
https://doi.org/10.31449/inf.v49i28.8742 Informatica 49 (2025) 161–184 161

EBSVM: A Sparsification Method From LP-Based SVM via Stochastic
Functional ξ-Analysis

Rezaul Karim*, Zakir Hossain, Amit Kumar Kundu, Ali Ahmed Ave
Department of Electrical and Electronic Engineering, Uttara University, Dhaka, Bangladesh
E-mail: rezkar@uttarauniversity.edu.bd
∗Corresponding author

Keywords: Classifier, stochastic, LP, QP, sparse, SVM, EBSVM (efficiency boosted SVM), accuracy, MAC, GFR, com-
pact, data, mapping

Received:March 28, 2025

While SVM being a solid mathematical and state-of-the-art sparse but powerful stochastic machine with
top accuracy, Vapnik’s LP based SVM is sparser than the QP generated one though offers similar accuracy.
Yet, further sparsity is essential to efficiently work with very complicated and large datasets. In our work,
we propose a novel efficient method, EBSVM by imposing additional sparsification on this sparser LPSVM
maintaining optimal complexity of the machine to further reduce classification cost while preserving sim-
ilar accuracy by analyzing the stochastic auxiliary variable, ξ after a compact deterministic mapping of
data. Experiments with Gunnar Rätsch benchmark data as well as synthetic data reveals that our model
demands classification cost much smaller than the cutting-edge prominent classifiers while posing similar
accuracy despite of being simpler to be implemented. On average, it costs 12.4% of the standard QPSVM,
50.3% of the VLPSVM, 68.1% of the EESVM [1], 98.1% of the greedy SpSVM-2 [2]. It insists the least
MAC (Machine Accuracy Cost) value as well as GFR(Generalization Failure Rate) considering these ma-
chines. Numerical calculus based noise-sensitivity analysis proves our model’s potentiality in working with
noisy data. This machine is also expected to work with high efficiency in case of very large and complex
data satisfying constraints in real-time.

Povzetek: Članek predstavi EBSVM za učinkovitejšo klasifikacijo s pomočjo stohastične ξ-analize in
redčenja LP-SVM, ki odstranita zavajajoče KCV ter optimizirata pristranskost, omogočata bolj kvalitetno
posploševanje kot metoda QPSVM, z hitrejšimi odločitvami klasifikacije.

1 Introduction & selected related
work

In stochastic learning, the principal objective in a proba-
bilistic data-classification problem is in general to model a
discriminator function that effectively represents the gener-
alized relationship of the input objects or patterns with their
matching class-labels applying the given dataset having
some example patterns with their associated class-labels.
While in such indeterministic frameworks, performance
from kernel-based classifiers is influenced by the size, ran-
domness of distribution and topological variations of the
dataset, the complexity of constructing such classifiers and
determining its decision boundary by involving kernel op-
erating patterns is also related to the probabilistic nature of
data, classifiers’ geometry and available computational re-
sources. Thus different machines show different perfor-
mances on data detection demanding different computa-
tional cost. In this regard while Support Vector Machines
(SVMs) lead the field of data classification by offering
top level accuracy through finding global optima, a key
stochastic property of SVMs is their sparsity, which enables
the construction of the optimal classifier using only a prob-

abilistically selected subset of training patterns, known as
support vectors (SVs). This sparsity reduces computational
demands but as the number of SVs increases, computational
cost from nonlinear SVM classifiers also gets higher. How-
ever, although Vapnik’s Linear Programming (LP) based
SVM is even sparser and demands much less computational
cost, it also demands the expensive kernel execution task.
Moreover, as science and technology have advanced, the
size as well as the complexity of data have grown rapidly,
and as a result, the number of support vectors usually rises
with the growth of the the size of training dataset [3]. This
makes the further but compact sparsity of the support vector
set a critical and continuous consideration for large-scale
datasets, especially in scenarios constrained by computa-
tional resources and time. As a result, developing methods
to address this challenge has become a central focus of re-
search, aiming optimal performance by balancing stochas-
tic generalization with computational efficiency.
Tom Downs et al. [4] offers a method to detect linearly de-
pendent support vectors (SVs), retaining only one and dis-
carding the rest but the number of this linearly dependent
SVs tends to decrease as data dimensionality and complex-
ity increase. Joachims-Yu [5], Keerthi et al. [2], and Cot-



162 Informatica 49 (2025) 161–184 R. Karim et al.

ter et al. [6] develop iterative algorithms for reduced SVMs
that deliver impressive results, demanding only a very small
amount of kernel execution to classify a single pattern
whereas [6] reported a memory run out from [2], [5] apply-
ing on bulky dataset while their approach introduces a no-
table deviation from the original methodologywithmassive
parameter choosing. Romdhani et al. [7] and Wu et al. [8]
propose to approximate the decision function of a full SVM
by identifying a novel denser set of patterns to replace the
full set of support vectors whereas Raetsch et al. [9] explore
wavelet-based estimations for these vectors to efficiently
compute dot products between the kernel generating pattern
vectors. These approaches, however, rely heavily on some
complex optimization methods that are indeed prone to the
starting point, learning rate, etc. Heisele et al. [10] suggests
a structured SVM-oriented classification method that uses
a series of linear SVMs in the early stages and a nonlin-
ear SVM in the last stage while optimizing thresholds for
enhancing both classification time and accuracy whereas
Karim et al. [11] presents that a carefully organized cascade
of two nonlinear SVMs considerably lowers classification
costs compared to using a single nonlinear SVM. Arreola
et al. [12] models a linear SVM-based decision tree. Sahbi-
Geman [13] designs a tree-structured hierarchical SVM us-
ing threshold selection as well as reduced set techniques,
applied across partitioned pattern spaces. Moreover, there
are also some other noteworthy works focusing on devel-
oping cost-efficient SVM variants. Where, Maji et al. [14]
presents that histogram and additive kernels based SVMs
outperform linear SVMs in speed and accuracy. Ladicky
and Torr [15] propose a locally linear SVM with bounded
curvature and a smooth decision boundary, balancing the
number of anchor points against classifier complexity to
prevent overfitting and runtime issues. Xu et al. [16] sug-
gests an additional training algorithm to further compress
the trained SVMs using a small set of parameters. Li and
Zhang [17] designs a fast object detector using cascaded
stages with logistic regression acting as a weak base learner
focusing on efficient training method. Raykar et al. [18] de-
velops a cascaded system where the classifiers discard pat-
terns based on probabilities calculated in previous stages
achieving a balance between feature learning costs and ac-
curacy. EESVM by Kundu-Karim [1], HESVM by Karim-
kundu [19] achieve a significant advancement in SVM ef-
ficiency, which is particularly suitable for applications in-
volving large-scale and complex datasets though their im-
plementation complexity is also notable. Fu et al. [20] com-
bines linear SVMs to classify complex data showing that
the prediction phase efficiency of linear SVMs rivals that of
nonlinear SVMs. Karim and Kundu [21] propose a second-
order SVM by performing quadratic and linear program-
ming in sequence, achieving compactness and high classi-
fication accuracy. Later, they introduce a different method
[22] for support vector reduction by LP and computational
analysis, demonstrating on benchmark datasets that their
model achieves comparable accuracy to standard nonlinear
SVMs with significantly improved prediction efficiency.

Franc et al. [23] proposed Reduced SVMs (RSVMs) with
lower computational costs compared to standard SVMs to
classify patterns by leveraging a small subset from the sup-
port vectors of the conventional SVM while Gu et al. [24]
introduced Clustered SVMs, employing weighted combi-
nations of LSVMs that are trained on the subsets of the
training data which are clustered to achieve localized sepa-
ration. Karim et al. [25] introduces a novel similarity func-
tion to enhance the efficiency of Linear Programming based
Support Vector Machine. Zhou [26] proposes an approach
to enhance the efficiency of SVMs through sparsity con-
straints that offers significant computational speed while
using a practically challenging assumption in the optimiza-
tion method. Dries et al. [27] offers innovative approaches
for support vectors reduction in SVM classifiers through
two different methods that gives some computational ben-
efits. However, their modification of training data limits
their applicability to non-separable datasets. Wang et al.
[28] offers a significant advancement in linear SVM algo-
rithm by tackling fundamental issues with traditional hinge
loss but initiates new challenges, specially in terms of op-
timization and scalability. Liu et al. [29] offers a signifi-
cant advancement in kernel SVM methodology by incor-
porating the 0-1 soft margin loss into a nonlinear kernel
framework that gives a promising alternative for complex
classification tasks while the inherent challenges associated
with their non-convex optimization and algorithmic com-
plexity limits the model’s practicality and robustness. Wu
et al. [30] proposes an innovative approach to SVM classi-
fication by excluding the involvement of kernel functions
and directly incorporating the 0-1 loss function that gives
improved performance. However, on top of the challenges
from their non-convex optimization and algorithmic com-
plexity, their assumption that a quadratic hyper-surface is
suitable for separating classes, which may not hold true for
all datasets, potentially bounds its applicability. Akhtar et
al. [31] gains generalization performance by coupling their
RoBoSS loss function in SVM while issues about imple-
mentation complexity, parameter tuning, scalability, and
data quality should be taken into account seriously during
its application. Lin et al. [32] gets support vector reduc-
tion from modification of conventional SVMs by integrat-
ing the ℓ0-norm into the hinge loss function but the chal-
lenges regarding their non-convex optimization, computa-
tional complexity should be considered when applying this
approach. Wang et al. [33], [34], [35], [36] propose ef-
fective mechanisms for handling large-scale classification
problems by balancing robustness, sparsity, and efficiency
but their non-convex models bring challenges during im-
plementation.
In spite of the efficiency of these classifiers, further sparsi-
fication with convenient implementation is very necessary
for datasets that are complex and very large.
In this work, we focus to build up an exceptionally sparse
classifier within a stochastic framework. By analyzing the
SVM learning process through stochastic principles with
pattern space spanning and leveraging computational and
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probabilistic insights, we propose a simple but very produc-
tive learning algorithm under uncertainty. Being generated
from the outcome of the analysis of a stochastic variable,
this algorithm employs methods to model a highly efficient
classifier from a very compact and dense set of stochas-
tic decision points that significantly reduces classification
costs while preserving statistical robustness and strong gen-
eralization capabilities.
The remaining part of the paper is arranged in the follow-
ing way: Section 2 covers the relevant foundations while
Section 3 details the proposed algorithm with an in-depth
analysis. The experimental results are presented in Section
4 whereas Section 5 concludes with a discussion and sug-
gestions for future work.

