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The identification of tunnel pipe jacking obstacles is usually carried out in harsh environments, and timely 

and accurate identification can avoid unnecessary economic and labor losses. However, the currently 

commonly used obstacle recognition models are complex in structure and have long recognition feedback 

times. Therefore, this study proposes a tunnel pipe jacking obstacle recognition model based on an 

improved You Only Look Once version 5. The model is optimized through pruning and knowledge 

distillation techniques to enhance its lightweight characteristics and accuracy. The experiments were 

conducted using the COCO dataset and a custom dataset consisting of 2667 tunnel shield tunneling 

obstacle images. The optimized model achieved an 88.6% reduction in the number of parameters, an 

84.2% reduction in floating-point operations, a 62.5% reduction in memory usage, and a 90.1% reduction 

in response time. In real-world testing, the model achieved an accuracy of 94.0% and a processing speed 

of 75 frames per second (FPS), outperforming traditional YOLOv5 and other lightweight YOLOv5 

variants such as M-YOLOv5, S-YOLOv5, PL-YOLOv5, and C-YOLOv5. Using evaluation metrics such as 

mean Average Precision (mAP), the proposed model demonstrated high efficiency and effectiveness in 

real-time obstacle recognition for tunnel construction. The model provides a new technological approach 

for safety management in tunnel construction while improving computational efficiency and maintaining 

high recognition accuracy. 

Povzetek: Lahki model GCD-YOLOv5 z Ghost in Depthwise konvolucijami, obrezovanjem in prenosom 

znanja omogoča bolj kvalitetno zaznavanje ovir v tunelskem potiskanju cevi v realnem času kot klasični 

YOLOv5 ali njegove lahke različice. 

 

1  Introduction 
Tunnel pipe jacking construction technology is a 

commonly used non-excavation pipeline installation 

technique. It has advantages such as minimal 

environmental impact, high construction efficiency, and 

safety, making it widely used for underground municipal 

pipeline installation [1]. However, during tunnel 

excavation using pipe jacking technology, unforeseen 

obstacles often occur, which can affect construction 

progress, safety, and other aspects. Without accurate 

identification of obstacle types and appropriate handling, 

significant financial and material losses may occur [2, 3]. 

Therefore, the correct identification of obstacles during 

tunnel pipe jacking construction is of great importance. 

Currently, the main obstacle identification methods for 

tunnel construction include intelligent algorithm-based 

visual analysis, radar and multi-sensor fusion, and 

automated inspection robots. However, these methods 

require high-performance equipment and have long 

recognition times, which hinder timely emergency 

responses [4-6]. Therefore, there is an urgent need for  

 

methods that can rapidly and accurately identify obstacles 

in harsh construction environments. The key to obstacle 

identification in tunnel pipe jacking construction lies in 

accurately judging the size and type of obstacles. As a 

visual intelligence analysis algorithm, You Only Look 

Once version 5 (YOLOv5) can quickly and accurately 

analyze the multi-dimensional information of obstacle 

images. After being lightweight-processed, it can adapt to 

low-performance devices at construction sites [7]. This 

study innovatively optimizes YOLOv5 by replacing its 

overall network structure to build a tunnel pipe jacking 

obstacle recognition model, combining model pruning and 

knowledge distillation techniques for lightweight 

processing. This study aims to develop and validate an 

obstacle recognition model based on YOLOv5, which is 

optimized using Ghost Convolution (Ghost Conv) and 

Depthwise Convolutions (GCD), model pruning, and 

knowledge distillation, with real-world validation on 

tunnel construction images. Through these optimization 

methods, this study aims to enhance the model's 

computational efficiency and recognition accuracy to meet 
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real-time obstacle detection requirements in practical 

tunnel construction. 

2  Related works 
YOLOv5, with its powerful object detection and 

image recognition capabilities, is an upgraded version of 

the YOLO. It offers higher precision and faster detection 

speed than previous versions. Scholars worldwide have 

applied YOLOv5 in various fields of visual recognition. 

For example, Gao et al. applied YOLOv5 to detect 

honeycomb structures and proposed an improved 

YOLOv5-based honeycomb detection model using 

Shuffle BlockV2. This model is 92.5% faster than 

previous honeycomb detection models, achieves an 

accuracy of 96% in real-time detection, and can 

automatically track honeycombs within 2 seconds up to a 

distance of 2.5 meters [8]. Xiao’s team proposed a 

YOLOv5-based zinc-coated steel defect detection model 

for metal smelting. The results of actual steel-making tests 

showed that the model can quickly and accurately detect 

surface defects of galvanized steel, and its overall 

performance outperforms most detection models based on 

other mainstream algorithms [9]. To address issues of low 

accuracy and high computational delays in video 

surveillance for ship detection, Zheng’s team proposed an 

improved YOLOv5-based algorithm. The accuracy of the 

YOLOv5 model, after compression using a scaling factor, 

improved by 2.34%, and the detection speed reached 20 

FPS, even in low-computational environments [10]. In 

agriculture, Chen et al. applied YOLOv5 for real-time 

strawberry disease detection. By incorporating the Ghost 

Convolution module, YOLOv5 reduced the number of 

parameters and floating-point operations, enhancing the 

model’s spatial information. After adding a convolutional 

attention module, the model’s ability to extract feature 

data and suppress irrelevant information was improved. 

