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With the continuous advancement of deep learning technology, video forgery technology brings serious 

negative social impacts. However, existing video forgery detection technologies suffer from low detection 

accuracy, poor feature extraction capabilities, and insufficient robustness. Therefore, the study proposes 

two video forgery detection models based on Improved Efficient-Net and multi-modal feature fusion. The 

Improved Efficient-Net model utilizes structural similarity coefficients to enhance the video images and 

introduces a hybrid attention module in the Efficient-Net. The multi-modal feature fusion model uses the 

red, green, and blue domains of the image, the frequency domain, and the optical flow field features for 

fusion, and uses a hybrid loss function to weight all the loss function errors. The experiment shows that 

the maximum recognition accuracy of the improved Efficient-Net in the FaceForensics++ dataset is 

98.57%, which is 6.24% as well as 9.53% higher than the baseline Efficient-Net and Convolutional Visual 

Transformer models, respectively. In the FaceForensics++ dataset, the multi-modal feature fusion model 

is able to achieve a recognition accuracy of 99.26%. In the BioDeepAV dataset, the multi-modal feature 

fusion model has a maximum decrease in recognition accuracy of 20.57%, which is 2.81% less than the 

benchmark Efficient-Net model, and the recognition accuracy is still the highest among all models. 

Therefore, the improved model can validly improve the accuracy of forged video identification, improve 

the efficiency of Internet supervision, and reduce the social harm of video forgery. 

Povzetek: Predstavljen je izboljšan EfficientNet z SSIM-okrepljeno predobdelavo in hibridno pozornostjo 

ter večmodalno fuzijo (RGB/frekvenčno/optical flow) za ugotavljanje ponarejenih video posnetkov. 

 

1 Introduction 
The continuous development of computer technology, 

especially the full promotion of smartphones, has led to a 

continuous growth in the number of global Internet users, 

which is expected to reach 5.5 billion by the end of 2024 

[1]. The number of Internet users in China has increased 

from 989 million in 2020 to 1.079 billion in 2023, and the 

Internet penetration rate has reached 77.5% [2]. Owing to 

the relatively brief duration of some individuals' internet 

usage, they frequently exhibit a deficiency in discernment 

capabilities, thereby rendering them particularly 

susceptible to exploitation by malefactors [3]. Unruly 

elements fake videos to impersonate celebrities or their 

family members to commit fraud [4]. Unlawful elements 

may also replace faces in different images by forging face 

videos, wantonly violating other people's privacy and 

portrait rights, and making false videos to spread online 

rumors [5]. With the development of deep learning 

technology, the technology of video forgery has become 

more mature, but the existing video forgery detection 

algorithms Convolutional Neural Network (CNN), 

Generative Adversarial Networks (GAN), and Diffusion 

model all have feature extraction capability. Models all  

 

 

 

suffer from poor feature extraction capability and lack of 

robustness [6]. 

To address the problem of fake face detection, 

Kiruthika et al. proposed a new feature detection method 

in order to improve the effectiveness of face image forgery 

detection. The method utilized the discriminative 

information hidden in the frequency domain of image 

quality assessment to extract image quality features from 

both the frequency and spatial domains. Experiments 

showed that the method was able to achieve 99% accuracy 

in forged image recognition in different standard datasets 

and was highly generalizable [7]. Xue et al. proposed a 

new global-local facial fusion network in order to reduce 

the dependence of existing methods on image artifacts and 

generated traces. This network utilized local physiological 

features and global perceptual features to detect forged 

traces locally, and employed residual connectivity 

globally to distinguish between true and false images. 

Experiments showed that this network had higher 

robustness and generalization than single class detection 

methods [8]. Wang et al. proposed a new dual-stream 

CNN framework for eliminating the threat of forged 

images. The framework randomly erased sample data at 

the preprocessing node of the three primary color image 
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streams, focused on the fingerprint difference of the 

image, and constructed the feature image in the optical 

response  

Table 1 Summary of relevant information of relevant studies 

Literature Research topic Backbone model Datasets used Accuracy Limitations 

Literature [7] 
Face image 
forgery detection 

Feature Detection 

Method Based on 
Image Quality 

Assessment 

CelebA-DF 99% 
Poor detection of 
specific forgeries 

Literature [8] 
Image artifacts 
and generating 

traces detection 

Global-Local Facial 

Fusion Network 
FaceForensics++ 94.27% 

Risk of information 

loss or overfitting 

Literature [9] 
Fake Image 

Detection 

Dual-stream CNN 

framework 
In-the-Wild 98.07% 

High impact of 

environmental 
factors 

Literature [10] 
Fake Face Video 

Detection 
CNN MSU MFSD 95.04% 

Sensitive to light 

conditions 

Literature [11] 

Determining the 

authenticity of 
face images 

Multi-channel CNN 
ProGAN generated fake face 

dataset 
92.46% 

Insufficient 

generalization 

ability to unknown 

attack patterns 

Literature [12] 
Deep Fake Video 

Detection 
Capsule Network FFHQ 95.82% 

High computational 

complexity 

Literature [13] 
Analyzing facial 
motion 

inconsistencies 

CNN DeepFake Detection Challenge 87.04% 
Insufficient 
adaptability on new 

datasets 

Literature [14] 

Fake Face 

Detection 

Performance 
Evaluation 

EfficientNet FFHQ 96.72% 

Lack of 

comprehensive 
evaluation of 

multiple forgery 

methods 

This text 
Video forgery 

detection 
Efficient-Net 

FaceForensics++ and 

BioDeepAV 
99.26% / 

 

non-uniform stream, which directed the network to focus 

on the image pixel value changes. Experiments showed 

that the framework achieved excellent accuracy and 

generalization across multiple datasets [9]. Alkishri et al. 

proposed a new deep learning detection method in order 

to improve the accuracy of detection of fake face videos. 

