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The growing integration of smart technologies into residential environments has heightened their 

exposure to cybersecurity threats, thereby necessitating robust and intelligent intrusion detection systems 

(IDS). This study proposes a hybrid AI-driven intrusion detection framework tailored for smart home 

networks, leveraging the Extreme Gradient Boosting Classifier (XGBoost or XGBC) enhanced by three 

metaheuristic optimization techniques: the Arithmetic Optimization Algorithm (AOA), Horse Herd 

Optimization (HHO), and Wild Geese Algorithm (WGA). The performance of these hybrid schemes 

XGAO, XGHH, and XGWG was rigorously evaluated using a comprehensive dataset containing 148,518 

labeled network traffic instances, compiled through data mining methods. The dataset includes diverse 

attributes such as source and destination bytes, service types, protocols, and various connection-related 

flags. Performance evaluation was conducted using four standard classification metrics: accuracy, 

precision, recall, and F1-score. Among all models, the hybrid XGAO scheme demonstrated superior 

performance, achieving a training accuracy of 0.991, outperforming the baseline XGBC model, which 

scored 0.946 under the same conditions. In the testing phase, XGAO maintained high generalizability with 

an accuracy of 0.987, compared to 0.953 for XGBC. The XGAO model also excelled in recall (0.989), 

precision (0.991), and F1-score (0.990) for correct detections. These findings affirm that integrating 

XGBoost with AOA significantly enhances the classification accuracy and reliability of intrusion detection 

systems in smart home environments. The study contributes to the development of resilient, adaptive IDS 

architectures capable of mitigating evolving cyber threats in the domain of intelligent residential 

technologies. 

Povzetek: Hibridni okvir XGBoost, optimiziran z metahevristiko AOA, HHO in WGA, omogoča bolj 

kvalitetno zaznavanje vdorov v pametnih domovih. XGAO doseže višjo točnost, odpornost in zanesljivost 

kot klasični XGBoost. 

1 Introduction 
Smart homes make effective integration of the digital and 

physical worlds possible. According to studies, there are 

currently more than 6 billion internet-connected devices, 

and in the upcoming years, that number is predicted to rise 

to over 26 billion [1]. As IoT technology is embraced by 

various industries, including smart cities and homes, 

healthcare, transportation, manufacturing, and agriculture, 

these figures are anticipated to increase [2], [3]. IoT 

technology is poised to transform society and the standard 

of living with these advancements [2]. Despite the ease of 

utilization and benefits of smart homes, some have 

claimed that the technology is highly invasive in people's 

lives [4]. The most brilliant homes have sensors installed 

on their smart devices, producing diverse data streams and 

linked events that give rise to a constant flow of 

information about the activities occurring in a specific 

home [3], [4]. Hence, cyber criminals frequently try to  

 

break into the network of smart homes to hijack the  

continuous information flow between the devices, 

enabling them to snoop on household activities [5]. 

Nowadays, many smart home appliances are linked to 

the Internet; these appliances are easily attacked and can 

result in significant issues that could negatively impact a 

user's life. Because attackers can be clever or use the same 

protocols that users use to make valid requests, some of 

these attacks are hard to identify [5]. The purpose of an 

IDS is to identify and stop network attacks [6]. 

Nevertheless, one-tier standard intrusion detection is 

insufficient to guarantee the security and privacy of 

wireless sensor networks due to several restrictions on 

smart home sensors and device manufacturers [7]. 

within a smart home environment, there are many 

security risks that modern wireless networks, devices, and 

sensors must contend with. ML is thought to be the perfect 

answer to this issue [8]. Without requiring explicit 

programming, machine learning technology utilizes 
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diverse learning frameworks to train sensors, devices, and 

other artificial intelligence-capable hardware [9]. For the 

following reasons, machine learning is the perfect way to 

handle security risks in contemporary wireless sensor 

networks and smart home devices [10]:  

• Smart home appliances and wireless sensor networks 

(WSNs) don't rely on complex mathematical 

schemes.  

• Correlated data sets are necessary for IoT 

applications. Furthermore, machine learning can 

handle the stochastic nature of WSNs and smart home 

appliances [9].  

• Because the machine is automated, no human 

intervention is needed, making it perfect for smart 

home technologies to prevent and lessen potential 

threats to the system [11].  

The research in this paper investigates the 

effectiveness of the Extreme Gradient Boosting algorithm 

in classifying cyber-attacks within smart homes. XGBoost 

is also reliable and very efficient, dealing with large 

databases and narrowing down to those crucial elements 

when detecting threats. It performs enhancement by 

leveraging three different optimization frameworks, 

namely the Wild Geese Algorithm, which can balance 

exploration and exploitation well; the Horse Herd 

Optimization algorithm, which enables the exploration of 

the solution space; and the Arithmetic Optimization 

Algorithm, which will improve the tuning of 

hyperparameters. These combined strategies reinforce the 

model's potential to identify safe operations from online 

dangers and secure smart homes. 

This study's goal is to find better ways to classify 

intrusion detection models so that smart home networks 

can deal with the rising number of security flaws. The 

fundamental purpose is threefold: (1) to make the 

XGBoost-based Intrusion Detection System (IDS) work 

better by adding metaheuristic optimization techniques; 

(2) to see how well three specific optimizers Arithmetic 

Optimization Algorithm (AOA), Horse Herd 

Optimization (HHO), and Wild Geese Algorithm (WGA) 

classify data when used with the XGBoost framework; 

and (3) to see how well these hybrid models work on a 

large-scale, real-world smart home dataset with 148,518 

labeled instances using standard classification metrics like 

accuracy, precision, recall, and F1-score. 

2 Literature survey 
It has been more than a decade since IDS started to see 

significant improvements driven by the integration of ML 

techniques [12]. As a result of this evolution, intrusion 

detection today is a classification task that uses labeled 

data to distinguish abnormal activities from normal ones 

effectively. Diverse ML methods have been developed to 

improve the efficiency of IDS, including Random Forest, 

Decision Trees, Naïve Bayes, deep learning, and ensemble 

methods. For example, Yousef et al. showed that the best 

technique to detect various types of attacks is the Random 

Forest Classifier (RFC) [13]. 

In 2015, Ghazali et al. applied five classification 

strategies on the NSL-KDD database and reported an 

accuracy of 96.7%, a detection rate of 95.5%, and a FAR 

of 4.7% [14]. Following further research, Kevric et al. 

reported in 2017 an ACC of 89.24% [15], while the RF-

based 2018 model recommended by Hadi yielded an 

astonishing 99.33% ACC [16]. Karami presented in 2018 

an anomaly-based intrusion detection system utilizing the 

fuzzy tactic [17]. Gu et al., in 2019, recommended an 

SVM-based model that had only an ACC of 93.64% with 

a higher FAR of 20.28% [18]. In 2020, Tabash et al. 

combined the merits of DL and NB to boost the attribute 

retrieval that improved performance metrics [19]. 

Ensemble methods represent recent approaches. 

Whereas in the work of Abbas et al., hybrid ensembles 

were recommended for the improvement of performance 

in the detection system in 2021, Louk et al. recommended 

an ensemble approach drawing on bagging [20]. Mhawi et 

al. recommended an ensemble based on Boosting in 2022, 

pointing out the focus on sequential training of classifiers 

[21]. Besides that, Bertoni et al. created a scheme drawing 

on stacking to achieve accuracy via meta-classification 

[22]. These ensemble learning innovations taken 

altogether have proven to be successful in increasing the 

precision and resiliency of the IDS while significantly 

reducing false alarms as a whole [23].  

Recent research has shown growing interest in 

intelligent intrusion detection tailored for smart and IoT 

environments. [5] proposed a learning-based ensemble 

framework for IoT smart homes, combining diverse 

classifiers for anomaly detection. [3] introduced an IDS 

for 5G device-to-device communications, emphasizing 

ML-driven optimization in latency-sensitive networks 

(DOI: 10.31449/inf.v47i6.4635). [6] designed a feature-

selection-based ensemble IDS for IIoT, highlighting 

dimensionality reduction’s importance. [7]  developed a 

deep transfer learning framework to improve resilience in 

constrained IoT networks. [8] reviewed metaheuristic 

optimization in IDS, covering algorithms like PSO and 

AGA, but identified gaps in benchmarking newer 

techniques. Although metaheuristic approaches have been 

applied to feature selection and model tuning, direct, 

comparative evaluations of advanced optimizers such as 

AOA, HHO, and WGA remain scarce within a unified IDS 

framework. This study addresses that gap by integrating 

and systematically benchmarking these optimizers 

alongside XGBoost on a comprehensive smart home 

dataset, offering novel insights into their comparative 

effectiveness. 

XGBoost and metaheuristic optimization methods like 

AOA, HHO, and WGA have been studied separately in 

the fields of machine learning and intrusion detection. 

