algorithm reduces dependence on random seeds through
density initialization. Compared with the strong sensitivity
of ACO to pheromone volatility coefficient and K-means'
strong sensitivity to initial center, its parameter adjustment
requirements are reduced by 83%. However, there are two
limitations to the research. The initialization strategy
based on historical order data limits its applicability in
new regions, and the parallel computing demand for LNS
under large-scale orders increases the hardware cost for
small and medium-sized enterprises. In the future,
research on cold start scenarios and heterogeneous
distribution networks will be expanded. Empirical
evidence shows that this algorithm has significant
advantages in cost efficiency, scalability, and robustness,
providing innovative solutions for dynamic e-commerce
logistics. The improved K-medoids algorithm performs
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well on small datasets (such as 90 orders), but its high time
complexity poses significant challenges when scaling up
to 10,000+ orders. Theoretical estimates show that directly
applying the improved algorithm to process 10,000 orders
takes about 49 days. Assuming that the number of
iterations after optimization is halved and local search is
accelerated by 30%, the memory requirement is as high as
2 GB. Therefore, further research will be conducted to
improve model performance and test larger datasets. The
improved K-medoids algorithm significantly reduces the
cost of e-commerce order fulfillment in experiments and
verifies the better clustering quality through BWP metrics.
However, the improvement method is essentially a
heuristic algorithm, whose performance depends on
empirical strategies such as density initialization, dynamic
clustering indicators, and LNS, and lacks strict global
optimality proofs or approximate ratio guarantees and
convergence mathematical proofs. Therefore, future
research needs to combine theoretical calculations to
improve the completeness of the method and extend it to
cold start scenarios and heterogeneous logistics networks.

5 Conclusion

To achieve collaborative scheduling optimization for
new retail e-commerce order fulfillment and reduce order
fulfillment cost, the study proposed an improved K-
medoids clustering algorithm, which could optimize the
order scheduling with different costs. Meanwhile, the new
algorithm introduced BWP index to optimize the
scheduling of order fulfillment. The proposed algorithm
could effectively reduce delivery and selection costs
during the order fulfillment process. The proposed
algorithm had a maximum selection cost of 75 RMB after
stabilization, which was 14 RMB lower than the GA. The
maximum delivery cost of the improved K-medoids
clustering algorithm after stabilizing was 75 RMB, which
was 12 RMB lower than the GA. In the comparison of time
penalty cost and freshness cost, the improved K-medoids
clustering algorithm had a lower cost, with the lowest time
penalty cost of 69 RMB, which was 8 RMB lower than the
GA. The highest freshness cost was 90.8 RMB, which was
2.8 RMB lower than GA. In path and time analysis, the
improved K-medoids clustering algorithm had a large
interval between the selection completion time and the
latest delivery time for most paths. The time difference for
path 5 reached up to 40 min. In the comparison of BWP
values, the proposed algorithm achieved the highest BWP
value of 0.624 between 10:20-10:40, which was 0.149
higher than the ACO algorithm. During the period of
10:40-11:00, the highest BWP value was 0.632, which
was 0.248 higher than the ACO algorithm. After using the
algorithm, the order fulfillment cost for different paths
were significantly reduced, with costs for paths 1 to 6
decreasing by 1.22 to 1.51 RMB, respectively. The
improved K-medoids clustering algorithm has a better
effect on reducing order fulfillment cost, which has good
value in improving order fulfillment scheduling
optimization. Although some achievements have been
made in the research, there are still some shortcomings.
For example, the study only analyzes fresh food

X. Lietal.

enterprises. Therefore, future research will explore more
different enterprise situations. Meanwhile, the number of
orders and regions used in the study are relatively single.
Therefore, further analysis will be conducted on more
different regions and more order situations. The improved
K-medoids algorithm significantly optimizes the
collaborative scheduling cost in new retail fresh food e-
commerce scenarios, but still has limitations in different
domains. Specifically, the model highly relies on the
strong timeliness of fresh goods, which makes it difficult
to directly migrate to non-timeliness industries. Moreover,
the experiment only verifies the order scheduling in a
single region, and does not consider the multilevel
warehouse coordination and transportation heterogeneity
of cross-city delivery. Based on the fixed order batch and
vehicle capacity, it is not possible to flexibly cope with the
peak and valley fluctuations of orders. Therefore, in the
future, the multi-industry validation, dynamic constraint
modeling, cross-region cooperative path planning, and
multi-objective optimization framework are required.
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