
https://doi.org/10.31449/inf.v49i34.8837 Informatica 49 (2025) 281–296 281

Metaheuristic-Enhanced XGBoost Framework for Intrusion

Detection in Smart Home IoT Systems

Shaotong Xue 1, Xu Liu1, *, Meng Zhang 2, Lina Gu1
1Artificial intelligence and big data college, Hebei University of Engineering Science, Shijiazhuang 050091, China
2.Department of Electronic Information, Huaxin College of Hebei GEO University, Shijiazhuang 050700, China

E-mail: liuxu10168@163.com
*Corresponding author

Keywords: smart home systems, intrusion detection system, security, threats, metaheuristic algorithm, hybrid schemes,

machine learning

Received: April 9, 2025

The growing integration of smart technologies into residential environments has heightened their

exposure to cybersecurity threats, thereby necessitating robust and intelligent intrusion detection systems

(IDS). This study proposes a hybrid AI-driven intrusion detection framework tailored for smart home

networks, leveraging the Extreme Gradient Boosting Classifier (XGBoost or XGBC) enhanced by three

metaheuristic optimization techniques: the Arithmetic Optimization Algorithm (AOA), Horse Herd

Optimization (HHO), and Wild Geese Algorithm (WGA). The performance of these hybrid schemes

XGAO, XGHH, and XGWG was rigorously evaluated using a comprehensive dataset containing 148,518

labeled network traffic instances, compiled through data mining methods. The dataset includes diverse

attributes such as source and destination bytes, service types, protocols, and various connection-related

flags. Performance evaluation was conducted using four standard classification metrics: accuracy,

precision, recall, and F1-score. Among all models, the hybrid XGAO scheme demonstrated superior

performance, achieving a training accuracy of 0.991, outperforming the baseline XGBC model, which

scored 0.946 under the same conditions. In the testing phase, XGAO maintained high generalizability with

an accuracy of 0.987, compared to 0.953 for XGBC. The XGAO model also excelled in recall (0.989),

precision (0.991), and F1-score (0.990) for correct detections. These findings affirm that integrating

XGBoost with AOA significantly enhances the classification accuracy and reliability of intrusion detection

systems in smart home environments. The study contributes to the development of resilient, adaptive IDS

architectures capable of mitigating evolving cyber threats in the domain of intelligent residential

technologies.

Povzetek: Hibridni okvir XGBoost, optimiziran z metahevristiko AOA, HHO in WGA, omogoča bolj

kvalitetno zaznavanje vdorov v pametnih domovih. XGAO doseže višjo točnost, odpornost in zanesljivost

kot klasični XGBoost.

1 Introduction
Smart homes make effective integration of the digital and

physical worlds possible. According to studies, there are

currently more than 6 billion internet-connected devices,

and in the upcoming years, that number is predicted to rise

to over 26 billion [1]. As IoT technology is embraced by

various industries, including smart cities and homes,

healthcare, transportation, manufacturing, and agriculture,

these figures are anticipated to increase [2], [3]. IoT

technology is poised to transform society and the standard

of living with these advancements [2]. Despite the ease of

utilization and benefits of smart homes, some have

claimed that the technology is highly invasive in people's

lives [4]. The most brilliant homes have sensors installed

on their smart devices, producing diverse data streams and

linked events that give rise to a constant flow of

information about the activities occurring in a specific

home [3], [4]. Hence, cyber criminals frequently try to

break into the network of smart homes to hijack the

continuous information flow between the devices,

enabling them to snoop on household activities [5].

Nowadays, many smart home appliances are linked to

the Internet; these appliances are easily attacked and can

result in significant issues that could negatively impact a

user's life. Because attackers can be clever or use the same

protocols that users use to make valid requests, some of

these attacks are hard to identify [5]. The purpose of an

IDS is to identify and stop network attacks [6].

Nevertheless, one-tier standard intrusion detection is

insufficient to guarantee the security and privacy of

wireless sensor networks due to several restrictions on

smart home sensors and device manufacturers [7].

within a smart home environment, there are many

security risks that modern wireless networks, devices, and

sensors must contend with. ML is thought to be the perfect

answer to this issue [8]. Without requiring explicit

programming, machine learning technology utilizes

282 Informatica 49 (2025) 281–296 S. Xue et al.

diverse learning frameworks to train sensors, devices, and

other artificial intelligence-capable hardware [9]. For the

following reasons, machine learning is the perfect way to

handle security risks in contemporary wireless sensor

networks and smart home devices [10]:

• Smart home appliances and wireless sensor networks

(WSNs) don't rely on complex mathematical

schemes.