The model achieved an average precision of 94.7% in test 

experiments [11]. For forest fire detection via visual 

network analysis, Zhou et al. proposed a lightweight target 

detection model based on YOLOv5. The model used 

MobileNetV3 as the backbone network within the 

YOLOv5 framework and was trained using semi-

supervised knowledge distillation. As a result, the model 

size decreased by 94.1%, and the average accuracy 

increased by 2.6% [12]. 

Regarding tunnel construction obstacle recognition, 

several mature methods and theories have been developed 

and applied in practical construction. For instance, Xu et 

al. used drones equipped with cameras to perform 

automatic surface detection of tunnels to be constructed 

and generated target 3D shapes using a motion structure 

assembly line for dynamic analysis. The results showed 

that this method can accurately identify surface obstacles 

before tunnel construction [13]. Yongcan et al. addressed 

the issue of long identification times and high safety risks 

in traditional underwater tunnel obstacle recognition by 

proposing a robotic method that uses multi-sensor fusion 

for comprehensive and accurate risk analysis and 

evaluation of underwater tunnel construction [14]. 

Naranjo’s team has applied intelligent algorithms to 

obstacle recognition and clearance in actual tunnel 

construction. They developed an automated obstacle 

recognition and clearance system for tunnel construction 

trucks. This system successfully identified and cleared 

tunnel obstacles in multiple modes, including manual and 

remote operation, during tests by two civil construction 

companies [15]. Robots with cameras are also frequently 

used for tunnel obstacle recognition. Li et al. reduced 

redundant parameters in YOLOv5 by pruning and 

integrated it with intelligent robots to create a high-

performance tunnel fault detector. In obstacle recognition 

tests, the system achieved an accuracy of 81.4% and a 

recall rate of 98.0% [16]. Image recognition technology 

has also been applied to obstacle detection, typically by 

combining algorithms with light field cameras or other 

sensors to analyze feature information from images for 

target identification. Zhang et al. proposed an automatic 

classification model for tunnel rock obstacles to quickly 

determine rock types during actual construction. The 

model, based on deep convolutional neural networks 

trained using residual learning methods, uses extended 

blocks in the deep convolutional network to extract multi-

scale image features. This model outperformed previous 

rock obstacle classification models in terms of accuracy, 

recall rate, and computation time [17]. The summary of 

the above research is shown in Table 1. 

 

Table 1: Summary table of related works 

References Method Contribution Limitations 

[8] 

YOLOv5 with Shuffle 

BlockV2 for honeycomb 

detection 

Increased speed by 92.5%, accuracy 

96%, and can track honeycombs at 

2.5m in 2 seconds 

Limited to honeycomb 

structures 

[9] 
YOLOv5 for galvanized 

steel defect detection 

Fast and accurate defect detection, 

outperforming other methods 
Limited to galvanized steel 

[10] 
Improved YOLOv5 with 

scaling factor 

Improved accuracy by 2.34%, 20 

FPS in low computational 

environments 

Performance bottlenecks in 

complex scenes 

[11] 
YOLOv5 for real-time 

strawberry disease detection 

Ghost convolution and attention 

modules, 94.7% accuracy 

Limited to strawberry disease 

detection 

[12] 
YOLOv5 with MobileNetV3 

for forest fire detection 

94.1% reduction in size, 2.6% 

accuracy improvement 

Relies on semi-supervised 

learning, data quality sensitive 

[13] Drone-based surface Accurate obstacle detection before Limited adaptability to 
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detection for tunnels construction dynamic environments 

[14] 

Multi-sensor fusion for 

underwater tunnel obstacle 

detection 

Enhanced risk analysis and 

evaluation for underwater 

construction 

Needs further optimization for 

complex underwater 

environments 

[15] 

Automatic obstacle detection 

and removal system for 

tunnel trucks 

Successful multi-mode obstacle 

recognition and removal 

Limited application to specific 

construction environments 

[16] 
Drone-based obstacle 

detection and removal 

YOLOv5 pruning with high 

accuracy (81.4%) and recall (98.0%) 

Limited to specific obstacles 

and scenes 

[17] 
Deep CNN-based tunnel 

rock classification model 

Improved accuracy and recall, faster 

computation 

Limited to tunnel rock 

classification 

In summary, although there has been progress in 

tunnel pipe jacking obstacle recognition, the methods used 

generally require complex technical equipment and are 

typically applied before construction, making them less 

effective for handling unexpected situations during actual 

construction. YOLOv5, with its fast speed, high accuracy, 

and low equipment performance requirements after 

lightweight optimization, presents an opportunity. This 

study proposes a tunnel pipe jacking obstacle recognition 

model based on lightweight YOLOv5, aiming to quickly 

and accurately identify obstacle types and meet the 

recognition needs at construction sites in practical 

applications. 

