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Robots still face enormous challenges in soccer matches, as the environment is complex and ever-

changing. Robots need to perceive the positions and trajectories of teammates, opponents, and the ball in 

real time. Therefore, based on the You Only Look Once v5 model, an improved object recognition method 

is designed using a lightweight convolutional attention module. A path planning method is constructed by 

combining the rapidly-exploring random tree algorithm with the Probabilistic Roadmap method. Finally, 

a soccer robot control strategy incorporating the rapidly-exploring random tree algorithm is proposed. 

The research used a ball detection dataset J, specifically designed for the Robot Soccer Standard Platform 

League for testing. The research results showed that the accuracy and running time of the improved target 

recognition algorithm under size images were 99.12% and 0.19ms, respectively. The path planning 

algorithm, integrating the rapidly-exploring random tree algorithm, also performed well, requiring only 

800 iterations to obtain the shortest planned path, which was 19.637cm. Compared with other mainstream 

methods, the improved method had significant advantages in path length and iteration times (p<0.001), 

indicating its practicality and robustness under uncertain conditions. In the comparison of control 

strategies, the research method had the lowest global decision entropy of 0.934 and the shortest average 

planning time of 26.8 seconds. The research method can significantly improve the intelligence level of 

soccer robots in competitions and assist soccer robots in making optimal control decisions on the field, 

achieving more efficient collaboration. 

Povzetek: Razvit je YOLOv5-OLCAM za prepoznavo ter RRT-PRM z Bézierjem za planiranje poti in 

Petri-krmiljenje; doseže krajše in bolj gladke poti ter hitrejše odločitve. 

 

1 Introduction 
The sports field has always been an important part of 

human activities, and technological advancements have 

made robot athletes a hot topic in the sports field. 

Especially in high-demand sports such as soccer, robot 

athletes have shown their strong potential and future 

prospects [1]. On the one hand, as a representative of high-

tech integration, Soccer-robots (SRs) require high 

standards in terms of motion performance, reaction speed, 

coordination, and accuracy [2-4]. Soccer matches involve 

fast decision-making, complex dynamic balance control, 

and precise motion trajectories, which require very high 

technical requirements for robots [5]. On the other hand, 

SR also provides a very feasible and attractive application 

scenario for the promotion of Artificial Intelligence (AI) 

technology [6]. In the future, soccer may become an 

important project in robotics competition, and the goal of 

RoboCup is to develop a robot that can defeat the human 

world champion team by 2050 [7]. 

X. Chen et al. proposed a path planning method based 

on an adaptive Genetic Algorithm (GA) according to the 

characteristics of SR. This method solved the obstacle 

avoidance problem of SR planning paths in a short period, 

and its path planning ability was significantly better than  

 

traditional GA [8]. Y. Zhang et al. analyzed the stability, 

working parameters, and division of labor and cooperation 

between STM32 and 51 series microcontrollers of the SR 

system through theoretical analysis and experimental 

verification, and determined the final control method. This 

method could accurately complete the kicking action and 

identify the soccer and goal, which can meet the expected 

design requirements [9]. A. F. V. Muzio et al. focused on 

learning SR behavior, which involves completing the task 

of dribbling on the track and against individual opponents 

as much as possible. This method used a hierarchical 

controller for operation, where model-free learning 

strategy and a model-based walking algorithm interacted. 

In the simulation experiment, this method outperformed 

the manual coding behavior used by the ITAndroids robot 

team in 68.2% of dribbling attempts [10]. X. Gan et al. 

proposed a novel dynamic parameter A* algorithm to 

address the problem of unmanned ground vehicles lacking 

self-optimization and learning capabilities in spaces 

containing a large number of unknown obstacles. In terms 

of convergence speed, memory system consumption, and 

optimization ability of path planning, this method 

outperformed Q-learning and A* algorithm [11]. A. Zou 

et al. designed a fusion improved mayfly optimization 
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algorithm based on Q-learning and the dynamic window 

method to address  

Table 1: Summary of related work. 

Method Performance 
Experimental 

environment 
Limitation 

X. Chen et al.'s Path Planning 

Method Based on Adaptive GA 

Path planning capability superior to 
traditional GA, solving short-term 

obstacle avoidance problems 

Static environment, 

fixed obstacles 

Poor adaptability to dynamic 
environments, high path redundancy, and 

high computational complexity 

Y. STM32 and 51 

microcontroller control by 
Zhang et al 

Complete the kicking action, identify 

the soccer and goal 

Simple experimental 

scenarios, fixed tasks 

Insufficient adaptability to complex 

dynamic scenes and poor real-time 
performance 

A. F. V. Muzio et al.'s Learning 

Behavior Method Based on 
Hierarchical Controllers 

68.2% of dribbling attempts are better 

than manual coding 

Simulation experiment, 

single opponent 
scenario 

Dependent on simulation environment, 

the dynamic collaboration ability in actual 
competitions has not been verified 

X. Gan et al.'s dynamic 

parameter A * algorithm 

Fast convergence speed, low memory 

consumption, and superior path 

planning optimization ability 
compared to Q-learning and A* 

Unknown obstacle 

space 

Good performance in static environments, 
but insufficient real-time performance in 

dynamic environments 

A. Zou et al.'s Improved 

Dragonfly Optimization 
Algorithm Based on Q-learning 

and Dynamic Window Method 

Fusion 

Addressing the stability and 
convergence speed issues of path 

planning in static environments 

100×100 static map, 20 

random experiments 

Poor adaptability to dynamic 
environments and insufficient path 

smoothness 

G. Hu et al.'s enhanced slime 
mold algorithm based on Bezier 

curve 

Short path length and high 
smoothness 

Smooth Path Planning 
for Mobile Robots 

High computational complexity and poor 
real-time performance 

M. Steve et al.'s Regulatory Pure 

Tracking Algorithm 
High security, quick assessment Observable space 

Low efficiency in path planning and 
limited adaptability to dynamic 

environments 

 

