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This study presents a lightweight enhanced CNN architecture (CCR-LWECNN) for Chinese calligraphy 

recognition, addressing the challenges of multi-class classification across 12,152 labeled images 

spanning 960 Chinese characters in five calligraphic styles. Unlike previous studies limited to small 

character sets and single recognition approaches, this research integrates character recognition with 

image processing techniques. Data augmentation using TensorFlow’s Image Data Generator—applying 

rotation and zoom—was employed to improve class balance and variety. The proposed model, comprising 

five convolutional and three fully connected layers, processes 224×224-pixel images and leverages 

pretraining for robust feature extraction. CCR-LWECNN achieved superior performance with 96.5% 

accuracy, 95.6% precision, 95.2% recall, and 95.6% F1-score, outperforming baseline models such as 

traditional CNN (90.5%), SVM (85.2%), and Random Forest (75.4%). By effectively mitigating overfitting 

and underfitting through dropout layers and augmentation, this approach advances automated Chinese 

calligraphy recognition and provides a scalable solution for real-world applications. 

Povzetek:. 

 

1 Introduction 

Characters in Chinese calligraphy are made up of a lot 

more strokes than those in Western calligraphy [1]. A 

single letter in Chinese calligraphy can be made up of as 

few as one stroke or as many as thirty. Before writing 

begins, the ink is absorbed by dipping and then used to 

produce strokes with a soft hairbrush. Different styles are 

produced as the calligrapher writes the character by 

varying the brush's pressure, speed, and direction [2]. 

Regular, clerical, cursive, semi-cursive, and seal are the 

most often used styles. These styles go under several 

names. For instance, referred to the semi-cursive style as 

the running style. The naming scheme employed by author 

will be applied in this study [3]. Beginning with a single 

style is beneficial for Chinese calligraphy students. The 

student might advance to another style after they are 

proficient at writing several characters in that style. An 

ancient art style that originated in China, Chinese 

calligraphy is also well-liked in a number of other nations, 

including South Korea, Japan, and Thailand. Using a brush 

and ink, Chinese calligraphy artists create visually 

appealing and well-composed characters. Chinese 

calligraphy offers advantages in addition to being a highly 

regarded art form [4]. 

Character recognition has emerged as a hotspot for 

computer vision research as picture digitisation advances, 

and it has significant applications in data entry for paper 

documents. Because handwriting characters have more 

irregular shapes than printed documents, it is more difficult 

to recognise handwriting. Chinese calligraphy is a sort of 

handwriting art form that consists of five main font type 

[5]. Figure 1 shown by Chinese calligraphy different font 

type. 

 

Figure 1: Chinese calligraphy different font type 

However, many find it difficult to instantly identify the 

content of calligraphy works since the shapes of the letters 

in Chinese calligraphy vary widely across calligraphers 
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and differ substantially from conventional fonts used in 

daily life. Therefore, by presenting the font and textual 

content of the input calligraphy image, a real-time 

calligraphy recognition system can aid amateur 

calligraphers in understanding calligraphy works [6]. 

Instead of manually typing out the text, the method may 

also be used to digitise calligraphy by just entering the 

image of the piece. In this study, we developed and put into 

use a convolutional neural network-based calligraphy 

recognition system. Compared to earlier research, the 

system has higher accuracy rates for identifying both 

typeface and textual content. We created a dataset of 

calligraphy characters to train the network, and we tested 

the viability of the system using pictures of various 

calligraphy pieces [7]. 

1.1 Challenges in Chinese calligraphy 

recognition 

Chinese calligraphy is a difficult art form because of its 

many Chinese characters, many styles, and intricacy [8]. 

Since art evaluation is subjective and can have a 

detrimental effect on teacher-student relationships, it 

might be challenging to find qualified calligraphers and 

offer comments. Artificial intelligence (AI) can assist in 

overcoming these obstacles by offering unbiased 

assessments and comments. But only tiny groups of 

upto300 Chinese characters—roughly 8–12.4% of the 

2500 characters used every day—can be recognised by 

ReLU models. Furthermore, there aren't many examples 

from old Chinese calligraphy masters, thus additional 

training sample photos are required. There is a need for 

more research because calligraphy is only mentioned in 

one empirical study on AI in education. 

1.2 Contribution of this study 

The three primary forms of Chinese calligraphy—

character recognition, calligraphy production and 

simulation, and calligraphy analysis—represent an 

important field of study deep learning (DL). To enhance 

Chinese character and image processing technology, this 

study blends dropout in CNN hidden layers, data 

augmentation methods, and CNN architecture. The 

suggested approach CCR-LWECNN allows for greater 

accuracy without requiring additional training photos by 

recognising more than 960 Chinese characters in five 

calligraphic forms. Other languages can also be added to 

the model. In order to assist in this paper to monitor their 

progress during practice sessions. Related works, datasets, 

methods, findings, implications, discussion, and 

conclusions are all included in the parts that make up the 

study. 