The method used CNN to identify the real and fake images 

by recognizing the differences in image color features, and 

used MSU-MFSD dataset to explore the color texture and 

extract the facial features in different color channels. 

Experiments showed that the method was effective in 

recognizing fake face videos on social platforms [10]. Li 

et al. proposed a new generation method to reduce the 

social hazards of face generation techniques. The 

proposed approach employed a solitary classification 

model to ascertain the authenticity of facial images. In 

parallel, it leveraged a suite of filter-based enhancement 

techniques for data augmentation, and further utilized an 

optimized multi-channel CNN as the core network 

architecture. Experiments showed that the method 

improved cross domain detection efficiency while 

maintaining source domain accuracy [11]. Arunkumar et 

al. proposed a new deep learning face forgery detection 

method for the detection of deep forgery videos. The 

method utilized fuzzy Fisher face and capsule biplot to 

detect different types of forged images using datasets such 

as FFHQ. Experiments showed that the forged image 

recognition accuracy of the existing and proposed systems 

were 81.5%, 89.32%, 91.35%, and 95.82%, respectively, 

which could effectively improve the recognition accuracy 

[12]. Altaei et al. proposed a detection method based on 

CNN in order to effectively control the hazards of the 

forged face videos. The method first converted the image 

to YCbCr color space and then input gamma correction. 

Edge detection was extracted by inputting Canny filter and 

CNN was used as a classifier. Experiments showed that 

the method could obtain high accuracy in forged video 

recognition [13]. 

In summary, existing methods have explored 

detection methods for fake facial videos from multiple 

perspectives and have achieved certain research results. 

However, there are still problems such as insufficient 

detection accuracy, poor feature extraction ability, and 

insufficient robustness. Therefore, a video forgery 

detection model based on multi-modal features and 

Efficient-Net is proposed, which innovatively enhances 

video images using structural similarity coefficients, 

introduces a mixed attention module, and fuses the Red-

Green-Blue (RGB), frequency, and optical flow field 

features of the images. The mixed loss function is used to 

weight all loss function errors. The research aims to (1) 

further improve the detection accuracy of forged face 

videos by introducing a hybrid attention module in 

Efficient-Net, (2) improve the generalization and 

robustness of the model through multi-modal feature 

fusion, and (3) in the validation of multiple datasets, all of 

the proposed methods of the research are able to 

effectively identify the forged videos and reduce the social 

hazards of the face-forgery videos. Based on the above 

related studies, Table 1 summarizes the research  

https://www.baidu.com/s?rsv_dl=re_dqa_generate&sa=re_dqa_generate&wd=BioDeepAV%E6%95%B0%E6%8D%AE%E9%9B%86&rsv_pq=b1d7f468000b58d7&oq=%E7%8E%B0%E6%9C%89%E7%9A%84%E4%BC%AA%E9%80%A0%E8%A7%86%E9%A2%91%E8%AF%86%E5%88%AB%E7%9A%84%E6%95%B0%E6%8D%AE%E9%9B%86%E6%9C%89%E5%93%AA%E4%BA%9B&rsv_t=afa4vSiqY2Enqka4/A1H/yxED83zdb68PJN38JvJZI4irk+Lh0pdQJsWkzbyjhTYvujZmtY&tn=34046034_10_dg&ie=utf-8
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Figure 1: Specific operation flow of face image enhancement algorithm. 

 

topics, backbone models, datasets used, accuracy and 

limitations of the related studies. 

In Table 1, the existing methods explore the detection 

methods of forged face images or videos from several 

aspects and achieve better detection accuracy. However, 

the detection effect of unknown forgery methods is not 

satisfactory and other problems. Meanwhile, the high 

computational complexity of some methods affects the 

real-time of forged video detection. Consequently, this 

research innovatively employs structural similarity 

coefficients to augment the quality of video images. 

Moreover, it introduces a hybrid attention module, which 

integrates the red, green, and blue channels of the image, 

along with features from the frequency domain and the 

optical flow field. Additionally, all the errors in the loss 

functions are weighted using a hybrid loss function. The 

proposed method of the study can effectively improve the 

detection accuracy of localized face videos. 

2 Methods and materials 

2.1 Video falsification monitoring based on 

Efficient-Net 

When conducting video forgery monitoring, it is 

necessary to extract the features of the input image, among 

which facial image features are the most important. 

Through the subtle judgment of facial images, it is 

possible to effectively authenticate the authenticity of 

videos, while reducing the complexity of computations 

involved in the model and improving the calculation speed 

[14]. The research needs to first perform frame 

segmentation on the video, locate the facial images in the 

video, and then extract relevant feature data. The study 

proposes a data preprocessing algorithm for face image 

enhancement to lay the foundation for subsequent forgery 

video detection. The study first uses Structural Similarity 

Index (SSIM) to determine the similarity between the 

images and then compares the quality of the images before 

and after compression, the SSIM coefficients are 

calculated as shown in equation (1) [15]. 

( )( )

( )( )
1 2 1 1 2 2

2 2 2 2

1 2 1 1 2 2

2 2K K
SSIM

K K

   

   

+ +
=

+ + +
 (1) 

In equation (1), SSIM  represents the SSIM, 
1  

means the average value of the grayscale image before 

compression, 
2  means the average value of the grayscale 

image after compression, 
1  means the variance of the 

grayscale image before compression, 
2  means the 

variance of the grayscale image after compression, 
1K  

and 
2K  both represent constants. The facial image 

enhancement algorithm enhances the image data by 

continuously generating occlusions on the facial image. 