• Correlated data sets are necessary for IoT

applications. Furthermore, machine learning can

handle the stochastic nature of WSNs and smart home

appliances [9].

• Because the machine is automated, no human

intervention is needed, making it perfect for smart

home technologies to prevent and lessen potential

threats to the system [11].

The research in this paper investigates the

effectiveness of the Extreme Gradient Boosting algorithm

in classifying cyber-attacks within smart homes. XGBoost

is also reliable and very efficient, dealing with large

databases and narrowing down to those crucial elements

when detecting threats. It performs enhancement by

leveraging three different optimization frameworks,

namely the Wild Geese Algorithm, which can balance

exploration and exploitation well; the Horse Herd

Optimization algorithm, which enables the exploration of

the solution space; and the Arithmetic Optimization

Algorithm, which will improve the tuning of

hyperparameters. These combined strategies reinforce the

model's potential to identify safe operations from online

dangers and secure smart homes.

This study's goal is to find better ways to classify

intrusion detection models so that smart home networks

can deal with the rising number of security flaws. The

fundamental purpose is threefold: (1) to make the

XGBoost-based Intrusion Detection System (IDS) work

better by adding metaheuristic optimization techniques;

(2) to see how well three specific optimizers Arithmetic

Optimization Algorithm (AOA), Horse Herd

Optimization (HHO), and Wild Geese Algorithm (WGA)

classify data when used with the XGBoost framework;

and (3) to see how well these hybrid models work on a

large-scale, real-world smart home dataset with 148,518

labeled instances using standard classification metrics like

accuracy, precision, recall, and F1-score.

2 Literature survey
It has been more than a decade since IDS started to see

significant improvements driven by the integration of ML

techniques [12]. As a result of this evolution, intrusion

detection today is a classification task that uses labeled

data to distinguish abnormal activities from normal ones

effectively. Diverse ML methods have been developed to

improve the efficiency of IDS, including Random Forest,

Decision Trees, Naïve Bayes, deep learning, and ensemble

methods. For example, Yousef et al. showed that the best

technique to detect various types of attacks is the Random

Forest Classifier (RFC) [13].

In 2015, Ghazali et al. applied five classification

strategies on the NSL-KDD database and reported an

accuracy of 96.7%, a detection rate of 95.5%, and a FAR

of 4.7% [14]. Following further research, Kevric et al.

reported in 2017 an ACC of 89.24% [15], while the RF-

based 2018 model recommended by Hadi yielded an

astonishing 99.33% ACC [16]. Karami presented in 2018

an anomaly-based intrusion detection system utilizing the

fuzzy tactic [17]. Gu et al., in 2019, recommended an

SVM-based model that had only an ACC of 93.64% with

a higher FAR of 20.28% [18]. In 2020, Tabash et al.

combined the merits of DL and NB to boost the attribute

retrieval that improved performance metrics [19].

Ensemble methods represent recent approaches.

Whereas in the work of Abbas et al., hybrid ensembles

were recommended for the improvement of performance

in the detection system in 2021, Louk et al. recommended

an ensemble approach drawing on bagging [20]. Mhawi et

al. recommended an ensemble based on Boosting in 2022,

pointing out the focus on sequential training of classifiers

[21]. Besides that, Bertoni et al. created a scheme drawing

on stacking to achieve accuracy via meta-classification

[22]. These ensemble learning innovations taken

altogether have proven to be successful in increasing the

precision and resiliency of the IDS while significantly

reducing false alarms as a whole [23].

Recent research has shown growing interest in

intelligent intrusion detection tailored for smart and IoT

environments. [5] proposed a learning-based ensemble

framework for IoT smart homes, combining diverse

classifiers for anomaly detection. [3] introduced an IDS

for 5G device-to-device communications, emphasizing

ML-driven optimization in latency-sensitive networks

(DOI: 10.31449/inf.v47i6.4635). [6] designed a feature-

selection-based ensemble IDS for IIoT, highlighting

dimensionality reduction’s importance. [7] developed a

deep transfer learning framework to improve resilience in

constrained IoT networks. [8] reviewed metaheuristic

optimization in IDS, covering algorithms like PSO and

AGA, but identified gaps in benchmarking newer

techniques. Although metaheuristic approaches have been

applied to feature selection and model tuning, direct,

comparative evaluations of advanced optimizers such as

AOA, HHO, and WGA remain scarce within a unified IDS

framework. This study addresses that gap by integrating

and systematically benchmarking these optimizers

alongside XGBoost on a comprehensive smart home

dataset, offering novel insights into their comparative

effectiveness.