This study, on the other hand, is new because it 

systematically combines and tests these optimizers within 

the XGBoost framework for smart home security. The 

study is the first to use these approaches on a large, real-

world smart home dataset with 148,518 instances. This 

has not been done much before in the literature. A rigorous 

performance study, convergence behavior, ablation 

investigations, and statistical validation are used to 
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compare three hybrid models: XGAO, XGHH, and 

XGWG. Also, real-time limitations and class-level 

performance assessments are included, which shows how 

useful it may be in the actual world. This combined 

method gives us a better knowledge of how optimizers 

affect classifier performance. It also sets up a new way to 

compare metaheuristic-driven IDS in smart settings. 

Table 1 presents a comparative analysis of recent 

intrusion detection systems, highlighting methods, 

datasets, and key performance metrics. It underscores the 

superior performance and novelty of the proposed 

(XGAO) on a smart home dataset.

 

 

Table 1: Comparative analysis of recent intrusion detection systems 

 

Table 1. Comparative summary of IDS methods in recent literature. 

Study Method Dataset Accuracy Recall 

Ghazali et 

al. (2015) 

Multiple 

Classifiers 

NSL-KDD 96.7% 95.5% 

Kevric et 

al. (2017) 

Tree-

based 

Ensemble 

NSL-KDD 89.24% - 

Hadi 

(2018) 

Random 

Forest 

Big Data 

Traffic 

99.33% - 

Karami 

(2018) 

Fuzzy 

Logic 

Unknown - - 

Gu et al. 

(2019) 

SVM 

Ensemble 

Unknown 93.64% - 

Tabash et 

al. (2020) 

Naive 

Bayes + DL 

Custom 

Network 

Dataset 

- - 

Abbas et 

al. (2021) 

Hybrid 

Ensemble 

(Bagging) 

Industrial 

Control 

Network 

- - 

Mhawi et 

al. (2022) 

Boosting-

based 

Ensemble 

Custom 

Network 

Dataset 

- - 

This Study 

(XGAO) 

XGBoost 

+ AOA 

Smart 

Home Dataset 

(148,518 

samples) 

99.1% 

(Train), 98.7% 

(Test) 

98.9% 

(Correct 

Detection) 

Because they are more accurate and reliable, 

ensemble-based methods including bagging, boosting, 

and stacking have been widely used in intrusion detection 

systems. In the expanded literature portion of this work, 

the study compares the XGBoost-based hybrid schemes 

(XGAO, XGHH, XGWG) against standard ensemble 

classifiers like Random Forest and Gradient Boosting. 

XGBoost is an ensemble model, but the presented 

methods stand out because they use metaheuristic 

optimization, which makes them better at adapting to 

complicated smart home incursion patterns and 

converging faster. 

3 Recommended work 

• XGBoost Classifier (XGBC) 

Compared to the traditional GBDT method, significantly 

improved computation speed, scalability, and 

generalization performance can be achieved with 

XGBoost. In [24]Detailed descriptions of the optimization 

strategy and objective function in the XGBoost framework 

are given. The objective function of the XGBoost is 

depicted by Eq. (1): 

𝐹𝑂𝑏𝑗(𝜃) = 𝐽(𝜃) + Ω(𝜃), 

𝑤ℎ𝑒𝑟𝑒 𝐽(𝜃) = 𝑙(𝑝𝑖 , 𝑚𝑖), 
(1) 

Ω(𝜃) = 𝛾𝑟 +
1

2
𝜆‖𝑤‖2. (2) 

𝐽(𝜃), in which 𝜃 is the different parameters of the 

formula, and 𝛺(𝜃) are the components of the objective 

function that comprises XGBoost. The loss function 𝐽(𝜃) 

is a differentiable convex function that regulates the fitting 

of data from the model and calculates the deviation of the 

measured target, 𝑚𝑖, from the predicted value, 𝑝𝑖 . Two 

main convex loss functions are logistic loss, given by Eq. 

(3), and mean square loss, given by Eq. (4). 

𝑗(𝑝𝑖 , 𝑚𝑖) = 𝑚𝑖 ln(1 + 𝑒−𝑝𝑖) + (1
−𝑚𝑖) ln(1 + 𝑒𝑝𝑖) 

(3) 

𝑗(𝑝𝑖 , 𝑚𝑖) = (𝑝𝑖 − 𝑚𝑖)
2 (4) 

Furthermore, a regularization term Ω(θ) affects 

complex schemes. The learning rate, denoted by γ, can 

reach a maximum value of 0, while r displays the total 

count of leaves in the tree. Tree pruning is produced when 
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γ is multiplied by r, which lowers overfitting. Unlike 

traditional GBDT, XGBoost amplifies this phrase using a 

regularization parameter 1
2⁄ λ‖w‖2. This parameter 

displays leaf weights w. This component is further 

improved to lessen overfitting and increase the model's 

capacity for generalization. 

Nevertheless, conventional optimization methods 

encounter challenges because the objective function in Eq. 

(1) combines function parameters and model penalty 

terms. Checking whether the target mi can be determined 

using Eq. (5) is therefore crucial. 

𝐽(𝜃) = ∑ 𝑗(𝑚𝑖 , 𝑝𝑖
(𝑡−1)

𝑟

𝑖=1

+ 𝑍𝑡(𝑟𝑖) + Ω(𝜃). (5) 

The enhancement tries to build a tree construction that 

diminishes the target function on each cycle. Based on the 

outcomes and residuals of the previous tree (residuals=real 

value-predictive value), the current residual regression 

tree is fitted using the tree structure. 𝑍𝑡(𝑟𝑖) displays the 

tree that instance 𝑖 in the 𝑡 cycle created.  

When the square loss function is solved, the objective 

function of Eq. (4) is ideal, making solving other loss 

functions challenging. Different loss functions can be 

solved using Eq. (5) by translating Eq. (6) through the two-

order Taylor expansion. These include Eqs. (7) and (8). 

This simplifies the optimization process because the 

ultimate goal function depends only on the error function's 

first and second derivatives for each data point.  

𝐽(𝜃) = ∑ 𝑗(𝑚𝑖 , 𝑝𝑖
(𝑡−1)

𝑟

𝑖=1

+ ℊ𝑖𝑍𝑡(𝑟𝑖)

+
1

2
𝒽𝑖𝑍𝑡

2(𝑟𝑖) + Ω(𝜃). 

(6) 

𝒽𝑖 = 𝜕
𝑝(𝑡−1)
2 𝑗 (𝑚𝑖 , 𝑝

(𝑡−1)) (7) 

ℊ𝑖 =  𝜕𝑝(𝑡−1)𝑗 (𝑚𝑖 , 𝑝
(𝑡−1)) (8) 

The flowchart of XGBC is displayed in Fig. 1.  

 

Figure 1: XGBC diagram 

• Arithmetic Optimization Algorithm (AOA) 

Using fundamental arithmetic operations, arithmetic 

optimization is a metaheuristic with roots in number 

theory that analyzes numerical values and finds the best 

solution given predetermined parameters [25]. AOA 

includes stages for exploration and exploitation, much like 

traditional population-driven optimization. It was inspired 

by applying arithmetic to solve mathematical problems. 

While exploitation improves the accuracy of the 

resolutions, exploration scans the search domain for viable 

answers. The three main phases of the AOA algorithm are 

outlined and discussed in the sections that follow [26].  

Initialization 

The Arithmetic Optimization algorithm starts with the 

creation of a random set of candidate resolutions (𝑋). The 

algorithm assumes that the best candidate solution is either 

the neighborhood's best or optimal solution in each cycle.  

𝑋 =

[
 
 
 
 
 

𝑥1,1   ⋯  ⋯   𝑥1,𝑗     𝑥1,𝑟−1    𝑥1,𝑟 
𝑥2,1  ⋯   ⋯    𝑥2,𝑗         ⋯         𝑥2,𝑟

  ⋯     ⋯    ⋯    ⋯       ⋯         ⋯    
      ⋮        ⋮       ⋮        ⋮        ⋮              ⋮       
𝑥𝑁−1,1   ⋯  ⋯   𝑥𝑁−1,𝑗   ⋯  𝑥𝑁−1,𝑟  
𝑥𝑁,1     ⋯  ⋯    𝑥𝑁,𝑗     𝑥𝑁,𝑟−1  𝑥𝑁,𝑟 ]

 
 
 
 
 

 (9) 

A choice must be made regarding whether to begin 

the AOA procedure with the exploration or exploitation 

phases. The function value at the 𝑖𝑡ℎ cycle is then 

represented by the MOA function, which is calculated 

using Eq. (10). 

𝑀𝑂𝐴(𝐵𝐼𝑡𝑒𝑟) = 𝑀𝑖𝑛

+ 𝐴𝐼𝑡𝑒𝑟  × (
𝑀𝑎𝑥 − 𝑀𝑖𝑛

𝑈𝐼𝑡𝑒𝑟

) 
(10) 

The maximum count of cycles is depicted by 𝑈𝐼𝑡𝑒𝑟 , 

where 𝐴𝐼𝑡𝑒𝑟 ranges from 1 to 𝑈𝐼𝑡𝑒𝑟−1. When modifying the 

step size of arithmetic operators during the global search 

phase, the terms Max and Min serve as reference points 

for the highest and lowest values of the accelerated 

function. 