3  Construction and optimization of 

the tunnel pipe jacking obstacle 

recognition model based on YOLOv5 

 

3.1 Network lightweighting and model 

construction based on YOLOv5 
YOLOv5 makes significant modifications to the 

original YOLO in data preprocessing and grid structures. 

These modifications enhance its image adaptability, 

detection accuracy, and generalization ability, improving 

its performance in visual information processing [18]. The 

key to obstacle recognition in tunnel pipe jacking 

construction is speed and accuracy. YOLOv5 can 

accurately predict target categories with a single forward 

pass. Therefore, this study leverages the advantages of 

YOLOv5 to construct an obstacle recognition model for 

tunnel pipe jacking construction. The network structure of 

YOLOv5 is shown in Figure 1. 
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Figure 1: YOLOv5 network structure 

 

Figure 1 presents the overall network architecture of 

YOLOv5. The model utilizes the Cross Stage Partial (CSP) 

network as the backbone and combines C3 modules and 

convolutional modules for feature extraction. YOLOv5 is 

structured into three main parts: the backbone network, the 

neck network, and the head network. The backbone 

network is responsible for extracting basic features from 

the input image, while the Spatial Pyramid Pooling (SPP) 

module further enhances feature extraction capabilities. 

Through residual connections and convolution operations, 

the backbone network fuses multiple grid cells into a more 

complete feature map, which is then processed in the head 

network for object classification and location regression. 

This structure ensures that YOLOv5 maintains high 

efficiency while performing precise object detection. 

YOLOv5 employs the GIOU loss function to optimize the 

bounding box regression, as defined in Equation (1). 

c

c

A U
GIoU IoU

A

−
= −    (1) 

In Equation (1), 
cA  , IoU  , and U   represent the 

minimum enclosing rectangle area of the detected and 

ground truth boxes, the Intersection Over Union (IoU), 

and the union area, respectively. YOLOv5s adopts CSP as 
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its backbone network. However, CSP networks contain 

numerous C3 and CONV modules, leading to excessive 

redundant channels and data, which increases the overall 

computational and parameter complexity of YOLOv5 [19]. 

In real-world tunnel pipe jacking construction, a 

lightweight and fast network structure is necessary for 

obstacle recognition. To achieve this, this study replaces 

the CSP network with a lightweight alternative while 

ensuring network stability. The proposed solution employs 

a Depthwise Convolution (DWC) network to achieve 

inverse residual concatenation in a Ghost Convolution 

(GC) network, forming the Ghost Convolution-Depthwise 

Convolution (GCD) network as a replacement. The 

construction process of the GCD network is shown in 

Figure 2. 
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Figure 2: Flowchart of constructing a phantom convolutional depthwise separable network 

 

In Figure 2, the core part of the GC network is 

implemented through the DWC layer and the inverse 

residual concatenation. Specifically, the red box in the 

figure indicates the implementation method of residual 

connections in the network. In this part, the input feature 

map first undergoes several layers of convolution 

operations (such as CBS and DWC), which extract image 

features and perform feature processing. Next, through the 

addition operation, the input feature map is added to the 

output feature map of the convolutional layer. This is the 

core process of inverse residual joining. Through this 

operation, the network can retain the information of the 

input features while avoiding information loss during the 

feature extraction process. Finally, the output feature map 

is concatenated with other features through the Concat 

operation, and further processed through the DWC and 

Linear layers to obtain the final output. In the GC structure, 

the Ghost Convolution process applies multiple 

convolution operations on the original image to extract 

real feature maps while generating ghost feature maps. 

The calculation process is defined in Equation (2). 

( ' ), 1,...,ij ij i jy y s=  =    (2) 

In Equation (2), 
ijy  represents the generated ghost 

feature map, 'iy  denotes the feature in the ghost layer, 

and 
ij   represents the i  -th layer’s j  -th linear 

operation. s  is the maximum number of feature layers. 

When performing linear combinations on real feature 

maps, the convolution ratio between layers is shown in 

Equation (3). 

* * * * '* ' *

/ * '* '* * ( 1)* / * '* '* * 1
s

n c k k h w s c
r s

n s h w k k s n s h w d d s c
= = 

+ − + −
   

(3) 

In Equation (3), n   represents the number of 

parameters, 'h , 'w , and k  represent the height, width, 

and depth of the final feature map, respectively. Finally, 

the ghost and real feature maps are linearly combined, 

with the parameter convolution ratio during computation 

shown in Equation (4). 

* * * *

/ * * * ( 1)* / * * 1
c

n c k k s c
r s

n s c k k s n s d d s c
=  

+ − + −
   

(4) 

In Equation (4), 
cr   represents the final scaling 

factor. Part of the feature maps undergoes depthwise 

separable convolution after GConv processing, while the 

rest are processed through Conflict-Based Search (CBS) 

in a Batch Normalization (BN) and SiLU-optimized 

DWConv network for inverse residual learning. These two 

sets of feature maps are then fused in the connection layer. 

