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Traditional vocabulary evaluation techniques frequently emphasize correctness above behavioral 

indications such as attempts and reaction time. To overcome this gap, our study proposes a machine 

learning technique that combines behavioral analysis with linguistic insights to discover vocabulary gaps 

among Turkish language learners. A Support Vector Machine (SVM) model was constructed with a Radial 

Basis Function (RBF) kernel and refined via grid search to maximize hyperparameters (C=10, γ=0.1) 

using a dataset of 1,000 interactions from 20 students. Behavioral attributes such as attempt count, answer 

response time, and answer correctness were collected to quantify student uncertainty and engagement. 

The approach also integrates word difficulty levels and thematic categories. An equation-based labeling 

technique was first applied to identify vocabulary weaknesses, laying the foundation for subsequent 

machine learning classification. The findings demonstrated strong performance, achieving an accuracy 

of 89%, precision of 86%, recall of 91%, and an F1-score of 88%, surpassing linear and polynomial 

kernel alternatives. These results underscore the importance of behavioral metrics in adaptive learning 

systems and support scalable integration into mobile applications.  

Povzetek: Članek predstavi pristop za prilagodljivo učenje turških besed z združitvijo enačbenega 

označevanja in SVM klasifikacije ob upoštevanju vedenjskih značilnosti, kot so čas, poskusi in pravilnost. 

 

 

1 Introduction 
Vocabulary acquisition serves as a fundamental aspect of 

language learning, impacting reading comprehension, 

communication fluency, and cognitive development.  

Traditional assessment methods frequently simplify 

proficiency to binary metrics correct or incorrect answers 

neglecting more nuanced behavioral indicators that reveal 

underlying learning gaps, including attempts, response 

time, and self-correction patterns.  This oversight restricts 

the personalization of adaptive learning systems, which 

find it challenging to effectively address individual 

weaknesses.  Recent advancements in educational 

technology highlight the potential of behavioral analytics 

to address this gap; however, limited research has 

systematically combined these metrics with linguistic 

features to enhance vocabulary assessments. 

 This research presents a machine learning framework 

that utilizes both behavioral and linguistic data to detect 

vocabulary deficiencies in learners of the Turkish 

language.  Our model integrates attempt counts and 

answer attempts—metrics indicative of metacognitive 

uncertainty—alongside word difficulty and thematic 

classifications, in contrast to previous approaches that 

focus solely on correctness or response time.  A Support 

Vector Machine (SVM) classifier using a Radial Basis  

 

 

Function (RBF) kernel was trained using a dataset 

including 1,000 interactions from 20 students.  Grid search  

was used to maximize the model thereby striking a mix 

between generalizability and intricacy. 

 The findings demonstrate the framework's efficacy: 

the model achieved 89% accuracy, 86% precision, 91% 

recall, and an 88% F1-score, exceeding both linear and 

polynomial kernel options.   The RBF kernel's capacity to 

encapsulate non-linear interactions, especially the 

synergistic impacts of attempts and erroneous replies on 

moderately challenging words, was essential to its 

efficacy.   

The findings highlight the significance of behavioral 

analytics in converting static assessments into dynamic, 

adaptive instruments.  Quantifying uncertainty through 

attempts and response patterns allows educators to obtain 

actionable insights into student cognition, facilitating 

targeted interventions that address not only the errors 

learners make but also the underlying reasons for their 

struggles. 

So, the results show that the framework really works 

well! The model hit 89% accuracy, 86% precision, 91% 

recall, and an 88% F1-score, which is better than the linear 

and polynomial kernel options. The RBF kernel 

demonstrates strong capability in capturing complex non-

linear interactions, particularly in modeling how multiple 
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attempts and incorrect responses influence the 

classification of medium-difficulty words, an aspect that 

significantly contributes to its superior performance. 

2 Related works 

2.1 Automated label assignment in 

machine learning 

Automated label assignment has evolved as a required 

component of machine learning since it solves the 

challenges of manual annotation, often labor-intensive, 

inconsistent, and expensive. Although traditional 

approaches mostly rely on human input to classify data, as 

datasets get more complex and demand accurate and fast 

automated labelling techniques have grown. Recent 

advances in artificial intelligence have brought a spectrum 

of techniques ranging from rule-based systems to deep 

learning-driven label propagation to improve both 

efficiency and accuracy in many spheres. 

One main application of automated labelling is 

geospatial analysis since large-scale datasets in this field 

demand efficient annotations. Albrecht et al. presented 

AutoGeo Label, a system designed to generate labels for 

remote sensing data, using statistical elements taken from 

LiDAR studies. Almost 90% of their methods proved the 

efficiency of automated labelling in large geospatial 

databases [1]. Bobák et al. proposed a reinforcement 

learning method for data visualization and mapping as a 

means to optimize point-feature labeling positioning, the 

authors used scenarios of medical atlases and geographic 

maps while demonstrating that the performance was 

higher than traditional, hand-designed labeling methods 

[2].  

In image classification tasks, contradictory data may 

cause inconsistencies during hand labelling, Schmarje et 

al.  introduced Clever Label as a proposal-driven labelling 

approach aimed at reducing costs and errors during 

labelling.  A 30% cost reduction on labelling costs was 

established without compromising the quality of the 

annotations, thus demonstrating the value of semi-

autonomous technology in maximizing human efforts [3]. 

Another vital technique in automated labelling is label 

propagation—where labels are assigned based on data 

point relationships. This methodology has been 

particularly employed in scenarios with constrained 

labeled data, as it facilitates the transmission of labels 

from neighboring events (Label Propagation Algorithm).  

Zhang et al. analyzed machine learning techniques 

employed for the annotation of text, audio, and video data 

within a comprehensive evaluation of auto-labeling 

technologies [4] 

 Their work underlined the growing need for 

automated annotations in big-scale datasets, especially in 

disciplines including natural language processing and 

computer vision [5]. 

Automated labelling has also shown great value in 

medical imaging as well in reducing dependence on hand 

annotations. Stember and Shalu developed an automated 

label extraction from clinical reports combined with a 

deep reinforcement learning system to classify 3D MRI 

brain scans. Their analysis revealed that machine learning 

models could achieve high classification accuracy even 

with limited training data by using automated label 

extracting techniques [6]. 

These studies taken together reveal the ongoing 

variation in automated label assignment in many domains. 

In geospatial analysis, image classification, object 

detection, or medical imaging, advances in machine 

learning keep stretching the limits of labelling accuracy 

and efficiency. Still, there is work to be done refining these 

methods to guarantee dependability, adaptability, and 

generalization over many datasets. Future research should 

focus on dynamically improving label quality by 

combining equation-based heuristics, machine learning 

classification, and user interaction data. 

2.2 Machine learning classification in 

educational applications 

Machine learning categorization has emerged as a 

powerful instrument in educational applications, 

facilitating more effective and tailored learning 

experiences.  These methodologies have been utilized in 

several areas, such as monitoring student progress, 

predicting academic success, developing adaptive 

learning systems, and ensuring equity in educational 

examinations.  Employing machine learning will enable 

educational institutions to forecast learning results, 

provide tailored support for each student, and develop 

systems that cater to their specific needs. 

 Another significant application is the prediction of 

academic success.  Zhang et al. employed machine 

learning classifiers to predict students' academic outcomes 

based on their intrinsic desire, autonomy, and other 

learning techniques.  Tree-based models, including 

random forests, had exceptional performance, achieving 

an accuracy of 94.9%, as reported in their study.  