XGBoost and metaheuristic optimization methods like

AOA, HHO, and WGA have been studied separately in

the fields of machine learning and intrusion detection.

This study, on the other hand, is new because it

systematically combines and tests these optimizers within

the XGBoost framework for smart home security. The

study is the first to use these approaches on a large, real-

world smart home dataset with 148,518 instances. This

has not been done much before in the literature. A rigorous

performance study, convergence behavior, ablation

investigations, and statistical validation are used to

Metaheuristic-Enhanced XGBoost Framework for Intrusion Detection… Informatica 49 (2025) 281–296 283

compare three hybrid models: XGAO, XGHH, and

XGWG. Also, real-time limitations and class-level

performance assessments are included, which shows how

useful it may be in the actual world. This combined

method gives us a better knowledge of how optimizers

affect classifier performance. It also sets up a new way to

compare metaheuristic-driven IDS in smart settings.

Table 1 presents a comparative analysis of recent

intrusion detection systems, highlighting methods,

datasets, and key performance metrics. It underscores the

superior performance and novelty of the proposed

(XGAO) on a smart home dataset.

Table 1: Comparative analysis of recent intrusion detection systems

Table 1. Comparative summary of IDS methods in recent literature.

Study Method Dataset Accuracy Recall

Ghazali et

al. (2015)

Multiple

Classifiers

NSL-KDD 96.7% 95.5%

Kevric et

al. (2017)

Tree-

based

Ensemble

NSL-KDD 89.24% -

Hadi

(2018)

Random

Forest

Big Data

Traffic

99.33% -

Karami

(2018)

Fuzzy

Logic

Unknown - -

Gu et al.

(2019)

SVM

Ensemble

Unknown 93.64% -

Tabash et

al. (2020)

Naive

Bayes + DL

Custom

Network

Dataset

- -

Abbas et

al. (2021)

Hybrid

Ensemble

(Bagging)

Industrial

Control

Network

- -

Mhawi et

al. (2022)

Boosting-

based

Ensemble

Custom

Network

Dataset

- -

This Study

(XGAO)

XGBoost

+ AOA

Smart

Home Dataset

(148,518

samples)

99.1%

(Train), 98.7%

(Test)

98.9%

(Correct

Detection)

Because they are more accurate and reliable,

ensemble-based methods including bagging, boosting,

and stacking have been widely used in intrusion detection

systems. In the expanded literature portion of this work,

the study compares the XGBoost-based hybrid schemes

(XGAO, XGHH, XGWG) against standard ensemble

classifiers like Random Forest and Gradient Boosting.

XGBoost is an ensemble model, but the presented

methods stand out because they use metaheuristic

optimization, which makes them better at adapting to

complicated smart home incursion patterns and

converging faster.

3 Recommended work

• XGBoost Classifier (XGBC)

Compared to the traditional GBDT method, significantly

improved computation speed, scalability, and

generalization performance can be achieved with

XGBoost. In [24]Detailed descriptions of the optimization

strategy and objective function in the XGBoost framework

are given. The objective function of the XGBoost is

depicted by Eq. (1):

𝐹𝑂𝑏𝑗(𝜃) = 𝐽(𝜃) + Ω(𝜃),

𝑤ℎ𝑒𝑟𝑒 𝐽(𝜃) = 𝑙(𝑝𝑖 , 𝑚𝑖),
(1)

Ω(𝜃) = 𝛾𝑟 +
1

2
𝜆‖𝑤‖2. (2)

𝐽(𝜃), in which 𝜃 is the different parameters of the

formula, and 𝛺(𝜃) are the components of the objective

function that comprises XGBoost. The loss function 𝐽(𝜃)

is a differentiable convex function that regulates the fitting

of data from the model and calculates the deviation of the

measured target, 𝑚𝑖, from the predicted value, 𝑝𝑖 . Two

main convex loss functions are logistic loss, given by Eq.

(3), and mean square loss, given by Eq. (4).