The detailed procedural steps of the facial image 

enhancement algorithm is in Figure 1. 

In Figure 1, the facial images are extracted from real 

and fake videos, the SSIM between the two images is 

calculated, and a differential mask is generated through 

the coefficient. The algorithm performs sensory 

segmentation on facial features, performs convex hull 

segmentation on facial contours, erases remaining areas of 

the image, and randomly erases the image using fixed area 

rectangular regions. When performing convex hull cutting 

on facial contours, multiple points are randomly selected 

from the contour keypoints, and each point is connected to 

form an irregular polygon. The area calculation of the 

polygon is shown in equation (2) [16]. 
1 1

1 1 1 1 1 10.5 n n

i i i n i i i nS x y x y x y x y− −

= + = += + − −   (2) 

In equation (2), S  mean the area of the irregular 

polygon, n  mean the total number of randomly selected 

points, 
ix  represents the x axis coordinates of the i th 

point, and 
iy  mean the y  axis coordinates of the i th 

point. After obtaining the processed dataset for facial 

image enhancement, the study improved the Efficient-Net 

and constructed a related video forgery detection model. 

The specific structure of the video forgery detection model 

is shown in Figure 2. 

In Figure 2, the model is divided into three modules: 

the preprocessing module using facial image enhancement 

algorithm, the Efficient-Net module, and the final 
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classification module. The data processed by the 

preprocessing module is re-sized and input into the  
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Figure 2: Specific structure of video forgery detection model for improved Efficient-Net. 
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Figure 3: Particular configuration of the hybrid attention module. 

Efficient-Net module, which includes two layers of 

ordinary convolution and seven layers of MBConv. 

Finally, it is connected to the classification module 

through a fully connected layer (FCL). MBConv cannot 

quickly complete calculations when the image size is 

large, and the deep convolution speed is slow in the early 

layers. Therefore, the study introduces a hybrid attention 

module in the MBConv layer, using channel attention and 

spatial attention to calculate the weights of all input image 

information, and then applies the learned weights to the 

initial image. The particular configuration of the hybrid 

attention module is in Figure 3. 

In Figure 3, the hybrid module incorporates MBConv 

located in the first three layers, with channel attention at 

the front and spatial attention at the back, connected in 

series. The study starts with channel attention processing 

of the input feature maps, which is able to learn the 

importance of each channel and re-calibrate the channels 

of the feature maps, which is able to efficiently compress 

the dimensions of the feature maps and reduce the amount 

of computation while maintaining the spatial information. 

After the channel attention, the spatial attention module 

further processes the feature map in the spatial dimension. 

At this time, the number of channels of the feature map 

has been filtered and adjusted by the channel attention, and 

the more important channel features are retained. 

Performing the channel attention calculation first can 

provide a more instructive feature map for the subsequent 

spatial attention module. The feature images processed by 

convolution are subjected to max pooling and average 

pooling operations, and the spatial information of the 

images is combined through an FCL. The generated 1*1 

convolutional image is weighted and an activation 

function is used to generate the final channel attention 

image. In the spatial attention module, the channel 

attention output features are subjected to max pooling and 

average pooling operations respectively. The obtained two 

types of communication are concatenated into channels, 

and the resulting image is convolved to compress the 

channel size to 1. The final feature map is obtained 

through an activation function. The calculation of channel 

attention is shown in equation (3) [17]. 

( ) ( )2 1 1 2 maxavgCa w w F w w F  = +
   (3) 

In equation (3), Ca  represents channel attention 

calculation,   represents Sigmoid activation function, 
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1w  represents the average pooling image stitching weight 

in the FCL, 
2w  represents the maximum pooling image  

Table 2: Architectural changes between the improved model and the baseline Efficient-Net model 

Parameter EfficientNet-B0 EfficientNet-B4 Parameter EfficientNet-B0 EfficientNet-B4 

Input Resolution 224×224 380×380 Dropout rate 0.2 0.4 

Width factor 1.0 1.4 Drop connect rate 0.2 0.2 

Depth factor 1.0 1.8 
Hybrid Attention 
Layer 

0 3 

Number of MBConv 

modules 
16 7 Channel Attention 0 3 

Number of 
parameters 

5.3M 19M Spatial attention 0 3 

FLOPs 0.39B 4.2B / / / 
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Figure 4: Specific structure of video forgery detection model for multimodal feature fusion. 

stitching weight in the FCL, 
maxF  represents the average 

pooling operation, and avgF  means the maximum pooling 

operation. The spatial attention calculation is shown in 

equation (4). 

( )7 7

max,avgSa f F F  =
   (4) 

In equation (4), Sa  represents spatial attention 

calculation, 
7 7f 

 represents convolution calculation, and 

the size of the convolution kernel is  7 7 . The final 

generated spatial attention map is element wise multiplied 

with the channel attention output features to obtain a new 

output feature map. Video forgery detection can be viewed 

as a straightforward binary classification problem aimed 

at distinguishing authenticity. The study refines the output 

of the Efficient-Net by integrating it into a binary 

classification layer. The classification component 

aggregates the final output data from the Efficient-Net 

module to generate the output feature map. This feature 

map is then compressed to 108 dimensions using two 

FCLs. Subsequently, the Softmax activation function 

layer is employed to achieve the final binary classification 

of authenticity. The model's loss function utilizes the 

cross-entropy loss function, computed as illustrated in 

equation (5). 

