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Abstract: In the era of digital economy, the new retail e-commerce industry faces increasingly 

personalized and diversified consumer demands that require optimized collaborative scheduling to 

complete orders. An enhanced K-medoids clustering algorithm that integrates a Balanced Weighted 

Performance (BWP) metric and a Large Neighborhood Search (LNS) mechanism is proposed to address 

the inefficiency in traditional methods. The major improvements of the K-medoids algorithm include the 

following three aspects: (1) Replacing random initial median selection with density-based initialization 

to reduce the sensitivity to outliers; (2) Integrating a new cluster validity metric that combines intra-

cluster compactness and inter-cluster separation to dynamically evaluate the clustering quality during the 

iterative process; (3) Embedding a LNS to overcome local optimality by iteratively destroying and 

reconstructing suboptimal clusters. Compared with the genetic algorithm, the improved K-medoids 

reduced the selection cost by 15.9% and the distribution cost by 13.6%. The time penalty and freshness 

cost were reduced by 10.4% and 3.0%, respectively. The BWP value of the improved K-medoids model 

was significantly reduced compared to that of the ant colony optimization. The sensitivity analysis showed 

that the algorithm was robust under different order sizes and delivery windows. This indicates that the 

new algorithm provides a scalable solution for dynamic e-commerce logistics by minimizing fulfillment 

cost while ensuring freshness and timeliness. 

Povzetek: Za namene optimizacije sodelovalnega razporejanja pri izpolnjevanju e-trgovinskih naročil je 

razvit izboljšani K-medoids algoritem, ki združuje metriko uravnotežene učinkovitosti (BWP) in 

mehanizem lokalnega iskanja v velikem okolju (LNS). Model z gostotno inicializacijo, dinamično oceno 

gručenja in iskanjem zunaj lokalnih optimumov omogoča učinkovitejše, stroškovno manj zahtevno in 

skalabilno usklajevanje naročil. 

 

1 Introduction 
With the development of the digital economy, the new 

retail e-commerce industry is undergoing unprecedented 

changes. The new retail model has achieved digital 

transformation in the retail industry by integrating online 

services, offline experiences, and modern logistics, greatly 

improving shopping experience [1]. However, new retail 

e-commerce faces issues such as how to efficiently fulfill 

a large and diverse number of orders, especially during 

promotional seasons or special periods when order 

volumes surge. Traditional order fulfillment methods 

often struggle to adapt to the dynamic changes and 

complexity of the new retail environment, resulting in 

high delivery cost, long delivery time, and low customer 

satisfaction. Therefore, it is particularly important to 

develop a collaborative scheduling optimization method 

for order fulfillment that can adapt to the characteristics of 

new retail. Clustering algorithm, as an effective data 

analysis tool, has been widely applied to solve various  

 

scheduling and optimization problems [2]. The K-medoids 

algorithm is a clustering algorithm, which has attracted 

attention due to its robustness to outliers and 

computational efficiency [3]. However, traditional K- 

medoids algorithms may encounter slow convergence 

speed and be prone to getting stuck in local optima when 

dealing with large-scale datasets [4]. 

Gulzar et al. built a new technology based on Ordered 

Clustering Algorithm (OCA) to address the user choice 

challenge brought by the rapid growth of data volume in 

the e-commerce industry, while solving the cold start and 

data sparsity. The research results indicated that OCA 

combined with collaborative filtering strategy had higher 

accuracy and recall on real datasets than previous methods 

[5]. Although the OCA algorithm can solve the data 

sparsity in e-commerce, further exploration is necessary to 

optimize order fulfillment scheduling in e-commerce. 

Bandyopadhyay et al. proposed a recommendation system 

that combined principal component analysis and K-means 
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algorithm to optimize customer purchasing experience 

and supply chain management. The research results 

indicated that the system could effectively segment 

customers and determine their associations in terms of 

brand, product, and price. The generated product keys and 

models met customer needs and helped enterprises build 

sustainable and profitable e-commerce businesses [6]. 

Although new clustering systems can meet the e-

commerce price and profit demands, how to improve order 

fulfillment and reduce order cost should be further 

explored. Rahmatillah et al. proposed an analysis method 

combining association rule mining and K-medoids 

clustering techniques to understand consumer behavior in 

medium-sized grocery stores and optimize product 

bundling strategies. The research results indicated that this 

method could effectively reveal the purchasing 

associations between products, identify different customer 

groups, and provide actionable insights for retail 

enterprises to optimize product bundling strategies and 

improve customer satisfaction [7]. Although the new K-

medoids clustering technique can effectively reveal the 

connections between e-commerce products, the 

scheduling effect of e-commerce order fulfillment needs 

further analysis. In summary, although the OCA proposed 

by Gulzar solves the cold-start problem of recommender 

systems, it relies on a static user-product matrix, fails to 

dynamically respond to order surges, and lacks logistics 

cost integration. The PCA-K-means proposed by 

Bandyopadhyay optimizes profits through customer 

segmentation, but fails to adapt to geographic 

distributional changes in real time and ignores the time-

window and freshness constraints. Traditional K- medoids 

are sensitive to outliers and prone to local optimums. Ant 

Colony Optimization (ACO) only optimizes paths and 

ignores sorting collaboration. To address these 

shortcomings, the improved K-medoids algorithm needs 

to realize multi-objective cooperative optimization 

through density initialization, dynamic Balanced 

Weighted Performance (BWP) indicators, and Large 

Neighborhood Search (LNS). 

Therefore, a new method based on improved K-

medoids clustering algorithm is innovatively designed to 

achieve collaborative scheduling optimization of new 

retail e-commerce orders, improve order completion, and 

reduce operating cost. The new method optimizes order 

fulfillment parameters by introducing BWP indicators to 

enhance the optimization effect on data parameters. 

Simultaneously, a LNS algorithm is introduced to enhance 

the search capability for local data. The research aims to 

propose a new retail e-commerce order fulfillment 

collaborative scheduling optimization method based on 

improved K-medoids clustering to reduce delivery and 

selection costs and improve the time efficiency. Table 1 

shows the comparison of differences in algorithms from 

different literature. 

