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This study presents a lightweight enhanced CNN architecture (CCR-LWECNN) for Chinese calligraphy
recognition, addressing the challenges of multi-class classification across 12,152 labeled images
spanning 960 Chinese characters in five calligraphic styles. Unlike previous studies limited to small
character sets and single recognition approaches, this research integrates character recognition with
image processing techniques. Data augmentation using TensorFlow’s Image Data Generator—applying
rotation and zoom—was employed to improve class balance and variety. The proposed model, comprising
five convolutional and three fully connected layers, processes 224x224-pixel images and leverages
pretraining for robust feature extraction. CCR-LWECNN achieved superior performance with 96.5%
accuracy, 95.6% precision, 95.2% recall, and 95.6% F1-score, outperforming baseline models such as
traditional CNN (90.5%), SVM (85.2%), and Random Forest (75.4%). By effectively mitigating overfitting
and underfitting through dropout layers and augmentation, this approach advances automated Chinese

calligraphy recognition and provides a scalable solution for real-world applications.

Povzetek:.

1 Introduction

Characters in Chinese calligraphy are made up of a lot
more strokes than those in Western calligraphy [1]. A
single letter in Chinese calligraphy can be made up of as
few as one stroke or as many as thirty. Before writing
begins, the ink is absorbed by dipping and then used to
produce strokes with a soft hairbrush. Different styles are
produced as the calligrapher writes the character by
varying the brush's pressure, speed, and direction [2].
Regular, clerical, cursive, semi-cursive, and seal are the
most often used styles. These styles go under several
names. For instance, referred to the semi-cursive style as
the running style. The naming scheme employed by author
will be applied in this study [3]. Beginning with a single
style is beneficial for Chinese calligraphy students. The
student might advance to another style after they are
proficient at writing several characters in that style. An
ancient art style that originated in China, Chinese
calligraphy is also well-liked in a number of other nations,
including South Korea, Japan, and Thailand. Using a brush
and ink, Chinese calligraphy artists create visually
appealing and well-composed characters. Chinese
calligraphy offers advantages in addition to being a highly
regarded art form [4].

Character recognition has emerged as a hotspot for
computer vision research as picture digitisation advances,
and it has significant applications in data entry for paper
documents. Because handwriting characters have more
irregular shapes than printed documents, it is more difficult
to recognise handwriting. Chinese calligraphy is a sort of
handwriting art form that consists of five main font type
[5]. Figure 1 shown by Chinese calligraphy different font

type.

(¢) Semi-cursive font.

%

(e) Standard font.

(a) Seal font.

R

(d) Clerical font,

(b) Cursive font.

Figure 1: Chinese calligraphy different font type

However, many find it difficult to instantly identify the
content of calligraphy works since the shapes of the letters
in Chinese calligraphy vary widely across calligraphers
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and differ substantially from conventional fonts used in
daily life. Therefore, by presenting the font and textual
content of the input calligraphy image, a real-time
calligraphy recognition system can aid amateur
calligraphers in understanding calligraphy works [6].
Instead of manually typing out the text, the method may
also be used to digitise calligraphy by just entering the
image of the piece. In this study, we developed and put into
use a convolutional neural network-based calligraphy
recognition system. Compared to earlier research, the
system has higher accuracy rates for identifying both
typeface and textual content. We created a dataset of
calligraphy characters to train the network, and we tested
the viability of the system using pictures of various
calligraphy pieces [7].

1.1 Challenges in Chinese calligraphy
recognition

Chinese calligraphy is a difficult art form because of its
many Chinese characters, many styles, and intricacy [8].
Since art evaluation is subjective and can have a
detrimental effect on teacher-student relationships, it
might be challenging to find qualified calligraphers and
offer comments. Artificial intelligence (Al) can assist in
overcoming these obstacles by offering unbiased
assessments and comments. But only tiny groups of
upto300 Chinese characters—roughly 8-12.4% of the
2500 characters used every day—can be recognised by
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ReLU models. Furthermore, there aren't many examples
from old Chinese calligraphy masters, thus additional
training sample photos are required. There is a need for
more research because calligraphy is only mentioned in
one empirical study on Al in education.

1.2 Contribution of this study

The three primary forms of Chinese calligraphy—
character recognition, calligraphy production and
simulation, and calligraphy analysis—represent an
important field of study deep learning (DL). To enhance
Chinese character and image processing technology, this
study blends dropout in CNN hidden layers, data
augmentation methods, and CNN architecture. The
suggested approach CCR-LWECNN allows for greater
accuracy without requiring additional training photos by
recognising more than 960 Chinese characters in five
calligraphic forms. Other languages can also be added to
the model. In order to assist in this paper to monitor their
progress during practice sessions. Related works, datasets,
methods, findings, implications, discussion, and
conclusions are all included in the parts that make up the
study.