poor stability, slow convergence velocity, and limited 

applicability to static environments in robot path planning 

utilizing basic mayfly optimization algorithms. This study 

conducted 20 random simulation experiments in a 

100*100 static map environment, confirming the 

effectiveness of the research method in solving accuracy 

and speed [12]. G. Hu et al. put forth an enhanced slime 

mold algorithm based on Bezier curves to solve the 

smooth path planning issue of mobile robots, which is 

used to solve the smooth path planning model. Compared 

with other classical algorithms, this method had 

advantages in generating feasible paths with shorter length 

and higher smoothness [13]. M. Steve et al. designed a 

tuning pure pursuit algorithm that achieves progressive 

improvement over recent technologies by adjusting the 

linear velocity of the robot, particularly in terms of safety 

in observable space, and validated its fast evaluation [14]. 

By summarizing the relevant work content, Table 1 can be 

obtained. 

In summary, current research achievements mainly 

focus on the control of SR and path planning of robots, but 

there are still problems such as insufficient obstacle 

avoidance ability, poor adaptability to dynamic 

environments, and weak robustness of target recognition 

and localization in complex environments. There are three 

main research questions. The first is how to improve the 

accuracy and efficiency of SR robot's target recognition in 

complex and dynamic soccer game environments. The 

second is how to design an efficient path planning method 

under uncertain conditions to ensure that the SR robot can 

smoothly and safely reach the task position. The third is 

how to construct a control strategy to improve the 

decision-making ability and overall performance of SR 

robots in actual competitions. The expected measurable 

results are as follows: firstly, through comparative 

experiments with existing advanced methods, the 

accuracy and runtime of target recognition under different 

image sizes are explored; Secondly, comparisons are 

made with other mainstream path planning methods on 

various experimental graphs, and evaluations are 

conducted using planned path length and visualized path 

trajectories; Thirdly, different control strategies are 

compared to evaluate the uncertainty and efficiency in the 

decision-making process. Therefore, the research is based 

on the You Only Look Once version5 (YOLO v5) and 

optimizes the YOLO v5 object recognition algorithm by 

adding a Lightweight Convolutional Attention Module 

(LCAM), resulting in a YOLO v5 Optimized Based on 

LCAM algorithm (YOLO v5-OLCAM). Then, the 

Rapidly-exploring Random Tree (RRT) algorithm is used 

for path planning, and the Probabilistic Roadmap Method 

(PRM) and Bezier curve are introduced for optimization, 

resulting in an improved RRT-PRM method. Finally, an 

SR control strategy incorporating the RRT algorithm is 

proposed. The research objective is to design a control 

strategy that can ensure SR can quickly and accurately 

identify targets in dynamic environments under uncertain 

conditions, and plan collision-free, smooth, and efficient 

paths in a short period, providing real-time optimal 

decisions. The innovation mainly includes the following 

three points. The first is to propose a YOLO v5-OLCAM 

algorithm for SR target recognition, which maintains low 

parameters and computational complexity while avoiding 

negative impacts on training and inference efficiency. The 

second is to design an improved path planning method for 

the RRT-PRM algorithm. It not only solves the 

redundancy problem of the RRT algorithm but also 

improves the efficiency and adaptability of path planning, 
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and it is more suitable for the dynamic motion 

requirements of robots under uncertain conditions. The 

third is to use a joint Petri net model to construct an SR  
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Figure 1: Schematic diagram of soccer match scene on RoboCup standard platform. 
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Figure 2: Schematic diagram of the model architecture of the experimental robot. 

control strategy that integrates the RRT algorithm, 

achieving efficient task allocation and decision-making. 

The contribution lies in providing reliable foundational 

support for complex soccer game scenarios, reducing 

uncertainty and risks when making a decision, and 

improving the overall performance of SR during the game. 

2 Methods and materials 
To achieve precise target recognition and control of SR 

under uncertain conditions, this study first conducts 

motion analysis on SR and then designs a YOLO v5-

OLCAM algorithm and an improved RRT-PRM 

algorithm for target recognition and path planning. 

Finally, a Petri-based control strategy is proposed. 

2.1 Kinematic analysis for SR 

Soccer, as a team sport, encourages collaboration and 

teamwork among players. By training and playing with 

teammates, players can rely on each other, divide their 

work, and work together to achieve common goals [15-

17]. Therefore, soccer is not only a competitive sport but 

also a global phenomenon with profound social, cultural, 

and economic impacts. However, the current soccer game 

scene is complex, and target recognition needs to be 

completed quickly and accurately in a dynamic 

environment. At the same time, SR requires making 

decisions and actions in a short period, which places high 

demands on target recognition and control strategies and 

real-time performance [18-20]. Therefore, this study first 

constructs an SR-oriented model to lay a solid foundation 

for subsequent target recognition, path planning, and 
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control strategy tasks. The NAO robot has 25 degrees of 

freedom and can achieve flexible limb movements, 

including walking, running, passing, shooting, and saving 

[21]. Moreover, real-time data sharing can be achieved 

between robots through user datagram communication 

protocols, including information such as the position of 

the ball, teammates, and opponents. This  
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Figure 3: Process diagram of control decision module. 

enables robots to better collaborate as a team, such as 

passing, defending, and attacking coordination [22-23]. In 

addition, as the designated robot for the RoboCup 

Standard Platform League, it provides a unified hardware 

platform for participating teams. This makes the 

competition fairer, and participating teams can focus on 

algorithm and strategy optimization. Therefore, this study 

chooses it as the experimental subject. Thesoccer match 

scene on the RoboCup standard platform is shown in 

Figure 1. 