▪ exploration 

The exploration mechanism uses multiplication (MO) 

or Division (DO) operators to produce dispersed values or 

options. The difficulties of directly reaching the target 

with this indirect approach frequently require several 

cycles to find a nearly ideal solution for exploitation. Eq. 

(11) defines the equations for position updates and 

summarizes the formulation of two essential search 

strategies during the exploration phase. 
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𝑥𝑖,𝑗(𝐴𝐼𝑡𝑒𝑟 + 1) = {
𝑏(𝑥𝑗) ÷ (𝑀𝑂𝑃 + 𝜀) × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × 𝜔 + 𝐿𝐵𝑗) , 𝑞2 < 0.5

𝑏(𝑥𝑗) × 𝑀𝑂𝑃 × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × 𝜔 + 𝐿𝐵𝑗) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (11) 

In this case, 𝑥𝑖,𝑗(𝐴𝐼𝑡𝑒𝑟) depicts the 𝑗𝑡ℎ position of the 

𝑖𝑡ℎ  resolution at a specific cycle (𝐴𝐼𝑡𝑒𝑟), and 𝑏(𝑥𝑖) denotes 

the 𝑗𝑡ℎ location found in the most advantageous solution 

found thus far. 𝐿𝐵𝑗 and 𝑈𝐵𝑗  indicate the lower and upper 

boundary values for the 𝑗𝑡ℎ location, accordingly, and 𝜀 is 

a small integer value. 𝜔 serves as a parameter for control. 

The function value of 𝑀𝑂𝑃(𝐴𝐼𝑡𝑒𝑟) can be expressed as 

follows:  

𝑀𝑂𝑃(𝐴𝐼𝑡𝑒𝑟) = 1 −
𝐴𝐼𝑡𝑒𝑟

1/𝛾

𝑈𝐼𝑡𝑒𝑟
1/𝛾  (12) 

where 𝛾 is an essential parameter that establishes the 

level of accuracy of the exploitation process throughout 

the cycles. 

▪ exploitation 

The outcomes of addition (AO) and subtraction (SO) 

operators in mathematical computations are closely 

packed. As a result, during the exploitation phase, these 

operators repeatedly and efficiently converge toward the 

target. Eq. (13) summarizes position updating equations 

and identifies two main search strategies in the 

exploitation phase. The Arithmetic Optimization 

algorithm uses SO and AO operators during exploitation 

to help avoid local search traps and find the optimal 

solution through related search strategies. 

𝑥𝑖,𝑗(𝐴𝐼𝑡𝑒𝑟 + 1) = {
𝑏(𝑥𝑗) − 𝑀𝑂𝑃 × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × 𝜔 + 𝐿𝐵𝑗) , 𝑞3 < 0.5

𝑏(𝑥𝑗) + 𝑀𝑂𝑃 × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × 𝜔 + 𝐿𝐵𝑗) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (13) 

• Horse Herd Optimization (HHO) 

The foundation of HOA, as presented by [27], is the 

way horses behave in their natural surroundings. The six 

main behavioral traits that inform it are: defense 

mechanisms, roaming, grazing, imitation, hierarchy, and 

sociability. As outlined in Eq. (14), these behaviors serve 

as the foundation for HOA, directing the movement of 

horses during each cycle.  

𝑋𝑟
𝐼𝑡𝑒𝑟,𝐴 = 𝑓𝑟

𝐼𝑡𝑒𝑟,𝐴 + 𝑋𝑟
(𝐼𝑡𝑒𝑟−1),𝐴

,   𝐴
= 𝛼, 𝛽, 𝛾, 𝛿 

(14) 

where 𝐴 signifies the age range, 𝐼𝑡𝑒𝑟 is the current 

cycle, and 𝑋𝑟
𝐼𝑡𝑒𝑟,𝐴

 displays the situation of the 𝑟𝑡ℎ horse. 

The horse's age range is also reflected in 𝐴, and its velocity 

vector is indicated by 𝑓𝑟
𝐼𝑡𝑒𝑟,𝐴

. Horses usually live 25 to 30 

years and display a range of behaviors during that time. 

These actions fall into three categories: 𝛿 (0–5 years), 𝛾 

(5–10 years), 𝛽 (10-15 years) and 𝛼 (over 15 years old). 

Horse ages are calculated using a large response matrix 

arranged according to performance. Group 𝛼 comprises 

the top 10%, followed by group 𝛽 with 20%, and groups 

𝛾 and 𝛿 with the remaining 30% and 40%, respectively. 

These behaviors define motion vectors and algorithmic 

cycles for horses of various ages. 

𝑓𝑟
𝐼𝑡𝑒𝑟,𝛼 = 𝐺⃗𝑟

𝐼𝑡𝑒𝑟,𝛼 + 𝐷⃗⃗⃗𝑟
𝐼𝑡𝑒𝑟,𝛼

 

(15) 

𝑓𝑟
𝐼𝑡𝑒𝑟,𝛽

= 𝐺⃗𝑟
𝐼𝑡𝑒𝑟,𝛽

+ 𝐻⃗⃗⃗𝑟
𝐼𝑡𝑒𝑟,𝛽

+ 𝑆𝑟
𝐼𝑡𝑒𝑟,𝛽

+ 𝐷⃗⃗⃗𝑟
𝐼𝑡𝑒𝑟,𝛽

 

𝑓𝑟
𝐼𝑡𝑒𝑟,𝛾

= 𝐺⃗𝑟
𝐼𝑡𝑒𝑟,𝛾

+ 𝐻⃗⃗⃗𝑟
𝐼𝑡𝑒𝑟,𝛾

+ 𝑆𝑟
𝐼𝑡𝑒𝑟,𝛾

+ 𝐼𝑟
𝐼𝑡𝑒𝑟,𝛾

+ 𝐷⃗⃗⃗𝑟
𝐼𝑡𝑒𝑟,𝛾

+ 𝑅⃗⃗𝑟
𝐼𝑡𝑒𝑟,𝛾

 

𝑓𝑟
𝐼𝑡𝑒𝑟,𝛿 = 𝐺⃗𝑟

𝐼𝑡𝑒𝑟,𝛿 + 𝐼𝑟
𝐼𝑡𝑒𝑟,𝛿 + 𝑅⃗⃗𝑟

𝐼𝑡𝑒𝑟,𝛿
 

A connection between positions (𝑋) and their 

corresponding cost values (𝐶(𝑋)) was established by 

clarifying the global matrix derivation using Eqs. (16) and 

(17). 

𝑋 = [

𝑥1,1
𝑥1,2 … 𝑥1,𝑑

𝑥2,1

⋮

𝑥2,2 …

⋮      ⋱

𝑥2,𝑑

⋮
𝑥𝑟,1

𝑥𝑟,2 … 𝑥𝑟,𝑑

] ,

𝐶(𝑋) = [

𝑐1
𝑐2

⋮
𝑐𝑟

] 

(16) 

𝐺𝑙𝑜𝑏𝑎𝑙 𝑀𝑎𝑡𝑟𝑖𝑥 = [𝑋   𝐶(𝑋)]

= [

𝑥1,1
𝑥1,2 … 𝑥1,𝑑 𝑐1

𝑥2,1

⋮

𝑥2,2 …

⋮      ⋱

𝑥2,𝑑 𝑐2

⋮      ⋮ 
𝑥𝑟,1

𝑥𝑟,2 … 𝑥𝑟,𝑑 𝑐𝑟

] 
(17) 

𝑥 displays the position, and 𝐶(𝑥) displays the related 

cost for each position, as the preceding equations have 

displayed. Moreover, 𝑟 displays the count of horses, and 

𝑑 displays the problem's size. The global matrix is then 

arranged according to the last column, which displays 

expenses. The age of the horse is entered in this column. 

Low speed, high accuracy, and high probability are 

advantageous when the best solution is likely to occur. 