Replacing the CSP network in YOLOv5 with the GCD 

network results in the GCD-YOLOv5 model for tunnel 

pipe jacking obstacle recognition, as shown in Figure 3. 
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Figure 3: GCD-YOLOv5 obstacle recognition model operation flow chart 

 

As shown in Figure 3, the model first captures 

obstacle images using cameras or other sensors. Before 

entering the GCD-YOLOv5 network, Mosaic 

preprocessing is applied, including image scaling, 

cropping, and concatenation. The preprocessed images are 

then fed into the GCD-YOLOv5 network for convolution 

processing. The processed data is refined using the a-IOU 

function, as defined in Equation (5). 
2

2

( , )
( , ) 1 ( , )

a
a

a DIoU a

A B
L A B IOu A B

c


− = − +    (5) 

In Equation (5), 
a DIoUL −

 represents the loss function 

incorporating a-IOU into the original GIOU design. A  

and B   denote the target box and predicted box sizes, 

respectively.    is the Euclidean distance between the 

centers of the two boxes, while c  represents the diagonal 

length of the minimum enclosing rectangle containing 

both boxes. The optimized feature maps serve as the 

model’s final prediction results and are displayed on 

output devices. For tunnel pipe jacking obstacle 

recognition, the model promptly identifies obstacle types 

and provides relevant information. 

 

2.2 Optimization of GCD-YOLOv5 using 

model pruning and knowledge distillation 
The GCD-YOLOv5 model achieves lightweight 

optimization through network structure replacement, 

improving accuracy. However, further lightweight 

optimization is needed for real-world tunnel pipe jacking 

construction. Network pruning assigns different weights at 

the channel, kernel, and layer levels, reducing the model’s 

memory footprint without additional training [20]. The 

network pruning process for the GCD-YOLOv5 model is 

shown in Figure 4. 
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Redundant 

data

Relevant 

data
Fine-tuneSort

 

Figure 4: Schematic diagram of network pruning process 

 

As shown in Figure 4, network pruning integrates 

data from each channel in the GCD network, classifying it 

as either feature or non-feature data. Only feature data is 

retained and reassigned to new network channels. 

However, uncontrolled channel data during pruning may 

result in mismatched sizes and distributions between 

predicted and target images, significantly reducing 

accuracy [21]. To address this issue, BN is applied to align 
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channels, as defined in Equation (6). 

[ ]
'

[ ]

Xi

i

x E
x

Var x

−
=    (6) 

In Equation (6), 'ix  represents the final data, 
ix  is 

the input data, [ ]XE   is the mean, and [ ]Var x   is the 

variance. To prevent data homogenization, the scaling 

factor   and offset   are applied to adjust the output 

data, as shown in Equation (7). 

i iy x = +    (7) 

In Equation (7), 
iy   represents the scaled output 

data. Each convolution channel, depending on   , 

switches between open and constrained states, with 

constrained channels being pruned. During the specific 

pruning process of the model, the study set that 30% of the 

neurons or channels would be pruned each time during the 

pruning operation to ensure an effective reduction in the 

network size while maintaining good model performance. 

Pruning decisions are based on the weight magnitude of 

each neuron or channel. A minimum weight threshold of 

0.005 was set. Neurons or channels below this threshold 

will be pruned to ensure that the pruning process has a 

relatively small impact on the model output. The pruning 

strategy adopts channel-based pruning, that is, pruning by 

channel, which can reduces redundant calculations more 

precisely. To ensure the validity of the model, a 5% 

performance tolerance is set. That is, the accuracy of the 

model after pruning shall not decrease by more than 5%. 

If the accuracy decrease caused by pruning exceeds this 

threshold, the pruning operation will be revoked. The 

pruned model has fewer channels and parameters, leading 

to lower accuracy. Knowledge distillation transfers 

information from a trained large model to a smaller model 

to improve accuracy [22]. Thus, the unpruned GCD-

YOLOv5 model serves as the teacher model for 

knowledge distillation, as shown in Figure 5.
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Figure 5: Schematic diagram of the knowledge distillation process 

 

As shown in Figure 5, knowledge distillation requires 

both the teacher and student models to process the same 

input data and extract similar feature sets. Weighted cross-

entropy loss addresses the difference in feature weighting 

between the two models. To enhance classification ability, 

the study employs a Region Proposal Network (RPN) and 

a Recursive Cortical Network (RCN) for learning. To 

maintain the lightweight feature of YOLOv5, the 

introduction of RPN and RCN is limited to the training 

stage, serving as knowledge transfer tools between the 

teacher model and the student model. Specifically, RPN is 

used to generate "soft" candidate regions (i.e., candidate 

box proposals), which are provided by the teacher model 

and passed to the student model as auxiliary information 

during the training process to help it learn the spatial 

distribution of the target region and thereby optimize the 

classification ability. Similarly, RCN enhances the 

classification ability in the student model, extracts more 

distinguishable features through recursive learning, and 

improves the recognition ability for multi-category targets. 