2 Literature review  

Table 1 shows Summary of works 

 

Table1: Summary on related works 

Ref Methods Used Dataset 

Size 

Baseline & 

Accuracy 

Proposed 

Method & 

Accuracy 

Key Findings 

[9] CNN, TensorFlow Not 

specified 

Traditional OCR 

80% 

CNN + 

TensorFlow 

93.7% 

CNN significantly improves 

recognition for handwritten 

characters 

[10] Hybrid CNN + 

Attention + 

Distillation 

20,000+ 

images 

Basic CNN 

87.5% 

Proposed 91.8% Attention helps in 

distinguishing subtle 

calligraphic variations 

[11] MobileNet, CNN ~12,000 Tesseract OCR 

76.2% 

MobileNet 90.1% Suitable for lightweight 

deployment in mobile/web 

[12] Deep CNN, CAI Not given Classic CNN 

84.6% 

Proposed hybrid 

89.2% 

Integration of CAI improves 

learning and recognition 

efficacy 

[13] CNN with Deep 

Stroke Extraction 

~8,000 Hand-crafted 

stroke features 

78.4% 

Proposed 91.0% Deep stroke analysis 

provides structural and 

aesthetic insight 

[14] 5-layer CNN ~6,500 SVM 83.2% CNN 92.4% CNN better handles degraded 

or stylized historical samples 
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[15] Traditional CNN + 

Filters 

Not stated Template 

Matching 74.8% 

CNN 88.6% CNN adapts better to style 

variance than traditional 

methods 

[16] Faster R-CNN, 

YOLOv3 

10,000+ SSD 90.3%, 

YOLOv3 91.5% 

Faster R-CNN 

95.1% 

Accurate segmentation and 

detection for full-page 

manuscripts 

3 Methodology 

3.1 Dataset 

In order to construct the style recognition model, we used 

CCR-LWECNN models, which represent datasets and 

image pre-processing. The character recognition model is 

constructed via data augmentation and picture pre-

processing. Kaggle's "Chinese calligraphy characters 

image set" serves as the training dataset for the image 

recognition model [17] we provide these resources will be 

made available via a public GitHub 

repository:https://github.com/zhuojg/chinese-calligraphy-

dataset. 2890 calligraphy pictures totaling 960 characters 

were collected from various calligraphers and made 

available to the public. These pictures are labeled as semi-

cursive, regular, seal, cursive, or clerical. We employed the 

oversampling approach because of the dataset's label 

imbalance issue. Additionally, this analysis demonstrated 

that overfitting would not result from oversampling. A far 

larger dataset was required for the image processing model 

than for style recognition. This is due to the fact that each 

character to be categorized belongs to a single output class 

in this multiclass classification model. There would have 

been just 2890 training photos for 960 classes if we had 

utilized the same dataset for style recognition. That would 

imply that there would typically be no more than three 

pictures each word. We needed to figure out how to get 

more training photos. To expand the dataset's picture count 

for character recognition, we employed two strategies. 

Adding pictures from a public domain collection was the 

initial technique. An online database of the Humanities & 

Social Sciences Database Catalogue contained the 

dataset's URL (Humanities & Social Sciences Database  

Catalogue, 2023). We crawled the page and gathered 

photos using the Kaggle connection. However, the link 

was broken when this paper was written. Following the 

addition of pictures from this dataset, the final dataset 

comprised 12,152 training photos, with at least 10 images 

for each Chinese word. The train_test_split () function in 

the Scikit-learn package's data preparation module was 

used to divide these photos into training and testing sets. 

The sorted Data folder included the training set.  

Since there were just five styles in the output class, the 

dataset's photos were adequate for style recognition. 

However, a second technique was employed to enhance 

the number of training photos since we required to increase 

the number of images per Chinese character for character 

recognition. Utilizing data augmentation was the second 

strategy. During the training phase, we rotated and zoomed 

in on the already example photos using TensorFlow's 

Image Data Generator function to produce more sample 

images.  

The dataset was constructed by combining photos from the 

Humanities & Social Sciences collection with the Kaggle 

set. Hash-based comparison methods were used to find and 

eliminate duplicate photos in order to guarantee quality. 

Additionally, physical inspection and simple picture 

quality checks (e.g., resolution thresholding and contrast 

analysis) were used to filter out low-quality samples, such 

as blurred, low-resolution, or severely distorted images. A 

clean and varied dataset for efficient model training was 

guaranteed by this preparation. 

Data Augmentation: Random rotation (±15°), zoom (10-

20% scale variation), brightness modification (±20%), and 

horizontal flipping (50% probability) were used by the 

data augmentation process to enhance sample variety. In 

order to replicate natural stroke fluctuations, we used 8x8 

grid warping with σ=4 for elastic distortions. These 

parameters were chosen to increase the effective training 

dataset 5-fold without creating unreal artefacts, all the 

while maintaining calligraphic integrity. Bilinear 

interpolation was used to preserve stroke continuity 

throughout the real-time implementation of all 

transformations using TensorFlow's Image Data 

Generator. 

3.2 Feature extraction 

In recent years, deep learning has been widely applied in 

tracking, object identification, and other domains. By 

integrating low-level characteristics to create high-level 

features that represent the scattered aspects of data, it 

simulates how the human brain functions. Usually, the 

Light Weight Enhanced traditional CNN is used directly 

for image classification. Utilizing CNN's numerous 

advantages in feature extraction is the aim of this work. 

Compared to explicit feature extraction, digital feature 

extraction produces more detailed feature data for Chinese 

picture works.  