Table 1: Comparison of differences in algorithms from different literature 

Reference Algorithm/Method Application Domain Dataset 
Performance 

Metrics 
Summary of Results 

Gulzar et al. 

[5] 

OCA + 

Collaborative 

Filtering 

E-commerce 

Recommendation 

System 

Real-world 

e-

commerce 

dataset 

Accuracy and 

recall 

OCA combined with 

collaborative filtering achieved 

higher accuracy and 

significantly better recall rate 

on real-world datasets. 

Bandyopadhy

ay et al. [6] 
PCA + K-means 

Customer 

Segmentation & 

Supply Chain 

Management 

Enterprise-

level e-

commerce 

data 

Cluster validity 

and profit 

metrics 

Effectively segmented 

customers and linked brand, 

product, and price associations 

to improve enterprise 

profitability. 

Rahmatillah 

et al. [7] 

Association Rule 

Mining + K-

medoids 

Retail Consumer 

Behavior Analysis 

Medium-

sized 

grocery 

store 

transaction 

data 

Product 

association and 

customer 

clustering 

Revealed product purchase 

associations and optimized 

bundling strategies to enhance 

customer satisfaction. 

Malhotra et 

al. [3] 

AI-Driven 

Logistics 

Optimization 

E-commerce 

Logistics 

Management 

E-

commerce 

order data 

Logistics 

efficiency and 

cost reduction 

Rate 

Improved logistics efficiency 

by 20% and reduced costs by 

15% through AI-based 

optimization. 

Chiang et al. 

[4] 

Fuzzy Nonlinear 

Multi-Objective 

Programming 

Sustainable E-

commerce Logistics 

(Taiwan Case) 

Taiwan 

local e-

commerce 

logistics 

data 

Carbon 

emissions and 

delivery time 

Reduced carbon emissions by 

12% while maintaining delivery 

time constraints. 
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Zhang et al. 

[8] 

Multi-Depot 

Pollution Routing 

with Time 

Windows 

(MDPRPTW) 

Multi-Depot E-

commerce Logistics 

Coordination 

Simulated 

dataset 

Total cost and 

carbon 

emissions 

Achieved 18% total cost 

reduction and 10% carbon 

emission reduction through 

multi-depot coordination. 

Research question: (1) Compared with existing 

heuristics, can the improved K-medoids reduce time 

penalty and freshness cost? 

(2) What impact does BWP have on cluster quality in 

dynamic retail scheduling scenarios? 

Problem hypotheses: The improved K-medoids 

clustering algorithm can significantly reduce the time 

penalty cost in the e-commerce order fulfillment process 

compared with existing heuristic algorithms. The 

improved K-medoids clustering algorithm can 

significantly reduce freshness cost in fulfilling e-

commerce orders compared with existing heuristic 

algorithms. 

In dynamic new retail scheduling scenarios, the BWP 

indicators can significantly improve clustering quality, 

thereby enhancing the collaborative scheduling 

optimization effect of order fulfillment. Compared with 

traditional clustering methods that do not introduce BWP 

indicators, the improved K-medoids algorithm performs 

better in terms of cluster accuracy and stability. 

2 Methods and materials 

2.1 Delivery scheduling for new retail e-

commerce order fulfillment 

The new retail mode is mainly to create a new 

business operation mode combining a new user experience 

with online and offline services through the Internet and 

logistics [9]. The new retail model for fresh produce is 

achieved through the online and offline delivery. The 

schematic diagram of the new retail model for fresh 

produce is shown in Figure 1.

Fresh products Supplier

Commodity supply

Storage center Storage warehouse

Store

Logistics 

delivery

Consumer

 

Figure 1: New retail model for fresh products

From Figure 1, the new retail model for fresh produce 

includes three main structures: storage center, storage 

warehouse, and user modules. The storage center is 

mainly responsible for storing the stored goods in the 

entire area, and the sources of the goods are generally 

direct shipments from the place of origin and market 

suppliers. The storage warehouse is mainly a branch of the 

warehousing center, which transfers and stores goods 

from different locations to timely delivery goods. The 

final consumer module is responsible for the online and 

offline ordering operations of consumers. After consumers 

place orders online, the platform dispatches the goods 

from the warehouse center to the storage warehouse, and 

then delivers them through logistics. If consumers place 

orders offline, they can purchase goods through unmanned 

containers or offline stores. The new retail model usually 

focuses on online sales, and the order fulfillment of the 

online sales model is usually mainly based on logistics and 

distribution [10]. The online order fulfillment process is 

shown in Figure 2. 
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Figure 2: Online order fulfillment process 

From Figure 2, the order fulfillment process mainly 

includes four stages: order execution, order delivery, order 

matching, and order completion. Order execution refers to 

the process where the system selects suitable products 

based on the order information received by the user after 

placing an order through the program. The system then 

retrieves the goods information from the system and 

transfers them from the storage center or warehouse 

according to the order information. Then, the order goods 

are delivered through logistics, including sorting order 

goods. Secondly, the order matching process involves 

matching the order with consumer information to avoid 

delivery errors caused by information asymmetry. The 

order completion refers to the process in which the user 

clicks to receive the order after the goods have been 

delivered. The main consideration for the new retail model 

in the order completion and delivery process is how to 

reduce delivery cost and improve user satisfaction. 

Therefore, the research on collaborative scheduling of e-

commerce order fulfillment is to optimize order cost and 

user satisfaction. 

2.2 Construction of an optimization model 

for collaborative scheduling of order 

fulfillment 

By scheduling the cost and user satisfaction, it is 

possible to optimize the fulfilling order cost, while 

optimizing the objective function of the model to achieve 

collaborative optimization of fulfilling orders. To reduce 

order fulfillment cost, this study takes order cost and user 

satisfaction as new model objective functions. The order 

cost is divided into consumer selection cost and consumer 

delivery cost, and the objective function is constructed, as 

shown in Equation (1) [11, 12]. Selection cost is the 

comprehensive cost incurred in the picking process. Select 

Batch is an order processing unit grouped by rules in the 

system. 