2 Related basics

2.1 Stochastic learning fundamentals
Stochastic learning lies in the Machine Learning system
to train the machine where model parameters are deter-
mined under uncertainty using the training data (figure 1).
With constant model complexity, for small training sets,
the model may get insufficient information to capture un-
derlying patterns, just memorizes the training dataset well
rather than learning generalizable patterns, leading to high
variance or overfitting and underperform while with larger
sample size, the generalization error typically decreases be-
cause the model is trained on more representative data, im-
proving its ability to generalize and reducing overfitting.
Further, when the model has low dimensionality, it may not
have the capacity to fit the training data adequately, result-
ing in high bias (underfitting) where the generalization error
gets highly influenced by the inability to capture data com-
plexity whereas when the model has high dimensionality, it
can perfectly fit the training data, including noise, leading
to high variance (overfitting) and the generalization error
increases as the model fails to perform well on test data.
Hansen [37], Karim [38] showed that to avoid higher gen-
eralization error in Stochastic Linear Learning, for a prob-
lemwith sample sizeN , model dimension d, one must have
N >> d and this error goes unbounded for N ≤ d + 1.
However, the ideal balance is achieved when the model di-
mensionmatches the effective complexity of the data, given
a sufficient sample size and the relationship among general-
ization error, sample size, and model dimension in stochas-
tic learning is governed by the interplay among bias, vari-
ance, and the complexity of the model.

Generalization error while modeling a
stochastic machine

Problem set up
The key objective in machine learning is to approximate an
unknown function f(x) that assigns an output y for an input

Figure 1: Training and generalization phase of a statistical
learning machine model [39]

x while the observed outputs y are noisy due to inherent
randomness or measurement errors:

y = f(x) + ϵ

where f(x) is the true underlying function, ϵ is the ran-
dom noise following a zero-mean normal distribution with
variance

∑2
ϵ : ϵ ∼ N (0,

∑2
ϵ).

We approximate f(x) using a model f̂(x), which is
learned from data, aiming at measuring how well f̂(x) per-
forms by analyzing its expected squared error.

Expected error forming

The expected squared-error at a point x can be calculated
as:

E[(y − f̂(x))2]

where the expectation is taken over the randomness in
both f̂(x) and y (due to noise ϵ).
Substituting y = f(x) + ϵ in the above equation we get

E[(y − f̂(x))2] = E[(f(x) + ϵ− f̂(x))2]

Expanding the squared term we get

(f(x)+ϵ−f̂(x))2 = (f(x)−f̂(x))2+2(f(x)−f̂(x))ϵ+ϵ2

Now taking the expectation and using E[ϵ] = 0, the mid-
dle term becomes E[2(f(x) − f̂(x))ϵ] = 0 while the last
term gives E[ϵ2] =

∑2
ϵ , which is the noise variance and the

whole expected squared error simplifies to

E[(y − f̂(x))2] = E[(f(x)− f̂(x))2] +

2∑
ϵ
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Error term decomposition

The term E[(f(x) − f̂(x))2] representing the error in ap-
proximating f(x) with f̂(x), can be further decomposed
by adding and subtracting E[f̂(x)] (the expected prediction
of the model over all possible datasets) as

E[(f(x)−f̂(x))2] = E[(f(x)−E[f̂(x)]+E[f̂(x)]−f̂(x))2]

Now, expanding the squared term, we get

(f(x)−E[f̂(x)]+E[f̂(x)]−f̂(x))2 = (f(x)−E[f̂(x)])2+

2(f(x)−E[f̂(x)])(E[f̂(x)]− f̂(x))+(E[f̂(x)]− f̂(x))2

Now applying the expectation, we get the cross-term
E[2(f(x) − E[f̂(x)])(E[f̂(x)] − f̂(x))] = 0 as E[f̂(x)] −
f̂(x) = 0. whereas the first term (f(x) − E[f̂(x)])2 is the
Bias squared, the second term E[(E[f̂(x)]− f̂(x))2] is the
Variance.
Thus, we can write

E[(f(x)− f̂(x))2] = (Bias)2 + (Variance),

where, Bias2 = (f(x)−E[f̂(x)])2, Variance = E[(f̂(x)−
E[f̂(x)])2].
Eventually, the full expression for the expected squared

error becomes

E[(y − f̂(x))2] = (Bias)2 + (Variance) +
2∑
ϵ

Generalization introducing input distribution
Considering all inputs x, we have to take the expectation
over the input distribution p(x) as

Generalization Error = Ex,ϵ[(y − f̂(x))2]

Expanding this we can write the the final expression as

Ex,ϵ[(y − f̂(x))2] = Ex[(f(x)− E[f̂(x)])2]︸ ︷︷ ︸
Bias2

+Ex[Eϵ[(f̂(x)− E[f̂(x)])2]]︸ ︷︷ ︸
Variance

+

2∑
ϵ︸︷︷︸

Irreducible Error

(1)

Intuition behind each term & key
observations
– High bias takes place while the model is under-
trained or too simple to capture data complexity and as
model complexity increases, Bias decreases because
the model can better approximate f(x). Underfitting
from high bias can lead to a situation, where both train-
ing and test errors are high.

– Variance increases because themodel turns to bemore
responsive to the training data. Variance measures
how sensitive the model is to changes in the training
data. High variance can result in overfitting, where the
model performs well on the training data but poorly on
unseen test data.

– Irreducible error (
∑2) remains constant, indepen-

dent of model complexity.

– A model having high bias typically has low variance
and vice versa. The optimal model is a properly
tuned model that achieves good generalization with
reasonable training performance minimizing the to-
tal error by balancing bias and variance. This is the
bias-variance tradeoff, a fundamental concept in ma-
chine learning that explains the relationship between a
model’s ability to generalize to unseen data and its per-
formance on training data. It is very important to con-
sider during the construction of a stochastic machine.

Next we discuss about Support Vector Machine (SVM),
which is very prominent managing this bias-variance trade
off successfully.

2.2 Support vector machine (SVM)
Due to their robustness, strong generalization capability,
and convexity of the mathematical model to find unique
global optimum, SVMs probably have gained the highest
popularity among machine learning approaches for super-
vised learning though having very simple principle. The
problem that drove its initial development occurs in vari-
ous forms as the bias variance trade-off [40], capacity con-
trol [41] , overfitting [42] while the core idea is the same
[43]. Thus, it is mathematically quite strong basing on the
concept of statistical learning theory as well as optimiza-
tion.

2.2.1 SVM with statistical learning theory

Suppose that we have two classes of objects. Now we have
received a novel object for which we are to allocate a class
from one of these two classes. Such a problem can be con-
sidered as a (binary, due to two classes) pattern recognition
problem that can be formed in the following way: having a
set of observational data
(x1, y1), . . . , (xm, ym) ∈ S × {±1},
we need to design a decision (discriminator) function f :
S → {±1}, where S is a set of elements from which the
xi patterns have been drawn, generally referred to as the
domain whereas yi are designated as the targets or class-
labels. A well defined decision function is supposed to be
able to generalize to the unseen novel data instances that
poses a possibly low value while measuring the risk

R[f ] =
1

2

∫
|f(x)− y| dP (x, y) (2)
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where dP (x, y) can be written as p(x, y)dxdy when a den-
sity p(x, y) exists.
Expressing linguistically, on average across an unspeci-
fied distribution P that is considered to generate both of
the training and test data, we aim to achieve a low error.
Here, we calculate the error using the binary loss function
q(x, y, f(x)) := 1

2 |f(x)− y|, which gives 1 when (x, y) is
not correctly classified and 0 when it is correctly classified.
It is to note that up to now, the patterns can take almost any
form , and no assumptions have been made on S except it
is a set equipped by a probability measure P . Addition-
ally, without having an estimate of P (x, y), although (2)
represents the true mean error in a nice way, it does not tell
about the way either to find a function posing a small risk or
even to assess the risk of a specified function, and thus be-
comes not so useful. Hence,for risk minimization, we need
to move towards an induction principle . Now, we incorpo-
rate an additional form of structure related to the informa-
tion we actually have, that is the training data. And while
the quantityR[f ] is usually referred to as the expected risk,
or simply the risk or here, we term it as the actual risk, this
newly introduced quantity will be called the empirical risk
(the training error) , noted by Remp[f ], which is defined as
the calculated mean error rate over the full training set (con-
sidering a fixed and finite number of observations); that is,

Remp[f ] =
1

m

m∑
i=1

|f(xi)− yi| (3)

It is to be noted that, here, no probability distribution shows
up and Remp[f ] is a fixed number for a specific f and for a
specific training data set {xi, yi}.
However, when the number of training examplesm is lim-
ited, minimizing this empirical risk does not assure small
actual risk as small error over the training set does not auto-
matically imply good generalization ability, that is, a small
amount of error on any independent and novel test data.
This phenomenon is commonly known as overfitting [44].
To get the maximum benefit from a limited amount of data,
various statistical methods are being developed over many
years. Vapnik-Chervonenkis, through their VC theory [45]
in Statistical Learning Theory, emphasis on the necessity
of limiting the set of functions from which f is selected to
one having a capacity that well fits the available training
data. It establishes bounds on the test error, which depends
on the empirical risk as well as the capacity of the function
class while minimizing these bounds guides to the struc-
tural risk minimization principle [46]. Considering the dis-
cussed problem, SVMs can be regarded as an application
of this principle where it is tried to minimize the ”Struc-
tural Risk”, which is a combination of the empirical risk,
Remp[f ] and a ”capacity term” found for the set of hyper-
planes from a dot product spaceH as stated next. For some
η such that 0 ≤ η ≤ 1 andm > h, with probability 1− η,
the following bound holds :