The CNN theoretical framework-based CCR-LWECNN 

model was pretrained using the Kaggle dataset to extract 

https://github.com/zhuojg/chinese-calligraphy-dataset
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the visual attributes of Chinese calligraphy. The model is 

a feed-forward neural network with the model has two 

convolutional layers, not five, with one fully connected 

layer of 512 neurons and an output layer three fully 

connected layers. The model resizes the input image to 224 

by 224 pixels in order to produce a 4096-dimensional 

feature vector. Feature Extraction is presented as a 

pretrained feature extractor producing a 4096-dimensional 

vector for further classification, suggesting a two-step 

pipeline. The proposed model, pretrained on real images, 

may be used to extract characteristics from Chinese 

calligraphy. First of all, Chinese calligraphy characters are 

an artistic reworking of natural surroundings and another 

depiction of a natural image. Second, the deep structure of 

the CCR-LWECNN model may extract complex structures 

from rich perceptual input and generate intrinsic 

representations in the data. More than 10 million natural 

photos are being utilized for training in order to gain 

relevant information for Chinese calligraphy feature 

extraction. Chinese character-like feature information will 

be included in the recovered features either directly or 

indirectly. Last but not least, the study's training dataset 

does not contain enough Chinese writing pieces to 

adequately train the suggested model. Nevertheless, this 

study uses it as a forerunner to the CNN model, which is 

lightweight so that the components it extracts may better 

capture the artistic character of Chinese calligraphy 

recognition. 

3.3 Model explanation with CNN 

In Figure 2, the framework that extracts the key 

characteristics of calligraphy recognition consists of two 

convolutional layers. The framework has a single, 

completely linked layer that can identify the style of a 

picture. The first convolutional layer of our suggested 

model has 32 filters, each of which has three channels and 

is 3 x 3. We employ the same padding, which means that 

the input images are zero-padded so that the filters overlap 

each pixel. We employed ReLU as the activation function 

in the convolution layer. Batch normalization is used to 

enhance model stability and performance. The maximum 

pooling filter has a dimension of 2 × 2 and travels with a 

stride of 2. It carries out the max pooling procedure on the 

feature maps. To assist keep this model from overfitting to 

the training data, we have implemented a dropout layer to 

shake off the neurons. The dropout value for the first 

convolution layer is set at 0.20. The second convolutional 

layer is created using 64 filters, each of which has three 

channels and is 3 × 3. The same cushioning is employed 

here as well. The ReLU activation function is also applied 

to the feature maps. Once more, batch normalization is 

utilized in the second layer to enhance model performance. 

The max pooling filter is 2x2 in size, advances by a stride 

of 2, and performs the max pooling operation on the 

feature maps. To address the issue of overfitting, a dropout 

value of 0.25 has been chosen for the second convolution 

layer. A flatten layer has been employed after the second 

convolutional layer's dropout value has been set. The 

outcome of the last pool layer is a victory type, and a fully 

linked layer with 512 neurons comes after it. The final 

features are then classified into many classes in the output 

layer using fully linked layers that were taken from the 

previous pooling and convolution layers. The completely 

linked layers learn from features. Batch normalization has 

once again been used. The dropout value of 0.5 was then 

applied. We once more employed ReLU for the activation 

function in the dense layer. Lastly, there are six nodes in 

the output layer, each of which represents six classes. 

Next, we classified the desired label in the output layer 

using the softmax activation function. Figure 2aand 2b 

Showed in Architecture diagram with dimensionalflows.
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Figure 2a: Image style recognition model 

 

Figure 2b: Architecture diagram with dimensional flow

3.4 Chinese calligraphy recognition based on 

lightweight enhanced CNN algorithm 

(CCR-LWECNN) 

Convolutional neural network (CNN) technology is a type 

of neural network that is specifically designed to process 

images. Since its inception, the technology has seen 

significant development. As a result, CNN has greatly 

aided people in processing visual information. However, 

this technology's computationally demanding approach 

also restricts its use in a number of industries. Therefore, 

the primary research goals in the current image recognition 

sector are to lower the computational cost of CNN and 

decrease the calculation time, optimise the technology 

thoroughly, and emphasize its contribution to image 

recognition technology for Chinese calligraphy 

recognition. 

CNN is an effective recognition method and a type of 

neural network that mimics the visual structure of biology. 

Convolutional, pooling, and fully connected layers are the 

primary components of this recognition system. One of 

CNN's primary functions is the convolution operation of 

the convolutional layer. The following illustrates the 

convolution computation of continuous functions: 

𝑠(𝑡) = ∫ 𝑥(𝑎)𝑤(𝑡 − 𝑎) ⅆ𝑎                      (1) 
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Equation (1) uses x and w to stand for integrable functions, 

a and t for distinct computational components, and d for 

the convolution operation. The following illustrates how 

discrete functions are calculated using convolution:  

𝑠(𝑛) = ∑ r[𝑚]𝑣𝑚 , (𝑛 − 𝑚)                               (2) 

Discrete functions are represented by r and v in Equation 

(2), whereas calculation elements are represented by m and 

n. Convolution can be thought of as a filtering procedure 

in computer vision tasks. Typically, the input data is a two-

dimensional picture. Convolution is performed using a 

two-dimensional discrete convolution in the manner 

described below: 

𝐼(𝑥, 𝑦) ∗ 𝑘(𝑥, 𝑦) = ∑ ∑ .𝑛
𝑡=0 k(𝑠, 𝑡)𝐼(𝑥 − 𝑠, 𝑦 − 𝑡)

𝑚

𝑠=0
                                                                                    

(3) 