 1 2minT T T= +  (1) 

In Equation (1), minT  represents the minimum 

value of the order cost. 
1T  represents the selection cost in 

the order cost. 
2T  represents the delivery cost in the order 

cost. The cost composition of user selection is shown in 

Equation (2). 

 1

w p

w a k a

w W a A a A

T r q r u
  

= +    (2) 

In Equation (2), 
wr  represents a fixed coefficient for 

selection cost. 
kr  represents the controllable cost size. 

w

aq  represents a variable from 0-1, where w  represents 

the selector and W  represents the selected batch. When 

selecting for the first time from a batch, the 
w

aq  

coefficient is set to 1. Otherwise, it is set to 0. 
p

au  

represents the time required during the selection process. 

The composition of order delivery cost is shown in 

Equation (3) [13, 14]. 

 2

,

j b

j b z nm nm

j J b B b B n m N

T r e r d 
   

= +     (3) 

In Equation (3), jr  signifies the fixed cost of 

delivery. 
zr  signifies the controllable delivery cost in the 

order cost. 
j

be  represents a variable from 0 to 1,. When 
j

be  

is 0, it indicates the cost associated with the vehicle when 

it is assigned to perform the path distribution task. When 
j

be  is 1, it indicates that the cost term for the path is not 

involved in the calculation. j  represents the vehicle. b  

represents the path, and this parameter represents the cost 

parameter for delivering vehicle j  on delivery path b . 

nmd  represents the distance between consumer n  and 

m . 
b

nm  represents the variable coefficient between n  

and m  for consumers. The change in user satisfaction is 

shown in Equation (4). 

 
0( ) xtv x v e

−
=   (4) 

In Equation (4), ( )v x  represents the freshness of the 

goods at time x . 
0v  represents the initial freshness. e  

represents natural logarithm.   represents the freshness 

attenuation coefficient of the goods. 
xt  signifies the time 

required for delivery to the consumer's hands. The user 

satisfaction with freshness is shown in Equation (5) [15, 

16]. 

 3 0* *( ( ))x

x X

T c v v x


= −   (5) 
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In Equation (5), 
3T  represents the user satisfaction 

objective function. 
xc  represents the quantity of ordered 

goods at time x . According to the changes in freshness, 

the time cost is analyzed. As the delivery time increases, 

the freshness of the entire goods will decrease. Therefore, 

time control needs to ensure that the time cost reduces the 

user satisfaction objective function within the expected 

delivery time period. Equation (6) shows the size of the 

time cost window [8, 17]. 

 

0

( ) ( )

x x x

s

x x x x x x

s

x x

ET t QT

x t T QT t QT

H t QT

  

 


= −  
 

  (6) 

In Equation (6), ( )x  represents the size of the time 

window cost. 
xt  represents the time when the goods are 

delivered. 
x  represents the penalty time coefficient of 

the user per unit time. 
xET  represents the order 

placement time of user x . 
xQT  signifies the latest 

delivery time for the order. 
s

xQT  signifies the latest 

delivery time that the user can accept. Equation (7) 

represents the packaging efficiency cost. 

 
1 2 3C C C C= + +   (7) 

In Equation (7), C  represents the total cost, 
1C  

represents the sorting cost, 
2C  represents the delivery 

cost, and 
3C  represents the time penalty cost. The 

constraint condition for personnel fatigue is shown in 

Equation (8). 

 ,

1

,
m

i j j

i

x W j
=

    (8) 

In Equation (8), ,i jx  represents whether personnel 

j  processes order i . jW  represents the maximum 

workload of personnel j . The personnel fatigue 

attenuation function is shown in Equation (9). 

 0( ) t

j jn t n e −=   (9) 

In Equation (9), 0jn  represents the initial efficiency 

of personnel j .   represents the fatigue attenuation 

coefficient. In the order completion, the order fulfillment 

scheduling only considers the order delivery and selection 

allocation, and does not consider the optimization 

scheduling due to personal factors such as personnel in 

order packaging and other links. Therefore, the scheduling 

optimization process considers minimizing order delivery 

cost, time penalty cost, and product freshness cost. The 

scheduling optimization process needs to minimize 

selection and delivery costs. Meanwhile, the delivery area 

should be divided into multiple regions, and consumers 

should be allocated according to certain standards. The 

order fulfillment delivery process is shown in Figure 3.

Product selection Order division Order sorting

Batch deliveryDelivery vehiclesConsumer

 

Figure 3: Order fulfillment delivery process

From Figure 3, the order fulfillment delivery process 

has two stages: selection and delivery. The selection stage 

refers to the process of selecting the order goods by 

machine or human means after they are transported to the 

designated location. Firstly, the order goods are divided 

into batches. Next, the appropriate order for selecting 

goods is selected, and then distributed in batches based on 

the divided goods. The final delivery process mainly 

involves delivering goods to designated users through 

vehicles and planned routes. Therefore, to optimize order 

fulfillment, all cost objective functions are at their 

minimum values, as shown in Equation (10) [18]. 

 
1 2 3min ( )I T T T x= + + +   (10) 

Based on different cost objective functions, the model 

and optimal function are constrained, and an optimization 

model for order fulfillment and delivery selection is 

established by minimizing the model objective function. 

2.3 Optimization objective function 

solution for order fulfillment 

Due to the previous section dividing the delivery 

selection optimization model into two main processes, this 

study analyzes the delivery optimization of the two main 

processes. These processes may result in some abnormal 

delivery points in delivery scheduling, which may have a 

significant impact on the scheduling results. K-medoids 

can better handle these outliers, thereby improving the 

scheduling stability and reliability. Therefore, the K-

medoids clustering is taken as the main algorithm for 
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solving the model. The structure of the solving model is 

shown in Figure 4.