R[f ] ≤ Remp[f ]+

√
h (log(2m/h) + 1)− log(η/4)

m
(4)

where h, VC dimension (or ”model complexity”), which
is an integer that cannot be negative and is used to assess the
above mentioned capacity. Right-hand side of (4) is called
the the ”risk bound” and the second term of this part is
called the ”model complexity penalty” or ”VC confidence”.
Several key points can be noted about this bound. First, it
is free of the distribution P (x, y) and here only assumption
is made that both the training and test data are taken inde-
pendently following this distribution. Second, the left hand
side of the bound is usually not possible to computewhereas
the right hand side of it can be computed if we know h.
Third, learning process is said to be consistent if both of the
expected risk and the empirical risk converge to the mini-
mum value of the risk, which can be found form→∞ and
at last, for given some diverse learning machines (equiva-
lently, family of functions), selecting the one, which mini-
mizes the right hand part of (4) will be taking the machine
that gives the least upper bound imposed on the actual risk
in its left hand part.
Moreover, going into a bit more explicit about the error
or risk of the machine depending on its model complex-
ity we see that the VC dimension, h of a set of functions
describing their capacity controls the main characteristic of
a machine. SVM, by applying structural risk minimization
(SRM) [47] principle, which is an inductive method that
chooses a model to learn from a training dataset with fi-
nite examples, acting as an indicator of this capacity con-
trol by proposing a trade-off between the empirical error
and this VC dimensions, h, equivalently, the hypothesis of
space complexity. Having a form of convex optimization,
SRM applies a set of sequential models with an ascending
order of complexity. Figure 2 briefly displays how the total
model error changes depending on the model-complexity-
index of a machine that can be analyzed from the relation
(4). For low-complex models (similar to high bias but low
variance in relation (1) during a stochastic machine learn-
ing), the error gets higher as simpler models are unable to
learn all of the data-complexity leading to an underfitting
situation. On contrary, for higher model indices (similar to
high variance but low bias in relation (1) during the learn-
ing of a stochastic machine), the structure tries to adapt its
learning model with higher concentration to the very spe-
cific training data leading to an overfitting condition, which
reduces the amount of training error with increasing the
model complexity but at the cost of a worsening perfor-
mance on the test data. Thus the optimal model index, h∗

lies between these higher and lower values of this model
index where the model gets down to its lowest value.

2.2.2 Kernels with SVM

In the very simple pattern recognition problems, SVM uti-
lizes a linear separating hyperplane to form a classifier with
the largest margin. To achieve this, the learning prob-
lem for SVM will be formulated as a constrained nonlin-
ear programming problem where the objective function are
quadratic and the constraints are linear, that means, it will
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Figure 2: Error trends on model complexity [48]

be needed to solve a QP(quadratic programming) prob-
lem. On the other hand, when a dataset cannot be sepa-
rated linearly in the original input space, the soft-margin
SVM struggles to manage a reliable separating hyperplane
that both minimizes misclassified data points and general-
izes effectively. But following Cover’s theorem [49], data
points get more probable to be in the form for being lin-
early separable after they are nonlinearly mapped into a
higher-dimensional space. In this regard, SVM uses Ker-
nel method, which was first introduced in [50] [51] and
implicitly performs a nonlinear transformation of the in-
put training data from its existing space to a much higher-
dimensional feature space (or kernel space) by replacing
the inner product by an optimum positive definite func-
tion (or kernel function, strongly related to Mercer’s The-
orem [52]), where data will be linearly separable (figure
3 on page 166) rather than solving a high-order separating
hypersurface in the input space and this is accomplished
before solving the learning problem through a convex op-
timization. This approach is preferred because a nonlinear
separating boundary in the input space escalates computa-
tional demands during the optimization phase. Nonlinear
kernel functions lessen the curse of dimensionality [53] pro-
ductively. However, selecting and setting the right kernel
function are vital for SVM optimality.

Figure 3: Non-linear transformation of data through ker-
nel methods: mapping input space to a much higher di-
mensional feature space, realizing linear separation of data-
classes in the feature space, which is not linear in input
space.

Mercer’s theorem for kernels

Mercer’s Theorem is a fundamental concept from Func-
tional Analysis to provide the theoretical basis for using
kernels in SVM, which can be described in the following
way. Let K(x, y) be a continuous function defined on
a compact set X × X . Mercer’s Theorem states that if
K(x, y) is positive semi-definite (i.e., for all d-dimensional
vectors v, the matrix [K(xi, xj)] is positive semi-definite),
then there exists a feature space and a mapping ϕ(x) such
that:

K(x, y) = ⟨ϕ(x), ϕ(y)⟩

Explaining in another way, the functionK(x, y) can be ex-
pressed as the inner product of two vectors in some high-
dimensional (even possibly, infinite-dimensional) feature
space (equivalently, RKHS) where some key concepts are
described below:

Key concepts

– Positive Semi-Definiteness: A function K(x, y) is
positive semi-definite if, for any finite set of points
{x1, x2, . . . , xd}, the matrix formed by evaluating
K(xi, xj) for all pairs (xi, xj) is positive semi-
definite. This means that all eigenvalues of the matrix
are non-negative.

– Reproducing Kernel Hilbert Space (RKHS) [54–
57]: The feature space H associated with the kernel
function K(x, y) is called the RKHS. The kernel K
defines an inner product in this space, and the func-
tion ϕ(x) maps the original input space to this RKHS.

– Significance forMachine Learning: Mercer’s Theo-
rem justifies the use of kernel functions like the Gaus-
sian (RBF) kernel, polynomial kernel, and others in
machine learning. The theorem ensures that these
kernels correspond to valid inner products in high-
dimensional feature spaces, enabling the use of linear
methods in these spaces.

Most commonly used kernels are: Polynomial kernel:
K(x, y) = (xT y + c)d & Gaussian (RBF) kernel:
K(x, y) = exp

(
−∥x−y∥2

2
∑2

)
For further kernels:
It is possible to construct more complex kernel functions by
combining simpler kernels.

– Non-negative Linear Combination of Mer-
cer kernels also produces a Mercer kernel :
If K1(x, y),K2(x, y), . . . ,Kn(x, y) are Mer-
cer kernels and α1, α2, . . . , αn ≥ 0, then
K(x, y) =

∑n
i=1 αiKi(x, y) is also a Mercer

kernel.
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– Product of Mercer kernels result in a Mercer kernel
: If K1(x, y) and K2(x, y) are Mercer kernels, then
K(x, y) = K1(x, y)·K2(x, y) is also aMercer kernel.

2.2.3 SVMWith mathematical programming

Being mathematically solid and hence powerful, SVM has
become one of the most popular supervised machine learn-
ing method for classification where the problem is framed
as estimating a decision boundary under uncertainty. Due
to its high power and minimal classification error despite
sparsity, it has gained high popularity. Initially, it was in-
troduced through Quadratic Programming (QP), known as
QPSVM. However, as the L1-norm is more likely to pro-
duce sparser solutions thanL2-norm [58], Vapnik modelled
an alternative SVMmodel using Linear Programming (LP)
to design the objective function, called VLPSVM. This
part addresses SVM and its two core forms (QPSVM and
VLPSVM), with further particulars provided in [59].

Quadratic programming (QP) based SVM

This is the standard SVM, a leading algorithm in the field of
machine learning. QPSVM uses structural risk minimiza-
tion concept from statistical learning theory implementing
margin maximization between two classes that aims to find
the data depending separating hyperplane, which is as far as
possible from the nearest data point. Let us consider a bi-
nary classification problem using a set of given training pat-
terns {

(
xi, yi

)
}Ni=1; xi ∈ Rd and yi ∈ {−1, 1}. To divide

these patterns into two classes effectively, SVM determines
a classifier based on a decision function having the form
f(x) = w · ϕ(x) + b, leading to class(x) = sgn(f(x)),
whereK(xi, xj) = ϕ(xi) ·ϕ(xj) is a kernel operation. The
primal domain formulation of this QPSVM is as follows:

min
w,b,ζ

fP (w) =
1

2
∥w∥2 + C

N∑
i=1

ζi (5)

s.t. yi
(
w · ϕ(xi) + b

)
≥ 1− ζi (6)

ζi ≥ 0; i = 1, 2, ..., N (7)

where the auxiliary variables ζi > 0workmainly for pat-
terns that remain outside their respective class-margins (or
we call it here, ”margin-outward-deviated patterns”) with
C > 0 is a data-influenced parameter to regularize the clas-
sifier following bias-variance tradeoff concept in stochastic
learning. The corresponding dual problem becomes:

max
α

fD =

N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjϕ(xi) · ϕ(xj)

(8)

s.t

N∑
i=1

αiyi = 0 (9)

0 ≤ αi ≤ C; i = 1, 2, ..., N (10)

which is also a QP problem and the patterns for which
αi > 0 are the support vectors (SVs). They can also be

Figure 4: A visual representation of the standard SVM is
shown, where patterns for the positive and negative classes
are depicted by squares and triangles, respectively. The
green straight line represents the optimal separating hyper-
plane, and the brown lines mark the margins for the classes.
Patterns that lie outside their respective classes are referred
to as outward-deviated patterns, where the depth of this de-
viation is represented by a non-negative variable, ζ. The
goal of this QP-based SVM is tomaximize themargin while
minimizing the training error as much as possible. The
green line is also known as the decision boundary from the
training output.

called as the stochastic decision points as they act as the
bases of the final decision function through their coeffi-
cients α, which are used to determine the bias term, b and
the weight variablew as w =

∑
αiyiϕ(xi). An illustrative

depiction of this margin based SVM is provided in figure 4
on page 167.

Linear programming (LP) based SVM

Vapnik proposed an LP model to find a separating hyper-
plane, which we name here VLPSVM and effectively in-
corporates an indirect L1 norm while modeling the cost
function, promoting even more sparsity while maintaining
accuracy comparable to QPSVM that uses the L2 norm.
As a result, VLPSVM shares similarities with QPSVM
but demands less computational effort for classifying pat-
terns. If w represents the weight vector of the hyperplane
for VLPSVM, its decision function is given by: f(x) =
w ·ϕ(x) + b leading to class(x) = sgn(f(x)). The primal
domain formulation of this VLPSVM model is as follows:
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Figure 5: Classification with a kernel based SVM. The
learning method is completely expressed by the used ker-
nel function k along with the penalty parameter C. Having
training data, the machine produces the coefficients α for
the decision function [61].

min
β,ζ,b

N∑
i=1

βi + C

N∑
i=1

ξi (11)

s.t. yi

( N∑
j=1

βjyjϕ(xj) · ϕ(xi) + b
)
≥ 1− ξi (12)

βj ≥ 0; j = 1, 2, ..., N (13)
ξi ≥ 0; i = 1, 2, ..., N (14)

In this case, the auxiliary variables ξi > 0 are assigned
to handle with the unity-outward-deviated patterns (i.e., the
training patterns that give ClassLabel(xi) · f(xi) <1) and
these ξ are also optimization variables for the problem (11)-
(14) that are found with the other variable βs, b depend-
ing on the data-dependent stochastic parameters, kernel pa-
rameter and penalty parameter. To avoid confusion and
for sharp clarification, here, training examples (xj) of this
VLPSVM, for which, coefficients βj > 0 are labeled as Ex-
pansion Vectors (EVs), which are quite similar to the sup-
port vectors (SVs) in QPSVM while being different from
both topological and physical points. These optimum value
of βs are used to determine w =

∑
βjyjϕ(xj). The num-

ber of EVs found from the VLPSVM algorithm are usually
very much smaller compared to the total number of training
patterns proving further sparsity of VLPSVM model. Our
experiments on benchmark data as well as other works [60]
show that VLPSVM has nearly the same performance as
QPSVM despite of being more efficient due to less kernel
execution in classification stage showing VLPSVM to be
more productive for many cases, specially, when classifica-
tion cost, speed, resources, etc are under constraints. Fur-
ther, this LPSVM simplifies the optimization problem by
using linear programming, making it computationally ef-
ficient for certain stochastic processes and for this model,
the kernel,K(., .) does not need to satisfy Mercer’s condi-
tions [59]. A graphical representation of this (kernel based)
SVM is given in figure 5 on page 168.