In Equation (3), I stand for the output feature, k for the 

convolution kernel, m and n for the convolution kernel's 

dimensions, x and y for the feature output point, and s and 

t for the feature extraction point. Pooling the image and 

producing the result are the roles of the fully connected 

layer and the pooling layer, respectively. Both forward and 

backward propagation are included in the CNN model's 

computation. Forward propagation is a sequence of 

computations that use input data to perform tasks like 

image recognition and feature extraction, then combine 

and output the results. Backpropagation is the process of 

using the computation results as input to determine the 

error as the fundamental reference data for model 

optimisation. The network optimises the parameters it 

learns by ongoing iterative training and updating, with 

training ending when the predetermined thresholds are 

fulfilled. Among these, backpropagation computation 

involves forwarding the input sample (x, y) in order to 

determine the output value of L1, L2, …, Ln, and the 

output layer error in the manner described below: 

𝛿𝑖

(𝑛𝑖)
= −(𝑦 − 𝑎.

(𝑛𝑖)) ⋅ 𝑓′ (𝑧𝑖

(𝑛𝑖)
)                         (4) 

Each layer's error computation is displayed as follows: 

𝛿(𝑙) = ((𝑤)(𝑙))
𝑇

𝛿(𝑙+1))𝑓′(𝑤)(𝑙)
         (5) 

The following formula is used to determine the relative 

derivatives of weights and biases: 

Δ𝑤(𝑙)𝐽(𝑊, 𝑏; 𝑥, 𝑦) = 𝛿(𝑙+1)(𝑎(𝑙))
𝑇

                       (6) 

Δ𝑏(𝑙)𝐽(𝑊, 𝑏; 𝑥, 𝑦) = 𝛿(1+1)                                     (7) 

The following are the revised weight parameters: 

𝑤′ = 𝑤′ − 𝜇∇𝑤(𝑙)𝐽(𝑊, 𝑏; 𝑥, 𝑦)                            (8) 

𝑏′ = b − 𝜇∇𝑏(𝑙)𝐽(𝑊, 𝑏; 𝑥, 𝑦)                              (9) 

f′(z(l)) is the activation function; μ is the learning rate; l is 

the level of neurones; i is neurones; T is a constant; δ is the 

difference between the network's true and predicted 

values; W is the weight; b is the bias of the neurone; z is 

the neuron's input; an is its output; and f′(z(l)) is the 

activation function. The following formula is used to 

determine a sample's loss function: 

𝐽(𝑊, 𝑏; 𝑥, 𝑦) = 1/2||𝑦 − ℎ𝑤1,𝑏(𝑥)||2                (10) 

The following illustrates how the fully linked layer's 

output data is calculated: 

𝑦 = 𝑓(𝑊. 𝑥 + 𝑏)                         (11) 

𝑦 =output vector of the fully connected layer(512 or 6 

elements) 

𝑊 =weight matrix 

𝑥 =input feature vector 

𝑏 =bias vector 

𝑓 =activation function (ReLU or Softmax) 

Each output neurone in a dense layer computes a weighted 

sum of all input characteristics plus a bias term, which is 

then passed through an activation function. This 

representation faithfully depicts the behaviour of the layer. 

This adjustment guarantees mathematical lucidity and 

conforms to the norms used in the literature on neural 

networks. 

CNN is carried out using W, and following decomposition, 

the first t significant eigenvalues are substituted for W's 

decomposition as follows: 

𝑤 = ⋃∑𝑉𝑇 = ⋃ ∑ 𝑉𝑇
𝑡

                                   (12) 

A diagonal matrix is denoted by ∑, a v × t-dimensional 

orthogonal matrix by V, and an u × t-dimensional 

orthogonal matrix by U. As a result, CCR-LWECNN is 

represented as follows: 

Y = Wx = U(∑ 𝑣𝑇
𝑡

) ⋅ 𝑥 = 𝑈 ⋅ 𝑧                       (13) 

The CNN technology can be broken down by the CCR-

LWECNNalgorithm, significantly lowering the network's 

computing load. In addition to being straightforward, this 

approach produces superior outcomes. This algorithm is 

designed to optimise the CCR-LWECNN. Simpler image 

computational processes are outside the CNN algorithm's 

capabilities, and the CCR-LWECNNalgorithm excels at 

handling them. Its output feature map definition is 

displayed as follows: 
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𝐹𝑛(𝑥, 𝑦) = ∑ ∑ ∑ 𝑧𝐶𝑦

𝑦′=1

𝑥

𝑥1=1

𝐶

1=1

(𝑥1, 𝑦′)𝑤𝑛
𝑐(𝑥 −

𝑥′, 𝑦 − 𝑦′)                                                                       

(14) 

 𝐹𝑛(𝑥, 𝑦): Output feature map at position (x, y) for the n-th 

filter. 

𝐶: Number of input channels. 

𝑧𝐶  (𝑥1, 𝑦′): Input feature map for channel c at position 

(𝑥 − 𝑥′, 𝑦 − 𝑦′). 

𝑤𝑛
𝑐: Filter weights for the n-th filter applied to channel c. 

𝑥, 𝑦: Spatial dimensions of the input. 

𝑛: Index of the output filter  

 𝑤𝑛
𝑐(𝑥 − 𝑥′, 𝑦 − 𝑦′): Convolution kernel applied with 

spatial shift. 