Conversely, low accuracy and high speed are 

advantageous in scenarios where an ideal solution is 

unlikely. The following formula is used to get the overall 

velocity vector: 

The speed of horses between the ages of 0 and 5: 

𝑓𝑟
𝐼𝑡𝑒𝑟,𝛿

= [𝑔𝑟
(𝐼𝑡𝑒𝑟−1),𝛿 𝜔𝑔(𝑢̆ + 𝑃𝑙)[𝑋𝑟

(𝐼𝑡𝑒𝑟−1)
]]

+ [𝑖𝑟
(𝐼𝑡𝑒𝑟−1),𝛿  𝜔𝑖[(

1

𝑃𝑁
∑𝑋̂𝑗

𝐼𝑡𝑒𝑟−1)

𝑃𝑁

𝑗=1

− 𝑋𝐼𝑡𝑒𝑟−1]]] + [𝑅𝑟
(𝐼𝑡𝑒𝑟−1),𝛿  𝜔𝑟𝑃𝑋𝐼𝑡𝑒𝑟−1 

(18) 

Horses aged 5 to 10 years old at their fastest: 
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𝑓𝑟
𝐼𝑡𝑒𝑟,𝛾

= [𝑔𝑟
(𝐼𝑡𝑒𝑟−1),𝛾

 𝜔𝑔(𝑢̆ + 𝑃𝑙)[𝑋𝑟
(𝐼𝑡𝑒𝑟−1)

]] + [ℎ𝑟
(𝐼𝑡𝑒𝑟−1),𝛾

𝜔ℎ[𝑋∗
(𝐼𝑡𝑒𝑟−1)

− 𝑋𝑟
(𝐼𝑡𝑒𝑟−1)

]]

+ [𝑆𝑟
(𝐼𝑡𝑒𝑟−1),𝛾

 𝜔𝑆[(
1

𝑁
∑ 𝑋𝑗

𝐼𝑡𝑒𝑟−1) − 𝑋𝐼𝑡𝑒𝑟−1]]

𝑁

𝑗=1

 

+ [𝑖𝑟
(𝐼𝑡𝑒𝑟−1),𝛾

 𝜔𝑖[(
1

𝑃𝑁
∑𝑋̂𝑗

𝐼𝑡𝑒𝑟−1) − 𝑋𝐼𝑡𝑒𝑟−1]]

𝑃𝑁

𝑗=1

− [𝑑𝑟
(𝐼𝑡𝑒𝑟−1),𝛾

 𝜔𝑑[(
1

𝑞𝑁
∑ 𝑋̂𝑗

𝐼𝑡𝑒𝑟−1) − 𝑋𝐼𝑡𝑒𝑟−1]]

𝑞𝑁

𝑗=1

+ [𝑅𝑟
(𝐼𝑡𝑒𝑟−1),𝐴 𝜔𝑟𝑃𝑋𝐼𝑡𝑒𝑟−1]  

(19) 

The speed of horses between the ages of 10 and 15: 

𝑓𝑟
𝐼𝑡𝑒𝑟,𝛽

= [𝑔𝑟
(𝐼𝑡𝑒𝑟−1),𝛽

 𝜔𝑔(𝑢̆ + 𝑃𝑙)[𝑋𝑟
(𝐼𝑡𝑒𝑟−1)

]] + [ℎ𝑟
(𝐼𝑡𝑒𝑟−1),𝛽

𝜔ℎ[𝑋∗
(𝐼𝑡𝑒𝑟−1)

− 𝑋𝑟
(𝐼𝑡𝑒𝑟−1)

]]

+ [𝑆𝑟
(𝐼𝑡𝑒𝑟−1),𝛽

 𝜔𝑆[(
1

𝑁
∑𝑋𝑗

𝐼𝑡𝑒𝑟−1) − 𝑋𝐼𝑡𝑒𝑟−1]]

𝑁

𝑗=1

− [𝑑𝑟
(𝐼𝑡𝑒𝑟−1),𝛽

 𝜔𝑑[(
1

𝑞𝑁
∑𝑋̆𝑗

𝐼𝑡𝑒𝑟−1) − 𝑋𝐼𝑡𝑒𝑟−1]]

𝑞𝑁

𝑗=1

 

(20) 

The following velocity is displayed by horses who are over 15 years old 

𝑓𝑟
𝐼𝑡𝑒𝑟,𝛼 = [𝑔𝑟

(𝐼𝑡𝑒𝑟−1),𝛼 𝜔𝑔(𝑢̆ + 𝑃𝑙)[𝑋𝑟
(𝐼𝑡𝑒𝑟−1)

]] − [𝑑𝑟
(𝐼𝑡𝑒𝑟−1),𝛼 𝜔𝑑[(

1

𝑞𝑁
∑ 𝑋̆𝑗

𝐼𝑡𝑒𝑟−1) − 𝑋𝐼𝑡𝑒𝑟−1]]

𝑞𝑁

𝑗=1

 (21) 

In Fig. 2, the HHO flowchart is displayed. 

 

Figure 2: HHO flowchart 
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• Wild Geese Algorithm (WGA) 

There has been a noticeable upsurge recently in the 

creation of frameworks that draw inspiration from the 

collective behaviors of animals to address challenging 

global continuous optimization problems on a large scale. 

The WGA is a highly efficient algorithm introduced in this 

paper [28]. Wild geese life cycles include population 

dynamics, coordinated group migration, evolutionary 

mechanisms, reproduction, and mortality. All of these 

factors have an impact on the WGA. The following briefly 

describes the WGA's fundamental phases:  

1. A phase of controlled and synchronized gather 

migration, also known as migration and speed 

adjustments. 

2. Wild geese roam around and look for food. 

3. The Mechanisms of Evolution in Wild Goose 

Populations through Breeding 

4. Wild Goose Population Migration Patterns, Survival 

Rates, and Coordinated Evolutionary Shifts. 

First, a population of wild geese is created, and the 

number displays each goose's position 𝑥𝑖. Personal best 

solutions (𝑝𝑖) and migration velocities (𝑣𝑖) are computed 

for each goose. The entire geese population is then ranked 

from the most optimal to the least optimal based on how 

well they perform the target function. Using this modeling 

strategy, each wild goose adapts its behavior based on 

information gathered from nearby geese in the ranked 

population. The ensuing subsections will offer more 

thorough explanations of the WGA phases. 

▪ Migration and displacement velocity  

Wild geese must migrate on a coordinated and 

organized flight path to reach the individuals at the front 

and those nearby in the sorted population—the velocity 

and displacement equations in Eqs. (22) and (23) rely on 

the geese's harmonized velocity. 

𝑣𝑖,𝑟
𝐼𝑡𝑒𝑟+1 = (𝑞1,𝑟 × 𝑣𝑖,𝑟

𝐼𝑡𝑒𝑟 + 𝑞2,𝑟 × (𝑣𝑖+1,𝑟
𝐼𝑡𝑒𝑟 − 𝑣𝑖−1,𝑟

𝐼𝑡𝑒𝑟 )) + 𝑞3,𝑟 × (𝑝𝑖,𝑟
𝐼𝑡𝑒𝑟 − 𝑥𝑖−1,𝑟

𝐼𝑡𝑒𝑟 ) + 𝑞4,𝑟 × (𝑝𝑖+1,𝑟
𝐼𝑡𝑒𝑟 − 𝑥𝑖,𝑟

𝐼𝑡𝑒𝑟)

+ 𝑞5,𝑟 × (𝑝𝑖+2,𝑟
𝐼𝑡𝑒𝑟 − 𝑥𝑖+1,𝑟

𝐼𝑡𝑒𝑟 ) + 𝑞6,𝑟 × (𝑝𝑖−1,𝑟
𝐼𝑡𝑒𝑟 − 𝑥𝑖+2,𝑟

𝐼𝑡𝑒𝑟 ) 
(22) 

The 𝑟𝑡ℎ dimension of the 𝑖𝑡ℎ the variables denote the 

wild goose's current position, best position, and current 

velocity 𝑥𝑖,𝑟
𝐼𝑡𝑒𝑟, 𝑝𝑖,𝑟

𝐼𝑡𝑒𝑟 , and 𝑣𝑖,𝑟
𝐼𝑡𝑒𝑟 , respectively. The random 

numbers 𝑞𝑘,𝑟;  𝑘 =  1, 2, . . . ,11  are uniformly distributed 

and range from 0 to 1. 

As stated in Eq. (30), changes in the position and 

velocity of each wild goose (i.e., the 𝑖𝑡ℎ wild goose) 

depend on the positions of nearby geese as well as the 

velocities of the geese ahead and behind it, which are 

represented as (𝑣𝑖+1,𝑟
𝐼𝑡𝑒𝑟 − 𝑣𝑖−1,𝑟

𝐼𝑡𝑒𝑟 ). To guide their movement 

and direction to close the distance between them, wild 

geese rely on information shared by individuals nearby in 

the synchronized flock. Furthermore, as described in Eq. 

(23), they incorporate the world's top performer as an 

additional benchmark to direct the flock's collective 

motion. 

𝑥𝑖,𝑟
𝑣 = 𝑝𝑖,𝑟

𝐼𝑡𝑒𝑟 + 𝑞7,𝑟 × 𝑞8,𝑟 × ((𝑔𝑟
𝐼𝑡𝑒𝑟 + 𝑝𝑖+1,𝑟

𝐼𝑡𝑒𝑟 − 2 × 𝑝𝑖,𝑟
𝐼𝑡𝑒𝑟) + 𝑣𝑖,𝑟

𝐼𝑡𝑒𝑟+1) (23) 

𝑔𝑟
𝐼𝑡𝑒𝑟  represented the best position globally among all 

the group members at that particular cycle. 