( ) ( ) ( )
1

1
log 1 log 1

N

i i i i

i

L X p X p
N =

= − + − −    (5) 

In equation (5), L  means the cross entropy loss 

function, N  means the total number of facial images in 

the input video, 
iX  means the i th facial sample, 

ip  

means the probability of the i th facial sample being 

predicted to be true. In the binary classification module, if 

the video is true, the output is 0, and if the video is false, 

the output is 1. The Efficient-Net model variant used in 

the study is Efficient-Net-B4, and the architectural 

changes between the improved model and the baseline 

Efficient-Net model are shown in Table 2. 

In Table 2, the Improved Efficient-Net model has 

been extended and enhanced in several ways, with higher 

input resolution and the ability to capture more image 

detail. The increase in the width and depth coefficients of 

the improved model makes the model more expressive and 

able to learn more complex features. Also the increased 

number of attention layers and coefficients demands more 

computational resources. 

2.2 Video forgery detection based on 

multi-modal feature fusion 

When conducting video forgery detection, in addition to 

focusing on the characteristics of the facial image, it is also 

necessary to consider the temporal relationship before and 

after the video. However, the improved Efficient-Net's 

forgery facial video monitoring model does not consider 

the issue of video timing, making it more suitable for 

image monitoring. Therefore, the study uses multi-modal 

feature fusion for video forgery detection. The images 

used in the multi-modal feature fusion model are also 

processed by face image enhancement algorithm. The 
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study fuses the RGB domain, frequency domain, and 

optical flow field features of the processed images and 

finally classifies them through the Transformer model. 

The specific flow  
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Figure 5: Specific structure of multi-modal feature fusion module. 

of the video forgery detection model using multi-modal 

feature fusion technique is shown in Figure 4. 

In Figure 4, the facial information extracted from the 

video is input into the model. Pyramid cascade and 

correlation network are used to extract the optical flow 

field between different frames of the video, and discrete 

cosine transform is used to obtain frequency domain 

information. The discrete cosine transform is used in video 

processing for its energy concentration, real arithmetic 

efficiency, boundary processing friendliness and 

sensitivity to local features. The fast Fourier transform is 

more suitable for scenarios that require global frequency 

analysis, such as communication signal processing. The 

discrete cosine transform in video forgery detection can 

capture the tampering traces of inter-frame flickering 

more accurately. In this study, the pre-enhanced Efficient-

Net-B4 network is utilized to independently extract 

features from the frequency-domain map, the RGB map, 

and the optical-flow field image. Subsequently, the 

features extracted from the frequency-domain map and the 

RGB map are concatenated along designated dimensions. 

Following this, the concatenated feature maps undergo 

multi-modal feature fusion with the optical-flow field 

feature maps. The model fuses the frequency domain map 

and RGB map first because both are based on the spatial 

information of a single frame, and the fusion can directly 

enhance the spatial sensitivity of the model to the forged 

region in a single frame image. The optical flow field 

feature map is integrated at a later stage due to its 

association with the temporal dimension. This sequential 

fusion approach, where spatial features are amalgamated 

first followed by the incorporation of temporal dynamic 

features, aligns with the detection logic of "first 

pinpointing spatial anomalies and subsequently validating 

the rationality of the temporal sequence". The processed 

image is convolved and input into the Transformer model 

for binary classification. The Efficient-Net model is better 

at extracting local features from high-resolution images 

and has much lower computational complexity than the 

Transformer, which processes raw pixels directly, enables 

the Transformer to focus on learning global dependencies 

across modalities and regions, and avoids redundant low-

level feature computation. When extracting frequency 

domain features of an image, a filter can be used to divide 

it into three frequency bands, as shown in equation (6) 

[18]. 

( ) , 1,2,3i

i baseF D X f i= =  (6) 

In equation (6), 
iF  represents the extracted frequency 

domain features, D  represents the discrete cosine 

transform, X  represents the input image, and 
i

basef  

represents the filter processing. After feature extraction is 

completed, the image is converted back to the spatial 

domain through the application of an inverse discrete 

cosine transform, as shown in equation (7) [19]. 

( )1 , 1,2,3i iF D F i−= =  (7) 

In equation (7), 
'

1F  represents spatial domain image 

features and 1D−  represents inverse discrete cosine 

transform. The study uses channel aggregation to form 

frequency domain feature maps of three frequency bands, 

and the transformed images have the same size. In multi-

modal feature fusion, the study utilizes the Query, Key, 

Value (QKV) mechanism in the attention layer. Firstly, a 

convolutional kernel is used to embed two types of feature 

maps into the QKV space. The spatial size of the feature 

maps remains unchanged, and then they are converted into 

two-dimensional features. The output value of the multi-

modal fusion module is calculated, as shown in equation 

(8). 

0.25 0.25

T

fusion

QK
F soft V

H W C

 
=  

  
 (8) 

In equation (8), fusionF  means the output of the fusion 

module, soft  means the activation function, Q  stands 

for the Query vector, K  for the Key vector, T  for the 

matrix transpose, V  for the Value vector, H  for the 

image's height, W  for its width, and C  for the number of 

channels. The specific structure of the multi-modal feature 

fusion module is shown in Figure 5. 

In Figure 5, two types of feature maps are convolved 

by 1*1 and embedded into the QKV space, flattening the 

multidimensional features into two dimensions. The two 

types of data are concatenated together by level 

multiplication, activated by the Softmax function, and 

then multiplied with the third type of data to obtain the 

output value of multi-modal feature fusion. The data from 

the fusion module undergoes convolutional 

dimensionality reduction processing before being input 

into the Transformer module. The specific structure of the 

Transformer module is in Figure 6. 
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Figure 6: Specific structure of Transformer module. 