2 Literature review

Table 1 shows Summary of works

Tablel: Summary on related works

Ref Methods Used Dataset Baseline & Proposed Key Findings
Size Accuracy Method &
Accuracy
[9] CNN, TensorFlow Not Traditional OCR CNN + CNN significantly improves
specified 80% TensorFlow recognition for handwritten
93.7% characters
[10] Hybrid CNN + 20,000+ Basic CNN Proposed 91.8% Attention helps in
Attention + images 87.5% distinguishing subtle
Distillation calligraphic variations
[11] MobileNet, CNN ~12,000 Tesseract OCR MobileNet 90.1% Suitable for lightweight
76.2% deployment in mobile/web
[12] Deep CNN, CAI Not given Classic CNN Proposed hybrid Integration of CAIl improves
84.6% 89.2% learning and recognition
efficacy
[13] CNN with Deep ~8,000 Hand-crafted Proposed 91.0% Deep stroke analysis
Stroke Extraction stroke features provides structural and
78.4% aesthetic insight
[14] 5-layer CNN ~6,500 SVM 83.2% CNN 92.4% CNN better handles degraded
or stylized historical samples
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[15] Traditional CNN + | Not stated Template CNN 88.6% CNN adapts better to style
Filters Matching 74.8% variance than traditional
methods
[16] Faster R-CNN, 10,000+ SSD 90.3%, Faster R-CNN Accurate segmentation and
YOLOv3 YOLOV3 91.5% 95.1% detection for full-page
manuscripts

3 Methodology
3.1 Dataset

In order to construct the style recognition model, we used
CCR-LWECNN models, which represent datasets and
image pre-processing. The character recognition model is
constructed via data augmentation and picture pre-
processing. Kaggle's "Chinese calligraphy characters
image set" serves as the training dataset for the image
recognition model [17] we provide these resources will be
made available via a public GitHub
repository:https://github.com/zhuojg/chinese-calligraphy-
dataset. 2890 calligraphy pictures totaling 960 characters
were collected from various calligraphers and made
available to the public. These pictures are labeled as semi-
cursive, regular, seal, cursive, or clerical. We employed the
oversampling approach because of the dataset's label
imbalance issue. Additionally, this analysis demonstrated
that overfitting would not result from oversampling. A far
larger dataset was required for the image processing model
than for style recognition. This is due to the fact that each
character to be categorized belongs to a single output class
in this multiclass classification model. There would have
been just 2890 training photos for 960 classes if we had
utilized the same dataset for style recognition. That would
imply that there would typically be no more than three
pictures each word. We needed to figure out how to get
more training photos. To expand the dataset's picture count
for character recognition, we employed two strategies.
Adding pictures from a public domain collection was the
initial technique. An online database of the Humanities &
Social Sciences Database Catalogue contained the
dataset's URL (Humanities & Social Sciences Database

Catalogue, 2023). We crawled the page and gathered
photos using the Kaggle connection. However, the link
was broken when this paper was written. Following the
addition of pictures from this dataset, the final dataset
comprised 12,152 training photos, with at least 10 images
for each Chinese word. The train_test_split () function in
the Scikit-learn package's data preparation module was
used to divide these photos into training and testing sets.
The sorted Data folder included the training set.
Since there were just five styles in the output class, the
dataset's photos were adequate for style recognition.
However, a second technique was employed to enhance

the number of training photos since we required to increase
the number of images per Chinese character for character
recognition. Utilizing data augmentation was the second
strategy. During the training phase, we rotated and zoomed
in on the already example photos using TensorFlow's
Image Data Generator function to produce more sample
images.

The dataset was constructed by combining photos from the
Humanities & Social Sciences collection with the Kaggle
set. Hash-based comparison methods were used to find and
eliminate duplicate photos in order to guarantee quality.
Additionally, physical inspection and simple picture
quality checks (e.g., resolution thresholding and contrast
analysis) were used to filter out low-quality samples, such
as blurred, low-resolution, or severely distorted images. A
clean and varied dataset for efficient model training was
guaranteed by this preparation.

Data Augmentation: Random rotation (x15°), zoom (10-
20% scale variation), brightness modification (£20%), and
horizontal flipping (50% probability) were used by the
data augmentation process to enhance sample variety. In
order to replicate natural stroke fluctuations, we used 8x8
grid warping with o=4 for elastic distortions. These
parameters were chosen to increase the effective training
dataset 5-fold without creating unreal artefacts, all the
while maintaining calligraphic integrity. Bilinear
interpolation was used to preserve stroke continuity

throughout the real-time implementation of all
transformations using TensorFlow's Image Data
Generator.