Preliminary forecasts of student performance enable 

educators to implement targeted interventions, offer 

personalized assistance, and ensure students stay on track.  

This technique optimizes learning while simultaneously 

enhancing overall student retention rates [7]. 

Recent studies published in Informatica have further 

explored classification techniques in educational settings. 

For example, Kaur et al. proposed an ensemble voting–

based model to predict online student academic 

performance, demonstrating that combining multiple 

classifiers can significantly improve early identification of 

at-risk learners [8]. Likewise, Wang detailed a scalable 

Naive Bayesian–driven system for the automatic 

classification of massive academic document collections, 

highlighting its high accuracy and efficiency for 

organizing educational resources [9]. 

 One significant aspect that has been significantly 

impacted by machine learning classification is ensuring 

fairness in education examinations.  Sulaiman and Roy 

investigated the application of transformer neural 

networks in education for more meaningful representation 

of tabular data for fair decision-making.  Their paper 

illustrated that transformer models had the capacity to 
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trade off accuracy and fairness, thereby enhancing equal 

treatment of students from diverse groups in performance 

assessment. This is especially critical in high stakes testing 

situations where bias compromises the fairness of 

assessment [10]. 

Moreover, artificial intelligence has become rather 

helpful for people with disabilities.  For people with 

dyslexia, AI-driven tools including chatbots and word 

prediction software help to improve reading and writing 

skills.   These technologies help students with learning 

challenges to efficiently interact with the curriculum and 

close achievement gaps with their peers.  Though there are 

concerns about depending too much on artificial 

intelligence, these technologies have helped students 

finish tasks that would otherwise be difficult or 

impossible.   Moreover, artificial intelligence is growingly 

important for automating teacher administrative tasks.   

The government of the United Kingdom has started 

projects to help teachers assess homework and 

assignments by using artificial intelligence software. 

The fields of education are currently more than ever 

influenced and affected by using machines. This is also the 

technology that promotes creating learning solutions that 

are more flexible, adaptable, and with guaranteed results. 

It is through the means of predicting end results that it 

ensures justice, helps students who have different learning 

needs, and offers a more personalized learning experience. 

Researchers and Educational institutions are 

embarking on the road to the realization of these methods 

while being aware of the broader implications in the field 

of education that integrating machine intelligence into the 

educational programs can bring. 

2.3 Vocabulary learning and user behavior 

analysis 

Mastering a new vocabulary by the learner is for sure a 

great part of the language learning process and the 

formation of direct to the learners' capability to understand 

a conversation. and communicate accurately. Typical 

vocabulary earning methods such as rote memorization 

have often been shown to be ineffective and uninteresting 

for the student. However, the development of these 

modern machine learning methods has made it possible to 

adapt them for the individual learner according to his/her 

performance. The methods selected here are the most 

suitable because they are not only dynamic but also 

adaptive and data-driven and they can easily be 

implemented into your daily language learning 

experience.  

One model study that caught our attention was the one 

by Shin and Park in 2021 where they came out with a 

Pedagogical Word Recommendation (PWR) system that 

picks out a learner's knowledge of some words based on 

those words' connections with others of the same kind. 

The system gets information from the Intelligent Tutoring 

System, and it is a tool that is used by more than ten 

million learners who are preparing for the TOEIC exam. 

To predict vocabulary knowledge of the user, the system 

tracks vocabulary knowledge from a record of time and 

recommends words that are most relevant to the user's 

needs, offering the user a customized learning experience. 

This method not only involves user behavior but also it 

plays a vital role in this kind of teaching by proposing only 

the words that are parallel with the learner's ability to learn 

[11]. 

Closer yet to the telltale signs of artificial intelligence 

in vocabulary learning, a thesis tackled the tools used to 

forecast students' cognitive states while they are involved 

in a vocabulary tutoring system. The analysis of 

behavioral and linguistic data was the approach taken in 

the study to speculate off-task behaviors and to secure 

partial word knowledge based on open-ended responses. 

The insights obtained were to be used in designing 

personalized curricula which, in turn, should have a 

positive impact on the system's ability to provide tailored 

vocabulary exercises and amplify learning efficiency. 

These studies together are promising in the wake of 

the union of artificial intelligence and user behavior 

analytics. One-way Learners will learn best if they receive 

customized learning experiences that meet their linguistic 

abilities. Thus, these new approaches to vocabulary 

teaching are devoid of the dullness of mere memorization 

and thus provide learners with more interesting and 

productive vocabulary learning experiences. 

2.4 Summary and research gap 

Based on big datasets, several studies including Zhang et 

al. [7] and Shin & Park [11] have significantly improved 

their predictions of academic performance and word 

knowledge. These methods, however, sometimes ignore 

the dynamic character of learner behavior by 

concentrating just on static data. For example. Shin & Park 

[11] missed including real-time behavioral data, so 

restricting their generalizability across various learner 

populations even though they used neural collaborative 

filtering for pedagogical word recommendation. 

Furthermore, underlined in studies including Bobák et 

al. [2] and Albrecht et al. [1] the use of machine learning 

for tasks including label placement and automated 

labeling in geospatial data. These models failed to 

consider behavioral elements in their applications even if 

they were successful in optimizing processes and attaining 

great accuracy. This draws attention to a field gap since 

many models depend mostly on pre-computed labels or 

predefined inputs, so leaving little space for real-time 

changes depending on dynamic behavior. 

By including behavioral traits into vocabulary 

classification for Turkish students, our work fills in this 

void as described in the last row of the table. Using 

behavioral measures will help us to identify vocabulary 

category gaps with greater accuracy (89%) and recall 

(91%), so making a fresh contribution to the field. One 

major constraint still is the lack of behavioral data in 

previous studies, especially in relation to vocabulary 

acquisition in several learning environments and fields.  



32 Informatica 49 (2025) 29–42 A. Ahmed Alaff et al. 

2.4   Methodology  

This study aims to improve the detection of vocabulary 

categories weaknesses in Turkish language learners by 

integrating behavioral attributes such as attempts times 

and the  response time before choosing the final answer in 

addition to use the answer correctness and the word 

Table 1: Comparison of the key studies discussed in related works  

 
Study 

(Year) 

Dataset Problem Focus Model/Metho

d 

Key Results Limitations/Gaps 

Zhang et 

al. 

(2022) 

[7] 

Academic data of 

engineering 

undergraduates in 

China 

Predicting academic 

performance of 

engineering 

undergraduates 

decision tree 

(DT), Gradient 

boosting 

decision tree 

(GBDT) and 

random forest 

(RF) 

RF model identifies 

80%+ low-risk 

students by the end 

of the 2nd semester 

Limited scope (one 

department/university), 

ignores behavior attributes, 

data imbalance, and low 

interpretability 

Shin & 

Park 

(2021) 

[11] 

Pedagogical 

Word 

Recommendation 

(PWR) dataset: 

36.1 million 

entries 

Predicting word 

knowledge from 

encountered words; 

formalizing 

pedagogical word 

Recommendation 

Neural 

Collaborative 

Filtering (NCF) 

approach 

Feasibility of 

personalized 

vocabulary 

recommendation; 

large-scale self-

reported dataset for 

benchmarking 

No real-time behavioral 

data integration, limited to 

TOEIC learners, affecting 

generalizability 

Bobák et 

al. 

(2023) 

[2] 

Geospatial/medic

al maps; real-

world datasets, 

compact dataset, 

and IATA airport 

codes with 250 

anchors. 