In Figure 1, as the difficulty of the field changes, the 

lighting conditions also change, and it is required that the 

light in a large area of the field is less than 300lx, and the 

ratio of the brightest and darkest lighting should not 

exceed 10:1. SR can process information centrally during 

soccer matches, and then provide corresponding strategies 

through the control system. Finally, the robot completes 

the execution of actions and transmits the information of 

collaborative work to teammates. The model architecture 

of the experimental robot is shown in Figure 2. 

In Figure 2, the architecture is mainly divided into the 

information processing module, communication module, 

control decision module, and task execution module. 

Through the mutual cooperation between various 

modules, the collaborative tasks between robots in the 

competition can be achieved. The most important part is 

the control decision module, which is the key to achieving 

autonomous action. It can adjust the execution of actions 

in real-time through environmental information obtained 

from sensors, and dynamically adjust the execution 

strategy to ensure efficient completion of tasks. The 

specific process of this module is shown in Figure 3. 

Figure 3 mainly includes the strategy planning part, 

the algorithm part, the decision-making part, and the 

motion control part. The first step is to receive and analyze 

the surrounding environmental information, then sort the 

next actions, and finally adjust the strategy based on the 

priority and difficulty of all tasks. In the motion control of 

SR, it is required to solve the forward and inverse 

kinematics. The forward kinematics analysis requires 

modeling the six-degree-of-freedom joints of the robot 

using the D-H method, and the mathematical expression is 

shown in equation (1). 
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In equation (1), 
1

j

jA −
 is the inverse matrix, which is a 

homogeneous transformation matrix. 
jl , 

j , 
jd , and 

j  

are the length, torsion angle, offset, and rotation angle of 

the j -th connecting rod or joint. Then, according to the 

chain rule, the homogeneous transformation matrix 

corresponding to the coordinate system transformation 

can be obtained, and combined with the D-H parameters, 

the end positions of each part of the SR can be obtained. 

In inverse kinematics analysis, this study solves the 

problem through analytical methods, and the required 

joint angles can be obtained by simply using the geometric 

relationships of the robot. Due to the symmetry of SR's 

body, this study selects the left leg for modeling, as shown 

in Figure 4. 

In Figure 4, 
pitch  and 

roll  correspond to the pitch 

and roll angles of the ankle joint. 
knee  is the knee joint 

angle. Given the state of the hip and ankle joints, and 

representing the thigh and calf lengths of SR as 
thighL  and 

calfL , the vector g  of the hip joint and the distance 
h ad −

 

from the hip to the ankle joint can be obtained, as 

calculated in equation (2). 

2 2 2

, ,
T

x y z

h a x y z

g g g

d g

g

g g−

 =  

= + +







 (2) 
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In equation (2), 
xg , 

yg , and 
zg  are the components 

of the vector on the X, Y, and Z axes. The shape formed 

by three joints conforms to the triangle law, and 
knee  can 

be obtained as shown in equation (3). 
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Figure 4: Schematic diagram of SR left leg inverse kinematics analysis. 

( ) ( )2 2 2cos 2calknee thigh hf ca thigh alfar L L d L L  −
 = − + −
   (3) 

Finally, by using the coordinate system of the ankle 

joint, 
pitch  and 

roll  can be obtained, as shown in 

equation (4). 

( )( )
( )

2 2arctan

arctan

pitch x z y z

roll y z

g gg S g

g g

 



  = − − +   
 =
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 (4) 

In equation (4), S  is the sign function. Based on the 

above content, the kinematic analysis of SR can be 

completed. 

2.2 Target recognition method based on 

improved YOLOv5 

After the completion of the SR kinematic analysis and 

design, optimization can be carried out for its target 

recognition part. Among them, SR often requires a large 

amount of computing resources and memory for target 

recognition, and is sensitive to environmental factors such 

as lighting conditions and object occlusion. Therefore, this 

study uses convolutional neural networks as the basis, 

which perform very well in visual tasks, and introduces 

LCAM to improve the YOLO v5, resulting in the YOLO 

v5-OLCAM method. Firstly, in the YOLO v5 algorithm, 

it is mainly segmented into three parts: input, backbone 

network, output, and loss function [24-26]. The Complete 

Intersection over Union (CIoU) loss function introduces a 

correction factor to make the loss more robust to target 

boxes of different shapes. Therefore, it is used for 

processing, as expressed in equation (5) [27]. 
2

2

( , )
1

p t

CIoU

c

d C C
LOSS IoU

l
= − + +  (5) 

In equation (5), IoU ,  , and   represent the 

consistency loss of intersection to union ratio, weight 

coefficient, and aspect ratio. 
2 ( , )p td C C  is the Euclidean 

distance between the center points of the predicted and 

true boxes, 
pC  and 

tC . 
cl  is the diagonal length of the 

smallest closure box covering 
pC  and 

tC . Generally, the 

classification loss is processed through a binary cross 

entropy function, as given by equation (6). 

 
1

1
ˆ ˆlog( ) (1 ) log(1 )

N

BCE i i i i

i

LOSS y y y y
N −

= − + − − (6) 

In equation (6), N  and y  are the total number of 

samples and the true label, and ŷ  is the probability that 

the predicted sample is a positive class. To improve the 

YOLOv5 object detection algorithm, the study is 

conducted to enhance the feature extraction capability 

through the LCAM module. Compared with other 

Convolutional Block Attention Modules and SENet 

attention mechanisms, this method is designed with fewer 

parameters and computational complexity, making it more 

suitable for real-time operation on resource-constrained 

robot platforms. It mainly consists of channel attention 

modules and spatial attention modules, which are 

beneficial for enhancing important features in feature 

maps and target recognition in complex and dynamic 

environments. The channel attention module is mainly 

responsible for the important features in the feature map. 