3.2 Feature extraction

In recent years, deep learning has been widely applied in
tracking, object identification, and other domains. By
integrating low-level characteristics to create high-level
features that represent the scattered aspects of data, it
simulates how the human brain functions. Usually, the
Light Weight Enhanced traditional CNN is used directly
for image classification. Utilizing CNN's numerous
advantages in feature extraction is the aim of this work.
Compared to explicit feature extraction, digital feature
extraction produces more detailed feature data for Chinese
picture works.
The CNN theoretical framework-based CCR-LWECNN
model was pretrained using the Kaggle dataset to extract
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the visual attributes of Chinese calligraphy. The model is
a feed-forward neural network with the model has two
convolutional layers, not five, with one fully connected
layer of 512 neurons and an output layer three fully
connected layers. The model resizes the input image to 224
by 224 pixels in order to produce a 4096-dimensional
feature vector. Feature Extraction is presented as a
pretrained feature extractor producing a 4096-dimensional
vector for further classification, suggesting a two-step
pipeline. The proposed model, pretrained on real images,
may be used to extract characteristics from Chinese
calligraphy. First of all, Chinese calligraphy characters are
an artistic reworking of natural surroundings and another
depiction of a natural image. Second, the deep structure of
the CCR-LWECNN model may extract complex structures
from rich perceptual input and generate intrinsic
representations in the data. More than 10 million natural
photos are being utilized for training in order to gain
relevant information for Chinese calligraphy feature
extraction. Chinese character-like feature information will
be included in the recovered features either directly or
indirectly. Last but not least, the study's training dataset
does not contain enough Chinese writing pieces to
adequately train the suggested model. Nevertheless, this
study uses it as a forerunner to the CNN model, which is
lightweight so that the components it extracts may better
capture the artistic character of Chinese calligraphy
recognition.

3.3 Model explanation with CNN

In Figure 2, the framework that extracts the key
characteristics of calligraphy recognition consists of two
convolutional layers. The framework has a single,
completely linked layer that can identify the style of a
picture. The first convolutional layer of our suggested
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model has 32 filters, each of which has three channels and
is 3 x 3. We employ the same padding, which means that
the input images are zero-padded so that the filters overlap
each pixel. We employed ReLU as the activation function
in the convolution layer. Batch normalization is used to
enhance model stability and performance. The maximum
pooling filter has a dimension of 2 x 2 and travels with a
stride of 2. It carries out the max pooling procedure on the
feature maps. To assist keep this model from overfitting to
the training data, we have implemented a dropout layer to
shake off the neurons. The dropout value for the first
convolution layer is set at 0.20. The second convolutional
layer is created using 64 filters, each of which has three
channels and is 3 x 3. The same cushioning is employed
here as well. The ReLU activation function is also applied
to the feature maps. Once more, batch normalization is
utilized in the second layer to enhance model performance.
The max pooling filter is 2x2 in size, advances by a stride
of 2, and performs the max pooling operation on the
feature maps. To address the issue of overfitting, a dropout
value of 0.25 has been chosen for the second convolution
layer. A flatten layer has been employed after the second
convolutional layer's dropout value has been set. The
outcome of the last pool layer is a victory type, and a fully
linked layer with 512 neurons comes after it. The final
features are then classified into many classes in the output
layer using fully linked layers that were taken from the
previous pooling and convolution layers. The completely
linked layers learn from features. Batch normalization has
once again been used. The dropout value of 0.5 was then
applied. We once more employed ReL U for the activation
function in the dense layer. Lastly, there are six nodes in
the output layer, each of which represents six classes.
Next, we classified the desired label in the output layer
using the softmax activation function. Figure 2aand 2b
Showed in Architecture diagram with dimensionalflows.
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Figure 2a: Image style recognition model
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Figure 2b: Architecture dial

3.4 Chinese calligraphy recognition based on
lightweight enhanced CNN algorithm
(CCR-LWECNN)

Convolutional neural network (CNN) technology is a type
of neural network that is specifically designed to process
images. Since its inception, the technology has seen
significant development. As a result, CNN has greatly
aided people in processing visual information. However,
this technology's computationally demanding approach
also restricts its use in a number of industries. Therefore,
the primary research goals in the current image recognition
sector are to lower the computational cost of CNN and
decrease the calculation time, optimise the technology

gram with dimensional flow

thoroughly, and emphasize its contribution to image
recognition  technology for Chinese calligraphy
recognition.