Automated label 

placement 

Reinforcement 

Learning with 

Multi-Agent 

Deep 

Reinforcement 

Learning 

(MADRL) 

Optimized label 

positioning 

Increased computation 

time; more suitable for pre-

computed labeling, not 

real-time applications 

Albrecht 

et al. 

(2021) 

[1] 

Remote sensing 

data, including 

LiDAR, 

processed via 

IBM PAIRS 

platform 

Automating label 

generation for 

geospatial tasks like 

land use classification 

and object detection 

Big data 

processing 

pipeline 

utilizing 

rasterized 

statistical 

features from 

surveys 

Multiple classes 

generated with ~0.9 

accuracy 

Domain-specific, lacks 

behavioral metrics, 

depends on input data 

quality 

Schmarje 

et al. 

(2023) 

[3] 

Multi-domain 

image 

classification 

benchmark with 

ambiguous labels 

Enhancing annotation 

efficiency and quality 

for ambiguous image 

classification tasks 

CleverLabel 

(proposal-

driven) 

30% cost reduction Focused on images, 

Potential bias introduced 

by proposal-guided 

annotations, and reliance 

on the quality of initial 

proposals. 

Stember 

& Shalu 

(2022) 

[6] 

3D MRI brain 

scans 

Automated label 

extraction from 

clinical reports for 3D 

MRI brain volume 

classification 

Deep 

Reinforcement 

Learning 

High accuracy with 

limited labels 

Clinical imaging 

challenges: 

generalizability, data 

quality variability; 

specialized in 3D MRI, 

limited the to medical 

field. 

Sulaiman 

& Roy 

(2022) 

[10] 

Educational 

domain dataset 

Fair classification in 

the educational 

domain 

Transformer 

neural 

networks 

Balanced 

accuracy/fairness 

Challenges in defining 

fairness metrics for 

educational classification 

Our 

Work 

Turkish learners 

(N=20, 1k 

interactions) 

State vocabulary 

category gaps via 

behavioral attributes 

SVM-RBF 

(C=10, γ=0.1) 

89% accuracy, 91% 

recall 

Novelty: employ 

behavioral metrics to 

classify vocabulary 

weaknesses across word 

categories 
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difficulty to assess this weakness, according to that, the 

study uses a hybrid technique by an equation-based 

method for initial label assignment, then a machine 

learning classification model dynamically predicts labels 

depending on the collected behavioral attributes during 

vocabulary exercises in the Turkish language provided by 

the applicable system. Figure 1 shows the six main phases 

of development of this method: data preparation, 

equation-based initial labeling, predicting new labels 

using classification, Training and generating the base 

model, Model evaluation and Enhancements, and 

Integrating model in the learning system.  

 
The following summarizes the main phases of the 

approach: 

2.5 Data preparation 

2.5.1 Dataset initial collection 

In this stage, we have accumulated interesting and various 

definitions of the most frequently used Turkish words that 

were collected from credible linguistic sources like 

frequency lists and corpora. These words have each been 

divided into 36 separate groups, which point to the 

different thematic areas, which are Education, Family, 

Technology, and Health, among others. This assignment 

was carried out to facilitate learning by the division of 

vocabulary. Thus, the words were put into levels based on 

the difficulty, by considering the phonetic property that if 

words are those with more complex sounds or structures 

the task will be difficult and if words are those with a few 

syllables the task will be simple. 

2.5.2 Adding behavioral attributes 

Based on this dataset, we developed a simple application 

designed to test vocabulary knowledge by presenting 

Turkish words along with their meanings in the form of 

four multiple-choice options in English. The application 

was developed to provide immediate feedback to the 

students after they selected an answer, indicating whether 

their choice was correct or incorrect. A group of 20 

participants were involved in the testing phase. Each 

student answered 50 questions, covering a variety of 

vocabulary words across different difficulty levels and 

categories. The students were selected from diverse 

backgrounds, ensuring a mix of proficiency levels in the 

Turkish language. This resulted in a total of 1000 rows in 

the dataset (20 students × 50 questions). Prior to 

participation, informed consent was obtained from all 

students, and participation was entirely voluntary. All 

collected data were anonymized to protect individual 

identities, and no personally identifiable information was 

stored. Additionally, care was taken to minimize potential 

biases by ensuring diversity in participant selection and by 

maintaining balanced representation across different 

language proficiency levels. 

During this stage, we collected a range of behavioral 

data to analyze student performance and learning patterns. 

The data collected included: 

Answer: Whether the student's response was correct 

or incorrect, providing the core measure of their 

knowledge. 

Number of Attempts: The number of times a student 

hesitates before selecting their final answer. This helps 

gauge their confidence in selecting the correct answer. 

Response Time: The total time taken by each student to 

arrive at the final answer. This helps assess the ease or 

difficulty a student faces when processing the question. 

Number of Attempts: The number of times the students 

changed their answer before settling on the final one, 

indicating uncertainty or difficulty in choosing the correct 

option. This rich behavioral data allowed us to better 

understand student learning patterns and provided 

valuable insights into how students interact with 

vocabulary questions based on their proficiency level and 

the difficulty of the words. Thus, our dataset was 

completed, Table 2 presents a sample of the dataset used 

in this study, showing the words, their classifications, and 

behavioral data, such as correctness, response time, and 

attempts count during the vocabulary tests. 

 

1. Numeric encoding 

During this step, we converted categorical and behavioral 

data into numerical values to facilitate analysis and the 

training of machine learning models.  Numeric encoding 

is an essential phase in data preparation for algorithms, as 

the majority of machine learning models necessitate 

numerical inputs for optimal processing. 

2 Word and category encoding 

• Word ID: Every word is allocated a distinct 

identity, facilitating dataset optimization and 

enabling effective management in machine 

learning models. 

 
Figure 1: Research methodology 

 

Dataset Preperation Equation-based Intial Labeling
Predecting New Labels Using 

Classification

Training and Generating the Base 
Model

Model Evaluation and 
Enhancements 

Integrating Model In Learning 
System
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• Category ID: The Category of each word (e.g., 

Education, Family) is substituted with a number 

identifier for enhanced processing efficiency. 

3 Answer encoding 

The "Correct/Incorrect" responses were quantified 

numerically: 

• Correct: 1 

• Incorrect: 0 

This binary encoding enables the system to categorize 

responses as numerical values instead of text. 

 

4 Difficulty level encoding 

To more accurately represent the level of difficulty, 

the "Difficulty" classification was converted into 

numerical values:: 

• Easy: 1 

• Medium: 2 

• Hard: 3 

This encoding enhances the model's understanding of 

word difficulty, hence enabling a more precise analysis of 

student performance assessment. 

 

5 Behavioral data encoding 

• Response Time (seconds): This column 

represents the time a student took to answer each 

question. The time is kept as a continuous 

numeric value (in seconds) for further analysis. 

• Attempts #: This is also represented as a numeric 

value, capturing how many times the student 

hesitated before finalizing their answer. The 

higher the number, the more uncertain the 

students were about their answer. 

Upon finalizing the dataset and converting it into a 

numerical format, we may go to the second step, which 

entails the preliminary label assignment based on a 

numerical equation. This equation will be elucidated in 

depth in the subsequent phase. 