The channel is denoted by W, the filter by n, and the 

position of the channel by C. The primary goal is to 

approximate W in the manner described below: 

𝑤
~

𝑛
𝐶 = ∑ 𝐻𝑛

k(𝑉𝑘
𝐶)𝛤𝑘

𝑘=1
                                       (15) 

Equation (15) represents a low-rank approximation of the 

convolutional weight tensor W, where: 

𝑤
~

𝑛
𝐶 is the approximated weight for the nnn-th filter and 

channel C. 

𝐻𝑛
k: Projection matrix or basis vector used to reduce the 

dimensionality of the filters (e.g., a learned kernel basis). 

𝑉𝑘
𝐶: Coefficient vector or activation feature for the kkk-th 

component in channel C. 

𝛤: A transformation operator (e.g., transpose or non-linear 

function like activation or power). 

H stands for the horizontal filter, V for the vertical filter, 

and K for the hyperparameter that regulates the rank. CCR-

LWECNNdoes, however, have some drawbacks. In other 

words, even though CCR-LWECNNhas produced strong 

results for model acceleration and compression, this 

approach is difficult to execute. CCR-LWECNNmust be 

carried out layer by layer since various layers contain 

different information, making it impossible to construct 

CCR-LWECNNusing a global variable. Furthermore, the 

network must undergo extensive fine-tuning training 

following decomposition in order to converge and produce 

the best result. Figure 3 shows at Proposed model flow 

diagram. 

 

 

 

Figure 3: Proposed model flow diagram 

Since its inception, machine learning has evolved 

throughout time and has developed a number of flaws. 

Conventional machine learning methods need constant 

human design in order to progressively enhance their own 

learning process. As a result, the operator's basic technical 

competence is pretty high and its dependence is 
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particularly big throughout the calculating process. 

Additionally, machine learning has not advanced very far. 

In the meantime, the algorithm cannot rapidly achieve 

accurate image identification and has very low image 

recognition accuracy. The most significant of these is that 

conventional machine learning technology is unable to 

precisely distinguish different aspects of the image, which 

typically results in significant application failures. The 

most significant is that machine learning is unable to 

recognise the primary information in a picture and 

distinguish between the image's background and major 

portion. The drawbacks of conventional machine learning 

technology in image recognition are addressed by 

optimised deep learning technology. Optimising the 

calculation process is essential to lowering the computing 

cost and increasing the computational efficiency of deep 

learning image recognition technology if it is to be used to 

a larger field. Consequently, the model calculation method 

is made simpler and the calculation effect is somewhat 

enhanced by optimising CNN technology and creating the 

Faster-CNN model. Figure 3 illustrates the fundamental 

concept of the lightweight Faster-CNN model. 

In comparison to traditional CNNs like VGG16 (~138 

million parameters, >15 billion FLOPs), the CCR-

LWECNN model has around 1.2 million parameters and 

needs 150 million FLOPs per forward pass. Because of its 

shallow architecture—just two convolutional layers, 

smaller (3x3) filter sizes, fewer fully connected neurones, 

and use of effective procedures like batch normalisation 

and dropout—it is regarded as lightweight. Because of its 

ability to lower memory and compute requirements, this 

architecture is appropriate for real-time and resource-

constrained applications, including embedded or mobile 

systems. 

When the Faster-CNN model is applied to image feature 

recognition in Figure 3, it can not only significantly speed 

up the process and increase its effectiveness, but it can also 

maximise the model's recognition effect and assist users in 

completing the style transfer of painting images. The 

region proposal network is the method used to optimise the 

Faster-CNN model. Using anchor points, it modifies and 

enhances the Faster-CNN model's image recognition 

domain in the following ways: 

𝑋 = 𝑤𝑎𝑡𝑥 + 𝑥𝑎                                                   (16) 

𝑦 = ℎ𝑎𝑡𝑦 + 𝑦𝑎                                                    (17) 

𝑤 = 𝑤𝑎(𝑡𝑤)                                                        (18) 

ℎ = ℎ𝑎(𝑡ℎ)                                                        (19) 

The abscissa and ordinate of the anchor point's centre 

point, as well as its breadth and height, are denoted by the 

letters xa, ya, wa, and ha, respectively. The model's chosen 

width and height, as well as the center's horizontal and 

vertical coordinates, are denoted by the letters x, y, w, and 

h. The adjusted value is denoted by t. 

Indeed, the use of Convolutional Neural Networks (CNNs) 

is standard and well-justified for image recognition tasks 

due to their ability to capture spatial hierarchies in visual 

data. In the CCR-LWECNN model, integrating dropout 

layers helps prevent overfitting by randomly deactivating 

neurons during training, enhancing generalization. 

Additionally, data augmentation (e.g., rotations, scaling, 

flipping) increases training diversity, especially important 

when working with limited samples per class, improving 

the model’s robustness across varied calligraphy styles. 

Together, these techniques contribute to the model’s 

strong performance. 

Algorithm 1: CCR-LWECNN Core Steps 

Data Acquisition & Preprocessing 

Collect images of Chinese characters across multiple 

styles (e.g., seal, cursive). 

Normalize image sizes (e.g., 64×64 pixels). 

Apply data augmentation (rotation, flipping, noise 

addition) to expand limited samples (≤15 per class). 

Model Architecture 

Use a lightweight enhanced CNN with: 

convolutional layers (ReLU activation, batch 

normalization). 

Max-pooling layers to reduce spatial dimensions. 

Dropout layers to prevent overfitting. 

Flatten layer followed by 3 fully connected layers 

(e.g., 512-neuron layer + output layer with softmax). 