CNN is an effective recognition method and a type of
neural network that mimics the visual structure of biology.
Convolutional, pooling, and fully connected layers are the
primary components of this recognition system. One of
CNN's primary functions is the convolution operation of
the convolutional layer. The following illustrates the
convolution computation of continuous functions:

s@) = [ x(@)w(t — a) da @)
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Equation (1) uses x and w to stand for integrable functions,
a and t for distinct computational components, and d for
the convolution operation. The following illustrates how
discrete functions are calculated using convolution:

S(n) = Zm r[m]v, (Tl - m) (2)

Discrete functions are represented by r and v in Equation
(2), whereas calculation elements are represented by m and
n. Convolution can be thought of as a filtering procedure
in computer vision tasks. Typically, the input data is a two-
dimensional picture. Convolution is performed using a
two-dimensional discrete convolution in the manner
described below:

1067) » k(e y) = X7 Tieo ks, DI (x = 5,y = ©)
3)

In Equation (3), | stand for the output feature, k for the
convolution kernel, m and n for the convolution kernel's
dimensions, x and y for the feature output point, and s and
t for the feature extraction point. Pooling the image and
producing the result are the roles of the fully connected
layer and the pooling layer, respectively. Both forward and
backward propagation are included in the CNN model's
computation. Forward propagation is a sequence of
computations that use input data to perform tasks like
image recognition and feature extraction, then combine
and output the results. Backpropagation is the process of
using the computation results as input to determine the
error as the fundamental reference data for model
optimisation. The network optimises the parameters it
learns by ongoing iterative training and updating, with
training ending when the predetermined thresholds are
fulfilled. Among these, backpropagation computation
involves forwarding the input sample (x, y) in order to
determine the output value of L1, L2, ..., Ln, and the
output layer error in the manner described below:

Si(ni) = _(y — aFni)) . f/ (Zi(ni)) (4)
Each layer's error computation is displayed as follows:
50 = ((W)(l))T(;(m)) fFron® )

The following formula is used to determine the relative
derivatives of weights and biases:

8, DI W, bix,y) = 60+0@") ©)
Dp,(DJ(W, b; x,y) = §0+D (")
The following are the revised weight parameters:

w' =w'—uv, (JW,b;x,y) ®)

b" =b —uv,(DJ(W,b; x,y) ©)
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f'(z(1)) is the activation function; p is the learning rate; 1 is
the level of neurones; i is neurones; T is a constant; 0 is the
difference between the network's true and predicted
values; W is the weight; b is the bias of the neurone; z is
the neuron's input; an is its output; and f'(z(1)) is the
activation function. The following formula is used to
determine a sample's loss function:

JW,b;x,y) = 1/2ly = hy1, (0] (10)

The following illustrates how the fully linked layer's
output data is calculated:

y=f(W.x+b) (11)
y =output vector of the fully connected layer(512 or 6
elements)

W =weight matrix

x =input feature vector

b =bias vector

f =activation function (ReLU or Softmax)

Each output neurone in a dense layer computes a weighted
sum of all input characteristics plus a bias term, which is
then passed through an activation function. This
representation faithfully depicts the behaviour of the layer.
This adjustment guarantees mathematical lucidity and
conforms to the norms used in the literature on neural
networks.

CNN is carried out using W, and following decomposition,
the first t significant eigenvalues are substituted for W's
decomposition as follows:
w=Uxv'=u ) v’ (12)

A diagonal matrix is denoted by >, a v x t-dimensional
orthogonal matrix by V, and an u x t-dimensional
orthogonal matrix by U. As a result, CCR-LWECNN is
represented as follows:
Y=Wx=U(Y v) x=U-z (13)

The CNN technology can be broken down by the CCR-
LWECNNalgorithm, significantly lowering the network's
computing load. In addition to being straightforward, this
approach produces superior outcomes. This algorithm is
designed to optimise the CCR-LWECNN. Simpler image
computational processes are outside the CNN algorithm's
capabilities, and the CCR-LWECNNalgorithm excels at
handling them. Its output feature map definition is
displayed as follows:
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(14)

F, (x,y): Output feature map at position (X, y) for the n-th
filter.

C: Number of input channels.

z¢ (x,y"): Input feature map for channel c at position
(x=x"y=y).

wy: Filter weights for the n-th filter applied to channel c.
x, y: Spatial dimensions of the input.
n: Index of the output filter

wi(x —x',y —y'): Convolution kernel applied with
spatial shift.

The channel is denoted by W, the filter by n, and the
position of the channel by C. The primary goal is to
approximate W in the manner described below:

~ k
wy = Zk=1

Equation (15) represents a low-rank approximation of the
convolutional weight tensor W, where:

Hy (V" (15)
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w,f is the approximated weight for the nnn-th filter and
channel C.

HX: Projection matrix or basis vector used to reduce the
dimensionality of the filters (e.g., a learned kernel basis).