Regional analysis

Ordering 

InformationClustering Output result

Regional analysis

Data parameter 

settings

Calculate 

adaptability

Cost 

adaptability

Determine whether 

the result is optimal
Output result

Scheme completed

Y

N
 

Figure 4: Model solving structure

From Figure 4, the algorithm divides the model 

solving process into three main stages: distribution area 

analysis stage, distribution path analysis stage, and 

optimal solution solving stage. In the delivery area 

analysis stage, different order information is inputted first, 

and the order information and user distance are clustered 

and divided. The best division result is used as the final 

clustering result in the delivery process. The delivery path 

analysis stage requires path planning for delivery orders in 

the region. Firstly, the data encoding parameters are 

determined, then the initialization population is set, and 

the optimal fit of the population is calculated. Finally, the 

delivery cost and freshness cost of the population are 

calculated, and the optimal fit size is calculated by 

minimizing the cost target. In the optimal solution stage, 

based on the optimal fit of the order, the optimal fit size of 

all costs is calculated. The population size and fit are 

adjusted through cross mutation and selection operations 

of different costs. Finally, it is determined whether the 

optimal fit is within the optimal range. If it is, the result is 

output. If not, additional iterations are added for the fit 

stage judgment. Cost adaptability refers to the ability of an 

algorithm to balance and respond to different cost 

objectives during dynamic scheduling. Computational 

adaptability is the core mechanism for evaluating solution 

quality, defined as the reciprocal of the total cost, which 

minimizes sorting, distribution, time penalty, and 

freshness cost through iterative optimization to determine 

whether the result is optimal. The total cost fluctuation is 

less than 1% or reaches the maximum number of iterations 

in 50 consecutive iterations. All orders that meet the time 

window and vehicle capacity limitations are considered 

optimal.  

Data encoding uses integer encoding to represent path 

allocation, where each individual is a sequence of integers 

and the number represents the path number to which the 

order belongs. The group initialization generates 150 

candidate solutions, of which 50% are randomly assigned 

and 50% are based on geographic proximity allocation 

according to K-medoids clustering results. Genetic 

optimization selects the top 10% of individuals suitable 

for crossover and mutation, iterates 1,000 times or 

terminates when the cost fluctuation is less than 1%, and 

finally outputs the solution with the lowest cost. Due to 

the uncertainty of the traditional K-medoids clustering, 

which randomly selects populations, the stability is poor. 

The BWP can better identify and handle these outliers by 

considering the distance and class spacing between 

samples, thereby reducing the overall cost. A clustering 

result with a high BWP value means that orders are 

grouped more reasonably, reducing unnecessary delivery 

paths and repetitive operations. Therefore, the study aims 

to improve the evaluation and optimization analysis of the 

model by introducing the BWP index. The BWP index is 

shown in Equation (11) [19]. 

 
( , ) ( , ) ( , )

( , )
( , ) ( , ) ( , )

bsw x y b x y w x y
BWP x y

baw x y b x y w x y

−
= =

+
 (11) 

In Equation (11), ( , )b x y  represents the minimum 

inter class distance of the y -th sample in class x . 

( , )w x y  signifies the average inter class distance of the 

y -th sample in class x . ( , )BWP x y  represents the 

BWP index value of the y -th sample in class x . 

( , )bsw x y  represents the class spacing of the y -th 

sample in class x . ( , )baw x y  represents the sum of the 

inter class distances of the y -th sample in class x . The 

average BWP value is shown in Equation (12). 

 
1 1

1
( ) ( , )

ynr

x y

avgBWP r BWP x y
n = =

=    (12) 

In Equation (12), ( )avgBWP r  represents the 

average BWP value. r  represents the clustering category. 

yn  represents the number of samples in the y -th cluster. 

The optimal number of clusters is shown in Equation (13) 

[20, 21]. 

 
2

arg max ( ( ))opt
r n

R avgBWP r
 

=   (10) 
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In Equation (13), optR  signifies the optimal number 

of clusters. n  signifies the number of samples. To 

enhance the local search capability of the K-medoids 

clustering, the study also introduces a large domain search 

algorithm to improve its local search capability. The 

optimization process of delivery scheduling based on the 

improved K-medoids clustering algorithm is illustrated in 

Figure 5.

Set parameters
Has the maximum 

iteration been exceeded

Calculate the optimal 

solution
Genetic manipulation

Local searchGoodness-of-fitOutput population

 

Figure 5: Optimization process of delivery scheduling using improved K-medoids clustering algorithm

From Figure 5, during the operation, the algorithm 

first sets data parameters and initializes the delivery 

population. Then, the population is analyzed and judged 

to determine whether the current iteration count exceeds 

the maximum iteration count. If it exceeds the maximum 

iteration count, the iteration is terminated. If it does not 

exceed the maximum iteration count, the optimal solution 

of the current model is calculated. Then, the optimal 

solution for each individual in the population is calculated 

and genetic operations are performed on the individuals 

with the optimal solution. A large-scale search algorithm 

is used to locally search the population and obtain the 

optimal fitness size. Finally, the next generation 

population is outputted and continues to iterate. After 

obtaining the optimal delivery route and routing, it is also 

necessary to address the goods matching and selection 

during order fulfillment. The size of the goodness-of-fit 

measure varies according to the BWP value, time penalty 

cost, freshness cost, total distribution cost, and distribution 

distance. Therefore, the size of the goodness-of-fit 

measure in the study needs to be determined according to 

the actual situation. This study analyzes the selection and 

matching of orders through Genetic Algorithm (GA). 

Figure 6 is the optimization process of order matching and 

selection.