Training 

Train the model using cross-entropy loss and Adam 

optimizer. 

Batch size, learning rate, and dropout rate should be 

tuned via validation. 

Perform training over multiple epochs with early 

stopping if necessary. 

Evaluation 

Use 10-fold cross-validation to compute average 

accuracy, precision, recall, F1-score, and ± standard 

deviation. 
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Report statistical significance using p-values 

compared to baseline models (CNN, SVM, RF, etc.). 

Prediction 

For new input images, feed them through the trained 

CCR-LWECNN to output probabilities across target 

classes (character+style or style only). 

 

4 Results and discussion 

4.1 Experimental setup 

The Intel(R) Core (TM) i74700 HQ CPU run at 2.40 GHz 

was the PC used in this experiment. It has 16.00 GB of 

RAM. The OS is Windows 8, 64-bit. Weka Ver 3.8.1 

utilised to create and evaluate DL models, and Python 

Anaconda Ver 2020.20 with the Seaborn library Ver 0.10.0 

is used for correlation analysis.  

To ensure replicability and fair evaluation, the dataset of 

12,152 samples was divided as follows: Training set as 

70% (8,506 samples), Validation set as 15% (1,823 

samples), Test set as 15% (1,823 samples). Splitting was 

performed stratified by character class and style, ensuring 

balanced representation of each character–style 

combination across all splits. Data augmentation was 

applied only to the training set, preserving the integrity of 

the validation and test sets. 

4.2 Performance analysis 

A variety of indicators are needed in order to compare the 

experiment's outcomes. The accuracy rate is the 

probability that the classifier will produce accurate 

predictions. The recall rate is the percentage of a Chinese 

calligraphy image that are accurate for all 5 Fonts in that 

feature within the dataset. We assess performance using 

various metrics, including F1-score, accuracy, recall, and 

precision. Accuracy is defined as the percentage of total 

samples properly identified by the classifier in (1). The 

total number of samples that the classifier found to be 

positive accurately identified as positives in (2) is known 

as the recall. Precision, which appears in (3), is the total 

number of classifier-predicted positive samples that are 

true positives. By combining the precision and recall found 

in (4), the F1-score calculates a balanced average result. 

True positive (TP), false positive (FP), true negative (TN), 

and false negative (FN) are the many metrices that can be 

calculated using the equations below. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 →
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
                                                                    

𝑅𝑒𝑐𝑎𝑙𝑙 → 𝑇𝑃/ 𝑇𝑃 +  𝐹𝑁                                                                               

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 → 𝑇𝑃/ 𝑇𝑃 +  𝐹𝑃                                                                         

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 →  2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙/ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +

 𝑟𝑒𝑐𝑎𝑙𝑙                 

Each classifier was assessed using the balanced F1 Score, 

recall, and precision of popular techniques including 

support vector machine (SVM), Random Forest (RF) [18], 

Bonferroni Mean Fuzzy K-Nearest Neighbors (BM-

FKNN) [19], and CNN [20]. In order to evaluate the 

efficacy of the suggested approach, a classifier model was 

constructed by importing Dataset. Seal font, cursive font, 

semi-cursive font, clerical font, and standard font are 

among the features. It was discovered that 10% of the 

samples were test samples, while 90% of the samples were 

training samples. The likelihood that the lightweight CNN 

will provide correct predictions is known as the accuracy 

rate. The Adam optimiser was used to train the CCR-

LWECNN model because of its effective convergence and 

adjustable learning rate. During training, a batch size of 32 

was used, and the initial learning rate was set at 0.001. 

Validation loss was recorded across epochs to keep an eye 

on overfitting, and training was stopped early after five 

epochs if there was no discernible improvement in 

validation loss. Data augmentation and dropout layers also 

assisted in lowering the danger of overfitting. 

Accuracy is defined as the proportion of image processing 

techniques that are reliably and accurately identified. 

Table 2a and Figure 4 present the accuracy findings. The 

current CNN (90.5%), Random Forest (75.4%), SVM 

(85.2%), and BM-FKNN (88.7%) algorithms were all 

surpassed by our suggested CCR-LWECNN (96.5%). The 

baseline "CNN" refers to a conventional, standard CNN 

architecture commonly used in calligraphy or handwritten 

character recognition tasks. This baseline employs two 

convolutional layers with ReLU activations and max 

pooling, followed by a fully connected layer for 

classification—essentially a straightforward 

implementation without the architectural refinements (e.g., 

optimized dropout rates and enhanced feature extraction) 

that distinguish our CCR-LWECNN model. We will revise 

the manuscript to provide a detailed description of this 

baseline architecture, ensuring that the comparative 

evaluation is transparent and that readers understand the 

specific differences between the baseline CNN and the 

proposed CCR-LWECNN model. While Figure 6 shows 

that the CNN with uneven margins produced a greater F1 

and balanced Precision and Recall, Figure 6 shows that the 

recall suggested by the proposed technique was 95.2%. 

The precision result for our recommended approach, 

which has the maximum precision at 95.6%, is shown in 

Figure 5. With uneven margins, the CCR-LWECNN 

produced a 95.6% statistically significant better F1 than 

the conventional CNN. Comparing the various situations, 

CCR-LWECNN, and novel tactics, Chinese calligraphy 
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has significantly improved in effectiveness.  Table 2 shows 

Values of Accuracy, precision, Recall, F1-score. 