V£ Coefficient vector or activation feature for the kkk-th
component in channel C.

I': A transformation operator (e.g., transpose or non-linear
function like activation or power).

H stands for the horizontal filter, V for the vertical filter,
and K for the hyperparameter that regulates the rank. CCR-
LWECNNdoes, however, have some drawbacks. In other
words, even though CCR-LWECNNhas produced strong
results for model acceleration and compression, this
approach is difficult to execute. CCR-LWECNNmust be
carried out layer by layer since various layers contain
different information, making it impossible to construct
CCR-LWECNNusing a global variable. Furthermore, the
network must undergo extensive fine-tuning training
following decomposition in order to converge and produce
the best result. Figure 3 shows at Proposed model flow
diagram.

Feature Extraction
Chinese calligraphy sample
from Kaggle
Fally Connected
Performance v
l\rIetI'iCS Tupat e Peol . - [] Ountput
Accuracy, — B%% .. :
Precision, 7 .
Recall,F1-Score h ? ®
\ \ J
| Y
Feaus " sifcaty
image processing technology using
CCR-LWECNN
Figure 3: Proposed model flow diagram
Since its inception, machine learning has evolved human design in order to progressively enhance their own

throughout time and has developed a number of flaws.
Conventional machine learning methods need constant

learning process. As a result, the operator's basic technical
competence is pretty high and its dependence is
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particularly big throughout the calculating process.
Additionally, machine learning has not advanced very far.
In the meantime, the algorithm cannot rapidly achieve
accurate image identification and has very low image
recognition accuracy. The most significant of these is that
conventional machine learning technology is unable to
precisely distinguish different aspects of the image, which
typically results in significant application failures. The
most significant is that machine learning is unable to
recognise the primary information in a picture and
distinguish between the image's background and major
portion. The drawbacks of conventional machine learning
technology in image recognition are addressed by
optimised deep learning technology. Optimising the
calculation process is essential to lowering the computing
cost and increasing the computational efficiency of deep
learning image recognition technology if it is to be used to
a larger field. Consequently, the model calculation method
is made simpler and the calculation effect is somewhat
enhanced by optimising CNN technology and creating the
Faster-CNN model. Figure 3 illustrates the fundamental
concept of the lightweight Faster-CNN model.

In comparison to traditional CNNs like VGG16 (~138
million parameters, >15 billion FLOPs), the CCR-
LWECNN model has around 1.2 million parameters and
needs 150 million FLOPs per forward pass. Because of its
shallow architecture—just two convolutional layers,
smaller (3x3) filter sizes, fewer fully connected neurones,
and use of effective procedures like batch normalisation
and dropout—it is regarded as lightweight. Because of its
ability to lower memory and compute requirements, this
architecture is appropriate for real-time and resource-
constrained applications, including embedded or mobile
systems.

When the Faster-CNN model is applied to image feature
recognition in Figure 3, it can not only significantly speed
up the process and increase its effectiveness, but it can also
maximise the model's recognition effect and assist users in
completing the style transfer of painting images. The
region proposal network is the method used to optimise the
Faster-CNN model. Using anchor points, it modifies and
enhances the Faster-CNN model's image recognition
domain in the following ways:

X = wgt, + x4 (16)
Y = haty +Yq (1)
w = w(ty) (18)
h = hq(ty) (19)

The abscissa and ordinate of the anchor point's centre
point, as well as its breadth and height, are denoted by the
letters xa, ya, wa, and ha, respectively. The model's chosen
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width and height, as well as the center's horizontal and
vertical coordinates, are denoted by the letters x, y, w, and
h. The adjusted value is denoted by t.

Indeed, the use of Convolutional Neural Networks (CNNSs)
is standard and well-justified for image recognition tasks
due to their ability to capture spatial hierarchies in visual
data. In the CCR-LWECNN model, integrating dropout
layers helps prevent overfitting by randomly deactivating
neurons during training, enhancing generalization.
Additionally, data augmentation (e.g., rotations, scaling,
flipping) increases training diversity, especially important
when working with limited samples per class, improving
the model’s robustness across varied calligraphy styles.
Together, these techniques contribute to the model’s
strong performance.

Algorithm 1: CCR-LWECNN Core Steps
Data Acquisition & Preprocessing

Collect images of Chinese characters across multiple
styles (e.g., seal, cursive).

Normalize image sizes (e.g., 64x64 pixels).

Apply data augmentation (rotation, flipping, noise
addition) to expand limited samples (<15 per class).

Model Architecture

Use a lightweight enhanced CNN with:

convolutional batch

normalization).

layers (ReLU activation,

Max-pooling layers to reduce spatial dimensions.

Dropout layers to prevent overfitting.