In Figure 6, the Transformer module is categorized 

into two parts: the encoder and the decoder. The input data 

is position encoded and then input into the structure of 

both parts. The encoder consists of multiple multi-head 

attention layers, fully connected feed-forward layers, 

residual connections, and layer normalization layers. The 

encoder data is connected to the decoder after the first 

residual connection, and the final data is output after 

passing through the FCL. The study uses Transformer 

with a header of 8, a layer of 6, an attention dimension of 

512, a filtering parameter set to 0.1, a patch size of 7×7, 

and a sequence length of 64. The calculation of the 

attention layer is in equation (9) [20]. 

T

k

QK
Attention soft V

d

 
=  

 
 

 (9) 

In equation (9), Attention  represents the attention 

score and 
kd  means the dimension of the Query vector. 

The output calculation of the fully connected feed-forward 

layer is in equation (10). 

( ) ( )1 1 2 2FFN X XW b W b= + +  (10) 

In equation (10), ( )FFN X  means the output of the 

feed-forward FCL,   denotes the activation function, X  

signifies the input matrix, 
1W  stands for the first layer's 

weight matrix, 
1b  represents the first layer's bias vector, 

2W  indicates the second layer's weight matrix, and 
2b  

signifies the second layer's bias vector. The video forgery 

detection model based on multi-feature fusion uses a 

mixed loss function to weight the errors of all loss 

functions. In binary classification tasks, the probability of 

the Softmax activation function outputting a true video is 

calculated as shown in equation (11). 

( )
( )
1 1

1 2

1

exp

exp

T

T

i i i

W x b
p

W x b=

+
=

+
 (11) 

In equation (11), 
1p  means the probability of the 

video being true, x  represents the input features, 
iW  

means the weight matrix of the i th layer, 
ib  means the 

bias vector of the i th layer, and the probability of the 

output video being fake is calculated as shown in equation 

(12). 

( )
( )
2 2

2 2

1

exp

exp

T

T

i i i

W x b
p

W x b=

+
=

+
 (12) 

In equation (12), 
2p  represents the probability that 

the video is fake. The model introduces a face recognition 

loss function when learning facial boundary features. This 

loss function improves the model's capability to 

distinguish similar faces through additive angle boundary 

loss, and is more sensitive to the surrounding 

environment's lighting intensity and facial expressions. 

The calculation is shown in equation (13). 
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In equation (13), faceL  represents the face recognition 

loss function, N  means the total number of samples, s  

represents the scaling factor, m  represents the boundary 

angle, used to increase the distance between categories. 

iy  means the angle between the feature vector 
ix  of the 

sample i  and the weight vector 
iyw  of the corresponding 

category 
iy . j  represents the angle between the feature 

vector 
ix  of the sample i  and the weight vector jw  of the 

corresponding category j . The study uses a single center 

loss function to control the discreteness between real and 

fake portraits, as calculated in equation (14). 

( )max ,0s t t cL S S S m D= + − +  (14) 

In equation (14), 
sL  represents the single center loss 

function, 
tS  represents the Euclidean distance between 

the center point and the real image, 
cS  represents the 

Euclidean distance between the center point and the fake 

image, m  represents hyperparameters, and D  represents 

feature dimensions. The total loss function is calculated as 

represented in equation (15). 

1 2z face s softL L L L = + +  (15) 
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# Simplified Pseudocode

# Multimodal Fusion

def fuse(rgb, freq, flow):

    feats = [extract(x) for x in [rgb, freq, flow]]

    return attend(*feats)

# Compact Transformer

def classify(x):

    x = embed(x) + pos_enc()  # Combined embedding

    x = [transformer(x) for _ in range(2)][-1]  # 2 layers

    return softmax(head(x))

# Optimized Training

cfg = dict(lr=1e-4, bs=128, epochs=30)

model = compose(fuse, classify)

opt = Adam(cfg['lr'])

for _ in range(cfg['epochs']):

    for batch in data_loader(cfg['bs']):

        loss = cross_entropy(model(batch), targets)

        opt.step(loss)

    test(model)

 

Figure 7: Pseudo-code of the model proposed by the study. 

In equation (15), 
zL  means the total loss function, 

1  

means the weight coefficients of the face recognition loss 

function, 
2  represents the weight coefficients of the 

single center loss function, and softL  represents the 

Softmax loss function. The pseudo-code of the proposed 

model is shown in Figure 7. 

3 Results 

3.1 Experimental analysis of fake face 

video monitoring based on efficient-Net 

The experiment selected the FaceForensics++ dataset 

created by researchers from Germany and Italy, which 

contains 1000 relevant initial facial video data and derived 

fake videos, with quality ranging from low to high. The 

initial learning rate of the improved model was 1e-4, the 

termination learning rate was 1e-8, the learning rate 

decayed to 1/8 of the original after every 5 epochs, the 

batch_size was set to 128, and the epoch was set to 30. The 

Adam optimizer was used, and the parameters of the 

optimizer were set to 0.9 and 0.999, respectively. The 

study divided the FaceForensics++ dataset into a training 

set and a testing set in an 8:2 ratio. The amount of video 

in the training set was 800 segments, and the amount of 

video in the test set was 200 segments, both with a frame 

rate of 30 fps The frame rate of video in the subsequent 

dataset used was also 30 fps. Upon the completion of data 

segmentation, the video underwent a series of data-

augmentation operations, including random cropping, 

color dithering, illumination adjustments, and random 

rotation. The comparison algorithms for the experiments 

included the regular Efficient-Net as well as the 

Convolutional Vision Transformer (CViT). The CViT 

model utilized a hybrid architecture consisting of a 

backbone network, Efficient-Net, a mid-layer 

Transformer module, and a multi-scale feature fusion 

module. The attention mechanism used local self-attention 

and cross-modal attention. The training configuration was 

the same as in the study of the proposed method. The 

CViT model could efficiently perform multi-modal fusion 

and realize lightweight deployment. It could effectively 

accomplish real-time detection of forged videos and was 

suitable for resource-constrained environments. The 

comparison of the loss function variation trends of 

different methods is shown in Figure 8. 