𝑗(𝑝𝑖 , 𝑚𝑖) = 𝑚𝑖 ln(1 + 𝑒−𝑝𝑖) + (1
−𝑚𝑖) ln(1 + 𝑒𝑝𝑖)

(3)

𝑗(𝑝𝑖 , 𝑚𝑖) = (𝑝𝑖 − 𝑚𝑖)
2 (4)

Furthermore, a regularization term Ω(θ) affects

complex schemes. The learning rate, denoted by γ, can

reach a maximum value of 0, while r displays the total

count of leaves in the tree. Tree pruning is produced when

282 Informatica 49 (2025) 281–296 S. Xue et al.

γ is multiplied by r, which lowers overfitting. Unlike

traditional GBDT, XGBoost amplifies this phrase using a

regularization parameter 1
2⁄ λ‖w‖2. This parameter

displays leaf weights w. This component is further

improved to lessen overfitting and increase the model's

capacity for generalization.

Nevertheless, conventional optimization methods

encounter challenges because the objective function in Eq.

(1) combines function parameters and model penalty

terms. Checking whether the target mi can be determined

using Eq. (5) is therefore crucial.

𝐽(𝜃) = ∑ 𝑗(𝑚𝑖 , 𝑝𝑖
(𝑡−1)

𝑟

𝑖=1

+ 𝑍𝑡(𝑟𝑖) + Ω(𝜃). (5)

The enhancement tries to build a tree construction that

diminishes the target function on each cycle. Based on the

outcomes and residuals of the previous tree (residuals=real

value-predictive value), the current residual regression

tree is fitted using the tree structure. 𝑍𝑡(𝑟𝑖) displays the

tree that instance 𝑖 in the 𝑡 cycle created.

When the square loss function is solved, the objective

function of Eq. (4) is ideal, making solving other loss

functions challenging. Different loss functions can be

solved using Eq. (5) by translating Eq. (6) through the two-

order Taylor expansion. These include Eqs. (7) and (8).

This simplifies the optimization process because the

ultimate goal function depends only on the error function's

first and second derivatives for each data point.

𝐽(𝜃) = ∑ 𝑗(𝑚𝑖 , 𝑝𝑖
(𝑡−1)

𝑟

𝑖=1

+ ℊ𝑖𝑍𝑡(𝑟𝑖)

+
1

2
𝒽𝑖𝑍𝑡

2(𝑟𝑖) + Ω(𝜃).

(6)

𝒽𝑖 = 𝜕
𝑝(𝑡−1)
2 𝑗 (𝑚𝑖 , 𝑝

(𝑡−1)) (7)

ℊ𝑖 = 𝜕𝑝(𝑡−1)𝑗 (𝑚𝑖 , 𝑝
(𝑡−1)) (8)

The flowchart of XGBC is displayed in Fig. 1.

Figure 1: XGBC diagram

• Arithmetic Optimization Algorithm (AOA)

Using fundamental arithmetic operations, arithmetic

optimization is a metaheuristic with roots in number

theory that analyzes numerical values and finds the best

solution given predetermined parameters [25]. AOA

includes stages for exploration and exploitation, much like

traditional population-driven optimization. It was inspired

by applying arithmetic to solve mathematical problems.

While exploitation improves the accuracy of the

resolutions, exploration scans the search domain for viable

answers. The three main phases of the AOA algorithm are

outlined and discussed in the sections that follow [26].

Initialization

The Arithmetic Optimization algorithm starts with the

creation of a random set of candidate resolutions (𝑋). The

algorithm assumes that the best candidate solution is either

the neighborhood's best or optimal solution in each cycle.

𝑋 =

[

𝑥1,1 ⋯ ⋯ 𝑥1,𝑗 𝑥1,𝑟−1 𝑥1,𝑟
𝑥2,1 ⋯ ⋯ 𝑥2,𝑗 ⋯ 𝑥2,𝑟

 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑥𝑁−1,1 ⋯ ⋯ 𝑥𝑁−1,𝑗 ⋯ 𝑥𝑁−1,𝑟
𝑥𝑁,1 ⋯ ⋯ 𝑥𝑁,𝑗 𝑥𝑁,𝑟−1 𝑥𝑁,𝑟]

 (9)

A choice must be made regarding whether to begin

the AOA procedure with the exploration or exploitation

phases. The function value at the 𝑖𝑡ℎ cycle is then

represented by the MOA function, which is calculated

using Eq. (10).