Flatten layer followed by 3 fully connected layers
(e.g., 512-neuron layer + output layer with softmax).

Training

Train the model using cross-entropy loss and Adam
optimizer.

Batch size, learning rate, and dropout rate should be
tuned via validation.

Perform training over multiple epochs with early
stopping if necessary.

Evaluation

Use 10-fold cross-validation to compute average
accuracy, precision, recall, F1-score, and + standard
deviation.
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Report statistical significance using p-values
compared to baseline models (CNN, SVM, RF, etc.).

Prediction

For new input images, feed them through the trained
CCR-LWECNN to output probabilities across target
classes (character+style or style only).

4 Results and discussion

4.1 Experimental setup

The Intel(R) Core (TM) i74700 HQ CPU run at 2.40 GHz
was the PC used in this experiment. It has 16.00 GB of
RAM. The OS is Windows 8, 64-bit. Weka Ver 3.8.1
utilised to create and evaluate DL models, and Python
Anaconda Ver 2020.20 with the Seaborn library Ver 0.10.0
is used for correlation analysis.

To ensure replicability and fair evaluation, the dataset of
12,152 samples was divided as follows: Training set as
70% (8,506 samples), Validation set as 15% (1,823
samples), Test set as 15% (1,823 samples). Splitting was
performed stratified by character class and style, ensuring
balanced representation of each character—style
combination across all splits. Data augmentation was
applied only to the training set, preserving the integrity of
the validation and test sets.

4.2 Performance analysis

A variety of indicators are needed in order to compare the
experiment's outcomes. The accuracy rate is the
probability that the classifier will produce accurate
predictions. The recall rate is the percentage of a Chinese
calligraphy image that are accurate for all 5 Fonts in that
feature within the dataset. We assess performance using
various metrics, including F1-score, accuracy, recall, and
precision. Accuracy is defined as the percentage of total
samples properly identified by the classifier in (1). The
total number of samples that the classifier found to be
positive accurately identified as positives in (2) is known
as the recall. Precision, which appears in (3), is the total
number of classifier-predicted positive samples that are
true positives. By combining the precision and recall found
in (4), the Fl-score calculates a balanced average result.
True positive (TP), false positive (FP), true negative (TN),
and false negative (FN) are the many metrices that can be
calculated using the equations below.

TP+TN

Accuracy » ———
TP+FP+FN+TN

Recall - TP/ TP + FN
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Precision - TP/ TP + FP

F1 — score = 2 xprecision * recall/ precision +
recall

Each classifier was assessed using the balanced F1 Score,
recall, and precision of popular techniques including
support vector machine (SVM), Random Forest (RF) [18],
Bonferroni Mean Fuzzy K-Nearest Neighbors (BM-
FKNN) [19], and CNN [20]. In order to evaluate the
efficacy of the suggested approach, a classifier model was
constructed by importing Dataset. Seal font, cursive font,
semi-cursive font, clerical font, and standard font are
among the features. It was discovered that 10% of the
samples were test samples, while 90% of the samples were
training samples. The likelihood that the lightweight CNN
will provide correct predictions is known as the accuracy
rate. The Adam optimiser was used to train the CCR-
LWECNN model because of its effective convergence and
adjustable learning rate. During training, a batch size of 32
was used, and the initial learning rate was set at 0.001.
Validation loss was recorded across epochs to keep an eye
on overfitting, and training was stopped early after five
epochs if there was no discernible improvement in
validation loss. Data augmentation and dropout layers also
assisted in lowering the danger of overfitting.

Accuracy is defined as the proportion of image processing
techniques that are reliably and accurately identified.
Table 2a and Figure 4 present the accuracy findings. The
current CNN (90.5%), Random Forest (75.4%), SVM
(85.2%), and BM-FKNN (88.7%) algorithms were all
surpassed by our suggested CCR-LWECNN (96.5%). The
baseline "CNN" refers to a conventional, standard CNN
architecture commonly used in calligraphy or handwritten
character recognition tasks. This baseline employs two
convolutional layers with ReLU activations and max
pooling, followed by a fully connected layer for
classification—essentially a straightforward
implementation without the architectural refinements (e.g.,
optimized dropout rates and enhanced feature extraction)
that distinguish our CCR-LWECNN model. We will revise
the manuscript to provide a detailed description of this
baseline architecture, ensuring that the comparative
evaluation is transparent and that readers understand the
specific differences between the baseline CNN and the
proposed CCR-LWECNN model. While Figure 6 shows
that the CNN with uneven margins produced a greater F1
and balanced Precision and Recall, Figure 6 shows that the
recall suggested by the proposed technique was 95.2%.
The precision result for our recommended approach,
which has the maximum precision at 95.6%, is shown in
Figure 5. With uneven margins, the CCR-LWECNN
produced a 95.6% statistically significant better F1 than
the conventional CNN. Comparing the various situations,
CCR-LWECNN, and novel tactics, Chinese calligraphy
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has significantly improved in effectiveness. Table 2 shows
Values of Accuracy, precision, Recall, F1-score.
Table 2: Values of Accuracy, precision, Recall, F1-score
Training set Methods Test-set
Methods Accuracy (%) | Precision Recall F1-Score
(%) (%) (%)
CNN 90.5 89.1 90.2 90
RF 75.4 73.5 72.2 73.1
SVM 85.2 84.7 84.1 83.7
BM-FKNN 88.7 85.5 88.3 87.4
CCR-LWECNN [Proposed] 96.5 95.6 95.2 95.6