Table 3 below demonstrates the transition from the 

original categorical values to their corresponding numeric 

representations: 

2.6 Equation-based Initial Labeling 

Using rule-based equations for initial dataset labeling 

offers several advantages, especially in leveraging domain 

expertise, efficiency, and interpretability. Rule-based 

systems can encode expert knowledge and domain-

specific rules effectively, ensuring that initial labels are 

grounded in well-established principles [12,13]. Experts 

can define precise rules based on their understanding, 

leading to high labelling accuracy. Additionally, rule-

based systems can quickly label large datasets without 

extensive computational resources, making them useful 

for real-time data or large volumes of data. Automation 

allows consistent criteria application across the entire 

dataset, reducing manual effort and potential human errors 

[14]. The straightforward nature and clarity of rules 

promote a transparent labeling process, thereby aiding in 

validation and auditing [15]. 

 Rule-based labels establish a robust foundation for 

training machine learning models, facilitating the 

initiation of the learning process with a dependable set of 

labeled data. 

 Combining rule-based initial labeling with machine 

learning refinement leverages both approaches, as the 

rule-based system provides a reliable starting point while 

machine learning uncovers more complex patterns and 

improves accuracy over time [16]. 

When building the main equation that employed a 

rule-based approach we consider four important 

parameters to be in this equation: the correctness of 

answers, the amount of time spent on the questions, the 

attempts times, and the difficulty level of the questions, to 

identify a user's weak points when learning Turkish. Every 

parameter is assigned a weight according to its 

Table 3: Dataset first form sample 

Word Category Answer Difficulty Response 

Time 

(seconds) 

# 

Attempts 

"Öğretmen" Education Correct Easy 3.2 0 

"Aile" Family Correct Easy 2.0 0 

"İnşaat" Work/Occupation Incorrect Medium 5.0 1 

"Ev" Home Correct Easy 2.5 0 

"Okul" Education Correct Easy 3.0 1 

 

 

Table 2: Final dataset form 

Word Category Answer Difficulty Response Time 

(seconds) 

Attempts 

# 

1 1 1 1 3.2 0 

2 2 1 1 2.0 0 

3 3 0 2 5.0 1 

4 4 1 1 2.5 0 

5 1 1 1 3.0 1 
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significance, and max value which indicate percentage of 

user behavior across all the dataset’s rows that are 

captured and then we can judge which a user is deemed 

weak or not as mentioned in equation 1 and clarified in the 

equation’s sample below. 

 

Equation 1: Rule-based labeling equation 

𝑾𝒆𝒂𝒌𝒏𝒆𝒔𝒔 𝑺𝒄𝒐𝒓𝒆
= 𝒘𝐂𝐨𝐫𝐫𝐞𝐜𝐭
× (1 − 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝐴𝑛𝑠𝑤𝑒𝑟)

+ 𝒘𝐓𝐢𝐦𝐞 ×
𝑇𝑖𝑚𝑒 𝑆𝑝𝑒𝑛𝑡

𝐌𝐚𝐱 𝐓𝐢𝐦𝐞 𝐒𝐩𝐞𝐧𝐭
+  𝒘𝐀𝐭𝐭𝐞𝐦𝐩𝐭𝐬

×
𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠 𝑇𝑖𝑚𝑒𝑠

𝑴𝒂𝒙 𝑨𝒕𝒕𝒆𝒎𝒑𝒕𝒔 𝑻𝒊𝒎𝒆𝒔

+  𝒘𝐃𝐢𝐟𝐟𝐢𝐜𝐮𝐥𝐭𝐲 ×
Difficulty

𝑴𝒂𝒙 𝑫𝒊𝒇𝒇𝒊𝒄𝒖𝒍𝒕𝒚
 

• wCorrect, wTime, wAttempts and wDifficulty 

are the weights for each parameter, the 

summation of weight’s attributes must equal 1. 

• Max Time Spent: is the maximum time spent 

among all entries. 

• Max Attempts Times: are the maximum 

number of Attempts times among all entries. 

• Max Difficulty: is the maximum difficulty value 

among all entries. 

The weakness score concludes with number between 

0 and 1, if the weakness is greater than 0.5 so there is 

weakness in the vocabulary learning, and if it’s less than 

0.5 that’s means the vocabulary is known to the student. 

To assign weight values effectively for this equation, 

consider the following four steps: 

 

2.6.1 Define weight ranges 

At this stage, it is essential to note that the sum of the four 

weights (wCorrect, wTime, wAttempts and wDifficulty) 

must equal 1. An initial assignment of these weights 

should then be established. For example, a uniform value 

of 0.25 for each weight can serve as a starting point. This 

value has been tested, and based on manual evaluation of 

the results, we found that there are more suitable methods 

for assigning these weights. These adjustments are 

elaborated in the following step. 

2.6.2 Assign relative importance 

At this stage, we made several adjustments to the weight 

values by analyzing each weight individually. For 

instance, the weight associated with whether the answer is 

correct is among the most critical factors that must 

accurately calibrate the equation. The duration of time 

spent is of moderate significance, as extended periods do 

not inherently signify a deficiency in word recognition; 

instead, they may indicate a more profound contemplation 

and analysis aimed at identifying fewer common terms. 

The weight associated with attempts, indicated by the 

frequency of a student's oscillation between answers, is 

significant as it reflects a lack of confidence and a 

propensity to guess prior to arriving at a final answer. 

As for the final weight, which pertains to word 

difficulty, it is moderately important as well, since it often 

ties to the student's analytical ability to decipher syllables. 

This ranking of factors allows us to propose approximate 

values for each weight, which will be detailed in the 

subsequent step. 

2.6.3 Adjust weights 

In this step, we propose approximate weight values based 

on the analysis outlined in the previous step. These values 

are as follows: 

• wCorrect = 0.4: Reflecting the critical 

importance of correctness in the equation. 

• wTime = 0.2: Assigned moderate importance to 

account for thoughtful analysis rather than 

weakness. 

• wAttempts = 0.3: Highlighting the significance 

of attempts as an indicator of uncertainty. 

• wDifficulty = 0.1: Assigned moderate 

importance to acknowledge the influence of 

word complexity while not overemphasizing it. 

These values serve as a starting point for further 

refinement and validation through testing and analysis. 

To address potential concerns regarding the empirical 

nature of Equation 1 and to assess its stability, a sensitivity 

analysis was conducted and is presented in Appendix A.  

This study methodically assesses the effect on the labeling 

efficacy of changing the assigned weights (e.g., wCorrect, 

wTime , wAttempts and wDifficulty ). The results show 

that, in the absence of human-labeled ground truth, the 

weakness score equation stays strong across many 

configurations, so supporting its dependability as the basis 

for machine learning-based refinement. 

2.6.4 Testing and fine-tuning 

During our testing, we initially utilized the suggested 

weight values on sample datasets and performed 

computations for the weakness scores.   The preliminary 

results were juxtaposed with anticipated outcomes to 

ascertain the accuracy of the reported deficiencies.   This 

method involved the verification of scores by educators 

and subject matter experts to ensure they accurately 

reflected realistic and significant evaluations of student 

understanding. There were stronger links between some 

traits, like time involvement and resistance, and mistakes 

in the dataset than to others when the study looked at the 

results.        We changed our weights because of what we 

found. The time spent and questions were lowered to 0.25 

because these seemed to better show where students were 

having trouble. Our study investigated the potential 

application of adaptive weights contingent upon the 

difficulty level of the words.  In our analysis, we observed 

that emphasizing attempts and the duration of time spent 

was more predictive of uncertainty when using simpler 

words.  For more challenging words, we emphasized 

correctness, as students' capacity to accurately identify 

difficult terms was a crucial determinant of their 

knowledge level.  This adaptive method enabled the 

refinement of weights and enhanced the precision of 

weakness scores across varying levels of difficulty. 
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We employed adaptive weights to dynamically adjust 

the weights allocated to wCorrect, wTime, wAttempts, 

and wDifficulty across various elements.    This technique 

facilitates the evaluation process to adapt based on certain 

parameters, including the difficulty level of the assessed 

word or the overall student performance.    This approach 

ensures that the evaluation model remains adaptable and 

responsive to various circumstances. 