3 Proposed method with stochastic
functional ξ- analysis

3.1 Research gap, motivation & our
direction

Despite of being the most mathematically sound machine
learning algorithm by using the famous statistical learn-
ing theory, maximum margin concept, and mathematical
programming, while working on probabilistic data, imple-
menting total risk minimization principle, SVM does not
directly control the model complexity but it automatically
determines it by selecting the type and number of stochas-
tic decision points (support vectors (SVs)) depending on
the data-dependent parameters. These SVs use kernel op-
erations that highly boosts the expressive capability of the
decision function while preserving the underlying linearity
that ensures the learning to remain tractable. However, on
top of the mounted cost by excessive kernel computations
from a large number of SVs, this increased flexibility raises
the risk of overfitting since the selection of separating hy-
perplane turns to be increasingly ill-posed because of the
number of degrees of freedom [62]. This becomes more
serious in case of large and complex data with noise. Thus
managing the machine from getting excessive number of
SVs is necessary regarding both cost and accuracy.
Moreover, as the standard SVM algorithm concentrates on
error performance indirectly through cost-function and con-
straints using data-dependent parameters, these parameters
play a very crucial role in the algorithm, specially, find-
ing the best trade-off between model-complexity and gen-
eralization. However, as there is no exact and analytic ex-
pression for these stochastic parameters, we have to find
their values using cross-validation method that does not
give the exact best and unique values of theses parameters.
On top of this, it is also followed that to improve a very
little amount of classification accuracy on complex dataset,
SVM generates a relatively larger number of support vec-
tors (represented in figure 6). Additionally, because of the
continuous raise in the heavy size and complexity of data
in parallel with modern technological development, further
speed up of the classification process is being demanded
continuously, which stipulates one to work on reducing the
number of SVs as much as possible.
Thus, while the existing methods for SVM cost reduction
are either 1) complex method that is very expensive and not
so convenient to implement or 2) bear uncertainty to get as
being non-convex or 3) cannot gain sparsity and accuracy
simultaneously upto that level, a mathematical and compu-
tational analysis based suitable operation on the first-step
solution from SVM algorithm may also be productive and
useful. One of the simplest but heavily productive approach
in this direction could be to reduce the support vectors by
discarding the least significant SVs, misleading SVs, or
such kernel computing vectors by sacrificing an insignif-
icant amount of classification accuracy (even in case it be-
comes demanded, the worst scenario). But while discarding
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Figure 6: The number of SVs fluctuating with training ac-
curacy. The plots are normalized by dividing them by their
respective maximum values, bringing within 0 and 1.

SVs without considering their contribution can create neg-
ative impact on decision-making, in practice, training data
may contain noise or outliers that stay far from their main
cluster and as the SVM decision boundary relies on SVs,
the presence of outliers in the SVs set can make the deci-
sion function loaded with more misleading info and shape
the boundary less smooth, or may even cause overfitting,
especially with complex datasets. Hence, a method to re-
duce the number of support vectors (as well as the machine-
misleading noise due to the noise in the data) after analyz-
ing the outlier’s right-leading or misleading on the decision
function is rewarding with respect to both cost and accu-
racy. In this direction, we start with the basis of Statistical
Learning Theory where we try to further reduce the Right
Hand Side of (4) by reducing both of its 1st term and 2nd
term simultaneously that eventually lowers the upper bound
on the actual risk, leading towards a machine having better
generalization performance than before while also reducing
the classification cost.
This is achieved by using some mathematical and compu-
tational analysis with the stochastic parameter based values
of the discriminator function, auxiliary variable, and co-
efficient of the stochastic decision points found from the
first step SVM solution to select the insignificant SVs, mis-
leading and noisy SVs and discard from them as many as
possible while preserving the machine’s efficiency and per-
formance.
Experimental results demonstrate that our proposedmethod
significantly reduces classification costs while posing clas-
sification accuracy analogous to the standard SVM, partic-
ularly with large and complex training data that contains
many outliers.

3.2 Deterministic mapping of data

As the numerical values of raw data varies widely, scal-
ing it may help to avoid numerical instability by dropping
data redundancy and irregularity that is useful for the objec-
tive function to work properly and to improve the conver-
gence of the optimization algorithm. This also gets further
motivated from the reporting about data preprocessing for

higher accuracy by Alaa et al. [63] and about data scaling to
improve the condition number of thematrix in the optimiza-
tion problem [64]. However, while doing this, we must try
for such a scaling that may not hamper the crucial proper-
ties of data. For example, we can try for a careful scaling
of data that may allow a bit change in its topological span-
ning without noticeably losing its main stochastic property.
But we also know that the mean of a scaled dataset is scaled
by the scaling factor in each dimension and the elements of
the co-variance matrix of the scaled dataset is scaled by the
square of the scaling factor (proof is given in the later part
of this section). Hence, we decide first to pick the maxi-
mum absolute of all the feature values and then divide each
entry by this, which maps each entry of the column to lie
in [-1,1]. This kind of deterministic transformation would
help to evade data leakage in the stage of model testing but
may turn out to be sensitive to the outliers that are very com-
mon in the real-world problem. Hence, by scaling we bring
feature values ≤ 1 and then throw the machine vectors for
which corresponding stochastic auxiliary variables ξ give
values ≥ 1 by following some numerical analysis based on
the stochastic functional analysis described next. A picto-
rial view of before and after scaling of a benchmark and a
synthetic data set is given in figure 7 on page 170.

Statistical impact on mean and variance by scaling a
multidimensional dataset

Let X = {x1, x2, . . . , xn} be a set of n data points, where
each data point xi = (xi1, xi2, . . . , xid) is a vector in Rd

(a d-dimensional space). If We scale this dataset by multi-
plying with a constant factor λ > 0 , then each of the data
points will be multiplied by λ and the new dataset becomes:
x′i = λ ·xi = (λxi1, λxi2, . . . , λxid). So, the scaled dataset
X′ contains the scaled vectors x′i ∈ Rd Now, we know that,
in case of the original (unscaled) data, the mean vector of
X be µX = E[X] and the covariance matrix of X be:∑

X
= E[(X− µX)(X− µX)

⊤]

Then in case of the scaled data, the mean vector of X′ be
µX′ = E[X′] = E[λX] = λE[X] = λµX and the co-
variance matrix of X′ be:

∑
X′ = E[(X′ − µX′)(X′ −

µX′)⊤] = E[(λX − λµX)(λX − λµX)
⊤] = λ2E[(X −

µX)(X − µX)
⊤] = λ2

∑
X. That is, the covariance ma-

trix of the scaled random vector is scaled by λ2. But the
variance of a single dimension of a dataset is simply the
diagonal element of the covariance matrix. Then in case
of the original dataset X, Var(xj) =

∑
X,jj and for the

scaled dataset X′, Var(x′
j) =

∑
X′,jj = λ2 ·

∑
X,jj

Thus, the variance in each dimension is scaled by a fac-
tor of λ2. We scale the dataset by dividing it by the max-
imum value of the elements of X, that is in our case, if
ρ = max(max(abs(X))) ≥ 1 then λ = 1/ρ and the new
dataset x′i = λ·xi = 1

ρ ·xi =
1

max(max(abs(X))) ·xi ≤ xi with
µX′ = λ·µX = 1

ρ ·µX = 1
max(max(abs(X))) ·µX ≤ µX and∑

X′ = λ2·
∑

X = 1
ρ2 ·

∑
X = 1

[max(max(abs(X)))]2 ·
∑

X ≤
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Figure 7: Visualization of the effect on 2D data by our way of scaling. It can be clearly observed that after data scaling,
in case of Benchmark Banana dataset [65] the mean is scaled by 1

3.25 and Co-variance is scaled by ( 1
3.25 )

2 whereas for
the Synthetic Two-spiral dataset [66] the mean is scaled by 1

13.98 and Co-variance is scaled by ( 1
13.98 )

2. Note that the
topological spanning of the datasets are reduced by contracting its spatial scattering but the stochastic property of the
datasets are not harmed noticeably.

∑
X .