𝑀𝑂𝐴(𝐵𝐼𝑡𝑒𝑟) = 𝑀𝑖𝑛

+ 𝐴𝐼𝑡𝑒𝑟 × (
𝑀𝑎𝑥 − 𝑀𝑖𝑛

𝑈𝐼𝑡𝑒𝑟

)
(10)

The maximum count of cycles is depicted by 𝑈𝐼𝑡𝑒𝑟 ,

where 𝐴𝐼𝑡𝑒𝑟 ranges from 1 to 𝑈𝐼𝑡𝑒𝑟−1. When modifying the

step size of arithmetic operators during the global search

phase, the terms Max and Min serve as reference points

for the highest and lowest values of the accelerated

function.

▪ exploration

The exploration mechanism uses multiplication (MO)

or Division (DO) operators to produce dispersed values or

options. The difficulties of directly reaching the target

with this indirect approach frequently require several

cycles to find a nearly ideal solution for exploitation. Eq.

(11) defines the equations for position updates and

summarizes the formulation of two essential search

strategies during the exploration phase.

Metaheuristic-Enhanced XGBoost Framework for Intrusion Detection… Informatica 49 (2025) 281–296 283

𝑥𝑖,𝑗(𝐴𝐼𝑡𝑒𝑟 + 1) = {
𝑏(𝑥𝑗) ÷ (𝑀𝑂𝑃 + 𝜀) × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × 𝜔 + 𝐿𝐵𝑗) , 𝑞2 < 0.5

𝑏(𝑥𝑗) × 𝑀𝑂𝑃 × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × 𝜔 + 𝐿𝐵𝑗) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (11)

In this case, 𝑥𝑖,𝑗(𝐴𝐼𝑡𝑒𝑟) depicts the 𝑗𝑡ℎ position of the

𝑖𝑡ℎ resolution at a specific cycle (𝐴𝐼𝑡𝑒𝑟), and 𝑏(𝑥𝑖) denotes

the 𝑗𝑡ℎ location found in the most advantageous solution

found thus far. 𝐿𝐵𝑗 and 𝑈𝐵𝑗 indicate the lower and upper

boundary values for the 𝑗𝑡ℎ location, accordingly, and 𝜀 is

a small integer value. 𝜔 serves as a parameter for control.

The function value of 𝑀𝑂𝑃(𝐴𝐼𝑡𝑒𝑟) can be expressed as

follows:

𝑀𝑂𝑃(𝐴𝐼𝑡𝑒𝑟) = 1 −
𝐴𝐼𝑡𝑒𝑟

1/𝛾

𝑈𝐼𝑡𝑒𝑟
1/𝛾 (12)

where 𝛾 is an essential parameter that establishes the

level of accuracy of the exploitation process throughout

the cycles.

▪ exploitation

The outcomes of addition (AO) and subtraction (SO)

operators in mathematical computations are closely

packed. As a result, during the exploitation phase, these

operators repeatedly and efficiently converge toward the

target. Eq. (13) summarizes position updating equations

and identifies two main search strategies in the

exploitation phase. The Arithmetic Optimization

algorithm uses SO and AO operators during exploitation

to help avoid local search traps and find the optimal

solution through related search strategies.

𝑥𝑖,𝑗(𝐴𝐼𝑡𝑒𝑟 + 1) = {
𝑏(𝑥𝑗) − 𝑀𝑂𝑃 × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × 𝜔 + 𝐿𝐵𝑗) , 𝑞3 < 0.5

𝑏(𝑥𝑗) + 𝑀𝑂𝑃 × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × 𝜔 + 𝐿𝐵𝑗) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (13)

• Horse Herd Optimization (HHO)

The foundation of HOA, as presented by [27], is the

way horses behave in their natural surroundings. The six

main behavioral traits that inform it are: defense

mechanisms, roaming, grazing, imitation, hierarchy, and

sociability. As outlined in Eq. (14), these behaviors serve

as the foundation for HOA, directing the movement of

horses during each cycle.

𝑋𝑟
𝐼𝑡𝑒𝑟,𝐴 = 𝑓𝑟

𝐼𝑡𝑒𝑟,𝐴 + 𝑋𝑟
(𝐼𝑡𝑒𝑟−1),𝐴

, 𝐴
= 𝛼, 𝛽, 𝛾, 𝛿

(14)

where 𝐴 signifies the age range, 𝐼𝑡𝑒𝑟 is the current

cycle, and 𝑋𝑟
𝐼𝑡𝑒𝑟,𝐴

 displays the situation of the 𝑟𝑡ℎ horse.