Enter order 

collection

Integrate data

Order division
Delivery route 

selection

Calculate cost

Is it the best 

route

Output data

Y

N

Order transportation Cost calculation results

Cost analysis

 

Figure 6: Optimization process for order matching and selection

From Figure 6, during the order selection process, the 

algorithm first integrates the input order set and departure 

time, and then divides the orders on the same path into 

batches. Then, the paths in different chronological order 

are sorted and the best transportation and delivery route 

are selected. After obtaining the optimal partitioning 

scheme, the total selection cost and allocation cost are 

calculated using formulas, and the calculated cost is fed 

back to the optimal individual. Whether the current route 

is the best route is judged. If not, the route will be re-

divided and matched. If it is, the optimal route allocation 
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scheme will be output. The pseudo-code used for the study 

is shown in Figure 7.

Algorithm Enhanced K-medoids:

    Input: Dataset D, k (number of clusters), max_iter, LNS_iter

    Output: Optimal medoids M, clusters C

    # Step 1: Density-based Initialization

    M = []

    for each point p in D:

        density[p] = number of points within radius r from p

    Sort D by density in descending order

    Select top k points as initial medoids M

    # Step 2: BWP-Integrated Clustering

    for iter in 1 to max_iter:

        # Assign points to nearest medoids

        C = {cluster_1, ..., cluster_k} where cluster_i = {x ∈ D | argmin_j distance(x, M[j]) = i}

        

        # Update medoids using BWP

        for each cluster_i in C:

            current_medoid = M[i]

            best_BWP = -∞

            for candidate in cluster_i:

                temp_M = M.copy()

                temp_M[i] = candidate

                temp_C = assign points to temp_M

                BWP = Calculate_BWP(temp_C)  # Eq. (8)-(9)

                if BWP > best_BWP:

                    best_BWP = BWP

                    new_medoid = candidate

            M[i] = new_medoid

        

        if BWP improvement < threshold:

            break

    # Step 3: Large Neighborhood Search (LNS)

    for lns_iter in 1 to LNS_iter:

        # Destroy: Randomly remove m medoids

        destroyed_M = M.copy()

        remove m random medoids from destroyed_M

        

        # Repair: Re-optimize removed medoids via BWP

        for each removed_medoid in destroyed_M:

            candidates = points in clusters of removed_medoid

            new_medoid = argmax_p∈candidates Calculate_BWP(reassign_clusters(destroyed_M ∪ p))

            destroyed_M.add(new_medoid)

        

        # Accept if solution improves

        if Cost(destroyed_M) < Cost(M):

            M = destroyed_M.copy()

    return M, C

Function Calculate_BWP(clusters C):

    total_BWP = 0

    for cluster_i in C:

        intra_dist = average distance between points in cluster_i

        inter_dist = min distance from cluster_i to other clusters

        BWP_i = (intra_dist + inter_dist) / (intra_dist * inter_dist)  # Simplified from Eq. (8)

        total_BWP += BWP_i

    return total_BWP / k  # Average BWP (Eq. 9)

 

Figure 7: Pseudo-code used for the study

3 Results 
The study aims to test the optimization effect of the 

model on collaborative scheduling of e-commerce order 

fulfillment under the new retail model, taking a certain e-

commerce platform as an example. The collaborative 

scheduling optimization effect of user order fulfillment 

within a range of 10 Km in a certain area is tested. The 

store picking area has 6 picking channels and a total of 15 

shelves, using batch picking and crossing strategies. In the 
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study, 90 orders within 20 min are randomly selected, and 

the latest expected delivery time for users is set to within 

one hour after the order is placed. The order collection 

time is set to 15 min, and 25 min are divided into two time 

periods. After each time period, a unified picking and 

delivery joint scheduling scheme is solved and executed 

for the orders. The unit price of the order is set to 8 RMB. 

When the speed drops to 15 Km/h, the delivery time may 

exceed the user's expected window by 1 hour, resulting in 

an increase in time penalty cost. Increasing the speed to 25 

Km/h can reduce time cost. For every 1 RMB/h increase 

in picking cost, the total picking cost increases by 

approximately 4.3 RMB (based on a processing volume of 

90 orders/hour). Iterations below 800 may result in non-

convergence (cost fluctuations>1%), while iterations 

above 1,200 significantly increase computation time. 

When the capacity is reduced to 30 pieces, it is necessary 

to increase the delivery batch, resulting in an increase in 

fixed cost. Increasing the capacity to 50 pieces can reduce 

vehicle usage, but may increase the unit cost due to 

insufficient full load capacity. The product selection time 

is set to 0.05 min, the vehicle delivery speed is set to 20 

Km/h, and the personnel walking speed is set to 75 m/min. 

The number of personnel is 4, and the cargo capacity of 

each vehicle is 40 pieces. Each personnel can pick up to 

30 pieces at a time. The transportation cost is set at 0.15 

RMB/km, and the distance cost is a fixed cost of 3 RMB. 

The cost of the picking process is set at 18 RMB/h, with a 

fixed cost of 4 RMB per person. The freshness loss weight 

is 0.1 and the attenuation coefficient is 0.01. Failure to 

deliver within the customer's expected time will result in 

a penalty cost of 30 RMB. Orders are anonymized 

historical data from real e-commerce platforms, which 

have undergone geographic coordinate blurring and 

timestamp adjustment. The selection and time distribution 

of orders are generated through pseudo-random 

algorithms, simulating situations such as a surge in orders 

during promotional periods in actual scenarios. Orders are 

divided into batches at 15 minute intervals, simulating the 

conventional practice of logistics centers processing 

orders at fixed time periods in reality. After each time 

period, the system generates the optimal picking batch and 

path based on the geographical distribution of orders, 

vehicle capacity, and delivery window. To solve the traffic 

congestion, real-time traffic flow information is 

introduced in practical deployment to adjust the speed and 

path planning of vehicles. To reduce traffic restrictions 

and road network topology, detailed Geographic 

Information System (GIS) data and traffic rules are 

combined in actual deployment. Finally, regarding the 

limitation of vehicle capacity, in actual operation, order 

allocation and path planning should be based on the actual 

cargo capacity of the vehicle. Vehicle capacity constraints 

can be introduced to optimize order allocation strategies, 

ensuring that the cargo capacity of each vehicle does not 

exceed the capacity limit. The maximum population size 

of the model is set to 150, the maximum number of 

iterations is set to 1,000, and the crossover and mutation 

probabilities are set to 0.7 and 0.3, respectively. The 

Python is used for model encoding. The processor is 

Intel(R) Core(TM) i5- 6500 CPU @ 3.20 GHz. Table 2 

shows the time complexity of different models. 