3.3 Analyzing stochastic function

In case of learning from probabilistic data, we need to
model a data dependent stochastic parameter based discrim-
inator function with the capacity to master the training data
well to build optimum generalization ability that can clas-
sify novel patterns with least error. For this, it is needed to
model the problem set using error-related constraints. Thus
in case of both LPSVM and QPSVM, while the decision
function are expressed as f(x) = w.ϕ(x) + b, their error-
associated constraints from (6) & (12) can be represented
by the relation, yif(xi) ≥ 1− ξi ⇒ ξi ≥ 1− yif(xi).
Now, considering any wrongly classified training example
xi, if yif(xi) = −δi with δi > 0, then ξi ≥ 1 + δi. Thus,
for M wrongly classified training examples,

∑M
i=1 ξi ≥

M +
∑M

i=1 δi. Hence, suppressing
∑

i ξi through regu-
larizer will curb M +

∑M
i=1 δi, not only just M , which

is the total training error. It is possible that suppressing
M +

∑M
i=1 δi could take place during the following three

conditions: i) Minimizing M faster than
∑M

i=1 δi, which
eventually decrease the training error rate, ii) Minimizing
M comparatively slower than

∑M
i=1 δi, which may cause

unexpected phenomena on training performance, iii) Mini-
mizingM and

∑M
i=1 δi with the same rate and preference,

which may not lower the training error rate expectedly.
Thus, throwing P (P ≤ M ≤ N ) outlying patterns ap-
parently decreases P training errors while also lowers P
kernel executions in classification stage when these exam-
ple patterns are also elements of the final classifier. Never-
theless, how this outlier throwing impacts the classification
of other patterns is an important issue to address. We exam-
ine it through a careful analysis of the contribution as well
as confusion caused by them in the accurate classification
of other patterns, which we refer to as ξ-analysis, and it is
explained in the following sections.
Further, the discriminators from both VLPSVM and
QPSVM can be rewritten using the following common ex-
pression by introducing a shared term, ”Kernel Computing
Vector (KCV)”, for Support Vector(SV), Expansion Vec-
tor(EV), or such other kernel operating vectors: f(p) =∑

l∈KCV-set βlylK(xl, p) + b, for p representing any arbi-
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trary pattern with K(xl, p) = ϕ(xl) · ϕ(p) is a kernel
function (for example, in case of RBF: ϕ(xl) · ϕ(p) =

e
− (xl−p)2

2
∑2 ), which is the leading contributor to computa-

tional expenses with all βl > 0 involved in the aggregation
of time during the classification stage. Following this, we
aim to identify a subset from this kernel operating xl pat-
terns that have βl > 0 and discard those patterns that do
not contribute meaningfully to decision-making because of
being outliers. This is the main focus of our stochastic ξ-
analysis, which is discussed in the next section.

3.4 Numerical analysis of stochastic
auxiliary variable, ξ

A model should ideally take the data’s inherent signal and
exclude any noise or erratic patterns, which is not a simple
task as data is often far from perfect like containing outliers,
irrelevant variables, etc, which are related to the stochas-
tic property of data. This is efficiently handled by intro-
ducing the auxiliary variable, ξ in the mathematical model.
In case of LPSVM, its value comes from the solution of
an optimization problem using probabilistic data dependent
stochastic parameters. This variable quantifies the degree
of violation of the margin constraint for the patterns, which
can be interpreted as a measure of uncertainty or noise in
the data and following its values, patterns’ class-position,
patterns’ role as well as actual significance in the final dis-
criminator can be analyzed.

3.4.1 Patterns’ class-position following ξ

As we have described before that an ”outlier” pattern is the
one that lies beyond the limits of its class boundary. Thus, a
pattern is considered ”inlier” if it stays within its own class
boundary. Hence, for any arbitrary training pattern xi hav-
ing the class-label yi with the final decision function-value
f(xi) is considered as an inlier when yi = sgn

(
f(xi)

)
⇒

1 = yisgn
(
f(xi)

)
⇒ yif(xi) > 0 and is considered as an

outlier if yi = −sgn
(
f(xi)

)
⇒ −1 = yisgn

(
f(xi)

)
⇒

yif(xi) < 0. Expressing the SVM-error-constraints in (6)
or in (12) in a common single form utilizing the stochastic
auxiliary variable ξ as yif(xi) ≥ 1 − ξi ⇒ ξi ≥ 1 −
yif(xi), we can write for outlier ξi > 1 while in case of
inlier 0 ≤ ξ < 1 with the next two scenarios: i) inlier
with yif(xi) < 1 ⇒ 1 − yif(xi) > 0 ⇒ ξi > 0 ii)
inlier with yif(xi) > 1 ⇒ 1 − yif(xi) < 0 ⇒ ξi = 0
as ξi cannot be negative.
From the above discussed points, it is evident that patterns
with ξ > 1 belong to different classes rather than their orig-
inal classes. Now, we examine their significance by eval-
uating the roles they play in the discriminating function in
case of both LPSVM and QPSVM.

3.4.2 Roles of the ξ > 1 patterns in the discriminating
function

Role while working with QPSVM: QPSVM has a KKT
condition as αi

(
yi
(
w · ϕ(xi) + b

)
− 1 + ζi

)
= 0. Using

αi ̸= 0 & αi

(
yi
(
w · ϕ(xi) + b

)
− 1 + ξi

)
= 0 leads to

yi
(
w ·ϕ(xi)+b

)
−1+ξi = 0⇒ yi

(
w ·ϕ(xi)+b

)
= 1−ξi.

From this, it can be found that QPSVM gives three types of
KCV patterns (that is, patterns having αi ̸= 0) consider-
ing the values of ξ: i) ξ = 0 ii) 0 < ξ ≤ 1 iii) ξ > 1.
But after a little calculation with another KKT condition, it
can be seen that if ξ > 0 for any pattern, its corresponding
co-efficient value, α becomes equal to the penalty parame-
ter, C that is the upper limit of α values. Thus, discarding
patterns where ξ > 1 not only ignores a KKT condition
but also removes crucial elements of the decision function
that have the largest coefficient values, potentially impact-
ing the decision-making process significantly. Addition-
ally, removing patterns having α = C could significantly
disrupt the condition

∑N
i=1 αiyi = 0, which ensures the

balance between the support vector patterns and their asso-
ciated coefficients, similar to a mechanical system, thereby
impacting the optimal margin and the final decision bound-
ary. Therefore, discarding any pattern from this machine is
not in our option.

Role while working with VLPSVM: In this case, un-
like QPSVM, values of this stochastic auxiliary variables
ξ are found by solving an optimization problem directly
using its primal form where no direct involvement among
KCV-coefficients, KKT conditions, and ξ are seen. More-
over, there is no other constraint-based restrictions involv-
ing the KCV coefficients. This provides an opportunity to
work further on this machine. Experience with VLPSVM
shows that patterns with ξ > 1 have relatively small corre-
sponding coefficients β in the final decision function. This
aligns with the two main parts of its objective function:
minβ,ξ,b

∑N
i=1 βi + C

∑N
i=1 ξi. Nevertheless, these coef-

ficient values do not fully vanish, meaning the correspond-
ing patterns continue to be part of the decision function,
with each of them requiring kernel evaluation for classifi-
cation, even though they may not have a considerable con-
structive impact on the final decision. This brings the ar-
guments about whether they should be included in the final
discriminator, considering the trade-off between classifica-
tion accuracy and computational cost. To address this issue,
we examine their contribution as well as the confusion they
create in accurate classification, as explained below:

3.4.3 Contribution and confusion from the patterns
having ξ > 1 while working with VLPSVM

We have seen earlier that these patterns consistently
stay beyond the boundaries of their classes, produce
comparatively larger kernel values while in operation with
patterns from the opposite classes, leading to confusion.
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On contrary, they generate lower kernel values while in
operation with patterns from their same classes, which
produces weaker contribution in the final discriminating
function. However, there may be confusion from the inlier
KCVs by very weakly attracting patterns from the other
classes, we ignore this here as they are negligible in this
circumstance and efficiently handled by the complete
machine.

Now, the final discriminating function that decides about
any arbitrary training pattern xa that has class-label ya
is f(xa) =

∑
l∈KCV−set βlylK(xl, xa) + b. Consider-

ing m,n : m ∪ n = {l},m ∩ n = {}, ym = −yn,
then xm, xn are KCVs. Now as βm, βn > 0 &
K(xm, xa),K(xn, xa) > 0, if βmymK(xm,xa)

ya
<

0 ⇒ ym

ya
< 0 ⇒ xa and xm do not belong to the

same class and xm pulls xa outwards from xa’s own
class (i,e., towards, the opposite class of xa) and if
βnynK(xn,xa)

ya
> 0 ⇒ yn

ya
> 0 ⇒ xa and xn are from

the same class with xn pulls xa towards the xa’s home
class. However, from these KCV patterns, those with
ξ > 1 remain within the boundaries of their opposite
classes, produce comparatively larger kernel values while
considering samples from the opposite classes, which
misleads the discriminating function. Simultaneously, they
generate lower kernel values while considering patterns
from their same classes, poorly guiding the discriminating
function. Thus, to enhance both classification accuracy and
speed, we decide to discard these ξ > 1 KCV patterns after
evaluating their level of confusion (which pushes training
patterns away from their respective classes) as well as their
contribution (which pulls training patterns towards their
own classes) [22], taking into account all training patterns
through the following mathematical relations:
Contribution of a ξ > 1 KCV, xO with la-
bel yO on all training patterns, Contr(xO) =

1
Card{i}

∑
{i:yi.yO=1} βxO

K(xO, xi), whereas Con-
fusion of that KCV, xO on all training patterns,
Conf(xO) =

1
Card{i}

∑
{i:yi.yO=−1} βxO

K(xO, xi).

Extensive experiments conducted on the benchmark
datasets using the mathematical formulations above reveal
that, in almost all cases, ξ > 1 KCV patterns pose confu-
sion more than contribution value. This agrees with our
decision to remove ξ > 1 KCV patterns from the final
discriminating function. Figure 8 on page 173 provides an
example of a contribution-confusion sketch.

3.4.4 Contribution, confusion as a function of data
mapping

We have discussed about our data mapping and its motiva-
tion earlier, here we discuss and check our hypothesis that
compact mapping reduces the cardinality of the representer
set, that is, information space with respect to the represen-
ter set gets denser. It is likely that the KCVs identified after
data mapping may form a subset of the KCVs derived from

the original non-scaled data or may contain part of it and
the KCVs obtained after data mapping should carry more
information. To check this, we have computed contribution
to confusion ratio (CCR) for the intersecting basis vector
sets from before and after mapping. For each of common
vectorsKCVb =B ∩B′, CCR and CCR′ for pre and post
mapped basis pattern xb, x′

b with label yb, y′b can be de-
scribed as follows:

CCR =

1
card{i}

∑
{i:yi.yb=1} βxb

K(xb, xi)

1
card{i}

∑
{i:yi.yb=−1} βxb

K(xb, xi)

CCR′ =

1
card{i}

∑
{i:yi.y′

b=1} βx′
b
K(x′

b, xi)

1
card{i}

∑
{i:yi.y′

b=−1} βx′
b
K(x′

b, xi)

Where, (xb, yb) ∈B, and (x′
b, y

′
b) ∈B′

Our findings show that after data mapping,KCVb set have
a higher contribution-to-confusion ratio, such thatCCR′ >
CCR, as illustrated in figure 9 on page 173. This observa-
tion supports the idea that the contribution of the reduced
basis set becomes significantly higher than the confusion,
thereby highlighting the effectiveness of our data mapping.