It should be noted that RPN and RCN do not directly 

participate in the inference process of YOLOv5. They only 

act on the student model during the training stage, helping 

the student model improve detection accuracy and 

classification ability through knowledge distillation 

without affecting the inference speed. Therefore, although 

these two components are different from the traditional 

YOLOv5 architecture, they ensure through auxiliary 

optimization that the model can achieve high object 

detection accuracy and classification ability while 

maintaining lightweight. The definitions of the two are 

shown in Equation (8). 

1

1 1

RCN RPN

cls reg

i j

RPN RPN

cls reg

i j

LRCN L L
N

LRPN L L
M M






= +



 = +


 

 

   (8) 

In Equation (8), N   and M   represent RCN and 

RPN processing numbers, respectively.   is the scaling 

factor, 
clsL   represents the loss between the student 

model's predicted and actual values, and 
regL  represents 
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the loss between the student and teacher models. The final 

student model output loss is given in Equation (9). 

intRCN RPN HL L L L= + +    (9) 

In Equation (9), 
intHL   is the correction function 

based on hidden layers. 
clsL  , 

regL  , and 
intHL  

continuously adjust the student model to match the teacher 

model’s predictions. During training, when the student 

model outperforms the teacher model, the results are 

corrected, as shown in Equation (10). 

1( ) ( )reg sL s reg b s t regL L R y vL R R y= +    (10) 

In Equation (10), 
regy   represents ground truth 

labels, v  is the weight coefficient, 
sR  and 

tR  are the 

student and teacher model outputs, 
bL  represents teacher 

regression constraints, and 
1L   is the smooth loss 

between student predictions and actual results. When 

evaluating final outputs, hidden layer distances are used 

for representation, as defined in Equation (11). 
2

int 2
( )HL VZ V Z= −    (11) 

In Equation (11), V  and Z  represent the outputs 

of the guided student model and intermediate layers of the 

teacher model, respectively. The final student model 

output can also be expressed using smooth loss on 
1L , as 

shown in Equation (12). 

int 1
( )HL VZ V Z= −    (12) 

In Equation (12), 
intHL  measures the quality of the 

final output. The trained student model, despite having 

fewer parameters than the teacher model, achieves high 

recognition accuracy. Ultimately, the lightweight GCD-

YOLOv5 model, optimized through pruning and 

knowledge distillation, is shown in Figure 6. 
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Figure 6: The lightweight GCD-YOLOv5 model 

 

In Figure 6, the structure of the final lightweight 

GCD-YOLOv5 model improves computational efficiency 

and recognition accuracy through a series of optimization 

measures. This model first adopts Ghost convolution and 

deep convolution to replace the CSP network in YOLOv5, 

reducing computational complexity while maintaining the 

efficient feature extraction capability. Then, pruning 

optimization ensures the removal of redundant channels 

and convolutional layers without affecting performance, 

and stability after pruning is guaranteed through BN 

alignment. The optimized model transfers the knowledge 

of the teacher model to the student model through 

knowledge distillation, which can further improve the 

accuracy rate. Therefore, the GCD-YOLOv5 model after 

these optimizations can effectively adapt to the 

requirements of rapid object detection in actual scenarios 

such as tunnel pipe jacking construction. 

4 Validation of the pipe jacking 

obstacle recognition model based on 

lightweight YOLOv5 

4.1 Performance validation of the obstacle 

recognition model 
To evaluate the performance of the lightweight GCD-

YOLOv5 model, the study tested the model using the 

Common Objects in Context (COCO) dataset. This dataset 
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is a standard dataset widely used for object detection, 

instance segmentation, and keypoint detection. It contains 

80 object categories and hundreds of thousands of images, 

providing detailed annotation information such as 

bounding boxes and semantic segmentation masks. 

During training, the number of epochs was set to 50, the 

batch size to 32, the learning rate to 0.001, and the Adam 

optimizer was used. To ensure the reliability and 

robustness of the results, all models were independently 

trained five times, and the average of the results was taken 

to reduce the influence of accidental factors. In addition, 

data augmentation techniques such as random clipping, 

rotation and horizontal flipping were adopted during the 

training process to improve the generalization ability and 

adaptability of the model. The M-YOLOv5 model based 

on MobileNetV2, the S-YOLOv5 model based on 

ShuffleNetV2, the P-L-YOLOv5 model based on PP-

LCNet, the C-YOLOv5 model based on C3Ghost, and the 

original YOLOv5 model were used as comparisons. 

Among them, M-YOLOv5 adopts MobileNetV2 as the 

backbone network to reduce the computational calculation 

[23]. S-YOLOv5 is based on ShuffleNetV2, further 

reducing the computing resource consumption and was 

suitable for low-computation environments [24]. PL-

YOLOv5 adopts PP-LCNet to optimize the backbone 

network and improve accuracy and efficiency [25]. C-

YOLOv5 combines the C3Ghost backbone network and 

reduces memory usage and computational complexity 

through techniques such as pruning [26]. The original 

YOLOv5 serves as the benchmark model, providing 

comparisons with other optimized variants. Through the 

comparison of these variants, the impact of different 

optimization strategies on the model performance can be 

comprehensively evaluated, helping to select the most 

suitable scheme for the obstacle identification task in 

tunnel construction. The test configuration is shown in 

Table 2. 