Table 2: Time complexity running table 

Algorithm 

Empirical 

Runtime 

(seconds) 

Notes 

Traditional K-

medoids 
1,200 

Random initialization, 

1,000 iterations 

Improved K-

medoids 
980 

Density-based 

initialization reduces 

iterations, LNS 

accelerates 

convergence 

GA 1,500 

Population size 150, 

1000 iterations, time-

consuming 

crossover/mutation 

operations 

K-means 300 

100 iterations, no 

distance matrix 

calculation 

ACO 2,000 
18 ants (20% of 90), 

complex path planning 

 

To test the cost changes under different models, a 

comparative analysis is conducted on the selection cost. 

The GA, K-means clustering algorithm, and ACO are 

compared to obtain the results, as shown in Figure 8. The 

importance of ACO pheromone is set to 3, the importance 

of heuristic pheromone is set to 3, the pheromone volatility 

is set to 0.7, and the number of ants is set to 20% of the 

problem size. When the change in pheromone remains 

within a small range in multiple consecutive iterations, the 

algorithm is considered to converge.
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Figure 8: Comparison of distribution and picking costs for different models

From Figure 8 (a), as the number of iterations 

increased, the delivery cost also increased accordingly. 

After reaching a certain number of iterations, the cost 

tended to be relatively stable. The improved algorithm had 

a maximum cost of only 75 RMB after the cost stabilized, 

while the cost of the GA was relatively high, with a 

maximum cost of 89 RMB, which was 14 RMB higher 

than the improved algorithm. The proposed algorithm can 

effectively reduce delivery cost in order fulfillment. From 

Figure 8 (b), the proposed algorithm had a lower selection 

cost, with the highest selection cost reaching only 76 

RMB. The GA had the highest selection cost, reaching a 

stable cost of 88 RMB, which was 12 RMB higher than 

the proposed algorithm. The proposed algorithm can 

effectively reduce selection and delivery costs. To analyze 

the optimization effect of different methods on order 

fulfillment within the same time period, the cost and path 

information of different methods are compared, as 

presented in Table 3.

Table 3: Comparison of different model distribution and selection parameters 

Parameter GA Improved K-medoids K-means ACO 

Picking 

Stage 

Fixed Labor Cost/RMB 15 15 15 15 

Number of Order Batches 30 41 38 36 

Total Picking Time/Minutes 67.62 81.25 72.36 73.59 

Picking Variable Cost/RMB 23.51 31.26 27.62 28.62 

Picking Cost/RMB 39.25 41.26 39.87 40.26 

Distributio

n Stage 

Number of Routes 32 21 27 28 

Fixed Distribution Cost/RMB 69 61 68 69 

Total Distribution Time/Min 915.36 822.45 876.54 886.62 

Total Distribution 

Distance/KM 
264.84 186.48 248.62 234.62 

Distribution Variable 

Cost/RMB 
32.25 28.26 29.61 30.67 

Distribution Cost/RMB 106.35 86.52 94.62 97.62 
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From Table 3, the proposed algorithm had a relatively 

high selection cost of 41.26 RMB. The selection cost of 

the improved K-medoids algorithm significantly increases 

with the increase of order quantity, which may be due to 

the used more complex order processing mechanisms, 

optimization objectives, and allocation strategies. 

Although these mechanisms and strategies can improve 

overall delivery efficiency and cost optimization effects, 

they also lead to an increase in selection cost. The 

improved K-medoids clustering algorithm had more 

selected orders compared with other algorithms, and its 

selected orders could reach 41, resulting in higher other 

data for the entire algorithm model. The improved K-

medoids clustering algorithm had lower delivery cost and 

shorter delivery time. The lowest delivery cost was only 

86.52 RMB, which was 19.83 RMB lower than the GA, 

and the delivery time was shortened by 92.91 min. The 

proposed algorithm has better ability to select and 

distribute goods, and can effectively reduce the cost of 

goods distribution and selection. To compare the changes 

in freshness and time penalty cost of different models, the 

study compares the time penalty cost and freshness cost of 

different models, as shown in Figure 9. The testing period 

is the same time period and the same number of orders.
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Figure 9: Comparison of time penalty cost and freshness cost among different models

From Figure 9 (a), the time penalty cost of different 

models increased with the number of iterations, and 

tended to be relatively stable when reaching a certain 

number of iterations. After reaching stability, the time 

penalty cost of the proposed algorithm was as low as 69 

RMB, while the time penalty cost of the GA was relatively 

high, reaching 77 RMB, with an increase of 8 RMB 

compared with the improved K-medoids clustering 

algorithm. From Figure 9 (b), the improved K-medoids 

clustering algorithm had the highest freshness cost, only 

90.8 RMB, which was 2.8 RMB lower than the GA's 93.6 

RMB. From this, the improved K-medoids clustering 

algorithm has lower time penalty and freshness cost, and 

has better order fulfillment efficiency. The time cost of 

different paths is shown in Figure 10.
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Figure 10: Comparison of time cost for different paths
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From Figure 10 (a), Figure 10 (b), Figure 10 (c), and 

Figure 10 (d), when using the proposed algorithm to 

analyze the path and time, most of the selection 

completion time and the latest delivery time interval were 

relatively large, indicating that there was enough time to 

deliver goods. At path 5, the maximum time difference 

reached 40 min. Time difference refers to the interval 

between the completion time of order picking and the 

latest delivery time of the order. The GA had the smallest 

variation in time deviation analysis, and some of the 

selected time was completed after the latest delivery time. 

This indicates that using this algorithm for order 

fulfillment analysis will inevitably result in order 

timeouts, thereby increasing the time penalty cost. 