3.4.5 Updating bias

Weight vector of our sparser machine wEBSVM is found
by taking KCV set, SR as a subset of the KCV set, S from
the full scale LPSVM solution so that SR ⊆ S and if R
and M be the elements of SR and S respectively, then
R ≤ M . Now, if w be the weight vector of this full scale
LP SVM machine, it is very most likely that wEBSVM =∑R

j=1 βjyjϕ(xj) ̸= w =
∑M

p=1 βlylϕ(xl) and thus for any
pattern x, wEBSVM · ϕ(x) + b ̸= w · ϕ(x) + b. Hence, it
is important to provide an optimally updated bias for our
proposed EBSVM.
Now, as R ≤ M , it is normal that model complexity of
EBSVM is less than the model complexity of the full scale
LPSVM, ∥wEBSVM∥2 ≤ ∥w∥2 and hence margin of EB-
SVM is larger than the margin of full scale LPSVM. In
another way, as R ≤ M , 2nd term or the VC-confidence
term of the risk bound (4) of EBSVM becomes smaller than
that of the full scale LPSVM. But this reduction in the VC-
confidence term due to lesser model-complexity generally
raises the 1st term, Remp[f ] of the risk bound (4). Hence,
we need to focus to reduce this part. We can do it by imitat-
ing the discriminator function (value) of a complexmachine
and here we select the full scale LP SVM one as it is the ori-
gin from where EBSVM comes after modification. We do
it in the following way:
Let the variable bias value of EBSVM is bR, whose opti-
mum value would be the final value of our EBSVM. Now
if δ be the total squared difference between the function val-
ues from the full scale LPSVM and variable bias based EB-
SVM using all training patterns, then we can write,
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Figure 8: Confusion & contribution values for the Patterns having ξ ≥ 1 from the training set
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Figure 9: Confusion and contribution ratio for common
KCVs from before and after mapping of data

δ =

N∑
i=1

[( M∑
p=1

βlylϕ(xl) · ϕ(xi) + b
)

−
(
wEBSVM · ϕ(xi) + bR

)]2

(15)

At the minimum of δ, we should get

∂δ

∂bR
= 0 (16)

⇒
N∑
i=1

[( M∑
p=1

βpypϕ(xp) · ϕ(xi) + b
)

−
(
wEBSVM · ϕ(xi) + bR

)]
= 0

⇒ b∗R =
1

N

N∑
i=1

[
M∑
p=1

βpypϕ(xp) · ϕ(xi)

+b− wEBSVM · ϕ(xi)

]
(17)

Algorithm 1: Proposed EBSVM
(Efficiency Boosted SVM)

1: Input: A set of training data {
(
xi, yi

)
}Ni=1

2: Output: A discriminator fEBSVM (·)
3: Scale the training set efficiently
4: Select the best values of the data dependent parameters:
(Penalty−parameter,Kernel−parameter) ≡ (C,

∑
)

5: Run LP based SVM (VLPSVM) using training data and
solve the following optimization problem as below:

min
β,ξ,b

N∑
l=1

βl + C

N∑
l=1

ξl

s.t. yi

( N∑
l=1

βlylϕ(xl) · ϕ(xi) + b
)
≥ 1− ξi

βl ≥ 0; l = 1, 2, ..., N ; ξi ≥ 0; i = 1, 2, ..., N

6: Obtain the KCVs along with their labels {
(
xp, yp

)
}Mp=1

and the bias term, b derived from the VLPSVM applying
βl > 0
7: Find {βp|ξp > 1} and discard the corresponding patterns
belong to the KCVs set and form a new smaller set of
KCVs (RKCVs), {xp|ξp ≤ 1 with βp > 0}
8: Retrieve the RKCVs with their labels {

(
xj , yj

)
}Rj=1

9: wEBSVM ←
∑R

j=1 βjyjϕ(xj)

10: bEBSVM ← argminbR

∑N
i=1

[(∑M
p=1 βpypϕ(xp) ·

ϕ(xi) + b
)
−
(
wEBSVM · ϕ(xi) + bR

)]2

11: Return fEBSVM (·) = wEBSVM · ϕ(·) + bEBSVM

This b∗R is the value of the bias term of the proposed,
EBSVM. Algorithm 1 on page 173 outlines the steps
of the proposed EBSVM whereas figure 10, 11, 12, 13
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show the decision boundaries using both the synthetic and
benchmark datasets, from QPSVM, VLPSVM as well as
the proposed EBSVM, along with their corresponding
KCV counts and training error rate.

3.5 Analyzing noise-sensitivity of the
method

To assess the noise sensitivity of our model, we perturbed
the input synthetic training data [66] by introducing
controlled uniform additive noise with varying levels
and observed the behavior of our machine and other
two most prominent machines, the standard QP based
SVM(QPSVM) and the LP based SVM (LPSVM). To
perform a sound comparison among them with solid
analysis, we first state the variables with their functional
relationships explicitly as the following:

Independent variable: noise, ν.
Dependent variable: Training Accuracy Rate, A =
A(ν); Computational Cost (≡ number of KCV ), CC =
CC(ν).
Different values of these dependent variables depending
on the independent variable (noise) are plotted in figure 14
on page 176.
We first follow the sensitivity of the dependent variables

with respect to the independent variable and then we mea-
sure an the overall effects throughout the whole noise input
of different levels.

3.5.1 Sensitivity

We know that the sensitivity of a dependent variable with
respect to (its depending) independent variable refers to
how much the dependent variable changes in response to
a change in the independent variable. Mathematically, this
sensitivity is quite often expressed by the the rate of change
of the dependent variable with respect to the independent
variable. That is, if the dependent variable, F depends on
the independent variable, u then sensitivity of F with re-
spect to u is

Sensitivity = lim∆u→0
F (u+∆u)−F (u)

∆u = dF
du

(18)

Thus sensitivity of our two noise dependent variables can
be expressed as,

Training Accuracy Rate Sensitivity,
= lim∆ν→0

A(ν+∆ν)−A(ν)
∆ν = dA

dν

(19)

and

(Kernel) Computational Cost Sensitivity,
= lim∆ν→0

CC(ν+∆ν)−CC(ν)
∆ν = dCC

dν

(20)

We have calculated them using the Forward Difference
method of Numerical differentiation as below

F ′(ν) ≈ F (ν + h)− F (ν)

h
(21)

Sensitivity (that is gradient) of these two variables at differ-
ent noise levels are counted and hence plotted in figure 15
on page 176. From the figure it is clear that in case of Accu-
racy sensitivity, all three machine behave very much sim-
ilarly, by being flat and steady upto 55% of the controlled
full noise and then a mixed reaction of rise & fall for higher
noise levels. But considering Cost sensitivity curve, while
QPSVM shows heavy zigzag, our model and LPSVM give
almost flat and steady curves showing they are not much ef-
fected by the noise. The most likely reason for this in case
of EBSVM is the bias updating on top of the mechanism
of our machine by stochastic ξ functional analysis, which
smartly interfaces with noises.

3.5.2 Graphical analysis of noise induced output

To evaluate the overall performances of the machines
throughout the whole noise introduced operation, we use
the concept of Epigraph & Hypograph as given below:

Epigraph and hypograph

Let F : Rn → R be a real-valued function.

Epigraph: The epigraph of F , denoted by epi(F ), is de-
fined as:

epi(F ) = {(x, t) ∈ Rn × R |F (x) ≤ t}

Geometrically, this is the set of points on or above the
graph of the function.

Area of an epigraph: To compute a finite area, we bound
it by a constantM ≥ F (x) over the interval [a, b]. The area
between this bound and the function is:

Arepi =

∫ b

a

(M − F (x)) dx (22)

Hypograph: The hypograph of F , denoted by hypo(F ),
is defined as:

hypo(F ) = {(x, t) ∈ Rn × R |F (x) ≥ t}

This is the set of points on or below the graph of the func-
tion.

Area of a hypograph: Let F (x) be a continuous real-
valued function on an interval [a, b]. The area of the hypo-
graph is the area under the graph of the function from a to
b, given by:

Arhypo =

∫ b

a

F (x) dx (23)

To compute the area in (22) & (23) we have used the fol-
lowing Simpson’s Rule to perform numerical integration
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Figure 10: Pattern Classification Boundaries on Banana data along with their respective KCVs counts and training error
rates for different machines having the size of training set 400x2.
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Figure 11: Pattern Classification Boundaries on synthetic Two spiral data (with noise level 3.3) along with their respective
KCVs counts and training error rates for different machines having the size of training set 400x2.
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Figure 12: Pattern classification boundaries on synthetic two spiral data (with noise level 4.3) along with their respective
KCVs counts and training error rates for different machines having the size of training set 400x2.

∫ b

a

F (x)dx ≈ ∆x

3
[F (x0)

+ 4

n/2∑
i=1

F (x2i−1) + 2

n/2−1∑
i=1

F (x2i) + F (xn)]

(24)

As we need to maximize Accuracy, we find the area
of hypograph(A(ν)), which is the higher the better hav-
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Figure 13: Pattern classification boundaries on synthetic two spiral data (with noise level 4.6) along with their respective
KCVs counts and training error rates for different machines having the size of training set 400x2.
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Figure 14: Comparison of (a) computational cost and (b)
training accuracy rate with respect to noise levels for EB-
SVM, LPSVM, QPSVM, respectively.

ing the maximum limit equal to 1, whereas as we want
to minimize the Computational Cost, we find the area of
hypograph(CC(ν)), which is the smaller the better while
having the maximum limit equal to 1. Further, the area be-
tween CC = 1 (meaning 100% computational cost, that is
using all of the training patterns to build up the classifier)
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Figure 15: Sensitivity measurement of (a) computational
cost and (b) training accuracy rate with respect to noise lev-
els for EBSVM, LPSVM, QPSVM, respectively.