▪ Walk and search for food 

The way this process is set up, the 𝑖𝑡ℎ Wild Goose 

changes course to follow its leading partner, suggesting 

that the 𝑖𝑡ℎ goose tries to get close to the 𝑖 + 1𝑡ℎ goose, 

denoted as (pi+1
Iter − pi

Iter). The following is the equation 

that describes the movement and foraging behavior of the 

wild goose, denoted as 𝑥𝑖
𝑤: 

𝑥𝑖,𝑟
𝑤 = 𝑝𝑖,𝑟

𝐼𝑡𝑒𝑟 + 𝑞9,𝑟 × 𝑞10,𝑟 × (pi+1,r
Iter

− pi,r
Iter) 

(24) 

▪ Reproduction and evolution 

A further phase of wild geese's life cycle concerns 

reproduction and evolution. Using the migration equation 

(𝑥𝑖
𝑣) and the equation dictating their walking and foraging 

behavior (𝑥𝑖
𝑤), a model has developed. In all simulation 

scenarios, the parameter 𝐶𝑟, which is employed in the 

WGA algorithm described in this study, is uniformly set 

at 0.5. 

𝑥𝑖,𝑟
𝐼𝑡𝑒𝑟+1 = {

𝑥𝑖,𝑟
𝑣     𝑖𝑓   𝑞11,𝑟 ≤ 𝐶𝑟  

𝑥𝑖,𝑟
𝑤             𝑜𝑡ℎ𝑒𝑤𝑖𝑠𝑒

 
(25) 

▪ Death, migration, and ordered evolution 

In some cases, the algorithm's population size is more 

significant and efficient than the count of algorithmic 

cycles, especially for certain functions. 

In contrast, the count of algorithm cycles is more critical 

and efficient when considering different functions than the 

size of the WGA algorithm's population. A death phase 

was added to ensure the algorithm converged uniformly to 

all test functions. The algorithm starts the algorithm with 

a maximum population size, 𝑁𝑝
𝑖 . Further, while the 

algorithm is iterating, the inferior members within the 

population are systematically removed according to the 

formula in Eq. (26). It is a process whereby it goes on 

reducing the population size to its eventual value 

represented as 𝑁𝑝
𝑓
 in the last generation. 

𝑁𝑝 = 𝑟𝑜𝑢𝑛𝑑 (𝑁𝑝
𝑖 − ((𝑁𝑝

𝑖 

− 𝑁𝑝
𝑓 ) × (

𝐹𝐸𝑠

𝐹𝐸𝑠𝑚𝑎𝑥

))) 
(26) 

The count of evaluations a function has received is 

indicated by 𝐹𝐸𝑠, and the maximum number permitted is 

indicated by 𝐹𝐸𝑠𝑚𝑎𝑥. 

The hyperparameter tuning method includes widely used 

parameters from relevant literature, such as learning rate, 

max depth, n_estimators, subsample, colsample_bytree, 

and gamma, to make sure that the performance 

comparisons were fair. For all hybrid methods, AOA, 

HHO, and WGA were used to consistently optimize these 

parameters. This is in line with conventional literature 

settings, which backs up the stated accuracy and makes 
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sure that the performance benefits weren't just because of 

selective parameter modification. 

 

The internal training procedure of XGBoost did not use 

the optimization methods AOA, HHO, and WGA. Instead, 

they were used to improve its hyperparameters. Each 

optimizer looked through the solution space on its own to 

find the best set of XGBoost parameters, such as the 

learning rate, max depth, number of estimators, and 

subsample ratio. The paper then utilized these improved 

parameter values to train the XGBoost classifier, which 

created three hybrid schemes: XGAO, XGHH, and 

XGWG. This method improves the performance of the 

model without changing the core algorithm of XGBoost. 

There was no feature selection or ensemble architecture 

used in this phase. 

Each optimizer (AOA, HHO, WGA) is employed to 

tune key XGBoost hyperparameters: learning rate, 

max_depth, n_estimators, subsample, colsample_bytree, 

and gamma. The objective of each metaheuristic is to 

maximize classification accuracy on the validation set 

using 5-fold cross-validation. The fitness function for 

optimization is defined by the average validation 

accuracy, ensuring consistent and fair evaluation across all 

schemes. 

 

4 Numerical databases 
To ensure data quality and consistency, multiple 

preprocessing steps were implemented. Records 

containing missing or incomplete values were excluded 

from the dataset to prevent analytical bias. Continuous 

numerical features including source bytes, destination 

bytes, and connection duration were normalized using 

Min-Max scaling to standardize the feature range. Outlier 

detection was performed using the Z-score method, and 

data points exceeding three standard deviations from the 

mean were removed. These preprocessing procedures 

were essential to enhance the stability and performance of 

the machine learning models when applied to real-world 

smart home network traffic data. 

The dataset, which included 148,518 occurrences, was 

split into training and testing sets using a 70/30 ratio and 

data is taken from this website 

(https://www.kaggle.com/datasets/arnavsmayan/smart-

home-energy-usage-dataset). Stratified sampling was 

used throughout the split to preserve the original class 

distribution in both sets. This method made sure that any 

class label, whether it was normal or attack, was fairly 

represented in both subsets. This lowered the chance of 

sampling bias. During the creation of the model, the 

training set was tested again with 5-fold cross-validation 

to make sure that the model's performance was stable and 

consistent across different subsets. This validation method 

let the metaheuristic optimizers fine-tune hyperparameters 

without the danger of overfitting. 

The dataset comprises 148,518 labeled samples 

categorized into two primary classes: normal and attack. 

Specifically, 38,792 instances (26.1%) are labeled as 

normal traffic, while 109,726 instances (73.9%) represent 

various types of cyber-attacks, indicating a moderate class 

imbalance. This distribution was preserved during training 

and testing through stratified sampling to ensure fair 

representation. The imbalance was further addressed 

through performance evaluation metrics such as precision, 

recall, and F1-score, which offer a more reliable 

assessment under skewed class conditions. 

This work considers an extensive database, which was 

collected with much difficulty using data mining 

methodologies, including 148,518 occurrences, to assess 

the efficiency of different frameworks to enhance attack 

detection accuracy in network security systems. A wide 

range of critical parameters is included in the database that 

may contribute to analyzing network traffic and detecting 

possible security threats. These would encompass 

attributes for the duration in seconds that the connection 

lasted, whether TCP, UDP, and ICMP; service HTTP, 

FTP; flag, or the state of the connection; source bytes, 

which are the amount of data bytes sent from the source; 

destination bytes, which are the amount of data bytes sent 

from the destination; and a variety of other flags that 

indicate whether the source and destination IPs match, the 

count of incorrect fragments, urgent packets, logged-in 

status, and a variety of connection counts and error rates. 

Whether the connection is considered an attack or not is 

the target variable for the analysis. The interaction 

between these parameters and how they relate to each 

other in a pictorial form is done using a correlation matrix 

in Fig. 3, where the varied shading indicates the direction 

and magnitude of the correlation. A high positive 

correlation implies a tendency for one parameter to 

increase along with another, which could indicate a higher 

chance of an attack. On the other hand, a strong negative 

correlation indicates that a parameter tends to decrease as 

one increases, suggesting that some parameters may not 

be directly correlated with the likelihood of an attack. Less 

to no correlation is indicated by lighter shades in the 

matrix, indicating that specific parameters have little to no 

effect on one another. 
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Figure 3: The graph shows the correlation between input and output 

Feature selection is an essential machine learning 

component, which is especially important for improving 

interpretability and model performance. In this case, it 

entails determining which pertinent parameters impact the 

accuracy of attack detection frameworks. As displayed in 

Fig. 4, the visual representation emphasizes the 

importance of different parameters according to how they 

affect feature selection. At 0.5368, source bytes (src bytes) 

are the most critical parameter, followed by destination 

bytes (dst bytes) at 0.43029 and service at 0.42483. These 

features indicate that the type of service accessed and the 

amount of data transferred are strong predictors of 

possible attacks. In contrast, the urgent parameter has a 

value of 0, indicating the less significant contribution of 

this feature towards the model's prediction capability for 

the future. Therefore, based on the most relevant features, 

the researchers' schemes would be simplified, 

computational complexity would be reduced, and the 

accuracy of attack detection would be improved. This 

leads, over time, to even more robust cybersecurity 

solutions. Besides strengthening the model, it also helps 

understand the root patterns associated with network 

attacks. 
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Figure 4: F Statistics feature selection method conducted for the database 

5 Result and discussion 
The convergence process of three different hybrid 

schemes, each using a different optimization algorithm 

and derived from the XGBC scheme, is displayed in Fig. 