The horse's age range is also reflected in 𝐴, and its velocity

vector is indicated by 𝑓𝑟
𝐼𝑡𝑒𝑟,𝐴

. Horses usually live 25 to 30

years and display a range of behaviors during that time.

These actions fall into three categories: 𝛿 (0–5 years), 𝛾

(5–10 years), 𝛽 (10-15 years) and 𝛼 (over 15 years old).

Horse ages are calculated using a large response matrix

arranged according to performance. Group 𝛼 comprises

the top 10%, followed by group 𝛽 with 20%, and groups

𝛾 and 𝛿 with the remaining 30% and 40%, respectively.

These behaviors define motion vectors and algorithmic

cycles for horses of various ages.

𝑓𝑟
𝐼𝑡𝑒𝑟,𝛼 = 𝐺⃗𝑟

𝐼𝑡𝑒𝑟,𝛼 + 𝐷⃗⃗⃗𝑟
𝐼𝑡𝑒𝑟,𝛼

(15)

𝑓𝑟
𝐼𝑡𝑒𝑟,𝛽

= 𝐺⃗𝑟
𝐼𝑡𝑒𝑟,𝛽

+ 𝐻⃗⃗⃗𝑟
𝐼𝑡𝑒𝑟,𝛽

+ 𝑆𝑟
𝐼𝑡𝑒𝑟,𝛽

+ 𝐷⃗⃗⃗𝑟
𝐼𝑡𝑒𝑟,𝛽

𝑓𝑟
𝐼𝑡𝑒𝑟,𝛾

= 𝐺⃗𝑟
𝐼𝑡𝑒𝑟,𝛾

+ 𝐻⃗⃗⃗𝑟
𝐼𝑡𝑒𝑟,𝛾

+ 𝑆𝑟
𝐼𝑡𝑒𝑟,𝛾

+ 𝐼𝑟
𝐼𝑡𝑒𝑟,𝛾

+ 𝐷⃗⃗⃗𝑟
𝐼𝑡𝑒𝑟,𝛾

+ 𝑅⃗⃗𝑟
𝐼𝑡𝑒𝑟,𝛾

𝑓𝑟
𝐼𝑡𝑒𝑟,𝛿 = 𝐺⃗𝑟

𝐼𝑡𝑒𝑟,𝛿 + 𝐼𝑟
𝐼𝑡𝑒𝑟,𝛿 + 𝑅⃗⃗𝑟

𝐼𝑡𝑒𝑟,𝛿

A connection between positions (𝑋) and their

corresponding cost values (𝐶(𝑋)) was established by

clarifying the global matrix derivation using Eqs. (16) and

(17).

𝑋 = [

𝑥1,1
𝑥1,2 … 𝑥1,𝑑

𝑥2,1

⋮

𝑥2,2 …

⋮ ⋱

𝑥2,𝑑

⋮
𝑥𝑟,1

𝑥𝑟,2 … 𝑥𝑟,𝑑

] ,

𝐶(𝑋) = [

𝑐1
𝑐2

⋮
𝑐𝑟

]

(16)

𝐺𝑙𝑜𝑏𝑎𝑙 𝑀𝑎𝑡𝑟𝑖𝑥 = [𝑋 𝐶(𝑋)]

= [

𝑥1,1
𝑥1,2 … 𝑥1,𝑑 𝑐1

𝑥2,1

⋮

𝑥2,2 …

⋮ ⋱

𝑥2,𝑑 𝑐2

⋮ ⋮
𝑥𝑟,1

𝑥𝑟,2 … 𝑥𝑟,𝑑 𝑐𝑟

]
(17)

𝑥 displays the position, and 𝐶(𝑥) displays the related

cost for each position, as the preceding equations have

displayed. Moreover, 𝑟 displays the count of horses, and

𝑑 displays the problem's size. The global matrix is then

arranged according to the last column, which displays

expenses. The age of the horse is entered in this column.

Low speed, high accuracy, and high probability are

advantageous when the best solution is likely to occur.