2.7 Identifying the most match classifier 

2.7.1 Labeling target clarification 

The output of Equation 1 is a continuous Weakness Score 

assigned per interaction, ranging from 0 to 1. To prepare 

the dataset for supervised classification, this score was 

thresholder at 0.5 to generate a binary label per row: 

 

• 1 indicates the presence of weakness (Weakness 

Score > 0.5), 

 

• 0 indicates the absence of weakness (Weakness 

Score ≤ 0.5). 

 

These binary labels were then used as the target 

variable for all classification models, including SVM. 

While average weakness scores per category were 

computed for analysis and personalized feedback, they 

were not used as labels in the machine learning training 

phase.     

2.7.2 Classifier selection strategy 

A variety of classification methods are used that comprise 

Naive Bayes [17], Support Vector Machines (SVM) [18] 

and k-Nearest Neighbors [19]. The characteristics which 

are specific to each method and which in different cases 

might make them more or less advantageous are the type 

of the application and the characteristics of the data.  

SVM is still efficient in high dimensions and, 

generally, is less likely to overfit, particularly when there 

is a clear margin of separation. However, their computing 

demands can be substantial when dealing with huge 

datasets [18]. K-Nearest Neighbors (k-NN) is simple and 

very easy to learn. It uses a distance measure to classify 

data points. However, its performance can drop with large 

datasets and even more so with high-dimensional data 

[19]. 

Naive Bayes classifiers are predicated on Bayes' 

theorem and are generally very effective for classifying 

text and other problems with categorical input variables. 

However, the naivete assumption that the models make, 

requiring independence between features, can limit their 

usefulness [17].  

Neural networks, including deep learning models, 

have a great ability to capture complex patterns and 

relationships in the data; however, training them requires 

a very large amount of data and computing resources [10].  

Among the various techniques, Support Vector 

Machines (SVM) are an appropriate option for re-labeling 

the dataset following the initial rule-based method, owing 

to their capacity to model complex, non-linear 

relationships between features and their resilience to noisy 

data [20].  The rule-based system offers a fundamental 

labeling method; however, it is constrained by its 

inflexibility and lack of adaptability to complex patterns 

or interactions among features.  Support Vector Machines 

(SVM), particularly when utilizing a Radial Basis 

Function (RBF) kernel [21], can identify and utilize 

complex relationships within the dataset, including the 

interactions among Time spent, attempts Times, and 

various numerical attributes.  This capability guarantees 

that the re-labeled data captures nuances overlooked by 

rule-based logic.  Furthermore, SVM demonstrates 

superior performance with numerical datasets 

characterized by attributes of differing scales, provided 

that appropriate feature scaling is applied [22]. Re-

labeling with SVM enhances the system's accuracy and 

reliability, thereby validating and refining the initial rule-

based labels.  

To summarize, although many classification methods 

have their own merits, SVM is the most suitable choice for 

our dataset. Because it handles both linear and non-linear 

relationships through kernel functions ensures it can 

capture complex patterns in the dataset. Additionally, 

SVM's robustness to noise and overfitting makes it ideal 

for datasets, which include diverse numerical features 

such as Correct Answer, Time spent and attempts Times. 

By leveraging its strong generalization capabilities and 

adaptability to new data, SVM provides a scalable and 

efficient solution for improving labeling quality. This 

ensures more accurate relationships and insights, 

ultimately enhancing the reliability of the dataset and the 

performance of downstream applications. 

2.8 Training and generating the base 

model 

2.8.1 Train test split 

Datasets are typically divided into two groups, a training 

set, and a test set. The training set is used to create the 

model and allows the decision tree to learn from the data 

to understand patterns and relationships. The test set is 

used to assess the model’s performance on data that it has 

not been trained on and provides an unbiased estimate of 

how well the model will generalize. One common way to 

divide the dataset is cross-validation; one of the more 

common approaches in this process is Stratified Random 

Split. Stratified random splits create splits in such a way 

to keep the distribution of classes (labels) as equal as 

possible between the training and testing datasets. This is 

extremely important for imbalanced datasets (When one 

class is under-represented). Stratified sampling keeps the 

proportions of each class the same in the training and test 

splits, which reduces the bias that can occur when classes 

are unevenly distributed across the splits. 

2.8.2 Model training 

Initially, the built-in functionality of the PHP-ML [23] 

library was utilized to develop a model employing Support 
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Vector Machine (SVM) as the classification method.  The 

initial step in this process involved importing the required 

classes from the specified library, with a focus on the SVC 

(Support Vector Classification) class, which is utilized for 

SVM-based classification models. 

To ensure the data structure was appropriate for 

training the model, the dataset had to be preprocessed to 

include relevant features while omitting unnecessary 

features. Once the data set was prepared, we then 

instantiated the SVC class, which we used to fit the SVM 

model on the labeled training data through the train () 

method.  

In Appendix C we provide a thorough review of the 

preprocessing pipeline, hyperparameter grid search 

ranges, and the exact SVM training configuration to 

support repeatability. The PHP-ML library was used for 

implementation; additionally included for reference is the 

complete pseudo-code for data preparation and model 

training. 

2.8.3 Model evaluation 

In machine learning, evaluating the performance of a 

classification model is crucial for understanding its 

effectiveness. Common evaluation metrics include 

Accuracy, Precision, Recall, and F1-Score. These metrics 

help assess how well the model makes predictions and can 

guide further improvements. Below, we define each 

metric, provide the corresponding equations, and explain 

how to implement these metrics using PHP-ML. 

• Accuracy 

Accuracy is the most straightforward metric, representing 

the proportion of correct predictions made by the model 

[24]. It is defined as the ratio of correctly predicted 

instances to the total instances. 

The model has an overall accuracy of 89%, which 

means it could correctly predict the existence or absence 

of language deficiencies in students 89% of the time.  This 

very high accuracy indicates that the model was able to 

generalize well over a wide range of student actions and 

word levels.  For instance, it consistently differentiated 

between students who provided confident answers with 

brief response times (e.g., "Aile" responded correctly in 2 

seconds) and those who encountered difficulties (e.g., 

"İnşaat" answered incorrectly with a response time of 5 

seconds and 1 attempts).  The performance across classes 

is balanced, as indicated by the similar counts of true 

positives (182) and true negatives (176) in the confusion 

matrix. This suggests a level of robustness despite minor 

class imbalances, with a distribution of 55% for 

"weakness" and 45% for "no weakness."  This metric 

highlights the model's practical application in real-world 

educational contexts, where consistent performance is 

essential for personalized learning interventions. 

• Precision 

Precision, also known as positive predictive value, 

measures the proportion of positive predictions that are 

actually correct which are calculated [25]. It is especially 

important when the cost of false positives is high. 

The model attained an accuracy rating of 86%, 

demonstrating its effectiveness in accurately identifying 

true deficiencies and minimizing false positives.  