It compresses the spatial dimension of the feature map into 

a single value through global average pooling and global 

maximum pooling, then performs feature transformation 

through shared multi-layer perceptrons, and finally 

generates attention channel maps through the Sigmoid 

function [28-29]. The spatial attention module focuses on 

which pixels are important in the feature map. It first 

processes the output of the channel attention module to 

generate two two-dimensional feature maps, then 

concatenates the two feature maps and performs feature 

transformation through a convolutional layer, finally 

generating a spatial attention map [30-31].By element-

wise multiplying the input features with the two attention 

maps mentioned above, the final output features can be 

obtained. This module has relatively small parameters and 

computational complexity, does not increase the training 

and inference overhead of the method, and can be 

integrated into any network architecture. Among them, the 

channel attention model includes one global average 
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pooling layer, one global maximum pooling layer, a 

shared multi-layer perceptron, and one Sigmoid function. 

The spatial attention module  
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Figure 5: Structure diagram and training flowchart of YOLO v5-OLCAM method. 

includes channel convolution concatenation, 7*7 

convolutional layers, and a Sigmoid function. The layer 

type for feature fusion and output is element-wise 

multiplication. In addition, this study optimizes the fusion 

of multi-scale feature networks. On the basis of the path 

aggregation network and feature pyramid network, it first 

removes nodes that are only used as inputs to simplify the 

network architecture, and then establishes a network layer 

with bidirectional paths. Finally, the weights 

corresponding to the features are configured through 

weighted summation. The fused output feature calculation 

is shown in equation (7). 

( )' 'OC i i j

i j

T I   
 

=  
 

   (7) 

In equation (7), 
iI  and 'i  correspond to the i -th 

input feature and its weight parameters.   is a very small 

constant. In summary, the structure diagram and training 

process of YOLOv5-OLCAM method can be obtained, as 

shown in Figure 5. 

In Figure 5, during the training process of YOLOv5-

OLCAM, the first step is to construct a dataset containing 

the target object. Then, the input image is preprocessed to 

meet the input size requirements of the method. Next, 

convolutional layers are utilized to extract image features, 

and the obtained features are processed to predict the 

category and position of the target object, and finally, 

output the prediction result. The LCAM module is located 

in the Head section of the YOLOv5 model, which 

enhances the feature map by introducing attention 

mechanisms to improve the model's ability to recognize 

targets. 

2.3 Path planning method integrating RRT 

algorithm under uncertain conditions 

After the design of the target recognition method in SR is 

completed, to achieve the designated position in the 

planning decision, it is generally reflected through a 

motion control function. However, this approach relies on 

feedback from sensors, and its control response speed is 

limited, making it unsuitable for more complex tasks. 

Therefore, this study introduces the RRT algorithm for 

path planning. This algorithm has advantages such as fast 

exploration, high computational efficiency, and 

proficiency in parallelization processing. The most 

important thing is that it does not rely on prior knowledge 

of the environment and can adapt to uncertain conditions 

or dynamically changing environments. However, the 

RRT algorithm may suffer from path redundancy in path 

planning. Therefore, this study integrates the PRM method 

and combines it with an improved Bezier curve to obtain 
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an improved RRT-PRM path planning method. In the 

RRT section, it generates a random extended tree by 

selecting an initial point as the root node and adding leaf 

nodes through random sampling. When the leaf nodes 

contain the target point or  

Start

End

Initialization

Randomly sampling scatter points in map space

Traverse all tree nodes in sequence to find the tree 

node with the shortest distance from the random 

point

Does the parent-child tree node 

pass through the obstacle area?

Add new nodes to the random tree

Randomly and evenly scatter points on the 

planned path

Connect different nodes

Update planning path

Smooth the Bezier curve

Output the current optimal planning path

Fusion PRM Stage

Y

N

Y

N

Y

Y

N

N

Is the current location around the 

target point?

Generate new tree nodes from the tree node 

towards the random point direction with a growth 

step size

Reaching the maximum 

number of iterations?

Is there a feasible and optimal route?

 

Figure 6: Flow chart of path planning method for integrating RRT algorithm under uncertain conditions. 

enter the target area, the path from the initial to the target 

points can be searched through backtracking in the 

random tree species. The PRM method includes a learning 

phase and a query phase. The former requires more time, 

while the latter only requires inputting relevant 

information. Then, by combining the roadmap 

information obtained during the learning phase, a 

collision-free route from the initial position to the target 

position can be searched for in a relatively short period. In 

the fusion process of PRM, the first step is to randomly 

and uniformly place the nodes into the path planned by the 

RRT algorithm. Then, the nodes are connected, and 

collision detection is completed. If no collision occurs, it 

will be included in the path and further judged whether it 

is a shorter path: if so, an update will be made; otherwise, 

the above operation will continue to loop until the 

termination condition is reached, and the best path can be 

output. However, the best path obtained from this is the 

polyline obtained through nodes, which cannot meet the 

motion law of SR. System oscillation can be caused 

without considering path curvature, which has a negative 

impact on the stability of SR. The Bezier curve can make 

the path planning smoother and simplify the motion route 

with a small number of key points, as calculated in 

equation (8). 

0

( ) ( )
n

n

i i

i

P c B c P
=

=   (8) 

In equation (8), 
iP  is the coordinate of the i -th 

control point. c , n , and ( )n

iB c  are the parameters, order, 

and Bernstein basis functions of 0-1. The smoothing 

process for this study selects a third-order Bezier curve for 

calculation, as shown in equation (9). 
3 2 2 3

0 1 2 3'( ) (1 ) 3 (1 ) 3 (1 )P c c P c c P c c P c P= −  + −  + −  +   (9) 

In equation (9), 
0P  to 

3P  are continuous control 

nodes on the planned path to be fitted. Given this, the 

flowchart of the path planning method that integrates RRT 

algorithm under uncertain conditions is shown in Figure 

6. 