5. The schemes are displayed in the following ways: The 

pink line displays XGWG, the green line displays XGHH, 

and the blue line displays XGAO. The accuracy of all 

three schemes is initially low and shows a noticeable 

improvement as the count of cycles increases from 0 to 

200. The XGWG and XGHH schemes reach a stable 

accuracy by the 140th cycle, while the XGAO model 

achieves a stable accuracy level at the 150th cycle. The 

XGAO model surpasses the other schemes with the 

highest accuracy of 0.9901, beating out the XGHH model 

with 0.9837 and the XGWG model with 0.9663 in the final 

cycle outcomes. This implies that the XGAO model is the 

most efficient of all the schemes considered. The XGAO 

model reached stable accuracy by the 150th iteration, 

whereas the XGHH and XGWG models did so by the 

140th iteration. Even though XGAO converged a little 

later, it did a better job overall and had a higher ultimate 

accuracy. Each optimization technique needed about 200 

fitness tests for each run. These findings show that there is 

a good trade-off between how quickly the system 

converges and how well it performs in the end. This is 

especially true for XGAO, which had the best 

classification accuracy of all the hybrid schemes. 

The training runtimes were recorded on a system with 

an Intel Core i3-1215U CPU and 8GB RAM. The baseline 

XGBC model completed training in approximately 2.5 

minutes. The metaheuristic-augmented models required 

more time due to iterative optimization: XGAO trained in 

~7 minutes, XGHH in ~10 minutes, and XGWG in ~13 

minutes. These runtimes reflect single-pass training and 

demonstrate the additional computational cost associated 

with metaheuristic tuning.

 

Figure 5: Convergence graph of the hybrid schemes 
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Thirty percent was set aside for testing, and seventy 

percent was used for training in the database used in this 

investigation. Four primary metrics were utilized to 

review the scheme's productivity: accuracy, precision, 

recall, and F1-score. The independent XGBC model 

recorded an accuracy of 0.946, as displayed in Table 2. 

Comparatively, during the training phase, the XGWG 

scheme had the highest accuracy at 0.966, the XGHH 

model attained 0.984, and the XGAO model demonstrated 

the highest accuracy at 0.991. These outcomes indicate 

that optimizing frameworks led to notable improvements; 

moreover, the standalone model's performance was 

enhanced by the AOA optimizer by 4.76%, the HHO 

optimizer by 4.02%, and the WGA optimizer by 2.11%. 

Additionally, Fig. 6 visually validates the numerical 

outcomes presented in Table 2, demonstrating the 

schemes' relative efficacy. Table 2 shows the XGBoost 

Classifier (XGBC) with different accuracy scores for the 

training (0.946), testing (0.953), and combined datasets 

(0.948). To be fair and consistent, the study now utilizing 

the "All" accuracy of XGBC (0.948) as the baseline for all 

of the hybrid schemes' (XGAO, XGHH, and XGWG) 

performance increase percentages. Based on this, the 

XGAO model did 4.11% better ((0.987–0.948)/0.948), the 

XGHH model did 3.79% better, and the XGWG model did 

1.90% better. These new values replace the old ones and 

make sure that the text and Table 2 match up. This change 

makes it easier to compare the performance of different 

models and prevents misunderstanding that might come 

from using different baselines. 

 

The paper did an ablation study to see how different 

optimization tactics affected the outcome. The baseline 

XGBoost Classifier (XGBC) has a test accuracy of 95.3%. 

When combined one at a time, XGBC+WGA got 96.7% 

(+1.47%), XGBC+HHO got 98.3% (+3.15%), and 

XGBC+AOA got 98.7% (+3.56%). The paper also used a 

random search-based tuning method for benchmarking, 

which gave us 96.0% accuracy (+0.74%). The XGAO 

model not only had the highest accuracy of all the 

schemes, but it also showed statistically significant 

improvements (p < 0.05) when compared to the baseline 

using paired t-tests. These results show that metaheuristic 

optimization works to make IDS better and that AOA is 

better than random or uninformed approaches at tweaking 

hyperparameters quickly. 

Table 2: XGBC base schemes achieved outcomes through the performance evaluators 

Section Model 
Metric values 

Accuracy Precision Recall F1-Score 

Train 

XGBC 0.946 0.946 0.946 0.946 

XGWG 0.966 0.967 0.966 0.966 

XGHH 0.984 0.984 0.984 0.984 

XGAO 0.991 0.991 0.991 0.991 

Test 

XGBC 0.953 0.953 0.953 0.953 

XGWG 0.967 0.967 0.967 0.967 

XGHH 0.983 0.983 0.983 0.983 

XGAO 0.987 0.987 0.987 0.987 

All 

XGBC 0.948 0.948 0.948 0.948 

XGWG 0.966 0.967 0.966 0.966 

XGHH 0.984 0.984 0.984 0.984 

XGAO 0.987 0.987 0.987 0.987 
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Figure 6: Vertical step plot to illustrate the schemes' performance across various phases 

The classification method divides the outcomes of 

smart home detection into two grades: accurate detection 

and inaccurate detection. Three metrics were utilized to 

review productivity: recall, precision, and F1-score, as 

displayed in Table 3. The outcomes show that, in both 

categories, the XGAO model consistently performed 

better than other schemes. The XGAO model effectively 

returned actual positives; therefore, precision equaled 

0.991, recall equaled 0.989, and the F1-score for correct 

detection was 0.990. Moreover, in the class of incorrect 

detections, it also showed fantastic outcomes: An F1-score 

of 0.991, recall of 0.991, and precision of 0.990. These 

outcomes indicated how the XGAO model effectively 

differentiates correct detection from incorrect detection in 

a smart home, hence having the potential for further 

development in smart home technology with increased 

dependability. 

 

The words "Right detection" and "Wrong detection" in 

Table 3 and Fig. 7 were meant to show the difference 

between the right and wrong categorization of two real 

classes: "attack" (positive class) and "normal" (negative 

class). But this language might not be in line with how 

performance reviews are usually done. To make them fit 

with how they are usually used, these categories have been 

changed to performance metrics assessed per class. For 

example, the "attack" class and the "normal" class each 

have their own accuracy, recall, and F1-score. This change 

makes sure that the metrics are in line with binary 

classification criteria for class-based assessments. Figure 

7's pie charts have also been made clearer to show the 

distribution of accurate and wrong predictions across these 

two classes, not the results of the detections. This change 

makes things clearer and brings the assessment 

methodology in line with standard ways of reporting 

performance in categorization jobs. 

Table 3: Schemes’ performance in the four different conditions 

Model 
Metric 

values 

Grade 

Right detection Wrong detection 

XGBC 

Precision 0.953 0.944 

Recall 0.937 0.958 

F1-score 0.945 0.951 

XGWG 

Precision 0.988 0.949 

Recall 0.941 0.989 

F1-score 0.964 0.969 

XGHH 

Precision 0.987 0.981 

Recall 0.979 0.988 

F1-score 0.983 0.985 

XGAO 

Precision 0.991 0.990 

Recall 0.989 0.991 

F1-score 0.990 0.991 

A thorough visual representation of how different 

machine learning schemes performed in terms of detection 

abilities can be found in Fig. 7. 

▪ Right Detection 

The pie chart in the Right Detection section shows the 

share of correct classifications that the schemes were able 
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to produce. Each slice corresponds to a specific model, 

representing its performance metrics by color. 

Interestingly, 4,772 instances, or 20.4% of all correct 

detections, are explained by the XGAO model. The fact 

that further schemes contribute considerably to 4,826 

correct detections relates to their efficiency in pinpointing 

positive cases. 

▪ Wrong Detection 

By contrast, the Wrong Detection section is depicted 

with a pie graph showing the schemes' performance 

concerning wrong detection. The total count of incorrect 

detections is 5,354. Again, XGAO makes up 20.1% of the 

false detections in this category, with 5,308 counts. 

Comparably, the XGHH model performs 20.1%, with 

5,290 incorrect classifications, while the XGWG model 

also performs 20.1%, with 5,297 instances. They all show 

how tough it is to decrease false positives in all the 

schemes. 

Fig. 7 used to group results into "Right detection" and 

"Wrong detection," which might have caused confusion. 

These labels were used to show which cases were 

correctly and mistakenly classified across all classes, but 

they did not show which cases were true positives, true 

negatives, false positives, or false negatives. The graphic 

and its explanation have been changed to show counts and 

percentages of standard categorization outcomes per 

model, with unambiguous labels (TP, TN, FP, FN) to 

make them more in line with conventional assessment 

standards. Also, performance interpretation now focuses 

on standard measures like accuracy, precision, recall, and 

F1-score, which are presented by class. This makes it 

easier to compare models and understand their 

performance in real life. 