 

Table 2: Specific configuration for the experiment 

Hardware environment Software environment 

Test environment Specifications Test environment Specific parameter 

CPU 
Intel(R) Xeon(R) 

Silver4215 
CUDA 10.2 

GPU NVDIA GTX 1080Ti CUDNN 8.0.4 

Operating system Windows11 Programming language Python 

Memory size 64G Edition Anaconda 3-5.2.0 

All models were tested under the same hardware and 

software environment. To verify whether the proposed 

model had advantages in lightweight characteristics, the 

floating-point operations and model size of each model 

were compared. The results are shown in Figure 7. 
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Figure 7: Comparison of lightweight indicators of various models 

 

As shown in Figure 7(a), the proposed GCD-

YOLOv5 model has the lowest number of parameters and 

floating-point operations, with only 0.8M±0.02M 

parameters and 2.5G±0.1G FLOPs, significantly 

outperforming the original YOLOv5 model and other 

optimized variants. Compared to the unoptimized model, 

the number of parameters was reduced by an average of 

88.6% (95% CI: [87.9%, 89.3%]), and the FLOPs were 

reduced by 84.2% (95% CI: [83.5%, 84.8%]), confirming 

the model's efficiency in memory utilization during 

runtime. As shown in Figure 7(b), among the six models, 

GCD-YOLOv5 achieved the smallest memory footprint at 

1.8MB±0.05MB and the shortest response time at 

19ms±0.8ms per image. Compared to the original 

YOLOv5, memory usage was reduced by 62.5% and 

response time by 90.1%. All models were tested across 
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five independent runs, and paired t-tests were applied to 

response time and memory usage. Results confirmed that 

the proposed model demonstrates statistically significant 

improvements in both metrics (p < 0.01), validating its 

lightweight performance advantages. To further evaluate 

the model's performance, the study analyzed the 

relationship between training epochs and accuracy, as 

shown in Figure 8. 
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Figure 8: Comparison of accuracy changes 

 

As shown in Figure 8, the accuracy of all models 

increases with the number of training epochs. At epoch 10, 

the accuracy of M-YOLOv5, S-YOLOv5, PL-YOLOv5, 

C-YOLOv5, and the original YOLOv5 was 20.2%, 18.4%, 

18.6%, 13.1%, and 18.2%, respectively. In contrast, the 

proposed GCD-YOLOv5 achieved 32.5%±1.2% accuracy 

at the same stage, significantly outperforming the others, 

indicating faster learning capability. After 100 epochs, the 

final accuracies were 87.0%±0.6% (M-YOLOv5), 

86.2%±0.7% (S-YOLOv5), 90.1%±0.5% (PL-YOLOv5), 

89.5%±0.6% (C-YOLOv5), and 80.2%±0.8% (YOLOv5), 

while the proposed GCD-YOLOv5 achieved the highest 

at 93.5%±0.4%. The 95% confidence interval for the 

GCD-YOLOv5 final accuracy was [92.9%, 94.1%], and 

paired t-tests showed statistically significant differences 

compared with all other models (p < 0.01). These results 

demonstrate that the proposed model offers both faster 

convergence and higher accuracy. 

 

3.2 Practical application of the obstacle 

recognition model 
After verifying the lightweight characteristics and 

recognition performance of the GCD-YOLOv5 model, the 

study further tested its performance in real-world 

applications using 2,667 images of tunnel pipe-jacking 

construction obstacles collected from actual construction 

processes. To ensure the accurate annotation of the 

obstacle images during the tunnel pipe jacking 

construction, this study adopted the method of manual 

annotation. During the annotation process, the types of 

obstacles in each image were classified according to the 

actual situation and labeled using bounding boxes. The 

specific types of obstacles marked include broken and 

weak surrounding rocks, high-stress rock strata, expansive 

surrounding rocks, water and mud gushing, dangerous 

gases, rockburst and surrounding rock deformation, other 

obstacles and surface settlement and collapse. After 

marking, there were 425 broken and weak surrounding 

rocks, 366 high-stress rock strata, 512 expansive 

surrounding rocks, 332 water and mud gushing, 254 

dangerous gas gushing, 163 rockburst and surrounding 

rock deformation, 295 other obstacles, and 320 surface 

settlement and collapse. The annotation process was 

carried out by two independent annotators, and Cohen's 

Kappa was adopted to measure the consistency among the 

annotators. The results show that the Cohen's Kappa value 

between the two annotators was 0.92, indicating high 

consistency and that the annotation results were reliable 

and accurate. To enhance the authenticity of the test results 

and adaptability to the actual construction environment, 

the study’s test environment simulated various condition 

changes that may occur during tunnel pipe jacking 

construction to ensure stable model application in harsh 

construction environments. To verify the accuracy and 

classification ability of the model, the confusion matrix 

and Precision-Recall (PR) curve of the correct recognition 

times of the GCD-YOLOv5 model were analyzed, as 

shown in Figure 9. 
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Figure 9: Confusion matrix and PR curve of the number of correct obstacle identifications 

 