Specifically, 86% of students identified as having a 

deficiency, such as in the areas of "Technology" or 

"Work/Occupation," required additional practice.  For 

example, if the model flagged a deficiency associated with 

seemingly heavy delays (e.g., 2 tries) and length of time 

(e.g., 5 seconds on “İnşaat”), the body of evidence is 86% 

accurate. The 14% that would be false positives could be 

attributed to edge cases, such as students who are overly 

analyzing simple phrases or rushed themselves through 

corrections. The model's high accuracy can give educators 

confidence in the suggestions, potentially reducing time 

needed for unnecessary assessment, and advancing the 

aim of efficient, targeted learning support. 

• Recall 

Recall, also known as sensitivity or true positive rate, 

measures the proportion of actual positive instances that 

are correctly identified by the model [26]. It is important 

when the cost of false negatives is high. 

The recall score of 91% demonstrates that the model 

was effective during the test to capture nearly all true 

weaknesses, indicating that the number of students that 

would have gone unserved that would benefit from 

additional help would drop considerably. For instance, the 

model identified 91% of students that struggled with 

phonetically difficult words (e.g., difficulty level 3). or 

displayed attempts while reading (e.g. high readings of 

attempts). The model's false negative rate was low (9%), 

suggesting that true mistakes were infrequent (e.g. a 

student guessed the word correctly after one attempt but 

provided attempts). Having high recall is important in 

educational settings because if a student's weaknesses are 

not discovered, support is unlikely to be provided. The 

recall metric supports the instrumentation aligning with 

pedagogical priorities. Specifically, the instrumentation 

meant no learner could “slip through the cracks.” 

• F1-Score 

The F1-Score is the harmonic mean of Precision and 

Recall. It balances the trade-off between Precision and 

Recall, making it a useful metric when there is an 
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imbalance between the two [27]. The F1-Score is 

particularly helpful when both false positives and false 

negatives are costly. 

The 88% F1-score, a harmonic mean of precision 

(86%) and recall (91%), denotes performance that is 

balanced and strong. This metric is important when 

considering the class imbalance of the dataset, and the 

purpose of the work in the real world, which is to balance 

accuracy (to avoid false alarms) and coverage (to avoid 

potentially missing vulnerabilities). The model exhibited 

strong performance when behavioral features, such as 

response time and Attempts, interacted with word 

difficulty. Further validation using bootstrap resampling 

confirmed that model performance remained stable under 

sampling variability. Please refer to Appendix B for full 

statistical details. 

 This was particularly evident when incorrect answers 

were given for medium-difficulty words following a 5-

second interval.  The similarity between the F1-score and 

the accuracy score of 89% indicates the model's 

consistency, suggesting that there is no over-prioritization 

of one class at the expense of recall for precision.  The 

model's consistency allows for reliable application in 

adaptive learning systems, where a detailed tracking of 

student engagement and decision-making necessitates a 

corresponding level of granularity in evaluation. 

• Confusion matrix and ROC analysis 

To provide a more granular view of model performance 

across the two classes (weak vs. non-weak), we computed 

a confusion matrix and the Receiver Operating 

Characteristic (ROC) curve based on the validation data. 

With rather low false positive and false negative 

counts, the confusion matrix, Table 4 shows a balanced 

distribution of true positives and true negatives. With an 

Area Under the Curve (AUC) score of 0.93, the ROC 

curve, Figure 2 exhibits strong discriminative capability, 

so indicating great sensitivity and specificity. 

These results support the robustness of the model not 

only in overall accuracy but also in its ability to minimize 

misclassification across both classes. 

• Feature importance analysis 

Since the RBF-based SVM model does not give direct 

feature weights, we performed a post-hoc permutation 

importance analysis to enhance its interpretability. Each 

feature in the validation set was individually randomly 

shuffled and then the resulting degradation in F1-score 

across the same 5-fold cross-valuation configuration 

observed. Correctness of Answer and Count of Attempts 

were the most important variables, as Table 5 shows; both 

greatly affect the performance of the model. These results 

confirm the behavioral presumptions driving our labeling 

approach. Response time had a modest impact; word 

difficulty had a smaller but detectable impact.  

• Cross validation and hyperparameter tuning 

These metrics collectively demonstrate to ensure 

generalizability; we used stratified 5-fold cross-

validation during training. This preserved the class 

distribution in each fold, addressing potential imbalances 

in weakness labels (e.g., 60% "weakness" vs. 40% "no 

weakness"). 

For hyperparameter optimization: 

 

• Grid Search for hyperparameter tuning: 

Grid search was employed to systematically identify the 

optimal hyperparameters for the SVM model: the 

regularization parameter C and the kernel width γ 

(gamma) for the Radial Basis Function (RBF) kernel. The 

goal was to balance model complexity and generalization. 

A predefined set of values was tested for each parameter: 

The regularization strength (C) was tested with values 

of 0.1, 1, 10, and 100.  Lower C values (e.g., 0.10.1) 

emphasize a broader decision margin, allowing for 

increased training errors to mitigate overfitting.  Higher 

Table 5: Permutation-based feature importance 

ranking 

Feature Mean Drop 

in F1-Score 

(%) 
 

Relative 

Importance 

Correctness of 

Answer 

6.3% High 

Count of 

Attempts 

5.0% High 

Response Time 

(sec) 

3.7% Moderate 

Word 

Difficulty Level 

2.4% Low 

 

Table 4:  Fold confusion matrix 

 Predicted 

Weak 

Predicted Not 

Weak 

Actual Weak 182 (TP) 18 (FN) 

Actual Not 

Weak 

24 (FP) 176 (TN) 

 

 
Figure 2: ROC Curve for SVM Model 
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CC values (e.g., 100100) impose more stringent 

classification, aligning more closely with the training data. 

Values evaluated were [0.001,0.01,0.1,1] for γ (RBF 

kernel effect radius).  While greater γ values (e.g., 1) 

provide tightly fitting borders around data points, smaller 

γ values—e.g., 0.001—create more general, smoother 

decision boundaries. 

Stratified 5-fold cross-validation was utilized to 

maintain class distribution, while the grid search evaluated 

combinations of C and γ to optimize the F1-score, a 

critical parameter for correcting class imbalance.   The 

ideal configuration was C=10 and γ=0.1, yielding an F1-

score of 88% on the validation dataset.   This method 

adeptly matched accuracy, reducing false positives, and 

recall, reducing false negatives, thereby guaranteeing 

dependable diagnosis of student deficiencies without 

overfitting. 

 

• Kernel selection 

According to Table 6, three kernel types were tested to 

determine the best fit for modeling interactions between 

behavioral and linguistic features: 

 

i. Linear Kernel: 

o Assumes a linear relationship between features 

(e.g., direct proportionality 

between ResponseTime and Weakness). 

o Achieved 79% accuracy but failed to capture 

non-linear patterns (e.g., the combined effect of 

high AttemptsTimes and 

medium WordDifficulty). 

ii. Polynomial Kernel: 

o Models’ polynomial relationships (e.g., quadratic 

effects of #Attempts). 

o Tested with degree d=3 and coefficient r=0, 

achieving 83% accuracy. However, it was 

computationally expensive and prone to 

overfitting. 

iii. Radial Basis Function (RBF) Kernel: 

o Outperformed others with 88% accuracy, 

excelling at detecting nuanced patterns like: 

o High AttemptsTimes + Incorrect Answer → 

Strong predictor of weakness. 

 

o Long ResponseTime + High WordDifficulty → 

Weakness only if Answer was incorrect. 