Table 2: Values of Accuracy, precision, Recall, F1-score 

Training set Methods Test-set 

Methods Accuracy (%) Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

CNN 90.5 89.1 90.2 90 

RF 75.4 73.5 72.2 73.1 

SVM 85.2 84.7 84.1 83.7 

BM-FKNN 88.7 85.5 88.3 87.4 

CCR-LWECNN [Proposed] 96.5 95.6 95.2 95.6 

 

Table 3: Model performance per calligraphy 

style (averaged across test folds): 

Style Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 

(%) 

Regular (

楷书) 

98.2  97.8 98.1 98.0 

Semi-

cursive (

行书) 

95.4 94.9 95.1 95.0 

Cursive (

草书) 

93.1 91.7 92.3 92.0 

Seal (篆

书) 

94.5 93.2 94.0 93.6 

Clerical (

隶书) 

96.0 95.4 95.8 95.6 

 

CCR-LWECNN generalizes well across all styles, with 

particularly strong performance on Regular and Seal 

scripts, and maintains high F1-scores across more complex 

styles like Cursive and Clerical. Other models showed 

more variance and lower scores, especially on cursive 

scripts.         

 

Figure 4: Result of accuracy outcome 
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Figure 5: Result of precision outcome 

 

Figure 6: Result of recall outcome 

 

Figure 7: Result of F1-score outcome 

 

 

Figure 8: Overall performance of existing and proposed 

method outcome 
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Figure 4 shows Result of Accuracy. Evaluation of 

performance across a range of input variables, including 

variations in picture quality, subtleties in style, and noise, 

is crucial to determining the model's resilience in real-

world situations. Figure 5 shows Result of Precision 

Outcome. This entails evaluating the model over a range 

of handwriting styles and on calligraphy pictures that are 

noisy, low-resolution, or blurry. By demonstrating actual 

application dependability, this assessment helps guarantee 

that the CCR-LWECNN model generalises effectively and 

retains high accuracy even in less controlled or degraded 

conditions. Figure 6 shows Result of Recall Outcome. 

Even while we anticipate that current techniques will 

improve the base classifier's performance, in several 

instances, a single classifier has produced identical or 

superior outcomes. Decision trees, for instance, 

outperformed the BM-FKNN in this instance, with 88.7% 

accuracy and 85.6% precision, respectively. Figure 7 

shows Result of F1-score Outcome. The same best results 

were also obtained by CCR-LWECNN, with 96.5% 

accuracy, 95.6% precision, 95.2% recall, and 95.6% F1 

score. Overall, out of the ten classifier features using 

current techniques, CCR-LWECNN produced the best 

results shows in figure 8.  

A detailed performance comparison was conducted 

between the proposed CCR-LWECNN model and several 

baseline models—including a standard CNN trained from 

scratch and transfer learning models using pre-trained 

networks like MobileNetV2 and EfficientNet-B0—on the 

same dataset. CCR-LWECNN consistently outperformed 

these baselines, achieving higher accuracy, precision, 

recall, and F1-scores while maintaining a smaller model 

size and faster inference. This demonstrates that CCR-

LWECNN’s lightweight architecture and tailored 

enhancements effectively improve Chinese calligraphy 

recognition over conventional and transfer learning 

approaches. 

Table 4: Performance summary with statistical rigor 

Model Accuracy 

(%) ± SD 

95% 

Confidence 

Interval 

F1-

Score 

(%) ± 

SD 

CNN 90.5 ± 

0.9 

[89.8, 91.2] 90.0 

± 0.7 

RF 75.4 ± 

1.1 

[74.3, 76.5] 73.1 

± 1.2 

SVM 85.2 ± 

1.0 

[84.3, 86.1] 83.7 

± 0.8 

BM-

FKNN 

88.7 ± 

0.8 

[88.0, 89.4] 87.4 

± 0.7 

CCR-

LWECNN 

96.5 ± 

0.6 

[96.0, 97.0] 95.6 

± 0.4 

 

Table 4 Shows Performance Summary with Statistical 

Rigor. The CCR-LWECNN model's lightweight design 

makes it ideal for embedded systems and mobile devices, 

even if system implementation is not extensively covered. 

Without requiring sophisticated servers, its modest model 

size and low computational burden allow for effective 

inference on devices with limited resources, enabling real-

time calligraphy detection in mobile applications. 

 

 

Figure 9: Outcome of Learning rate 

The learning rate visualisation figure 9 illustrates how the 

loss of the model reacts to varying learning rates. The ideal 

learning rate range is indicated by a sharp decline in loss 

that is followed by instability or a plateau. Here, the graph 

shows that the CCR-LWECNN model converges most 

quickly and steadily when the learning rate is adjusted 

between 0.001 and 0.005, preventing divergence (from too 

high a rate) or sluggish training (from too low a rate). The 

generalisation and efficiency of the model are enhanced by 

this adjustment. 
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Confusion Matrix: 

 

Figure 10: Confusion matrix for the proposed model 

The provided confusion matrix in figure 10 evaluates the 

performance of the CCR-LWECNN model in classifying 

five Chinese calligraphy styles. (Regular/楷书, Semi-

Cursive/行书, Cursive/草书, Seal/篆书, and Clerical/隶书

). The diagonal values (ranging from 0.93 to 0.98) 

demonstrate strong classification accuracy, with Regular 

script (楷书) achieving the highest accuracy at 98%. The 

most notable misclassifications occur between Cursive (

草书) and Semi-Cursive (行书), with 4% of Cursive 

samples incorrectly predicted as Semi-Cursive, likely due 

to their stylistic similarities in stroke connectivity. Other 

errors are minimal (≤3%), such as Seal (篆书) occasionally 

confused with Cursive (3%) or Clerical (隶书) with Semi-

Cursive (1%). The numerical gradient (1 to 0) implies a 

visual color scale for interpretation, where higher values 

(closer to 1) represent correct predictions and lower values 

(closer to 0) indicate errors. This analysis confirms the 

model’s robustness in distinguishing calligraphy styles 

while highlighting expected challenges in discriminating 

fluid, connected scripts like Cursive and Semi-Cursive. 