In Figure 6, the integration of improved PRM and 

RRT is mainly divided into three stages. The first stage is 

the RRT fast exploration stage, which randomly samples 

and generates a tree path based on the current position of 

the robot as the root node. The second stage is PRM path 

optimization, which uniformly inserts PRM random nodes 

on the initial path generated by RRT. The third stage is 

Bézier curve smoothing to improve the efficiency and 

safety of robot motion. 

2.4 Design of SR control strategy 

integrating RRT algorithm 

After the design of the target recognition method and path 

planning method for SR mentioned above, to assist SR in 

making appropriate control decisions under uncertain 

conditions, the first step is to focus on different state 

behaviors during the motion process. This study uses an 

object-oriented approach to complete character modeling 

and analyzes the motion state of SR through Petri nets. In 

the process of character modeling, there are mainly four 

types of roles: left forward and midfield forward, left back 

and right back, and goalkeeper. In the Petri net processing, 
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the expression for workflow net   is first set to 

equation (10). 
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Figure 7: Petri net modeling diagram and SR kicking display diagram at different orientations. 

In equation (10), IN , 
TS , 'S , and OUT  are input 

functions, state transition conditions, current position, and 

output functions. 'endS  is the position at the end. The 

calculation of the forward's workflow network is shown in 

equation (11). 
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In equation (11), 
0'S  to 'ENDS  represents the initial 

motion state, a certain position on the field, a distance 

between the soccer ball and the robot exceeding 500mm, 

a distance less than 500mm, a suitable shooting position, 

a shooting position, a shooting position, and an ending 

state. 
,0TS - OUT  corresponds to the starting stage, the 

stage where the ball is detected and the distance between 

the ball and the robot exceeds 500mm, the stage where the 

ball is detected but the distance is less than 500mm, the 

stage where the ball is not detected, the stage where the 

target is detected, the stage where the target is no longer 

detected, the stage where the offset is within the allowable 

range and in the correct shooting position, the stage where 

the absolute angle deviation between the robot and the 

target is less than 2°, and the end stage. The ideal shooting 

position can be obtained through the above calculation, 

but the action during task execution may cause deviation 

in joint volume, so it is necessary to correct the shooting 

position. SR kicking display in different directions, as 

shown in Figure 7. 

In Figure 7, a Petri net for the forward is constructed. 

SI  is the ideal shooting position. Simultaneously 

constructing a coordinate system centered around the 

soccer for subsequent analysis, the expression for the 

relative coordinate offset can be obtained, as shown in 

equation (12). 

'F A T

b r
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y y y
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 (12) 

In equation (12), x  and y  are the offsets along the 

X-axis and Y-axis directions. 
Fr , 'd , and 

A Td −
 

correspond to the soccer radius, the reserved distance to 

avoid accidental contact, and the horizontal distance 

between the ankle joint and toes. 
by  and 

ry  are the 

centroid positions of SR's body and right lower limb. 

Then, by converting to an absolute coordinate system, the 

absolute coordinates of the shooting position can be 

obtained, as shown in equation (13). 
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In equation (13), 
robertx  and 

roberty  are the horizontal 

and vertical coordinates of the robot's shooting position in 

the absolute coordinate system. Overall, the design of SR 

control strategy can be completed. 
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3 Results 
To test the feasibility of the research method, this study 

first analyzes the effectiveness of the improved YOLO v5 

target recognition method and the path planning method 

that integrates the RRT algorithm as the basic methods. 

Then, a comprehensive analysis is conducted  
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Figure 8: Results of inverse kinematics solution. 
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Figure 9: The results of different target recognition methods at various input image sizes. 

on the SR control strategy that integrates the RRT 

algorithm. 

3.1 Performance analysis of target 

recognition method based on improved 

YOLOv5 

To investigate the performance of the YOLO v5-OLCAM, 

the experimental environment is selected to test the 

software Matlab R2024b, and the trained method is 

translated into C++code. The experimental environment is 

set as follows: the CPU is selected as Intel Core i7-9700K 

@ 3.60GHz, the GPU is NVIDIA GeForce RTX 2080 Ti, 

and the memory is 512GB NVMe SSD. The Ball 

Detection Dataset (BDD) specifically designed for the 

Robot Soccer Standard Platform League is selected as the 

testing dataset. It is mainly used for training and 

evaluating ball detection algorithms. This dataset contains 

1,000 images of different resolutions. All images contain 

detailed bounding box annotations indicating the position 

and size of the ball. In addition, to improve the 

generalization ability of the model, data augmentation 

techniques are applied during the training process. Finally, 

images under different lighting conditions (such as 

daylight, cloudy, indoor lighting) and different site 

environments (such as grassland, artificial turf) are 

included, providing rich training samples for the model. In 

addition, the dataset includes a 70% training set and 15% 

validation and testing sets. The experimental parameters 

of YOLO v5-OLCAM are set as follows: the initial 

learning rate and maximum iteration times are 0.001 and 

2000, and the amount of data processed in one batch is 32. 

Two image sizes, 20*20*1 (size 1) and 128*128*3 (size 

2), are used for testing. Among them, 128×128×3 are 

conventional sizes that meet the visual input requirements 

of SRs. 20×20×1 is a very small size, only used to verify 

the robustness of the research model under resource 

constraints. In addition, by comparing the target detection 

performance under different sizes, the accuracy and 

robustness of the model can be more comprehensively 

evaluated. To more scientifically validate the performance 
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of research methods, advanced methods such as YOLO 

v5-en, Integrated Machine Vision and Proximity 

Estimation (IMV-PE), and Faster Region-based 

Convolutional Neural Networks (Faster-RCNN) are 

compared. Meanwhile, this study uses two  
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Figure 10: Comparison of computational efficiency results of different target recognition methods. 

Table 2: Performance of research methods in different datasets. 