Table 3: Model performance per calligraphy
style (averaged across test folds):

Style Accuracy | Precision | Recall | F1
(%) (%) (%) (%)

Regular ( | 98.2 97.8 98.1 98.0

Ea))

Semi- 95.4 94.9 95.1 95.0

cursive (

74)

Cursive (| 93.1 91.7 92.3 92.0

=)

Seal (2 | 945 93.2 94.0 93.6

1)

Clerical ( | 96.0 95.4 95.8 95.6

)

CCR-LWECNN generalizes well across all styles, with
particularly strong performance on Regular and Seal
scripts, and maintains high F1-scores across more complex
styles like Cursive and Clerical. Other models showed
more variance and lower scores, especially on cursive

scripts.

CCRLWECNN

BM-FENN

SVM

RF

CNN

100

Accuracy(%)

Figure 4: Result of accuracy outcome
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Figure 4 shows Result of Accuracy. Evaluation of
performance across a range of input variables, including
variations in picture quality, subtleties in style, and noise,
is crucial to determining the model's resilience in real-
world situations. Figure 5 shows Result of Precision
Outcome. This entails evaluating the model over a range
of handwriting styles and on calligraphy pictures that are
noisy, low-resolution, or blurry. By demonstrating actual
application dependability, this assessment helps guarantee
that the CCR-LWECNN model generalises effectively and
retains high accuracy even in less controlled or degraded
conditions. Figure 6 shows Result of Recall Outcome.
Even while we anticipate that current techniques will
improve the base classifier's performance, in several
instances, a single classifier has produced identical or
superior outcomes. Decision trees, for instance,
outperformed the BM-FKNN in this instance, with 88.7%
accuracy and 85.6% precision, respectively. Figure 7
shows Result of F1-score Outcome. The same best results
were also obtained by CCR-LWECNN, with 96.5%
accuracy, 95.6% precision, 95.2% recall, and 95.6% F1
score. Overall, out of the ten classifier features using
current techniques, CCR-LWECNN produced the best
results shows in figure 8.

A detailed performance comparison was conducted
between the proposed CCR-LWECNN model and several
baseline models—including a standard CNN trained from
scratch and transfer learning models using pre-trained
networks like MobileNetV2 and EfficientNet-BO—on the
same dataset. CCR-LWECNN consistently outperformed
these baselines, achieving higher accuracy, precision,
recall, and F1-scores while maintaining a smaller model
size and faster inference. This demonstrates that CCR-
LWECNN’s lightweight architecture and tailored
enhancements effectively improve Chinese calligraphy
recognition over conventional and transfer learning
approaches.

Table 4: Performance summary with statistical rigor

Model Accuracy | 95% F1-
(%) £ SD | Confidence | Score
Interval (%) £
SD
CNN 90.5 +|[89.8,91.2] | 90.0
0.9 +0.7
RF 754 +|[743,765] | 73.1
11 +1.2
SVM 85.2 +|[84.3,86.1] | 83.7
1.0 +0.8

X. Chen et al.
BM- 88.7 +|[88.0,89.4] | 87.4
FKNN 0.8 +0.7
CCR- 96.5 £ |[96.0,97.0] | 95.6
LWECNN | 0.6 +04

Table 4 Shows Performance Summary with Statistical
Rigor. The CCR-LWECNN model's lightweight design
makes it ideal for embedded systems and mobile devices,
even if system implementation is not extensively covered.
Without requiring sophisticated servers, its modest model
size and low computational burden allow for effective
inference on devices with limited resources, enabling real-
time calligraphy detection in mobile applications.