Conversely, low accuracy and high speed are

advantageous in scenarios where an ideal solution is

unlikely. The following formula is used to get the overall

velocity vector:

The speed of horses between the ages of 0 and 5:

𝑓𝑟
𝐼𝑡𝑒𝑟,𝛿

= [𝑔𝑟
(𝐼𝑡𝑒𝑟−1),𝛿 𝜔𝑔(𝑢̆ + 𝑃𝑙)[𝑋𝑟

(𝐼𝑡𝑒𝑟−1)
]]

+ [𝑖𝑟
(𝐼𝑡𝑒𝑟−1),𝛿 𝜔𝑖[(

1

𝑃𝑁
∑𝑋̂𝑗

𝐼𝑡𝑒𝑟−1)

𝑃𝑁

𝑗=1

− 𝑋𝐼𝑡𝑒𝑟−1]]] + [𝑅𝑟
(𝐼𝑡𝑒𝑟−1),𝛿 𝜔𝑟𝑃𝑋𝐼𝑡𝑒𝑟−1

(18)

Horses aged 5 to 10 years old at their fastest:

284 Informatica 49 (2025) 281–296 S. Xue et al.

𝑓𝑟
𝐼𝑡𝑒𝑟,𝛾

= [𝑔𝑟
(𝐼𝑡𝑒𝑟−1),𝛾

 𝜔𝑔(𝑢̆ + 𝑃𝑙)[𝑋𝑟
(𝐼𝑡𝑒𝑟−1)

]] + [ℎ𝑟
(𝐼𝑡𝑒𝑟−1),𝛾

𝜔ℎ[𝑋∗
(𝐼𝑡𝑒𝑟−1)

− 𝑋𝑟
(𝐼𝑡𝑒𝑟−1)

]]

+ [𝑆𝑟
(𝐼𝑡𝑒𝑟−1),𝛾

 𝜔𝑆[(
1

𝑁
∑ 𝑋𝑗

𝐼𝑡𝑒𝑟−1) − 𝑋𝐼𝑡𝑒𝑟−1]]

𝑁

𝑗=1

+ [𝑖𝑟
(𝐼𝑡𝑒𝑟−1),𝛾

 𝜔𝑖[(
1

𝑃𝑁
∑𝑋̂𝑗

𝐼𝑡𝑒𝑟−1) − 𝑋𝐼𝑡𝑒𝑟−1]]

𝑃𝑁

𝑗=1

− [𝑑𝑟
(𝐼𝑡𝑒𝑟−1),𝛾

 𝜔𝑑[(
1

𝑞𝑁
∑ 𝑋̂𝑗

𝐼𝑡𝑒𝑟−1) − 𝑋𝐼𝑡𝑒𝑟−1]]

𝑞𝑁

𝑗=1

+ [𝑅𝑟
(𝐼𝑡𝑒𝑟−1),𝐴 𝜔𝑟𝑃𝑋𝐼𝑡𝑒𝑟−1]

(19)

The speed of horses between the ages of 10 and 15:

𝑓𝑟
𝐼𝑡𝑒𝑟,𝛽

= [𝑔𝑟
(𝐼𝑡𝑒𝑟−1),𝛽

 𝜔𝑔(𝑢̆ + 𝑃𝑙)[𝑋𝑟
(𝐼𝑡𝑒𝑟−1)

]] + [ℎ𝑟
(𝐼𝑡𝑒𝑟−1),𝛽

𝜔ℎ[𝑋∗
(𝐼𝑡𝑒𝑟−1)

− 𝑋𝑟
(𝐼𝑡𝑒𝑟−1)

]]

+ [𝑆𝑟
(𝐼𝑡𝑒𝑟−1),𝛽

 𝜔𝑆[(
1

𝑁
∑𝑋𝑗

𝐼𝑡𝑒𝑟−1) − 𝑋𝐼𝑡𝑒𝑟−1]]

𝑁

𝑗=1

− [𝑑𝑟
(𝐼𝑡𝑒𝑟−1),𝛽

 𝜔𝑑[(
1

𝑞𝑁
∑𝑋̆𝑗

𝐼𝑡𝑒𝑟−1) − 𝑋𝐼𝑡𝑒𝑟−1]]

𝑞𝑁

𝑗=1

(20)

The following velocity is displayed by horses who are over 15 years old

𝑓𝑟
𝐼𝑡𝑒𝑟,𝛼 = [𝑔𝑟

(𝐼𝑡𝑒𝑟−1),𝛼 𝜔𝑔(𝑢̆ + 𝑃𝑙)[𝑋𝑟
(𝐼𝑡𝑒𝑟−1)

]] − [𝑑𝑟
(𝐼𝑡𝑒𝑟−1),𝛼 𝜔𝑑[(

1

𝑞𝑁
∑ 𝑋̆𝑗

𝐼𝑡𝑒𝑟−1) − 𝑋𝐼𝑡𝑒𝑟−1]]

𝑞𝑁

𝑗=1

 (21)

In Fig. 2, the HHO flowchart is displayed.