& epigraph(CC(ν)) is the Sparsity, which is the higher
the better having the maximum limit equal to 1, that is,
area(epigraph(CC(ν)))− area(epigraph(CC = 1)) =
1− area(hypograph(CC(ν))) = Sparsity.
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4 Experimental set-up and results

4.1 Set-up method

In this section, the effectiveness of the suggested EBSVM
algorithm is demonstrated by a comparison of its experi-
mental outcomes with those of many state-of-the machines,
including QPSVM [45], VLPSVM [59], EESVM [1] and
SpSVM-2 [2]. The outcomes are broken down into two di-
mensions: the algorithm’s classification cost and it’s per-
formance. Ten publicly available benchmark datasets —
Heart, Twonorm, Titanic, Thyroid, Breast Cancer, Banana,
Flare Solar, German, and Waveform are used to evaluate
the algorithm’s performance, as referenced in [65]. Each
of these datasets includes 100 realizations of both training
and test sets. Scaling is executed on each dataset by divid-
ing with the maximum among the absolute values of the
features, as discussed in the Data Scaling section. All stud-
ies are conducted using a Gaussian kernel on these scaled
datasets. A varied collection of C ∈ {20, 22, ..., 220} and∑
∈ {2−2, 20, 22, ..., 28} is employed in fivefold cross-

validation, wherein each C value is normalized by the scal-
ing factor of the respective dataset, thereby calibrating the
computation of C for each dataset pattern. Fivefold cross-
validation is employed to determine the optimal parame-
ters, extracting the best values ofC and

∑
for each dataset.

The initial training set among 100 is utilized in cross-
validation whereas output results (values of different key
terms/variables) are collected by taking mean over the 100
example-sets given in the benchmark datasets. The mean
number of KCV values and the test error rates for QPSVM,
VLPSVM, SpSVM-2, EESVM, and the proposed approach
are presented in Table 1 on page 178. The proposed EB-
SVM achieves similar accuracy with all of these SOTAma-
chines while reducing the KCV count dramatically com-
pared to the standard SVM (QPSVM, which is sparse it-
self), significantly compared to the sparser VLPSVMwhile
considerably compared to the further sparser EESVM and
SpSVM-2. Along with data-description, details of number
of KCVs, Error rates from different machines and the pro-
posed one are described in Table 1. All of the experiments
were done using MATLAB.

Numerical operations and outputs during
noise-sensitivity experiment

We normalize the Training Accuracy axis (in percentage)
by 100 as 100% accuracy is the best whereas the noise
axis is normalized by the highest noise level. Thus the
total area of region from this normalized Noise-Accuracy
window is equal to 1. Moreover, as SVMs are sparse
by using only a small subset of training points (support
vectors) to determine its final model while many of the
other machines, for example, k-Nearest Neighbors (k-NN),
Kernel Density Estimation (KDE), etc are not sparse as
they involve all of the training patterns to build the final
machine. Thus we normalize the Computation Cost (i.e.,

number of KCV) axis by total number of training patterns.
Hence the total area of the region from this normalized
Noise-Cost window is equal to 1.

To calculate the overall Training Accuracy Rate, A, we
use (23) & (24) replacing F by A and using a = 0, b = 1.
On contrary, to calculate the overall Computational Cost,
CC, we use (23) & (24) replacing F by CC and using
a = 0, b = 1 while to compute the overall sparsity, we use
M = 1 in (22). All calculated results are show in Table 2 on
page 179. From the Table 2 it is seen that while our method,
EBSVM gives very similar overall Training Accuracy Rate
with respect to the prominent QPSVM and LPSVM, it of-
fers the lowest normalized computational cost region 0.012,
being nearly half of LPSVM and 1/13th of QPSVM. In
terms of sparsity, while all of these 3 machines generate
heavy normalized sparsity region, proposed EBSVM shows
the highest sparsity as 99% , whereas the sparser LPSVM
gives 98% and the sparse-famous QPSVM gives 84%.

4.2 Result analysis
4.2.1 Error-accuracy in stochastic classification

For any arbitrary pattern x having class label y, our
discriminator models the decision function in the form:
f(x) = wTϕ(x) + b with the predicted class label as
Classified Class Label(x) = y′ = sgn(f(x)). Thus
a novel pattern is classified correctly if its decision func-
tion value has the same polarity as its actual class label, i.e.,
f(x) > 0 if it is from positive class and f(x) < 0 if it is
from negative class and consequently, during this detection
(to accept positive patterns and reject negative patterns) by
classifications of patterns, two types of errors are to be con-
sidered first. They are:
False positive error: This is the error when a Negative pat-
tern is considered as a Positive pattern by mistake. We de-
note this rate or probability as P0(x = 1). Mathematically,
we can define it as,

P0(x = 1)

= Number of Falsely accepted Negative Pattern
Total number of Input Negative Pattern

⇒ P (y′ = 1|y = −1)

= Number of Falsely accepted Negative Pattern
Total number of Input Negative Pattern

⇒ P (y′ = 1|y = −1)

=
Number of Falsely accepted Negative Pattern

Total number of Input Pattern
Total number of Input Negative Pattern

Total number of Input Pattern

⇒ P (y′ = 1|y = −1) = P (y′=1,y=−1)
P (y=−1)

(25)

Where P (y′ = 1|y = −1) is the conditional probabil-
ity that the predicted class label y′ is positive but the actual
class label y is negative, P (y′ = 1, y = −1) is the joint
probability distribution of this predicted and actual class



178 Informatica 49 (2025) 161–184 R. Karim et al.

Table 1: Number of KCVs as well as test error rates for various state-of-the art machines and our proposed method
(EBSVM)

Name of Dataset, QPSVM [45] VLPSVM [59] EESVM [1] SpSVM-2 [2] EBSVM
(#Training Examples, #Testing (KCVs, TestErR) (KCVs, TestErR) (KCVs, TestErR) (KCVs, TestErR) (KCVs, TestErR)
Examples, #Dimension)
Banana (400, 4900, 2) (102.26, 10.61) (15.08, 10.75) (13.62, 11.53) (17.30, 10.87) (16.64, 10.65)
Breast Cancer (200, 77, 9) (200, 28.53) (18.89, 26.05) *NR (12.10, 29.22) (8.01, 27.56)
Diabetes (468, 300, 8) (263.22, 23.28) (12.58, 23.40) *NR (13.80, 23.47) (8.81, 23.66)
Flare Solar (666, 400, 9) (609.98, 32.56) (251.66, 32.41) *NR (8.40, 33.90) (3.87, 32.32)
German (700, 300, 20) (438.75, 23.70) (26.47, 24) (27.61, 24.16) (14.00, 24.90) (19.35, 24.28)
Heart (170, 100, 13) (68.23, 16.60) (21.94, 17.44) (7.45, 15.33) (4.30, 15.50) (7.42, 15.23)
Ringnorm (400, 7000, 20) (77.00, 2.23) (15.99, 1.73) (15.83, 2.54) (12.9, 1.97) (15.84, 1.86)
Splice (150, 2051, 3) (943.65, 12.34) (292.15, 12.39) *NR *NR (283.25, 12.39)
Titanic (150, 2051, 3) (148.50, 22.68) (83.91, 22.91) (39.19, 23.18) (3.30, 22.68) (5.70, 23.12)
Waveform (400, 4600, 21) (228.33, 13.15) (20.81, 11.18) (10.67, 12.72) (14.40, 10.66) (13.01, 10.81)
Overall Average (307.99, 18.55) (75.95, 18.24) (- , -) (- , -) (38.19, 18.37)
Average (1) w.r.t SpSVM-2 (237.36, 19.24) (51.93, 18.89) (- , -) (11.17, 19.24) (10.96, 19.03)
Average (2) w.r.t EESVM (177.18, 14.83) (30.7, 14.67) (19.06, 14.91) (- , -) (12.99, 14.55)

*NR: Not Reported
Table 1 provides a detailed comparison of Kernel Computing Vectors (KCVs) and test error rates (TestErR) across various SVMmodels
including QPSVM, VLPSVM, EESVM, SpSVM-2, and the proposed EBSVM. The results highlight that EBSVM achieves significant
computational gain while maintaining strong classification accuracy. Notably, in the breast cancer, flare solar, heart, and splice
datasets, EBSVM demonstrates remarkable efficiency, significantly reducing KCVs compared to other models while maintaining
competitive error rates. Looking at the overall average, excluding datasets where values were not reported, EBSVM reduces KCVs
by 87.6% compared to QPSVM and 49.7% compared to VLPSVM, with just a minimal 0.7% and 0.71% increase in test error rates,
respectively. When compared to Average (1) i.e., w.r.t SpSVM-2, EBSVM requires 1.2% fewer KCVs and achieves a 0.21% lower
error rate. Against EESVM of Average (2), EBSVM reduces KCVs by 31.5% while also achieving a 2.4% lower test error rate. These
findings confirm that EBSVM is a highly efficient approach, striking the right balance between computational cost and classification
accuracy, making it a strongly desired classifier in the filed of modern machine learning.

labels, P (y = −1) is the marginal probability distribu-
tion of negative class labels. This can also be thought as
1−Negative Rejection Rate. Negative Rejection rate is
often termed as power.
False negative error: This is the error when a Positive pat-
tern is considered as a Negative pattern by mistake. Some-
times,it is also called as ”missed detection”. We denote this
rate or probability as P1(x = 0). Mathematically, we can
define it as,

P1(x = 0)

= Number of Rejected Positive Pattern
Total number of Input Positive Pattern

⇒ P (y′ = −1|y = 1)

= Number of Rejected Positive Pattern
Total number of Input Positive Pattern

⇒ P (y′ = −1|y = 1)

=
Number of Rejected Positive Pattern

Total number of Input Pattern
Total number of Input Positive Pattern

Total number of Input Pattern

⇒ P (y′ = −1|y = 1) =
P (y′ = −1, y = 1)

P (y = 1)
(26)

Where P (y′ = −1|y = 1) is the conditional probability
that the predicted class label y′ is negative but the actual
class label y is positive, P (y′ = −1, y = 1) is the joint

probability distribution of this predicted and actual class la-
bels, P (y = 1) is the marginal probability distribution of
positive class labels.
Using the above two terms, we can also find the total

error probability during each detection as below

P (Error) = P (Classified Class Label(x)

̸= Actual Class label(x))

= P (y′ ̸= y) = P (y′ = 1, y = −1)
+P (y′ = −1, y = 1)

= P (y′ = 1|y = −1)P (y = −1)
+P (y′ = −1|y = 1)P (y = 1)

= Number of accepted Negative Pattern
Total number of Input Negative Pattern

Total Number of Negative Pattern
Total number of Input Pattern

+ Number of Rejected Positive Pattern
Total number of Input Positive Pattern

Total Number of Positive Pattern
Total number of Input Pattern

=
Number of accepted Negative Pattern
+Number of Rejected Positive Pattern

Total number of Input Pattern

(27)
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and accordingly, the total accuracy probability during
each detection is

P (Accuracy) = 1− P (Error)

However, in our evaluation, we measure the error rates and
accuracy in percentages (%) as

Error Rate =
1

N

N∑
i=1

1[yi ̸= yi
′]× 100

where N is the total number of classified patterns and 1 is
the indicator function.