Data set Accuracy/% Recall rate/% F1 value AUC 

Training set 99.35 99.28 0.9931 0.9992 

Validation set 99.12 98.97 0.9904 0.9987 

Test set 99.07 98.83 0.9895 0.9983 

 

commonly used indicators, accuracy and runtime, to 

evaluate the effectiveness of each method. The evaluation 

indicators are calculated by taking the mean and variance 

of 20 experiments and setting a 95% confidence interval. 

The study first validates the kinematic modeling of the 

NAO robot and obtains the inverse kinematics solution 

results, as shown in Figure 8. 

Figure 8 shows that the inverse solution of the robot 

can further obtain the corresponding joint angles. Figure 9 

shows the accuracy results of different target recognition 

methods. 

Figures 9 (a) and (b) show the accuracy of four 

methods for size 1 and size 2. In very small image sizes, 

YOLO v5-OLCAM and YOLO v5-en, which have 

undergone lightweight processing, both achieve high 

accuracy, reaching 99.12% and 97.56% when stable. In 

conventional image sizes, the research method can still 

demonstrate excellent accuracy, reaching 99.07%. The 

Faster-RCNN method has the worst performance, but 

different object recognition methods can maintain an 

accuracy of over 87% after reaching stability. The above 

results may be due to the lower background complexity of 

size 1 images in the BDD dataset, which has higher 

annotation quality and is beneficial for the model to better 

learn target features during training. At the same time, the 

research method utilizes the channel attention and spatial 

attention mechanisms of the LCAM module, which can 

more effectively extract key features of small-sized 

images. The computational efficiency comparison of 

different target recognition methods is shown in Figure 10. 

Figures 10 (a) and (b) show the calculation results of 

each method for dimensions 1 and 2. Under different 

image sizes, the YOLO v5-OLCAM method exhibits high 

computational efficiency, especially in small-sized 

images. This is because it introduces LCAM for 

optimization and improves the feature extraction process 

without adding too much computational burden. The 

research method has an average running time of 0.19ms 

and 8.2ms for sizes 1 and 2. The computational efficiency 

performance of YOLO v5-en is second, as this method has 

also undergone some lightweight design, but it cannot 

handle more complex images. To further investigate the 

performance changes of research methods on the training 

set, validation set, and test set, the accuracy, recall rate, F1 

value, and Area Under the Curve (AUC) are studied. The 

results are shown in Table 2. 

According to Table 2, the accuracy of the test set 

decreased by 0.28% compared to the training set, 

indicating that the research method has excellent 

generalization ability. Moreover, the recall rate of the 

research method exceeded 98% in all subsets, and the 

AUC values also exceeded 0.998, indicating its stability 

and robustness. To investigate the effectiveness of each 

module of the research method, ablation experiments were 

conducted, and the results are shown in Table 3. 

Table 3 shows that the recall rate of the method 

combined with the LCAM module increased by 6.2%, and 

the recall rate of the method improved by multi-scale 

fusion increased by 9.5%. The optimal recall rate of the 

complete method was 94.6%, and the inference time was 

3ms, which still met real-time requirements. The above 

results were due to the fact that LCAM improved 

recognition performance with minimal computational 

cost, while the complete method achieved optimal balance 
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through the synergistic effect of LCAM and multi-scale 

fusion optimization. 

 

Table 3: Results of ablation experiment. 

Method Inference time/ms Parameter quantity/M FPS Recall rate/% 

Baseline model 2.4 7.2 416 82.7 

Baseline model+LCAM 2.6 7.3 385 88.9 

Baseline model+multi-scale 
fusion improvement 

2.9 7.5 345 92.2 

YOLO v5-OLCAM 3.0 7.6 313 94.6 
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Figure 11: Experimental map schematic diagram. 

Table 4: Comparison results of indicators for various methods. 

Experimental Map 
Path planning 
method 

Number of iterations Length/cm Nodes p-value 

A 

Improved RRT-PRM 800 19.637 ± 0.42* 717 / 

DRL-LDS 1600 22.642 ± 0.58 1325 <0.001 

IRRT-DTGS 2300 27.265 ± 0.76 2167 <0.001 

IDDQN 3000 30.084 ± 0.91 2793 <0.001 

B 

Improved RRT-PRM 1700 26.713 ± 0.51 1375 / 

DRL-LDS 2200 29.165 ± 0.63 1963 0.002 

IRRT-DTGS 3500 34.265 ± 0.85 2647 <0.001 

IDDQN 4000 37.652 ± 1.12 3266 <0.001 

 

3.2 Performance analysis of path planning 

method integrating RRT algorithm 

To test the performance of the proposed path planning 

method, this study conducted experiments using the 

SimRobot platform, specifically designed for robot 

simulation, to simulate various complex scenarios. It also 

introduced existing mainstream path planning methods for 

comparative experiments, including Deep Reinforcement 

Learning Combined with Large-scale Domain Search 

(DRL-LDS), Improved RRT Based on Dual Tree Growth 

Strategy (IRRT-DTGS), and Improved Deep Double Q-

Network (IDDQN). To analyze the adaptability of 

different path planning methods, this study conducted 

multiple experiments on different maps. The specific 

experimental maps are shown in Figure 11. 

Figures 11 (a) and (b) show the experimental maps A 

and B. There are 6 and 9 obstacles on the two maps. The 

above two types of maps are both represented by vector 

maps and obstacles are represented by polygons. Each 

obstacle is conveniently measured and updated accurately 

through robot sensor data. During the path planning 

process, the vector map is updated in real-time to reflect  

 

changes in the collision detection environment. Table 4 

compares the performance of different methods. 