In Figure 8 (a), Improved Efficiency Net had the 

fastest convergence speed and tended to converge after 22 

iterations. The minimum loss function value was 0.47, 

which was 2.86 and 0.92 lower than Efficiency Net and 

CViT, respectively. In Figure 8 (b), the convergence 

position of the Improved Efficiency Net remained 

basically unchanged, and the minimum loss function 

values of the three models increased. However, the 

Improved Efficiency Net had the smallest increase, with 

values 1.59 and 1.03 lower than the other two models. The 

comparison of the accuracy of counterfeit video 

recognition using different methods is shown in Figure 9. 

In Figure 9 (a), the maximum accuracy of the 

Improved Efficiency Net model was 98.57%, which was 

6.24% and 9.53% higher than the Efficiency Net and 

CViT models, respectively. In Figure 9 (b), in the test set,  

https://www.baidu.com/s?rsv_dl=re_dqa_generate&sa=re_dqa_generate&wd=FaceForensics++数据集&rsv_pq=cdd05cd300026fe2&oq=伪造视频识别的数据集有哪些&rsv_t=9c693MtY+BKRX9XKsE1I7Qrv3TMR8CHHDA9osVDimuSqtpaVKh4xswjrdtuAjF733/RvSyI&tn=34046034_10_dg&ie=utf-8
https://www.baidu.com/s?rsv_dl=re_dqa_generate&sa=re_dqa_generate&wd=FaceForensics++数据集&rsv_pq=cdd05cd300026fe2&oq=伪造视频识别的数据集有哪些&rsv_t=9c693MtY+BKRX9XKsE1I7Qrv3TMR8CHHDA9osVDimuSqtpaVKh4xswjrdtuAjF733/RvSyI&tn=34046034_10_dg&ie=utf-8
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Figure 8: Comparison of the trend of the loss function for different methods. 
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Figure 9: Comparison of forged video accuracy of different methods. 

Table 3: Performance comparison of adding hybrid attention modules at different locations in Efficient-Nets 

Add location Accuracy (%) Recall (%) F1 AUC (%) 

1 layer 95.14 93.25 0.92 97.18 

1-2 layer 96.85 95.37 0.95 98.54 

1-3 layer 98.57 98.14 0.98 98.32 

1-4 layer 98.26 97.56 0.97 98.15 

1-5 layer 95.17 94.28 0.94 95.35 

1-6 layer 93.08 93.11 0.92 92.07 

1-7 layer 92.65 93.05 0.91 91.86 

 

the accuracy of all three models decreased, and the 

maximum accuracy of the Improved Efficiency Net model 

was 7.64% and 11.29% higher than the other two models, 

respectively. Mixed attention modules were added to the 

seven layers of MBConv in the Efficient-Net for ablation 

experiments, and the performance changes of the model 

were observed as represented in Table 3. 

In Table 3, when a mixed attention module was added 

to the first three layers of MBConv in the Efficient-Net, 

the model achieved optimal accuracy, recall, F1 score, and 

AUC. When the mixed attention module was added in the 

fourth layer, the performance of the model decreased 

slightly. When the attention module was added in 

subsequent layers, the performance decreased 

significantly, indicating that the feature map output by the 

model was too small, which would affect the receptive 

field size obtained by subsequent modules, thereby 

reducing the model performance and resulting in a 

reduction of the accuracy of fake video recognition. 

Therefore, adding a mixed attention model in the first 

three layers of the model yielded the best results. The 

ablation experiments for the sequential ordering of 

channel and spatial attention in the hybrid attention 

module are shown in Table 4. 
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Table 4: Comparison of ablation experiments for channel and spatial attention sequencing 

/ Accuracy (%)  Recall (%)  F1  AUC (%)  

Channeled Attention in 

Front 
98.57  98.14  0.98  98.32  

Spatial attention comes 

first 
90.26 89.72 0.90 92.54  

Channel attention only 79.53  76.35 0.81 80.15 

Spatial attention only 72.39 70.18 0.75 73.67 
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Figure 10: Comparison of accuracy of forged video recognition by different methods. 

In Table 4, the model was able to achieve better 

performance with the sequential combination approach of 

channel attention in front and spatial attention in the back. 

The recognition accuracy of the model was 98.57%, which 

was 8.31%, 19.04%, and 26.18% higher than that of 

spatial attention in front, channel attention only, and 

spatial attention only, respectively. The recall, F1 value 

and AUC value of the model when channel attention was 

in the front and spatial attention was in the back achieve 

the optimum, which were 98.14%, 0.98 and 98.32%, 

respectively. 