Learning Rate

0 20 40 60 80 100
Epoch

Figure 9: Outcome of Learning rate

The learning rate visualisation figure 9 illustrates how the
loss of the model reacts to varying learning rates. The ideal
learning rate range is indicated by a sharp decline in loss
that is followed by instability or a plateau. Here, the graph
shows that the CCR-LWECNN model converges most
quickly and steadily when the learning rate is adjusted
between 0.001 and 0.005, preventing divergence (from too
high a rate) or sluggish training (from too low a rate). The
generalisation and efficiency of the model are enhanced by
this adjustment.
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Confusion Matrix:

CCR-LWECNN Style Confusion (Normalized)

ES
Predicted

Fh

Figure 10: Confusion matrix for the proposed model

The provided confusion matrix in figure 10 evaluates the
performance of the CCR-LWECNN model in classifying
five Chinese calligraphy styles. (Regular/#45, Semi-
Cursive/T4, Cursive/E 45, Seal/Z 13, and Clerical/#&
). The diagonal values (ranging from 0.93 to 0.98)
demonstrate strong classification accuracy, with Regular
script (#&43) achieving the highest accuracy at 98%. The
most notable misclassifications occur between Cursive (
EH) and Semi-Cursive (fTH), with 4% of Cursive
samples incorrectly predicted as Semi-Cursive, likely due
to their stylistic similarities in stroke connectivity. Other
errors are minimal (<3%), such as Seal (Z13) occasionally
confused with Cursive (3%) or Clerical (3&13) with Semi-
Cursive (1%). The numerical gradient (1 to 0) implies a
visual color scale for interpretation, where higher values
(closer to 1) represent correct predictions and lower values
(closer to 0) indicate errors. This analysis confirms the
model’s robustness in distinguishing calligraphy styles
while highlighting expected challenges in discriminating
fluid, connected scripts like Cursive and Semi-Cursive.

Evaluate with recent methods:

For contemporary picture classification problems, models
such as BM-FKNN, Random Forest, and SVM are less
appropriate, particularly when dealing with high-
dimensional data like calligraphy images. We contrasted
the suggested CCR-LWECNN with lightweight deep
learning models designed for low-resource settings in
order to give a more relevant benchmark. Table 5 given by
Outcome with comparison of recent methods
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Table 5: Outcome with comparison of recent methods

Model Accur | Precisi | Rec | F1- | Para
acy on (%) | all Sco | ms
(%) (%) |re | (M)

(%)

MobileNe | 94.2 93.7 93.1 | 934 |34

tV2

EfficientN | 95.3 94.8 941 | 94.4 |53

et-BO

ViT-Tiny | 92.5 91.6 91.2 | 914 | 5.7

CCR- 96.5 95.6 95.2 | 956 | 1.2

LWECN

N

ROC Curve

Receiver Dperating Characteristic (ROC) Curve

10}

— CCRUKECHM ROC curve 8K = 051
i Caifliy
04 [ a8 1o
Filse Paltive Rate

Figure 11: ROC curve for the Suggested method

Figure 11 shows the CCR-LWECNN model's ROC curve
how well it can differentiate between binary classes, is
shown below. With an AUC of around 0.72 in this
simulated example, the curve illustrates the trade-off
between the True Positive Rate (sensitivity) and the False
Positive Rate. Better model performance is indicated by a
larger AUC, and this visualisation aids in evaluating
classification efficacy over a range of thresholds.
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4.3 Discussion

The suggested CCR-LWECNN model is better at
recognising Chinese calligraphy since it is more
computationally efficient than deeper architectures like
DenseNet and BiConvExtractNet. DenseNet is great at
reusing features via dense connections, while
BiConvExtractNet uses bidirectional convolutional
extraction for jobs with a lot of complexity. However, both
models frequently consume a lot of resources and are
likely to overfit on small artistic datasets. CCR-LWECNN,
on the other hand, has a lightweight structure with well
adjusted convolutional layers and dropout regularisation.
It gets 96.5% accuracy on a calligraphy dataset with much
less complexity and training cost. The CCR-LWECNN
model successfully captures the geometric regularity in
seal script and the fluid stroke dynamics in cursive script,
it works well on both seal and cursive styles. Both high-
level stylistic elements and low-level texture are extracted
by its layered design, and data augmentation guarantees
resilience to handwriting variances.

CCR-LWECNN's decreased generalisation between
calligraphers is a major drawback since intra-style
discrepancies might result from differences in individual
stroke patterns, pressure, and spacing. When applied to
fewer-represented calligraphers or unexplored writing
styles, the model may become less successful due to
overfitting to prevalent patterns in the training data.CCR-
LWECNN makes it possible to accurately and
automatically classify calligraphy styles and characters, it
facilitates the digitisation, cataloguing, and analysis of
historical works at scale, hence supporting heritage
preservation and digital archiving. This makes it easier to
do cultural study, teach, and preserve traditional Chinese
calligraphy in digital form across time. The CCR-
LWECNN-based system is perfect for educational and
cultural applications because of its user-friendly interface,
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