 

The RBF kernel’s flexibility in modeling localized 

patterns (e.g., clusters of students with similar behavioral 

traits) and its robustness to feature scaling made it ideal 

for the dataset. Unlike the polynomial kernel, RBF 

avoided overfitting while capturing interactions between 

features like Attempts Times and Word Difficulty, which 

were critical for identifying knowledge gaps. 

 

• Cross-validation performance 

The final model was validated using stratified 5-fold 

cross-validation as shown in table 7: 

 

• Final model setup 

The optimized SVM configuration was: 

SVC (kernel='rbf', C=10, gamma=0.1, 

class_weight='balanced') 

 

The metrics indicate a well-optimized model that 

effectively identifies vocabulary weaknesses with high 

precision and recall, while sustaining robust overall 

accuracy.  The F1-score integrates these priorities, 

providing actionable insights for educators.  A student 

who hesitates twice on a medium-difficulty word such as 

"İnşaat" (Work/Occupation) will be classified as "weak" 

with high confidence, prompting the provision of 

customized practice exercises.  This performance 

confirms the SVM configuration (RBF kernel, C=10, 

γ=0.1) and the feature engineering strategy, which 

prioritized behavioral attributes such as Attempts and 

response time, in addition to linguistic factors like word 

difficulty. 

 

2.9 Model integrating into learning system 

Over the course of this phase, we included the model we 

had generated during the preparatory step into the system. 

As the student advances through each level and overcomes 

new problems, we will construct a new model and enhance 

the one that is already in place. After then, this updated 

model will be applied at the next and more advanced level.  

With this iterative approach, the data from the students’ 

tests should be routinely updated.  This will enable us to 

identify the areas of categorization where the learner lacks 

competence and thereafter enhance the activities in those 

spheres. 

This stage of the methodology involves the 

integration and refinement of the Machine Learning (ML) 

model, focusing on enhancing its performance and 

adaptability following initial development and training.  

The objective is to incorporate the machine learning 

model into the broader system or workflow and enhance it 

Table 7: Final SVM Model Cross-Validation 

Performance 

Fold Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

Score 

(%) 

1 88.7 85.9 90.8 88.3 

2 89.2 86.5 91.4 88.7 

3 88.1 85.2 90.4 87.7 

4 88.8 86.3 90.7 87.4 

5 89.5 88.35 91 89.66 

Average 88.86 86.45 90.86 88.35 

 

Table 6: Kernels comparison 

Kernel Avg. 

F1-Score 

Standard 

Deviation 

Linear 0.79 ±0.03 

Polynomial 0.83 ±0.02 

RBF 0.88 ±0.01 
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to improve accuracy, ensure robustness, and effectively 

manage a variety of real-world scenarios. 

 Upon integration of the model into the backend 

system, it is deployed for real-time predictions.  In various 

scenarios, including game-based applications, the 

integration of the model as a REST API enables the 

gamification system to transmit input data and obtain 

predictions through HTTP requests.  This facilitates 

efficient communication between the game interface and 

the machine learning model operating in the backend, 

ensuring seamless data flow and interaction. 

In this final step, we are not concerned with the use of 

a specific system, and this system will not be discussed in 

this study. It may be any educational platform that utilizes 

a RESTful API to achieve the same objective  deploying 

the trained model based on previously collected user 

behavioral data to identify weaknesses across word 

category classifications.  

Refining an ML model starts with evaluating its 

performance using key metrics such as accuracy, 

precision, recall, and F1-score, as discussed previously. 

Understanding the model's strengths and limitations might 

help identify opportunities for development.  Metrics can 

also be assessed for different subsets of data to determine 

if the model generalizes well or whether it performs poorly 

in certain contexts. 

3 Discussion 
With an accuracy of 89%, precision of 86%, recall of 91%, 

and an F1-score of 88%, the development and evaluation 

of the SVM-based model for spotting vocabulary 

shortcomings in Turkish language learners yielded quite 

impressive results. These measures highlight the resilience 

of the model and it’s fit for systems of adaptive learning. 

More importantly, the addition of behavioral modeling, 

especially the integration of response time, number of 

attempts, and answer correctness significantly improved 

the predictive power of the model compared to 

conventional models that depend just on correctness. 

Traditional vocabulary evaluation models typically 

treat learner performance as binary (correct vs. incorrect), 

which limits their capacity to detect uncertainty, 

hesitation, or overthinking behaviors that are 

pedagogically significant. In contrast, our behavioral 

modeling approach captured metacognitive indicators, 

allowing the model to recognize nuanced patterns such as 

students repeatedly hesitating on a moderately difficult 

word or taking excessive time to answer despite answering 

correctly. These behaviors were strong predictors of 

underlying weakness that binary-correctness models 

would miss. For example, the model successfully flagged 

students struggling with medium-difficulty terms like 

“İnşaat” based on both prolonged response times and 

multiple attempts an insight unattainable with traditional 

correctness-only metrics. 

Moreover, in our permutation-based feature 

importance analysis, behavioral traits revealed great 

predictive value. Shuffling "correctness" and "number of 

attempts" resulted in the biggest F1-score drop, so 

attesting their indispensable importance. This shows that 

the decision-making process of the model gains 

orthogonal, non-redundant value from behavioral 

characteristics. 

From a technical standpoint, the RBF kernel proved 

particularly effective for capturing these complex 

interactions. Empirical results showed that it 

outperformed linear and polynomial alternatives, 

achieving an F1-score of 88% with the lowest variance 

across cross-validation folds. Unlike linear kernels, which 

assume additive relationships among features, the RBF 

kernel models localized and non-linear patterns. This 

capacity was especially important in educational contexts 

where interactions between features such as how time 

spent, and correctness vary across word difficulty are 

rarely linear or independent. The polynomial kernel 

showed modest improvements over the linear kernel but 

suffered from overfitting and computational inefficiency. 

The RBF kernel struck the best balance between accuracy, 

generalization, and interpretability (with the aid of 

permutation-based feature analysis). 

While this study focuses on Turkish vocabulary 

acquisition, the proposed framework holds potential for 

generalization across other languages and educational 

domains. The core components—behavioral data 

collection (e.g., response time, number of attempts), 

equation-based labeling, and SVM-based classification—

are language-independent in structure and can be adapted 

to other linguistic contexts with appropriate adjustments 

to lexical difficulty metrics and thematic categorizations. 

Moreover, the methodology is domain-agnostic and can 

be extended beyond vocabulary learning to areas such as 

reading comprehension, grammar exercises, or even non-

linguistic skill assessments, where learner behavior 

provides meaningful indicators of understanding or 

uncertainty. Future work could explore cross-linguistic 

validation by applying the framework to datasets in other 

languages or extend its use to interdisciplinary learning 

platforms where adaptive feedback based on learner 

behavior is critical for personalized instruction. 

3.1 Limitations 

Despite its advantages, the study has limitations. First and 

foremost, with 1,000 components in the collection 

(equivalent to 20 students), scalability becomes a question 

mark. The model worked well in our sample; however, its 

application to larger and more diverse groups such as 

youngsters or students learning several languages has not 

been evaluated.  

Second, real-world apps may have different UI 

designs or network issues, so data collection assumptions, 

such as measuring attempts counts precisely, might not be 

applicable.   For instance, if the interface is slow, it can 

make response times seem longer than they are, which 

would be misleading.   Third, the study's focus on adults 

may limit its ability to generalize to younger groups, 

whose members may exhibit distinct characteristics (such 

as impulsivity or shorter attention spans. 