In Table 4, in Map A, the improved RRT-PRM only 

needs 800 iterations to plan a path length of 19.637cm, and 

717 nodes are used. This indicates that the research 

method has high efficiency and short path planning ability, 

while IDDQN performs the worst, requiring 3,000 

iterations to obtain a planned path length of 30.084cm. In 

Map B, the research method requires 1,700 iterations to 

obtain a planned path of 26.713cm. This indicates that the 

research method maintains superiority in terms of iteration 

times and path length, and has significant statistical 

significance compared to other methods (p<0.001). To 

further explore the performance effect of research 

methods in competition scenarios, this study conducts 

experiments through a simulation platform. The opposing 

robot is set as an obstacle and its position is random. 
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During this process, the search step size and the 

probability of determining random sampling points are set 

to 5cm and 0.5. The random competition scenario 

simulates the dynamic environment of robot soccer 

matches, and the opponent's movements are modeled 

using conventional obstacle avoidance  
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Figure 12: Simulation results of different path planning algorithms in random competition scenarios. 

0

700

1400

2100

2800

3500

0

5

10

15

20

25

RRT*-Connect Hybrid A*/Bézier* Improve RRT-

PRM

Original RRT-

PRM

C
alcu

latio
n
 tim

e/m
s

Method

Path length F1 value Calculation time

E
v
al

u
at

io
n

 

Figure 13: Results of ablation experiment. 

Table 5: Bézier performs curvature results. 

Stage Maximum curvature Curvature variance 

Before smoothing 12.7 6.34 

After smoothing 4.2 1.07 

 

algorithms. The simulation comparison of various 

algorithms is shown in Figure 12. 

Figures 12 (a)-(d) correspond to the simulation effects 

of improved RRT-PRM, DRL-LDS, IRRT-DTGS, and 

IDDQN in a random competition scenario. The path 

planned by the research method can effectively avoid the 

opponent robot, and the path distance is short. The 

position of the turning point also has a small curvature, 

which meets the path planning requirements of SR in 

actual competition. The planning path length of other 

methods is relatively longer and there are many turning 

points, so the performance of path planning is relatively 

poor. In addition, the study introduces RRT*-Connect, 

Hybrid A*/Bézier, and the original RRT-PRM method for 

comparative experiments, and conducts ablation 

experiments on the research method. The results are 

shown in Figure 13. 

As shown in Figure 13, the path of the research 

method is 19.63cm, indicating that the local optimization 

ability of PRM can eliminate redundant nodes on the RRT 

coarse path. The longest path of RRT*-Connect is 

22.41cm, and its performance is the worst. The F1 value 
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of the original RRT-PRM is 0.921, while the F1 value of 

the improved RRT-PRM is 0.983, indicating a significant 

improvement in the quality of the improved path. A 

quantitative analysis of curvature is conducted on Bézier, 

and the comparison before and after smoothing is shown 

in Table 5. 
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Figure 14: Simulation results of different path planning algorithms in random competition scenarios. 

Table 5 shows that Bézier processing can effectively 

reduce the maximum curvature and curvature variance, 

and the smoothing effect is significant. 

3.3 Analysis of SR control strategy results 

integrating RRT algorithm 

To verify the performance and application effectiveness of 

SR control decision-making by integrating the RRT 

algorithm and Petri net, this study first sets two tasks. Task 

A requires SR to sequentially reach designated obstacles 

1, 3, and 6 on map A. Task B requires SR to sequentially 

reach obstacles 2, 5, and 8 on map B. To verify the SR 

control strategy more scientifically, a comparative 

experiment is conducted using Deep Reinforcement 

Learning (DRL), Direct Brain Control, and Basic Perit 

Network control strategies. The performance is evaluated 

using completion time and Global Decision Entropy 

(GDE).The direct brain control strategy is a method in 

which robots use the EEG signals generated by human 

brain activity to manipulate external devices. The 

completion time and GDE can reflect the performance of 

control strategies in practical applications from different 

perspectives, and are the most relevant indicators for 

evaluating the effectiveness of SR control strategies. The 

completion time can directly reflect the efficiency of task 

execution, and it is not only related to the efficiency of 

path planning but also closely related to the stability of 

motion control. Therefore, it can comprehensively reflect 

the synergistic effect of path planning and motion control. 

GDE measures the degree of uncertainty in the decision-

making process and reflects the adaptability and stability 

of the control strategy in complex environments. Figure 

14 shows the performance comparison of different control 

strategies. 

Figures 14 (a) and (b) correspond to GDE and 

completion time for different control strategies. When the 

control strategy is iterated to 2,000 times, the GDE values 

of SR control strategy, direct brain control strategy, and 

basic Perit network control strategy are 0.934, 1.175, and 

1.386, respectively. This indicates that the research 

method has less uncertainty in the decision-making 

process, and it has more information to make decisions, 

which in turn makes the decision results more accurate and 

reliable. The performance of the DRL method is relatively 

high, with an entropy fluctuation range of ±  0.15, 

indicating a problem with strategy stability. In addition, 

the research method has the shortest task completion time 

for task A and task B, which are 115,000ms and 130,000s, 

respectively. The above successful attempts demonstrate 

that the robot can smoothly reach the designated position 

and complete the task in the given task, which directly 

reflects the effectiveness and feasibility of the control 

strategy in practical tasks. However, the direct brain 

control strategy shows multiple dead loops, while the 

research method only shows one dead loop, indicating that 

it performs better in terms of stability. The comparison of 

different control strategies in the competition scenario is 

shown in Figure 15. 

Figure 15 (a) shows the results of various control 

strategies in the game scenario, and Figure 15 (b) shows 

the scene of shooting using the research method. The SR 

control strategy falls into a dead loop once and succeeds 

48 times in the competition scenario, with an average 
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planning time of only 26.8 seconds. The number of times 

the direct brain control falls into a dead loop corresponds 

to 6 and 42 successful cycles, with the longest average 

planning time of 36.2 seconds. The above successful 

attempts have confirmed the ability of the research  
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Figure 15: The results of different control strategies in competition scenarios. 

method to complete tasks in dynamic, complex, and 

highly competitive environments, which to some extent 

reflects the adaptability and robustness of the research 

method in practical competitive scenarios. This indicates 

that the research method can effectively respond to 

unexpected situations and can be applied in a wider range 

of scenarios. 