3.2 Experimental analysis of fake face 

video monitoring based on multi-modal 

feature fusion 

The hardware environment and dataset of the experiment 

were the same as in Section 2.1. The fusion model had an 

initial learning rate of 1e-4, a termination learning rate of 

1e-7, a learning decay factor of 0.1, a training epoch of 30, 

and a batch_size set to 128. The model used the Adam 

optimizer with the same parameter settings as in Section 

2.1. The comparison algorithms were Improved 

Efficiency Net, CViT, and Generative Convolutional 

Vision Transformer (GenConViT). The GenConViT 

model used a composite framework of generative contrast 

learning + dual stream Transformer. The temperature 

parameter in the training configuration was 0.1 and the 

learning rate was set to 1e-3. The GenConViT model had 

high robustness, and resistance to unknown forgery 

attacks, and could cope with complex adversarial 

environments. The comparison of the accuracy of 

counterfeit video recognition using different methods is 

shown in Figure 10. 

In Figure 10 (a), the video forgery detection model 

using multi-modal feature fusion approached convergence 

after about 7 iterations, with a maximum accuracy of 

99.26%. The convergence speed was 2 and 5 iterations 

faster than Improved Efficiency Net and CViT, 

respectively, with maximum recognition accuracies 

0.69% and 6.15% higher, respectively. In Figure 10 (b), 

the accuracy of all three models in the test set decreased, 

and the convergence position was further back. The 

maximum accuracy of the multi-modal feature fusion 

model was 98.54%, which was 1.74% and 9.27% higher 

than the others. The comparison of the accuracy of model 

forgery video recognition under different loss functions is 

shown in Figure 11. 

In Figure 11 (a), the highest recognition accuracy of 

the model was achieved when the hybrid loss function was 

used, which tended to converge at 10 iterations with a 

maximum value of 99.07%, which was 6.87%, 9.94%, and 

16.15% higher than when face recognition, monocentric, 

and cross-entropy loss functions alone were used, 

respectively, and the speed of convergence was also faster. 

In Figure 11 (b), after replacing the test data with more 

complex fake videos, the accuracy of the models 

decreased slightly. However, the model using the mixed 

function showed the least decrease, only 2.15%, while the 

other models decreased by 7.57%, 5.28%, and 6.03%, 

respectively. This indicated that the robustness of the 

model was significantly enhanced after using the  
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Figure 11: Accuracy of model forgery video recognition with different loss functions. 

Table 5: Comparison of performance and individual video MT of different methods 

Model  
FaceForensics++  Deepfake Detection Challenge  BioDeepAV  

Accuracy/%  MT/ms  Accuracy/%  MT/ms  Accuracy/%  MT/ms  

Research model  99.26  182  84.15  207  78.69  225  

Improved Efficient-

Net 
98.57  215  76.86  254  74.25  272  

CViT  90.18  229  72.15  295  69.34  382  

Efficient-Net  92.56  165  70.67  184  69.18  227  

GenConViT  88.54  189  80.29  305  70.18  492 

p 0.04 0.02 0.03 0.01 0.01 0.01 

t 6.75 10.96 7.54 12.69 11.15 14.38 

Table 6: Robustness test results of different methods in DFDC and DeepFakeTIMIT datasets 

Methods Resolution 
DFDC DeepFakeTIMIT 

Accuracy/% mAP/% AUC/% Accuracy/% mAP/% AUC/% 

Research 

model 

720p 87.26 88.62 85.36 78.29 75.83 76.54 

1080p 91.45 90.53 89.17 83.45 81.92 82.37 

2K 95.17 92.74 93.15 87.66 85.12 85.68 

Efficient-Net 

720p 77.92 75.64 76.25 55.36 53.61 54.16 

1080p 82.16 80.27 81.09 59.87 57.63 58.03 

2K 88.57 85.39 86.13 65.32 64.18 64.29 

CViT 

720p 75.34 72.09 73.85 58.31 57.06 57.62 

1080p 81.05 78.14 80.74 63.18 60.44 61.37 

2K 87.62 83.59 85.03 67.35 65.29 65.82 

 

mixed function. To verify the generalization of the raised 

model, the experiment trained the model on the 

FaceForensics++ dataset and validated it using the 

Deepfake Detection Challenge dataset and BioDeepAV 

dataset. The performance and single video monitoring 

time (MT) comparison of various methods are shown in 

Table 5. 

In Table 5, the FaceForensics++ dataset generated 

fake face videos mainly by Face2Face and 

NeuralTextures.The Deepfake Detection Challenge 

dataset used fake videos generated by Deepfake 

technique. BioDeepAV dataset used RealVisXL and 

LAION-Face techniques to generate fake videos. Most 

models were able to achieve excellent accuracy in the 

trained dataset. However, when tested on the new dataset, 

the performance of all models decreased slightly. The 

maximum decrease of the proposed model was 20.57%, 

which was 3.75%, 0.27%, 2.81%, and -2.21% lower than 

the improved Efficient-Net, CViT, Efficient-Net, and 

GenConViT, respectively. This indicated that the 

proposed model had higher generalization ability and 

could adapt to datasets of different complexity levels. The 

model proposed by the research had a single video MT of 

182ms in the FaceForensics++ dataset, which was 32ms, 

47ms, -17ms, and 7ms lower than other models, 

respectively. Although the running time of Efficient-Net 

was shorter, the accuracy varied greatly. There was 

statistical significance (p<0.05) between the data of all 

groups with t values ranging from a minimum of 6.75 to a 

maximum of 14.38. The robustness test results of different 

methods on Deepfake Detection Challenge (DFDC) and 

DeepFakeTIMIT datasets are shown in Table 6. 