  

Figure 7: Visualization depicting the performance evaluation of the developed schemes 

 

SHAP (SHapley Additive exPlanations) sensitivity 

analysis was conducted to interpret feature influence on 

model predictions by quantifying each input parameter's 

marginal contribution. This method enhances model 

transparency and highlights which features contribute 

most to correct and incorrect classifications. Fig. 8 

presents the SHAP impact scores for both correct (top) and 

incorrect (bottom) detections. In the right detection chart, 

features such as Dst Bytes, Count, and Dst Host Srv Count 

show positive contributions, indicating their importance in 

accurately identifying attack instances. Notably, Src Bytes 

has a negative impact, implying potential suppression of 

correct detections when misestimated. Conversely, in the 

wrong detection chart, Src Bytes and Logged In exhibit 

the highest SHAP values, suggesting their 

misinterpretation plays a key role in incorrect 

classifications. Minor contributions are observed from 

features like Flag and Service. 
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Figure 8: SHAP sensitivity analysis. 

 

The Wilcoxon signed-rank test was used to statistically 

assess the performance differences between the base 

XGBoost model and its metaheuristic-enhanced variants 

(XGB_AOA, XGB_HHO, XGB_WGA). This non-

parametric test is suitable for comparing paired samples 

where the distribution cannot be assumed to be normal. It 

evaluates whether the median differences between paired 

observations are statistically significant, making it 

appropriate for performance comparisons in ML. Table 4 

presents the results of the Wilcoxon test. The P Value 

indicates the statistical significance of the difference, 

while the Stat column shows the corresponding Wilcoxon 

rank statistic. Notably, XGB_WGA shows a highly 

significant result (p = 4.05E-35), indicating a meaningful 

performance deviation. Similarly, XGB_HHO yields a 

significant result (p = 3.97E-03). However, XGB_AOA 

returns a non-significant p-value (0.424), suggesting no 

substantial difference relative to the baseline under the 

null hypothesis. The base XGB model's high test statistic 

(59,512.5) reflects its relative deviation from the 

optimized models. These results confirm that certain 

metaheuristic strategies contribute statistically significant 

improvements.

Table 4: Wilcoxon test. 

Models P Value Stat 

XGB_AOA 4.24E-01 2323 

XGB_HHO 3.97E-03 5312 

XGB_WGA 4.05E-35 9804 

XGB 6.88E-04 59512.5 
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Fig. 9 shows the results of a 5-fold cross-validation that 

was done to check how stable and generalizable the 

suggested model is. Each part (K1 to K5) shows how 

accurate the results were in one of the five folds. The 

accuracy values were between 0.936 and 0.950, with K5 

having the best result. The round shape stresses 

homogeneity between folds, which means that the 

classification results are the same and the performance 

doesn't vary much. This shows that the model is strong 

across multiple data sets. Cross-validation was very 

important during hyperparameter tuning since it made sure 

that the metaheuristic optimizers chose configurations that 

worked well in general, not only on one training subset. 

These results support the accuracy of the performance 

measurements that were reported throughout the trial. 

 

 

 
 

Figure 9: K-fold cross validation. 

 

When compared to known IDS approaches, the 

suggested XGAO model works better. For example, [14] 

and [15] both got 96.7% and 89.24% correct, whereas [16] 

got 99.33% correct using a Random Forest method on 

huge data.  came up with an SVM-based model that was 

only 93.64% accurate and had a high false alarm rate of 

20.28%, which makes it hard to use in real life. [18] [21] 

and [23], have showed promise in lowering false positives. 

However, when used in large-scale or resource-limited 

settings like smart homes, they frequently have significant 

computational complexity and scaling problems. The 

XGAO model, on the other hand, had a training accuracy 

of 99.1% and a test accuracy of 98.7%, with a far lower 

false positive rate of 0.86%. These results show that the 

method is both accurate and useful. The Arithmetic 

Optimization Algorithm (AOA) improves XGBoost by 

automatically adjusting hyperparameters. This makes it a 

great balance between speed of convergence and search 

space exploration, which is especially useful for finding 

complex and varied network intrusions in smart home 

situations. To support deployment in smart home 

environments, model complexity and interpretability are 

critical. The proposed XGAO model maintains a moderate 

model size with an average inference time under 0.15 

seconds per instance, making it suitable for real-time 

monitoring. Although deep models often struggle with 

transparency, XGBoost allows examination of feature 

contributions. In future work, SHAP (SHapley Additive 

exPlanations) values will be employed to visualize 

individual feature impacts and improve model 

explainability. Additionally, the use of interpretable input 

features such as data volume and service type enables 

security professionals to trace detection outcomes to 

specific network behaviors. These properties enhance the 

practical value of the XGAO model for on-device or edge-

level deployment in smart home intrusion detection 

systems with limited computational resources. 

6 Conclusion 
The paper wraps up with an in-depth analysis of machine 

learning for classifying smart home responses for attack 

detection as correct or incorrect by utilizing the Extreme 

Gradient Boosting Classifier (XGBC) as its central 

classifier. This classifier was further improved by three 

optimization frameworks: the Arithmetic Optimization 

Algorithm (AOA), Horse Herd Optimization (HHO), and 

Wild Geese Algorithm (WGA). These optimizations 

yielded three hybrid schemes: XGWG, XGHH, and 

XGAO, which were designed to accomplish increased 

performance in classification. 

Feature selection, an essential feature, requires time to 

find efficient sources such as source bytes, destination 
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bytes, and services. This extensive selection pays off 

significantly in terms of the overall performance of the 

schemes. Two stages were created: one testing set and one 

training set with 70% of the data. The performance 

comparison of the schemes was strict because the schemes 

were evaluated on well-established machine learning 

evaluation metrics. 

The outcomes show that the XGBC model performs 

much better using the AOA optimization algorithm. The 

XGAO hybrid scheme achieves an astounding accuracy of 

0.987, as opposed to 0.948 for the baseline XGBC model. 

This is a noteworthy 4.11% improvement. Apart from 

accuracy, the XGAO model exhibited exceptional 

performance in other assessment metrics, confirming its 

position as the most efficient model in this investigation. 

The XGAO model performed exceptionally well in 

classifying correct and incorrect detections, correctly 

identifying 4,772 out of 4,826 correct detections with an 

error rate of only 1.12%. Moreover, the XGAO model 

correctly identified 5,308 out of 5,354 cases in the context 

of incorrect detections, yielding an error rate of 0.86%. 

Together, these outcomes demonstrate how well the 

XGAO model works to improve the dependability of 

smart home attack detection systems, opening the door for 

more study and use in this area. 

One problem with this study is that it doesn't use 

independent datasets to confirm its findings, which might 

make it harder to apply the proposed models to other smart 

home settings. Using metaheuristic optimizers works, but 

it also makes it possible for the model to match the training 

data too well. Also, the models were tested on only one 

dataset, thus their performance may be different under 

more diverse or unknown network situations. To fix these 

problems, future work will incorporate more cross-domain 

validation. Future research will focus on validating the 

proposed models using more diverse and heterogeneous 

datasets to assess generalizability across varying smart 

home environments. Real-time deployment simulations 

will also be conducted to evaluate model performance 

under practical latency and resource constraints. In 

addition, hybrid deep-learning approaches such as 

combining convolutional neural networks (CNNs) with 

metaheuristic-tuned ensemble models will be explored to 

enhance feature extraction and classification accuracy. 

These directions aim to strengthen the scalability, 

adaptability, and real-world applicability of intrusion 

detection systems in evolving smart home ecosystems. 

 

Competing of interests 
The scholars claim no competing interests. 

Authorship Contribution Statement 
Xu LIU: Writing-Original draft preparation, 

Conceptualization, Supervision, Project administration. 

Shaotong XUE: Methodology, Software 

Meng ZHANG: Validation. 

Lina GU: Language review 

Data availability 
The codes and dataset can be shared on request.  

Declarations 
Not applicable 

Conflicts of interest 
The authors declare that there is no conflict of interest 

regarding the publication of this paper. 

Author statement 
The manuscript has been read and approved by all the 

authors, the requirements for authorship, as stated earlier 

in this document, have been met, and each author believes 

that the manuscript represents honest work. 

Funding 
Not applicable 

Ethical approval 
All authors have been personally and actively involved in 

substantial work leading to the paper, and will take public 

responsibility for its content. 