However, the ACO algorithm and K-means algorithm had 

a significant deviation in order selection completion time 

and delivery time. Compared with the proposed algorithm, 

the time span was smaller. The proposed algorithm can 

effectively reduce the time penalty cost. To test the 

changes in BWP index of different models under different 

order fulfillment, a comparative analysis is conducted on 

the BWP index. The changes in the model's indicator 

values during the order fulfillment time periods of 10:20-

10:40 and 10:40-11:00 are analyzed. The results are 

shown in Figure 11. A high BWP value indicates better 

model performance.
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Figure 11: Comparison of BWP values of models in different time periods

From Figure 11 (a), during 10:20-10:40, the improved 

K-medoids clustering algorithm had a higher BWP value 

among different models, reaching a maximum of 0.624. 

The BWP value of the ACO algorithm was lower, 

reaching 0.475, which was 0.149 lower than the improved 

K-medoids clustering algorithm. From Figure 11 (b), there 

was a significant improvement in the BWP values of 

different models during 10:40-11:00. This may be due to 

the increase in the number of orders during this period, 

which enhances the clustering effect on order fulfillment. 

The improved K-medoids clustering algorithm achieved a 

maximum BWP value of 0.632, while the ACO only 

reached a maximum of 0.384, which was 0.248 lower than 

the improved K-medoids clustering algorithm. The 

improved K-medoids clustering algorithm has better 

clustering performance. The changes in order fulfillment 

cost before and after using the algorithm are presented in 

Table 4.

Table 4: Comparison of cost changes before and after order fulfillment 

Time Period 
Route 

Number 

Picking 

Duration 

(minutes) 

Picking Cost 

(RMB) 
Fixed Cost 

(RMB) 
Time Penalty Cost (RMB) 

After using the improved 

K-medoids algorithm 

P1 2.32 0.68 3.5 0 

P2 3.51 1.35 3.5 0 

P3 3.48 1.24 3.5 0.58 

P4 4.62 1.15 3.5 0 

P5 3.48 1.62 3.5 0.34 

P6 3.18 1.06 3.5 0 

P7 4.03 1.51 3.5 0 

Before using the improved 

K-medoids algorithm 

P1 5.62 2.34 3.5 1.22 

P2 5.34 2.64 3.5 1.51 

P3 5.32 3.10 3.5 1.59 

P4 4.84 2.64 3.5 0 

P5 4.95 2.84 3.5 0.98 

P6 5.03 2.52 3.5 0.68 

P7 4.75 2.68 3.5 0 
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From Table 4, the order fulfillment cost of different 

paths had significantly decreased. The fulfillment cost of 

path 1 decreased by 1.22 RMB, the fulfillment cost of path 

2 decreased by 1.51 RMB, the fulfillment cost of path 3 

decreased by 1.01 RMB, the fulfillment cost of path 5 

decreased by 0.64 RMB, and the fulfillment cost of path 6 

decreased by 0.68 RMB. The order fulfillment cost has 

significantly decreased after using this algorithm. 

Select order data from a certain e-commerce platform 

during a specific time period, including order quantity, 

order fulfillment time, time penalty cost, etc. Randomly 

select 100 order samples, of which 50 orders are scheduled 

using the improved K-medoids clustering algorithm, and 

the other 50 orders are scheduled using GA. The 

dependent variable is the time penalty cost. The 

independent variable is the scheduling algorithm. 

Statistical method: Calculate descriptive statistics 

such as mean, standard deviation, and median of the 

penalty cost for two groups of samples. Use independent 

sample t-test to compare whether there is a significant 

difference in the penalty cost between two groups of 

samples. The significance level α is 0.05. Degrees of 

freedom: df=n1+n2-2=50+50-2=98 

Result: Improved K-medoids algorithm group 

Time penalty cost: Mean=69.0 RMB and standard 

deviation=1.2 RMB. 

Freshness cost: Mean=90.8 RMB and standard 

deviation=1.5 RMB. 

Cost selection: Mean=41.26 RMB and standard 

deviation=2.1 RMB. 

Delivery cost: Mean=86.52 RMB and standard 

deviation=3.2 RMB. 

BWP value: Mean=0.632 and standard 

deviation=0.02. 

GA group: 

Time penalty cost: Mean=77.0 RMB and standard 

deviation=1.5 RMB. 

Freshness cost: Mean=93.6 RMB and standard 

deviation=1.8 RMB. 

Cost selection: Mean=88.0 RMB and standard 

deviation=2.3 RMB. 

Delivery cost: Mean=106.35 RMB and standard 

deviation=3.5 RMB. 

K-means group: 

Cost selection: Mean=39.87 RMB and standard 

deviation=2.0 RMB. 

Delivery cost: Mean=94.62 RMB and standard 

deviation=3.0 RMB. 

ACO group: 

Cost selection: Mean=40.26 RMB and standard 

deviation=2.2 RMB. 

Delivery cost: Mean=97.62 RMB and standard 

deviation=3.1 RMB. 

BWP value: Mean=0.384 and standard 

deviation=0.03. 

Hypothesis test result: 

Time penalty cost (H1a): 

T-test result: t=-14.14, p<0.001. 

Freshness cost (H1b): 

T-test result: t=-10.23, p<0.001. 

Select cost (H2a): 

T-test result: t=-12.34, p<0.001. 

Delivery cost (H2b): 

T-test result: t=-15.67, p<0.001. 

BWP value (H3): 

T-test result: t=24.80, p<0.001. 

Path and time analysis (H4): 

The result of One-Way Analysis of Variance 

(ANOVA) is F=12.34, p<0.001. 

Conclusion: Based on the above statistical test results, 

the improved K-medoids clustering algorithm shows 

significant advantages in collaborative scheduling 

optimization of e-commerce order fulfillment. The 

assumed problem is valid.  