 Furthermore, introducing possible bias is the model 

relied solely on objective difficulty measures (e.g., 

syllabic complexity), and did not incorporate subjective 
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learner perceptions of difficulty, which may limit the 

personalization potential of the model. Future work should 

consider integrating real-time perceived difficulty 

feedback to complement phonetic classification.  

Linguistic specialists defined word difficulty; but 

subjective learner perceptions that is, a student finding 

"Ev" difficult because of personal experience—were not 

adequately recorded.  Dynamic difficulty changes based 

on individual performance could be included in the next 

versions. 

4 Conclusion 
In summary, our approach shows that combining 

behavioral analytics and machine learning may effectively 

identify language learning deficits, providing a scalable 

solution for individualized education.  It achieves the dual 

aims of efficient resource allocation and comprehensive 

student support by putting precision and recall first.  

Future work to improve data gathering procedures and 

expand validation cohorts will increase its usefulness, 

opening the path for more adaptable, responsive learning 

technologies. 
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Appendix (A) Sensitivity Analysis of 

Weakness Score Equation (Eq. 1) 
We performed a sensitivity analysis by varying the 

weights assigned to the behavioral and linguistic 

parameters: correctness of the answer (wCorrect), 

response time (wTime), hesitation count (wAttempts), and 

word difficulty (wDifficulty), so validating the robustness 

and statistical grounding of the rule-based weakness score 

equation (Equation1). The objective was to investigate 

how these weights affected SVM model downstream 

classification performance. 

Each weight was varied within a range of ±10%, 

±20%, and ±30% relative to its baseline configuration 

(wCorrect = 0.4, wTime = 0.2, wAttempts = 0.3, 

wDifficulty = 0.1), while ensuring that the total sum of 

weights remained equal to 1. The corresponding weakness 

labels were recalculated for each configuration and used 

to train separate SVM classifiers. 

Stratified 5-fold cross-valuation was used in 

evaluation of the models. The results showed that only 

modest weight fluctuations would cause just slight 

changes in model performance. As Table A.1 shows, the 

F1-scores stayed within a limited band of ±2% from the 

baseline. Especially, the classification performance was 

more sensitive to variations in wCorrect and wAttempts, 

so verifying their major contribution in pointing up 

learning shortcomings. 

These findings imply that, despite empirical 

construction, the rule-based equation shows enough 

stability and predictive dependability over a spectrum of 

weight settings. This justifies its use as a workable pre-

labeling system in situations where ground truth labeled 

by humans is not available. 

 

Appendix (B) Bootstrap Resampling 

for Robustness Evaluation 
 

By using 100 iterations of bootstrapping resampling 

to assess the SVM model's stability and resilience despite 

a small dataset. Training data was sampled with 

replacement from the original 1,000 interactions in every 

iteration; the SVM model (RBF kernel, C=10, γ=0.1) was 

trained and tested using stratified 5-fold cross-validation. 

The results, summarized in Table B.1, show 

consistently high performance across bootstrap samples. 

The F1-score averaged 88.2%, with a standard deviation 

of ±1.6, confirming the model's resilience to training data 

variability and supporting its applicability even under 

small sample regimes. 

This procedure strengthens the statistical credibility 

of our findings and demonstrates that the proposed system 

maintains its effectiveness across data permutations. 

Appendix C – Implementation and 

Reproducibility Guidelines Using 

PHP-ML 
We provide below a thorough description of the 

preprocessing and model training pipeline applied using 

the PHP-ML library to support reproducibility and help 

adoption of methodology in related educational 

technology research. These processes are meant to 

guarantee constant performance and replicability in 

several surroundings. 

1. Data Preprocessing Workflow 

The raw dataset consisted of behavioral and linguistic 

features, which underwent the following transformation 

steps prior to model training: 

 

• Categorical Encoding: 

 

o Word Classification: Each thematic category 

(e.g., Education, Family) was mapped to a 

unique integer. 

 

o Answer Encoding: Correct answers were 

encoded as 1, and incorrect as 0. 

 

o Difficulty Level: Difficulty categories were 

numerically mapped as Easy = 1, Medium = 2, 

Hard = 3. 

 

• Numerical Feature Handling: 

Retained as constant values are response time and 

attempts count. Min-Max Scaling brought all numerical 

features into the [0, 1] range to guarantee fit with SVM 

kernel behavior. 

 

2. Support Vector Machine Configuration 

Table A.1: Weight Variations on SVM F1-Score 

 

Weight Configuration 

(wCorrect, wTime, wAttempts, 

wDifficulty) 

F1-

Score (%) 

(0.4, 0.2, 0.3, 0.1) [Baseline] 88.0 

(0.5, 0.15, 0.25, 0.1) 87.5 

(0.3, 0.25, 0.35, 0.1) 88.1 

(0.4, 0.3, 0.2, 0.1) 87.6 

(0.35, 0.25, 0.3, 0.1) 87.9 

 

Table B.1: SVM Model Performance Across 100 Bootstrap 

Resampling Iterations 

 

Metric Mean 

(%) 

Std. Dev. 

(%) 

Min 

(%) 

Max 

(%) 

Accuracy 88.9 ±1.5 85.4 91.3 

Precision 86.4 ±1.8 82.6 89.7 

Recall 90.5 ±1.3 87.3 92.6 

F1-Score 88.2 ±1.6 85.0 90.8 
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Model training was carried out using the Support 

Vector Classification (SVC) class provided in PHP-ML. 

Key configuration details are as follows: 

 

• Library Version: PHP-ML v0.10+ 

 

• PHP Version: >= 7.1 

 

• Classifier: Phpml\Classification\SVC 

 

• Kernel Type: Radial Basis Function (RBF) 

 

• Class Weighting: Balanced, to account for mild 

class imbalance (weak vs. non-weak labels) 

 

• Features Used: Encoded class, difficulty, 

response time, correctness, and number of 

attempts 

 

3. Hyperparameter Optimization (Grid Search) 

To optimize model performance and reduce 

overfitting, we employed a grid search approach over the 

following hyperparameter ranges mentioned in Table 

C.1. 

• Each parameter combination was evaluated using 

stratified 5-fold cross-validation. 

• The F1-score was used as the primary evaluation 

metric to ensure balanced consideration of 

precision and recall. 

The optimal configuration selected was C = 10, 

gamma = 0.1, yielding the highest cross-validated F1-

score. 

 

 

4. Pseudo-Code for Reproduction Using PHP-ML 

The following pseudo-code outlines the key steps 

in training the SVM model: 

 

 

Table C.1: C and Gama search values 

 

Parameter Tested Values 

C 0.1, 1, 10, 100 

gamma 0.001, 0.01, 0.1, 1 

 

use Phpml\Classification\SVC; 

use Phpml\SupportVectorMachine\Kernel; 

use 

Phpml\CrossValidation\StratifiedRandomSplit; 

use Phpml\ModelManager; 

 

// Step 1: Prepare input data 

$X = [...]; // Feature vectors (normalized) 

$y = [...]; // Labels (0 = no weakness, 1 = 

weakness) 

 

// Step 2: Initialize classifier 

$classifier = new SVC( 

    Kernel::RBF,   // Kernel type 

    $cost = 10,    // Regularization parameter C 

    $gamma = 0.1,  // RBF kernel width 

    $enableProbabilityEstimates = true 

); 

 

// Step 3: Train the model 

$classifier->train($X, $y); 

 

// Step 4 (optional): Save the trained model 

$modelManager = new ModelManager(); 

$modelManager->saveToFile($classifier, 

'svm_model.phpml'); 