Based on the updated confusion matrix calculations, 

the model performs well in most categories, especially in 

Soft Rock (SR) and Expansive Surrounding Rock (ER), 

with accuracy rates of 96.6% and 95.9%, respectively, 

demonstrating strong classification ability in these 

categories. The accuracy for Surrounding Rock (WR) and 

Settlement Collapse (SC) was 94.1% and 93.8%, 

indicating stable and reliable classification performance in 

these categories as well. However, the accuracy for Rock 

Bursts and Surrounding Rock Deformation (BD) and 

High-Stress Rock Layers (HG) was relatively lower, at 

87.0% and 83.5%, possibly due to the complexity or lower 

sample numbers of these categories, which leads to 

slightly weaker performance. Other Obstacles (OH) 

achieved an accuracy of 90.7%, showing stable 

classification results. Figure 9(b) shows the PR curves for 

different obstacle types. The area under the PR curve was 

the smallest for fractured weak surrounding rock at 0.834, 

while it was the largest for other obstacles at 0.975, 

demonstrating the model's robust classification 

capabilities. These results confirm that the proposed 

lightweight GCD-YOLOv5 model achieved high accuracy 

and robust classification performance in real-world 

applications. To further verify whether the proposed 

model outperformed other models in recognition accuracy, 

the study analyzed the number of correctly identified 

images for each model, as shown in Figure 10. 
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Figure 10: Statistics of the number of correct obstacle identifications 

 

As shown in Figure 10, the GCD-YOLOv5 model 

correctly identified 2,498 images, achieving an accuracy 

of 94.0%. In comparison, the M-YOLOv5, S-YOLOv5, P-

L-YOLOv5, and C-YOLOv5 models correctly identified 

2,360, 2,336, 2,459, and 2,408 images, with accuracies of 

88.5%, 87.6%, 92.2%, and 90.3%, respectively. All 

comparison models had lower accuracy than the proposed 

model. The original YOLOv5 model, without any 
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optimization, correctly identified only 2,150 images, 

achieving an accuracy of 80.6%, which was significantly 

lower than that of the proposed model. These results 

confirmed that the proposed model achieved higher 

accuracy than the other models in real-world applications. 

To verify whether the model's efficiency was improved in 

practical applications, the study analyzed the Image 

Recognition Speed (FPS) of each model when processing 

obstacle images, as shown in Figure 11. 
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Figure 11: Comparison of image recognition speed and completion rate 

 

As shown in Figure 11, when each model processes 

the obstacle images in actual construction, the FPS 

remains relatively stable. However, compared with the 

original YOLOv5 model, the FPS distribution of the 

proposed GCD-YOLOv5 model was narrower, indicating 

that it was more stable during operation. Specifically, the 

average FPS of the proposed model was 75, significantly 

higher than those of the other models. In contrast, the 

average FPS of the original YOLOv5 model when 

processing obstacle images was approximately 25 FPS, 

with the processing speed increasing by about 200%. To 

further verify the real-time performance of the model, the 

study decomposed the processing delay in detail. Among 

them, the image acquisition link took approximately 5ms, 

the preprocessing operation (such as image scaling and 

standardization) took approximately 10ms, the reasoning 

process took 15ms, and the post-processing (including 

non-maximum suppression) required approximately 4ms. 

Overall, the total processing delay was 34 ms, 

corresponding to 75 FPS, which proves that the proposed 

GCD-YOLOv5 model has high stability and real-time 

performance in actual scenarios. To comprehensively 

evaluate the detection performance of the GCD-YOLOv5 

model, this study compares it with four other models: M-

YOLOv5, S-YOLOv5, PL-YOLOv5, and C-YOLOv5, 

using the same test dataset. The evaluation metrics include 

mAP@0.5, mAP@0.5:0.95, Precision, Recall, and F1-

score. The comparison results are shown in Table 3. 

 

Table 3: Detection performance comparison of different models 

Model mAP@0.5 (%) mAP@0.5:0.95 (%) Precision (%) Recall (%) F1-score (%) 

M-YOLOv5 90.37 71.12 89.21 85.46 87.31 

S-YOLOv5 88.64 69.78 87.86 84.02 85.88 

PL-YOLOv5 91.43 73.36 90.68 86.81 88.67 

C-YOLOv5 89.91 72.04 89.63 85.57 87.42 

GCD-YOLOv5 93.62 76.24 92.41 89.38 90.42 

As shown in Table 3, the GCD-YOLOv5 model 

achieved 93.62% in mAP@0.5 and 76.24% in 

mAP@0.5:0.95, outperforming all other models. For 

precision, recall, and F1-score, GCD-YOLOv5 also ranks 

the highest with values of 92.41%, 89.38%, and 90.42%, 

respectively. In comparison, the best-performing 

alternative model, PL-YOLOv5, achieved 91.43% in 

mAP@0.5, 73.36% in mAP@0.5:0.95, 90.68% in 

precision, 86.81% in recall, and 88.67% in F1-score. The 

other models show relatively lower results across most 

metrics. In addition, one-way ANOVA and paired t-tests 

were conducted on mAP@0.5 and F1-score across the five 

models. The statistical analysis indicates that GCD-

YOLOv5 shows significant differences compared to the 

other models in both metrics (p < 0.01), confirming its 

advantage in overall detection performance. 