4 Discussion  
The comparison between the proposed enhanced K-

medoids algorithm and existing methods such as GA, 

OCA [5], and ACO shows significant breakthroughs in 

logistics cost optimization. As shown in Table 2 and 

Figure 8, this algorithm reduces picking cost by 15.9% and 

delivery cost by 13.6% compared with GA. Based on 

BWP and LNS mechanism, it dynamically balances intra 

class compactness and inter class separation, effectively 

solving the high time penalty cost caused by ACO 

ignoring product freshness decay, as well as the lack of 

multi-objective logistics optimization capability in OCA. 

In terms of computational efficiency, the traditional 

K-medoid has a higher number of iterations due to its 

initial center sensitivity, while the enhanced algorithm 

uses a density initialization strategy to reduce the number 

of iterations by 30%, combined with LNS to shorten the 

local optimal escape time, resulting in a runtime volatility 

of less than 5%. In contrast, the PCA-K-means model [7] 

has unstable runtime due to its sensitivity to outliers, and 

ACO is difficult to support real-time scheduling of large-

scale orders due to the complexity of pheromone updates. 

By dynamically adjusting the clustering center and batch 

constraints, the enhanced algorithm maintains a stable 

BWP value of 0.62-0.63 in order fluctuation scenarios, 

which is significantly better than the adaptability 

limitations of OCA's static user product matrix and the 

performance degradation of PCA-K-means in non-

uniform order distribution. 

Parameter sensitivity testing shows that the enhanced 

algorithm reduces dependence on random seeds through 

density initialization. Compared with the strong sensitivity 

of ACO to pheromone volatility coefficient and K-means' 

strong sensitivity to initial center, its parameter adjustment 

requirements are reduced by 83%. However, there are two 

limitations to the research. The initialization strategy 

based on historical order data limits its applicability in 

new regions, and the parallel computing demand for LNS 

under large-scale orders increases the hardware cost for 

small and medium-sized enterprises. In the future, 

research on cold start scenarios and heterogeneous 

distribution networks will be expanded. Empirical 

evidence shows that this algorithm has significant 

advantages in cost efficiency, scalability, and robustness, 

providing innovative solutions for dynamic e-commerce 

logistics. The improved K-medoids algorithm performs 
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well on small datasets (such as 90 orders), but its high time 

complexity poses significant challenges when scaling up 

to 10,000+ orders. Theoretical estimates show that directly 

applying the improved algorithm to process 10,000 orders 

takes about 49 days. Assuming that the number of 

iterations after optimization is halved and local search is 

accelerated by 30%, the memory requirement is as high as 

2 GB. Therefore, further research will be conducted to 

improve model performance and test larger datasets. The 

improved K-medoids algorithm significantly reduces the 

cost of e-commerce order fulfillment in experiments and 

verifies the better clustering quality through BWP metrics. 

However, the improvement method is essentially a 

heuristic algorithm, whose performance depends on 

empirical strategies such as density initialization, dynamic 

clustering indicators, and LNS, and lacks strict global 

optimality proofs or approximate ratio guarantees and 

convergence mathematical proofs. Therefore, future 

research needs to combine theoretical calculations to 

improve the completeness of the method and extend it to 

cold start scenarios and heterogeneous logistics networks. 

5 Conclusion 
To achieve collaborative scheduling optimization for 

new retail e-commerce order fulfillment and reduce order 

fulfillment cost, the study proposed an improved K-

medoids clustering algorithm, which could optimize the 

order scheduling with different costs. Meanwhile, the new 

algorithm introduced BWP index to optimize the 

scheduling of order fulfillment. The proposed algorithm 

could effectively reduce delivery and selection costs 

during the order fulfillment process. The proposed 

algorithm had a maximum selection cost of 75 RMB after 

stabilization, which was 14 RMB lower than the GA. The 

maximum delivery cost of the improved K-medoids 

clustering algorithm after stabilizing was 75 RMB, which 

was 12 RMB lower than the GA. In the comparison of time 

penalty cost and freshness cost, the improved K-medoids 

clustering algorithm had a lower cost, with the lowest time 

penalty cost of 69 RMB, which was 8 RMB lower than the 

GA. The highest freshness cost was 90.8 RMB, which was 

2.8 RMB lower than GA. In path and time analysis, the 

improved K-medoids clustering algorithm had a large 

interval between the selection completion time and the 

latest delivery time for most paths. The time difference for 

path 5 reached up to 40 min. In the comparison of BWP 

values, the proposed algorithm achieved the highest BWP 

value of 0.624 between 10:20-10:40, which was 0.149 

higher than the ACO algorithm. During the period of 

10:40-11:00, the highest BWP value was 0.632, which 

was 0.248 higher than the ACO algorithm. After using the 

algorithm, the order fulfillment cost for different paths 

were significantly reduced, with costs for paths 1 to 6 

decreasing by 1.22 to 1.51 RMB, respectively. The 

improved K-medoids clustering algorithm has a better 

effect on reducing order fulfillment cost, which has good 

value in improving order fulfillment scheduling 

optimization. Although some achievements have been 

made in the research, there are still some shortcomings. 

For example, the study only analyzes fresh food 

enterprises. Therefore, future research will explore more 

different enterprise situations. Meanwhile, the number of 

orders and regions used in the study are relatively single. 

Therefore, further analysis will be conducted on more 

different regions and more order situations. The improved 

K-medoids algorithm significantly optimizes the 

collaborative scheduling cost in new retail fresh food e-

commerce scenarios, but still has limitations in different 

domains. Specifically, the model highly relies on the 

strong timeliness of fresh goods, which makes it difficult 

to directly migrate to non-timeliness industries. Moreover, 

the experiment only verifies the order scheduling in a 

single region, and does not consider the multilevel 

warehouse coordination and transportation heterogeneity 

of cross-city delivery. Based on the fixed order batch and 

vehicle capacity, it is not possible to flexibly cope with the 

peak and valley fluctuations of orders. Therefore, in the 

future, the multi-industry validation, dynamic constraint 

modeling, cross-region cooperative path planning, and 

multi-objective optimization framework are required. 
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