References 
[1] A. Chaudhuri, Internet of Things, for Things, and 

by Things. Auerbach Publications, 2018. 
https://doi.org/10.1201/9781315200644 

[2] J. Bugeja, A. Jacobsson, and P. Davidsson, “On 

privacy and security challenges in smart connected 

homes,” in 2016 European Intelligence and 

Security Informatics Conference (EISIC), IEEE, 

2016: 172–175. DOI: 10.1109/EISIC.2016.044 

[3] L. Huber and L. J. Camp, “User-driven design in 

smart homes: ethical aspects,” Handbook of smart 

homes, health care and well-being. Springer, 

Cham, S: 1–10, 2014. DOI 10.1007/978-3-319-

01583-5_7 

[4] P. P. Gaikwad, J. P. Gabhane, and S. S. Golait, “A 

survey based on Smart Homes system using 

Internet-of-Things,” in 2015 International 

Conference on Computation of Power, Energy, 

Information and Communication (ICCPEIC), 

IEEE, 2015: 330–335. DOI: 

10.1109/ICCPEIC.2015.7259486 

[5] M. K. Kuyucu, Ş. Bahtiyar, and G. İnce, “Security 

and privacy in the smart home: A survey of issues 

and mitigation strategies,” in 2019 4th 

International Conference on Computer Science 

and Engineering (UBMK), IEEE, 2019: 113–118. 
DOI: 10.1109/UBMK.2019.8907037 

[6] K. Liu, Z. Fan, M. Liu, and S. Zhang, “Hybrid 

intrusion detection method based on k-means and 

cnn for smart home,” in 2018 IEEE 8th annual 

international conference on CYBER technology in 

https://doi.org/10.1201/9781315200644
https://doi.org/10.1109/EISIC.2016.044
https://doi.org/10.1109/ICCPEIC.2015.7259486
https://doi.org/10.1109/UBMK.2019.8907037


Metaheuristic-Enhanced XGBoost Framework for Intrusion Detection…                                      Informatica 49 (2025) 281–296   295 

 

 
 

automation, control, and intelligent systems 

(CYBER), IEEE, 2018: 312–317. DOI: 

10.1109/CYBER.2018.8688271 

[7] P. Shukla, “ML-IDS: A machine learning approach 

to detect wormhole attacks in Internet of Things,” 

in 2017 intelligent systems conference (IntelliSys), 

IEEE, 2017: 234–240. DOI: 

10.1109/IntelliSys.2017.8324298 

[8] M. Mamdouh, M. A. I. Elrukhsi, and A. Khattab, 

“Securing the internet of things and wireless sensor 

networks via machine learning: A survey,” in 2018 

International Conference on Computer and 

Applications (ICCA), IEEE, 2018: 215–218. DOI: 

10.1109/COMAPP.2018.8460440 

[9] C. Perlich, “Learning Curves in Machine 

Learning.,” 2010. DOI:10.1007/978-0-387-30164-

8_452 

[10] F. Alghayadh and D. Debnath, “A hybrid intrusion 

detection system for smart home security,” in 2020 

IEEE International Conference on Electro 

Information Technology (EIT), IEEE, 2020: 319–

323. DOI: 10.1109/EIT48999.2020.9208296 

[11] R. Primartha and B. A. Tama, “Anomaly detection 

using random forest: A performance revisited,” in 

2017 International conference on data and 

software engineering (ICoDSE), IEEE, 2017: 1–6. 
DOI: 10.1109/ICODSE.2017.8285847 

[12] A. Guezzaz, Y. Asimi, M. Azrour, and A. Asimi, 

“Mathematical validation of proposed machine 

learning classifier for heterogeneous traffic and 

anomaly detection,” Big Data Mining and 

Analytics, 4(1): 18–24, 2021. DOI: 

10.26599/BDMA.2020.9020019 

[13] Y. El Mourabit, A. Bouirden, A. Toumanari, and 

N. E. Moussaid, “Intrusion detection techniques in 

wireless sensor network using data mining 

algorithms: comparative evaluation based on 

attacks detection,” International Journal of 

Advanced Computer Science and Applications, 6, 

(9): 164–172, 2015. 
DOI:10.14569/IJACSA.2015.060922 

[14] A. Ghazali, W. Nuaimy, A. Al-Atabi, and I. 

Jamaludin, “Comparison of classification models 

for Nsl-Kdd dataset for network anomaly 

detection,” Academic Journal of Science, 4(1): 

199–206, 2015. DOI:10.1007/978-981-32-9343-

4_16 

[15] J. Kevric, S. Jukic, and A. Subasi, “An effective 

combining classifier approach using tree 

algorithms for network intrusion detection,” 

Neural Comput Appl, 28(Suppl 1): 1051–1058, 

2017. https://doi.org/10.1007/s00521-016-2418-1 

[16] A. A. A. Hadi and A.-A. Al-Furat, “Performance 

analysis of big data intrusion detection system over 

random forest algorithm,” International Journal of 

Applied Engineering Research, 13(2): 1520–1527, 

2018. https://doi.org/10.1016/j.procs.2020.04.133 

[17] A. Karami, “An anomaly-based intrusion detection 

system in presence of benign outliers with 

visualization capabilities,” Expert Syst Appl, 108: 

36–60, 2018. 

https://doi.org/10.1016/j.eswa.2018.04.038 

[18] J. Gu, L. Wang, H. Wang, and S. Wang, “A novel 

approach to intrusion detection using SVM 

ensemble with feature augmentation,” Comput 

Secur, 86: 53–62, 2019. 

https://doi.org/10.1016/j.cose.2019.05.022 

[19] M. Tabash, M. Abd Allah, and B. Tawfik, 

“Intrusion detection model using naive bayes and 

deep learning technique.,” Int. Arab J. Inf. 

Technol., 17(2): 215–224, 2020. 
DOI:10.34028/iajit/17/2/9 

[20] M. H. L. Louk and B. A. Tama, “Exploring 

ensemble-based class imbalance learners for 

intrusion detection in industrial control 

networks,” Big Data and Cognitive Computing, 

5(4)72, 2021. 

https://doi.org/10.3390/bdcc5040072 

[21] D. N. Mhawi, A. Aldallal, and S. Hassan, 

“Advanced feature-selection-based hybrid 

ensemble learning algorithms for network 

intrusion detection systems,” Symmetry (Basel), 

14(7):1461, 2022. 

https://doi.org/10.3390/sym14071461 

[22] M. A. Bertoni, G. H. de Rosa, and J. R. F. Brega, 

“Optimum-path Forest stacking-based ensemble 

for intrusion detection,” Evol Intell, 15(3): 2037–

2054, 2022. https://doi.org/10.1007/s12065-021-

00609-7 

[23] F. Jemili, R. Meddeb, and O. Korbaa, “Intrusion 

detection based on ensemble learning for big data 

classification,” Cluster Comput, 27(3): 3771–

3798, 2024. https://doi.org/10.1007/s10586-023-

04168-7 

[24] Y. Jarraya, T. Madi, and M. Debbabi, “A survey 

and a layered taxonomy of software-defined 

networking,” IEEE communications surveys & 

tutorials, 16(4): 1955–1980, 2014. DOI: 

10.1109/COMST.2014.2320094 

[25] M. K. Habib and A. K. Cherri, “Parallel 

quaternary signed-digit arithmetic operations: 

addition, subtraction, multiplication and 

division,” Opt Laser Technol, 30(8): 515–525, 

1998. https://doi.org/10.1016/S0030-

3992(99)00004-3 

[26] L. Abualigah, A. Diabat, S. Mirjalili, M. Abd 

Elaziz, and A. H. Gandomi, “The arithmetic 

optimization algorithm,” Comput Methods Appl 

Mech Eng, 376: 113609, 2021. 
https://doi.org/10.1016/j.cma.2020.113609 

[27] F. MiarNaeimi, G. Azizyan, and M. Rashki, “Horse 

herd optimization algorithm: A nature-inspired 

algorithm for high-dimensional optimization 

problems,” Knowl Based Syst, 213: 106711, 2021. 

https://doi.org/10.1016/j.knosys.2020.106711 

[28] S. Mahdavi, M. E. Shiri, and S. Rahnamayan, 

“Metaheuristics in large-scale global continues 

optimization: A survey,” Inf Sci (N Y), 295: 407–428, 

2015. https://doi.org/10.1016/j.ins.2014.10.042 

 

 

https://doi.org/10.1109/CYBER.2018.8688271
https://doi.org/10.1109/IntelliSys.2017.8324298
https://doi.org/10.1109/COMAPP.2018.8460440
http://dx.doi.org/10.1007/978-0-387-30164-8_452
http://dx.doi.org/10.1007/978-0-387-30164-8_452
https://doi.org/10.1109/EIT48999.2020.9208296
https://doi.org/10.1109/ICODSE.2017.8285847
https://doi.org/10.26599/BDMA.2020.9020019
http://dx.doi.org/10.14569/IJACSA.2015.060922
http://dx.doi.org/10.1007/978-981-32-9343-4_16
http://dx.doi.org/10.1007/978-981-32-9343-4_16
https://doi.org/10.1016/j.procs.2020.04.133
https://doi.org/10.1016/j.eswa.2018.04.038
https://doi.org/10.1016/j.cose.2019.05.022
http://dx.doi.org/10.34028/iajit/17/2/9
https://doi.org/10.3390/bdcc5040072
https://doi.org/10.3390/sym14071461
https://doi.org/10.1109/COMST.2014.2320094
https://doi.org/10.1016/S0030-3992(99)00004-3
https://doi.org/10.1016/S0030-3992(99)00004-3
https://doi.org/10.1016/j.cma.2020.113609
https://doi.org/10.1016/j.knosys.2020.106711
https://doi.org/10.1016/j.ins.2014.10.042


296   Informatica 49 (2025) 281–296                                                                                                                                  S. Xue et al. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  