In Table 6, the different models achieved high 

recognition accuracies at higher video resolutions, and the 

model performance gradually decreased as the video 

resolution decreases. In the DFDC dataset, the recognition 

accuracy of the proposed model under study was 95.17 at 

2K resolution, which decreased by 3.72% and 7.91% in 

1080P and 720P resolutions, respectively. The maximum 

values of mAP and AUC of the model were 92.74% and 

https://www.baidu.com/s?rsv_dl=re_dqa_generate&sa=re_dqa_generate&wd=Deepfake%20Detection%20Challenge%20(DFDC)数据集&rsv_pq=b1d7f468000b58d7&oq=现有的伪造视频识别的数据集有哪些&rsv_t=afa4vSiqY2Enqka4/A1H/yxED83zdb68PJN38JvJZI4irk+Lh0pdQJsWkzbyjhTYvujZmtY&tn=34046034_10_dg&ie=utf-8
https://www.baidu.com/s?rsv_dl=re_dqa_generate&sa=re_dqa_generate&wd=BioDeepAV数据集&rsv_pq=b1d7f468000b58d7&oq=现有的伪造视频识别的数据集有哪些&rsv_t=afa4vSiqY2Enqka4/A1H/yxED83zdb68PJN38JvJZI4irk+Lh0pdQJsWkzbyjhTYvujZmtY&tn=34046034_10_dg&ie=utf-8
https://www.baidu.com/s?rsv_dl=re_dqa_generate&sa=re_dqa_generate&wd=FaceForensics++数据集&rsv_pq=cdd05cd300026fe2&oq=伪造视频识别的数据集有哪些&rsv_t=9c693MtY+BKRX9XKsE1I7Qrv3TMR8CHHDA9osVDimuSqtpaVKh4xswjrdtuAjF733/RvSyI&tn=34046034_10_dg&ie=utf-8
https://www.baidu.com/s?rsv_dl=re_dqa_generate&sa=re_dqa_generate&wd=Deepfake%20Detection%20Challenge%20(DFDC)数据集&rsv_pq=b1d7f468000b58d7&oq=现有的伪造视频识别的数据集有哪些&rsv_t=afa4vSiqY2Enqka4/A1H/yxED83zdb68PJN38JvJZI4irk+Lh0pdQJsWkzbyjhTYvujZmtY&tn=34046034_10_dg&ie=utf-8
https://www.baidu.com/s?rsv_dl=re_dqa_generate&sa=re_dqa_generate&wd=BioDeepAV数据集&rsv_pq=b1d7f468000b58d7&oq=现有的伪造视频识别的数据集有哪些&rsv_t=afa4vSiqY2Enqka4/A1H/yxED83zdb68PJN38JvJZI4irk+Lh0pdQJsWkzbyjhTYvujZmtY&tn=34046034_10_dg&ie=utf-8
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93.15%, respectively, which decreased by 7.52% and 

7.47% in the DeepFakeTIMIT dataset. In the DFDC 

dataset, the decrease of the performance of the proposed 

model with the change of the resolution was small, and all 

the indexes were better than the Efficient-Net and CViT 

models. 

4 Discussion 
A video forgery detection model based on multi-modal 

features and Efficient-Net was proposed and applied to the 

actual analysis of multiple datasets. The effectiveness and 

superiority of the method in the detection of forged face 

videos were verified through relevant experimental 

analysis. In the FaceForensics++ dataset, the maximum 

recognition accuracy of the improved Efficient-Net 

reached 98.57% and 98.54% on the training and test sets, 

respectively, which was significantly better than that of 

the ordinary Efficient-Net (92.56%) and CViT (90.18%). 

Compared with literature [8] and literature [9], the 

improved Efficient-Net outperformed the existing SOTA 

methods in a single modality. This was because the 

addition of a hybrid attention module to the first three 

layers of the model was able to capture low-level features 

such as texture, noise, and edge anomalies, which were 

usually present as subtle artifacts in the generated image. 

The multi-modal feature fusion strategy introduced 

temporal dynamic features that were capable of detecting 

unnaturalness of facial movements in the forged video, 

giving it a detection accuracy of 99.26%. The maximum 

recognition accuracies across datasets (Deepfake 

Detection Challenge, BioDeepAV) were 84.15% and 

78.69%. Compared with literature [12] and literature [14], 

the multi-modal model was more robust in complex 

scenes. There are some shortcomings in this study, for 

example, the single video monitoring time of the multi-

modal model was 182ms, which was slightly higher than 

the 165ms of the ordinary Efficient-Net, limiting the real-

time video monitoring. Subsequently, the model can be 

compressed using knowledge distillation to further reduce 

the computation time of the model and improve the 

monitoring real-time performance. 

5 Conclusion 
To address low accuracy and poor robustness in existing 

video forgery detection methods, this study proposed a 

forged face video detection model integrating multi-modal 

feature fusion with Efficient-Net. Experiments 

demonstrated that Improved Efficient-Net achieved the 

fastest convergence and lowest loss values (2.86 and 0.92 

lower than Efficient-Net and CViT respectively), with 

maximum recognition accuracy reaching 98.57% (6.24% 

and 9.53% higher than counterparts). While all models 

showed accuracy declines in test sets, Improved Efficient-

Net exhibited the smallest reduction. Optimal 

performance occurred when hybrid attention modules 

were embedded in the first three MBConv layers of 

Efficient-Net. The hybrid loss function achieved peak 

accuracy of 99.07%, surpassing face recognition, single-

center, and Softmax losses by 6.87%, 9.94%, and 16.15% 

respectively. Though showing maximum 20.57% 

accuracy drop on unseen data, the multi-modal model 

maintained superior performance. This approach 

effectively enhanced internet regulation efficiency and 

mitigated social risks from forged videos. 
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