 

5  Discussion 
In this study, the performance of the GCD-YOLOv5 
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model was compared with C-YOLOv5, M-YOLOv5, and 

P-L-YOLOv5 on real-world tunnel images. The 

experimental results show that GCD-YOLOv5 

outperforms the other models in both accuracy and 

processing speed. GCD-YOLOv5 achieved an accuracy of 

94.0%, which was approximately 5.5%, 6.3%, and 3.5% 

higher than C-YOLOv5, M-YOLOv5, and P-L-YOLOv5, 

respectively. Furthermore, GCD-YOLOv5 operates at 75 

FPS, significantly higher than the original YOLOv5 and 

other optimized models, demonstrating superior real-time 

processing capability. The superior performance of GCD-

YOLOv5 can be attributed to its optimized architecture. 

We replaced the CSP network in YOLOv5 with Ghost 

Convolution and Depthwise Convolution networks. This 

architectural optimization effectively reduces 

computational load and parameter count while retaining 

efficient feature extraction capabilities, thereby improving 

both accuracy and speed. Additionally, GCD-YOLOv5 

combines pruning with knowledge distillation during the 

training process, effectively mitigating the slight accuracy 

loss caused by pruning and ultimately achieving higher 

accuracy and smaller memory usage. In terms of model 

optimization, GCD-YOLOv5 adopts the a-IOU loss 

function and BN alignment techniques. These 

optimizations improve the model's stability and ensure 

that, even with significant pruning, the model can 

maintain high detection accuracy. Compared to other 

models, these innovative optimizations make GCD-

YOLOv5 more suitable for real-world applications such 

as tunnel jacking, where rapid response and accurate 

obstacle detection are essential. 

However, the advantages of GCD-YOLOv5 come 

with trade-offs. Although pruning and knowledge 

distillation optimize the model’s computational efficiency, 

pruning in the early stages of training can lead to a slight 

drop in accuracy. Particularly in the initial epochs, large-

scale pruning results in some accuracy loss. However, this 

loss was recovered through subsequent training and 

knowledge distillation, allowing the model to achieve a 

balance between accuracy and efficiency in the end. In 

conclusion, GCD-YOLOv5 achieved high accuracy while 

optimizing computational efficiency through architectural 

improvements, pruning, and knowledge distillation. While 

pruning may result in a slight decrease in accuracy in the 

early stages, it was eventually compensated for, making 

GCD-YOLOv5 highly advantageous in practical 

applications such as tunnel jacking construction, where 

real-time performance and accuracy were crucial, 

especially in resource-constrained environments. 

6  Limitations and future research 

Although the GCD-YOLOv5 model performs well 

on the GTX 1080Ti platform, it has not yet been tested on 

mobile-class GPUs or edge devices (such as Jetson 

boards), so the model's performance on resource-

constrained devices has not been fully validated. Future 

research will focus on performance testing on mobile 

GPUs and Jetson platforms to ensure the model's 

adaptability and stability. Additionally, future work could 

explore hardware acceleration optimizations (such as 

TensorRT, OpenVINO) to improve inference speed on 

edge devices and consider transfer learning across 

different hardware platforms to enhance the model's cross-

platform generalization. Furthermore, this study did not 

incorporate visualizations such as Grad-CAM due to the 

limitations of the current experimental environment, 

which does not support the extraction and processing of 

intermediate feature layers. Future work will consider 

integrating adaptable visualization techniques on more 

flexible testing platforms to enhance the model’s 

interpretability and result clarity. Lastly, the model relies 

on well-lit and clear images, and environmental factors 

such as low lighting or complex backgrounds may affect 

detection accuracy. When facing new types of obstacles, 

additional training and optimization may be required. 

Therefore, future research could introduce a more diverse 

dataset to improve the model's robustness and explore 

transfer learning-based solutions to better generalize the 

model to unknown obstacle types. 

7  Conclusion 
To address the issues of model complexity and long 

processing time in obstacle recognition for tunnel pipe 

jacking construction, this study developed a lightweight 

model based on GCD-YOLOv5. The model replaced the 

CSP network with the GCD network and optimized output 

results using the a-IOU function. Additionally, pruning 

and knowledge distillation were applied to achieve model 

lightweighting. The test results showed that the proposed 

model achieved significantly higher accuracy than the 

unoptimized YOLOv5 model. The model had 0.8M 

parameters, 2.5G floating-point operations, a size of 

1.8MB, and a response time of 19ms per image, all of 

which outperformed the compared models. In the 

recognition of actual tunnel pipe jacking construction 

obstacles, the model achieved an accuracy of 94.0% and a 

processing speed of 75 images per second, enabling fast 

and accurate obstacle classification in practical 

applications. In summary, the GCD-YOLOv5-based 

obstacle recognition model effectively met the lightweight 

requirements of harsh construction site conditions while 

maintaining considerable accuracy. 
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