Table 2: Comparison of machines based on computational
cost and training accuracy rate

EBSVM LPSVM QPSVM

Computati-
onal Cost 0.01209 0.02204 0.1573
(CC)

Sparsity 0.98791 0.97796 0.8427

Training
Accuracy 0.9904 0.9903 0.9903
Rate(A)

4.2.2 Machine accuracy cost (MAC)

A powerful yet cost-effective computing model is always
really preferred. Considering this the objective is to design
a discriminator that minimizes kernel evaluations during
testing while preserving high accuracy. To strike a balance
between an expensive machine with superior accuracy and
a highly cost-effective system with similar efficiency, the
concept of MAC [21] is introduced for kernel-based mod-
els, defined as follows:

MAC =
Number of KCV s

Test Accuracy
(28)

A lower MAC value is always desirable, as it signifies
that the machine attains optimal test accuracy with mini-
mal kernel computations (KCVs). The values of MAC for
different systems are provided in Table 3 in page 180.

4.2.3 GFR (Generalization failure rate)

We know that the optimal stochastic machine is designed
by properly tuned from the bias-variance tradeoff and gives
least generalization error ensuring that the model is not
overfitting to the training data and can perform well on
novel, unseen data. We have also tried to activate this on
our model basing on some suitable mathematical formula-
tions. However, as it is further sparsified from a sparser
machine, its bridging capability between the training and
new unseen data becomes more into interest. In this regard,

we have used the term GFR [21] to assess the generaliza-
tion deficiency of our machine as below, which is defined
considering two points simultaneously: i) how badly the
machine overfits, and ii) how poor it performs on test pat-
terns:

Overfitting Tendency, OT
= Test Error Rate−Train Error Rate

Train Error Rate

(29)

GFR =
OT

Test Accuracy
(30)

Why less GFR or good generalization performance
from our proposed EBSVM

As we have seen that w =
∑

βjyjϕ(xj), for LP SVM,
throwing KCVs with βj > 0 gives less ||w||, hence higher
margin and reduced VC confidence, 2nd part of the RHS of
the risk bound (4) becomes smaller. This usually increases
the 1st part of the RHS of the risk bound (4), Remp[f ] due
to the reduced model complexity. But in our algorithm, we
generate the bias value of our final discriminator by imi-
tating the function value of the complex and non-reduced
discriminator, which leads us to realize the final discrim-
inator generated from an optimally further larger margin
and sparser class based hypothesis where the hyperplane
is shifted towards the complex model reducing the value of
Remp[f ] as well. Thus the overall value of the right hand
side of (4) gets lower and we manage to get the machine
having reduced upper bound of the actual risk that gives
less generalization error. The values of GFR for different
machines are provided in Table 4 on page 180.

5 Conclusion and future work
In this paper, we have discussed one of the most mathemati-
cally solid statistical machine learning approaches, Support
Vector Machine (SVM) that gives decision under uncer-
tainty depending on the given probabilistic data and their
dependent stochastic parameters. We have gone through
briefly using its two main mathematical bases, statistical
theory and mathematical programming. Basing on these
concepts, we have gone a bit further to produce a very effi-
cient detector having both high classification accuracy and
speed that is realized from further sparsification of Vapnik’s
LPSVM, which is indeed sparser itself. This proposed ma-
chine requires kernel computation upto as small as 0.6% of
the sparse QPSVM, 1.5% of the sparser VLPSVM, 14.5%
of the sparser EESVM, and 46.1% of the sparser SpSVM-
2 by Keerthi et al [2], whereas in average 12.4% of the
sparse QPSVM, 50.3% of the sparser VLPSVM, 68.1% of
the sparser EESVM, and 98.1% of the sparser SpSVM-2
though produces very similar classification accuracy de-
spite of being very straight forward by demanding very little
training-effort. It also poses the least MAC (Machine Ac-
curacy Cost, a term to assess the kernel load with respect to
accuracy) value considering these machines while giving
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Table 3: MAC (machine accuracy cost) table

Dataset QPSVM VLPSVM EESVM SpSVM-2 EBSVM

Banana 1.144 0.169 0.154 0.194 0.186
Breast Cancer 2.798 0.255 - 0.171 0.111
Diabetes 3.431 0.164 - 0.180 0.116
Flare Solar 9.025 3.732 - 0.127 0.057
German 5.750 0.348 0.364 0.186 0.256
Heart 0.818 0.266 0.088 0.051 0.088
Ringnorm 0.788 0.163 0.162 0.132 0.162
Splice 10.765 3.335 - - 3.233
Titanic 1.921 1.088 0.510 0.043 0.074
Waveform 2.629 0.234 0.122 0.161 0.148

Table 3 presents the MAC values for the different machines, including the proposed algorithm. According to the results, the proposed
algorithm completely outperforms all other classifiers in terms of MAC values for the Flare Solar, Diabetes, Breast Cancer, and Splice
datasets while giving much smaller MAC values compared to the QPSVM, VLPSVM for all datasets. However, in case of other six
datasets, it gives very similar MAC values compared to the other two further sparser machines, EESVM and SpSVM-2.This shows that
compared to the reported classification algorithms, the suggested model achieves a more cost-efficient accuracy.

Table 4: Generalization failure rate (GFR) for different machines

Dataset QPSVM VLPSVM EESVM EBSVM

Banana 5.97× 10−3 6.14× 10−3 1.8× 10−3 2.18× 10−3

Breast Cancer 1.82× 10−3 2.89× 10−3 - 1.23× 10−3

Diabetes 1.36× 10−3 1.39× 10−3 - 1.18× 10−3

Flare Solar −7.67× 10−5 −9.5× 10−5 - −9.06× 10−5

German 1.44× 10−3 7.18× 10−3 9× 10−4 8.7× 10−4

Heart 1.27× 10−3 1.94× 10−3 1× 10−3 8.98× 10−4

Ringnorm 1.22× 10−1 1.03× 10−2 1.62× 10−2 2.21× 10−2

Splice 4.11× 10−1 9.42× 10−0 - 9.42× 10−0

Titanic 1.01× 10−3 1.49× 10−3 1× 10−3 1.59× 10−3

Waveform 1.1× 10−2 4.25× 10−3 1.8× 10−3 2.38× 10−3

Table 4 presents the GFR values of various algorithms, including the proposed EBSVM, alongside QPSVM, VLPSVM, and EESVM (
SpSVM-2 is not reported here due to the lack of information). The results indicate that for the Breast Cancer, Diabetes, German, and
Heart datasets, the proposed machine achieves lower GFR values compared to all other machines. However, for the remaining datasets,
the proposed machine generally performs better in most cases.

least GFR(Generalization failure rate) values compared to
these SOTA machines as well, which proves its high gen-
eralization quality too.
Moreover, like other two most popular machines,

QPSVM and LPSVM, our model’s Training Accuracy
shows almost no sensitivity for low and mid noise levels
but sensitive towards higher noise levels. However, in-
terestingly, while (Kernel) Computational cost by QPSVM
shows sensitive throughout the whole noise levels, LPSVM
and proposed EBSVM pose negligible sensitivity in this
scenario. Further, while unlike many other prominent ma-
chine learning algorithmsQPSVMand LPSVMoffer heavy
sparsity (here, 84% and 98% respectively), our method
gives the most (here, 99%) sparsity proving its unique per-
formance in case of noisy data.
It is seen from the experiment that after our compact de-

terministic mapping of probabilistic data, contribution in-
creases relatively higher compared to the confusion from

the same KCVs. This supports our idea that by our map-
ping, topological spanning of the data shrinks without
harming its stochastic nature countably and a basis set with
comparatively less number of patterns becomes sufficient
to represent the dataset. Hence relatively fewer number of
KCVs can efficiently generate the discriminator machine
having optimum generalization capability. It is also seen
that in case of the outlier KCVs, contribution gets smaller
than confusion and hence these misleading (playing unde-
sired role in the final discriminator) or least significant out-
lier KCVs become potential to be thrown away from the ba-
sis set of the final discriminator for further sparsification of
the sparser machine, which simultaneously helps to main-
tain high classification accuracy by reducing the probabil-
ity of over-fitting and boost up the classification speed. Our
method recovers the small scale gap that exists from SVM
model which are:

i) It focuses on minimizing the error-depth instead of em-
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phasizing the classification-accuracy directly.
ii) There is no complete certainty to find the best values

of the regularization parameters from their range of con-
tinuous and real values through cross-validation process
where a small deviation from the best values may lead to
the solution that selects more patterns to be Support Vectors
which drags the model towards over-fitting while increas-
ing computational cost as well.
iii) Having a highly deviated and noise-contaminated

heavy-outlier may change the SVM solution dramatically
from the training set without having it. While some state-
of-the-art machines pose the risk of decreasing classifica-
tion accuracy by sparsification from throwing some signif-
icant basis vectors, our model does not do so as its sparsifi-
cation is done by following a smart stochastic mathemati-
cal analysis. By throwing outlier KCVs, our model reduces
machine-misleading noise, gives a hypothesis from a class
with less VC dimension, larger margin with reduced model
complexity and VC confidence term in (4). Further, updat-
ing the bias term of our machine optimally, we have also
managed to reduce the empirical risk from ourmodel simul-
taneously. These jointly lowers the upper bound on the ac-
tual risk from ourmodel that eventually produces amachine
with excellent generalization performance, which is experi-
mentally demonstrated from the GFR (Generalization Fail-
ure Rate) and Test Error Rate of our machine on benchmark
data. However, a possible limitation of this method is that
it may not show this high efficiency(sparsification) in case
of datasets having very few outliers or noise.
In case of a highly complex and large dataset, a well gen-

eralized SVM is likely to get more outliers that are also in-
cluded into the SVs set making the machine more complex
and computationally expensive, which is efficiently tackled
by our stochastic ξ analysis to make this machine optimally
sparse and complex while in case of the dataset is less com-
plexwithout havingmany outliers, ourmethodwill produce
sparser solution with less number of KCVs naturally. This
certainly proves the significance of our model.
Finally, while a classifier with high accuracy and speed

like this proposed EBSVM is really indispensable to satisfy
constraints in real-time, in future, we will try to make the
KCV set κ-sparse, where κ will be a user defined variable.
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