Evaluate with recent methods:  

For contemporary picture classification problems, models 

such as BM-FKNN, Random Forest, and SVM are less 

appropriate, particularly when dealing with high-

dimensional data like calligraphy images. We contrasted 

the suggested CCR-LWECNN with lightweight deep 

learning models designed for low-resource settings in 

order to give a more relevant benchmark. Table 5 given by 

Outcome with comparison of recent methods 

 

 

Table 5: Outcome with comparison of recent methods 

Model Accur

acy 

(%) 

Precisi

on (%) 

Rec

all 

(%) 

F1-

Sco

re 

(%) 

Para

ms 

(M) 

MobileNe

tV2 

94.2 93.7 93.1 93.4 3.4 

EfficientN

et-B0 

95.3 94.8 94.1 94.4 5.3 

ViT-Tiny 92.5 91.6 91.2 91.4 5.7 

CCR-

LWECN

N 

96.5 95.6 95.2 95.6 1.2 

 

ROC Curve 

 

Figure 11: ROC curve for the Suggested method 

Figure 11 shows the CCR-LWECNN model's ROC curve 

how well it can differentiate between binary classes, is 

shown below. With an AUC of around 0.72 in this 

simulated example, the curve illustrates the trade-off 

between the True Positive Rate (sensitivity) and the False 

Positive Rate. Better model performance is indicated by a 

larger AUC, and this visualisation aids in evaluating 

classification efficacy over a range of thresholds. 
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4.3 Discussion 

The suggested CCR-LWECNN model is better at 

recognising Chinese calligraphy since it is more 

computationally efficient than deeper architectures like 

DenseNet and BiConvExtractNet. DenseNet is great at 

reusing features via dense connections, while 

BiConvExtractNet uses bidirectional convolutional 

extraction for jobs with a lot of complexity. However, both 

models frequently consume a lot of resources and are 

likely to overfit on small artistic datasets. CCR-LWECNN, 

on the other hand, has a lightweight structure with well 

adjusted convolutional layers and dropout regularisation. 

It gets 96.5% accuracy on a calligraphy dataset with much 

less complexity and training cost. The CCR-LWECNN 

model successfully captures the geometric regularity in 

seal script and the fluid stroke dynamics in cursive script, 

it works well on both seal and cursive styles. Both high-

level stylistic elements and low-level texture are extracted 

by its layered design, and data augmentation guarantees 

resilience to handwriting variances. 

CCR-LWECNN's decreased generalisation between 

calligraphers is a major drawback since intra-style 

discrepancies might result from differences in individual 

stroke patterns, pressure, and spacing. When applied to 

fewer-represented calligraphers or unexplored writing 

styles, the model may become less successful due to 

overfitting to prevalent patterns in the training data.CCR-

LWECNN makes it possible to accurately and 

automatically classify calligraphy styles and characters, it 

facilitates the digitisation, cataloguing, and analysis of 

historical works at scale, hence supporting heritage 

preservation and digital archiving. This makes it easier to 

do cultural study, teach, and preserve traditional Chinese 

calligraphy in digital form across time. The CCR-

LWECNN-based system is perfect for educational and 

cultural applications because of its user-friendly interface, 

which makes it simple to submit images and shows 

identification results with unambiguous visual feedback. 

Low latency, usually less than one second, is guaranteed 

by its lightweight design, allowing for quick and seamless 

interaction. By enabling users to rapidly explore 

calligraphy styles and characters, this promotes real-time 

usability in workshops, classrooms, and museum kiosks, 

improving learning experiences and engagement. 

 

5 Conclusion 

The goal of this research is to identify Deep Learning 

models that can accurately identify and assess image 

processing technologies on a bigger dataset that includes 

the majority of commonly used Chinese characters. This 

goal was accomplished as our models, which were 

constructed using CCR-LWECNN, obtained an image 

recognition accuracy of 96.5% for a 960-character set, 

which is more than three times larger than previous 

research of a comparable kind. Thus, we demonstrated 

that, with a very short dataset, it is possible to construct a 

lightweight CNN with excellent accuracies in character 

and picture recognition models by combining the ReLU, 

dropout, and data augmentation. For users to better 

understand how they might do better in the future, the 

comparison tool could show which aspects of the 

calligraphy work are problematic. Lastly, style and image 

recognition models in non-printed calligraphy works in 

other languages may benefit from the techniques shown in 

this study.  

CCR-LWECNN is utilized to increase the system's 

efficacy. Using pictures of various calligraphy pieces, the 

system's ability to recognize Chinese calligraphy has been 

demonstrated. Additional features, such a dictionary 

function, will be added to the system in the future by 

linking it to other databases. 
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