4 Discussion 
With the progress of AI technology, motion control, and 

sensors, robots are no longer limited to industrial 

production lines and service areas, but have entered 

competitive sports. Especially in high-demand sports such 

as soccer, it demonstrates its strong potential and future 

prospects. Therefore, this study first constructed an SR 

kinematic analysis method and optimized the target 

recognition part, proposing the YOLO v5-OLCAM 

algorithm. Then, an improved RRT-PRM algorithm was 

designed for the path planning part. Finally, based on the 

above methods, an SR control strategy integrating the 

RRT algorithm and Petri was proposed. 

Research has shown that compared to methods such 

as YOLO v5-en, IMV-PE, and Faster-RCNN, the YOLO 

v5-OLCAM method exhibited higher accuracy and lower 

runtime at different image sizes. This indicated that 

introducing LCAM could significantly optimize the 

efficiency and accuracy of feature extraction without 

increasing excessive computational burden. In small-sized 

images, the runtime of YOLO v5-OLCAM was only 

0.19ms, while YOLO v5-en was 0.5ms, making this 

method more suitable for real-time operation on resource-

constrained robot platforms. The above results may be due 

to the introduction of LCAM and the improvement of 

multi-scale feature network fusion, as well as the use of 

data augmentation techniques in the training process to 

enhance the generalization ability of the research method. 

The improved RRT-PRM method outperformed 

mainstream methods such as DRL-LDS, IRRT-DTGS, 

and IDDQN in terms of path planning efficiency and 

smoothness in complex map scenes. This is mainly due to 

the combination of the fast exploration ability of the RRT 

algorithm and the efficient query ability of the PRM 

method, as well as the smoothing processing of the path 

by the Bezier curve. Specifically, in Map A, the improved 

RRT-PRM method only required 800 iterations to plan a 

path of 19.637cm, while IDDQN required 3,000 iterations 

to obtain a path of 30.084cm. This indicated that the 

improved RRT-PRM method had significant advantages 

in terms of efficiency and path quality in path planning. 

Finally, the control strategy incorporating the RRT 

algorithm outperformed both direct brain control and basic 

Petri net control strategies in terms of GDE and average 

planning time. This indicated that through Petri net role 

modeling and motion state analysis, uncertainty in the 
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decision-making process could be effectively reduced, and 

the accuracy and reliability of decision-making could be 

improved. In tasks A and B, the completion time of the 

research method was 115 seconds and 130 seconds, while 

the average planning time for direct brain control was the 

longest, requiring 36.2 seconds. This indicated that the 

control strategy incorporating the RRT algorithm had 

higher efficiency and stability in complex competition 

scenarios. 

Compared with the advanced method of related 

worksheets, the research method can still maintain high 

accuracy at extremely low resolutions. The improved 

dragonfly optimization algorithm based on the fusion of 

Q-learning and the dynamic window method in reference 

[12] has excellent computational efficiency, but its 

performance will significantly decrease in low-resolution 

images. This may be due to its inability to handle complex 

scenes. The improved RRT-PRM method performs well 

in dynamic competition scenarios, effectively avoiding 

dynamic obstacles and planning smooth and efficient 

paths. In contrast, the improved dragonfly optimization 

algorithm based on the fusion of Q-learning and the 

dynamic window method performs poorly in dynamic 

environments, with poor path smoothness and multiple 

iterations. The above results may be due to the research 

method combining the fast exploration ability of the RRT 

algorithm and the efficient query ability of the PRM 

method, and smoothing the path through a Bezier curve to 

ensure that the path conforms to the kinematic constraints 

of the robot. 

In summary, the contribution and novelty of the 

LCAM module were confirmed in the ablation experiment 

of YOLOv5-OLCAM, with a recall rate increase of 6.2%. 

In terms of path planning, the improved RRT-PRM 

method reduced path redundancy by 32.5% compared to 

the traditional RRT* algorithm. By introducing third-

order Bezier curve smoothing, the path curvature variance 

was reduced from 6.34 to 1.07, significantly better than 

the curvature variance of 3.82 in reference [13]. The 

proposed target recognition method still has room for 

improvement, and in future research, more advanced and 

lightweight multi-scale feature fusion methods can be 

used to improve computational efficiency while ensuring 

recognition accuracy. 

5 Conclusion 
This study focused on SR and first conducted kinematic 

analysis. Then, YOLO v5-OLCAM algorithm was 

designed for the target recognition part, and an improved 

RRT-PRM was proposed for SR path planning. Finally, an 

SR control strategy that integrates RRT algorithm and 

Petri was established. In the experiment, among the 

comparison of different object recognition methods, 

YOLO v5-OLCAM performed the best in different image 

sizes, with the highest accuracy of 99.12% and the lowest 

running time of 0.19ms. The accuracy of other mainstream 

target recognition methods exceeded 87%, and the YOLO 

v5-en method had relatively good computational 

efficiency, with a running time of 0.5ms in size 1. In the 

comparison of different path planning methods, the 

improved RRT-PRM method only needed 1,700 iterations 

to obtain the shortest planned path in complex map scenes, 

which was 26.713cm. Its planned path had good 

smoothness, which was very suitable for the operation 

rules of robots. Finally, in the comparison of different 

control strategies, the GDE value of the research method 

was only 0.934, indicating that its decision results were 

more reliable, and it had the least number of dead loops, 

only once, with the shortest average planning time of 26.8 

seconds. In summary, the research method could achieve 

smoother path planning and more stable action 

performance, as well as precise target recognition, which 

is beneficial for improving SR's performance in soccer 

matches. 
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