Figure 2: HHO flowchart

Metaheuristic-Enhanced XGBoost Framework for Intrusion Detection… Informatica 49 (2025) 281–296 285

• Wild Geese Algorithm (WGA)

There has been a noticeable upsurge recently in the

creation of frameworks that draw inspiration from the

collective behaviors of animals to address challenging

global continuous optimization problems on a large scale.

The WGA is a highly efficient algorithm introduced in this

paper [28]. Wild geese life cycles include population

dynamics, coordinated group migration, evolutionary

mechanisms, reproduction, and mortality. All of these

factors have an impact on the WGA. The following briefly

describes the WGA's fundamental phases:

1. A phase of controlled and synchronized gather

migration, also known as migration and speed

adjustments.

2. Wild geese roam around and look for food.

3. The Mechanisms of Evolution in Wild Goose

Populations through Breeding

4. Wild Goose Population Migration Patterns, Survival

Rates, and Coordinated Evolutionary Shifts.

First, a population of wild geese is created, and the

number displays each goose's position 𝑥𝑖. Personal best

solutions (𝑝𝑖) and migration velocities (𝑣𝑖) are computed

for each goose. The entire geese population is then ranked

from the most optimal to the least optimal based on how

well they perform the target function. Using this modeling

strategy, each wild goose adapts its behavior based on

information gathered from nearby geese in the ranked

population. The ensuing subsections will offer more

thorough explanations of the WGA phases.

▪ Migration and displacement velocity

Wild geese must migrate on a coordinated and

organized flight path to reach the individuals at the front

and those nearby in the sorted population—the velocity

and displacement equations in Eqs. (22) and (23) rely on

the geese's harmonized velocity.

𝑣𝑖,𝑟
𝐼𝑡𝑒𝑟+1 = (𝑞1,𝑟 × 𝑣𝑖,𝑟

𝐼𝑡𝑒𝑟 + 𝑞2,𝑟 × (𝑣𝑖+1,𝑟
𝐼𝑡𝑒𝑟 − 𝑣𝑖−1,𝑟

𝐼𝑡𝑒𝑟)) + 𝑞3,𝑟 × (𝑝𝑖,𝑟
𝐼𝑡𝑒𝑟 − 𝑥𝑖−1,𝑟

𝐼𝑡𝑒𝑟) + 𝑞4,𝑟 × (𝑝𝑖+1,𝑟
𝐼𝑡𝑒𝑟 − 𝑥𝑖,𝑟

𝐼𝑡𝑒𝑟)

+ 𝑞5,𝑟 × (𝑝𝑖+2,𝑟
𝐼𝑡𝑒𝑟 − 𝑥𝑖+1,𝑟

𝐼𝑡𝑒𝑟) + 𝑞6,𝑟 × (𝑝𝑖−1,𝑟
𝐼𝑡𝑒𝑟 − 𝑥𝑖+2,𝑟

𝐼𝑡𝑒𝑟)
(22)

The 𝑟𝑡ℎ dimension of the 𝑖𝑡ℎ the variables denote the

wild goose's current position, best position, and current

velocity 𝑥𝑖,𝑟
𝐼𝑡𝑒𝑟, 𝑝𝑖,𝑟

𝐼𝑡𝑒𝑟 , and 𝑣𝑖,𝑟
𝐼𝑡𝑒𝑟 , respectively. The random

numbers 𝑞𝑘,𝑟; 𝑘 = 1, 2, . . . ,11 are uniformly distributed

and range from 0 to 1.

As stated in Eq. (30), changes in the position and

velocity of each wild goose (i.e., the 𝑖𝑡ℎ wild goose)

depend on the positions of nearby geese as well as the

velocities of the geese ahead and behind it, which are

represented as (𝑣𝑖+1,𝑟
𝐼𝑡𝑒𝑟 − 𝑣𝑖−1,𝑟

𝐼𝑡𝑒𝑟). To guide their movement

and direction to close the distance between them, wild

geese rely on information shared by individuals nearby in

the synchronized flock. Furthermore, as described in Eq.

(23), they incorporate the world's top performer as an

additional benchmark to direct the flock's collective

motion.

𝑥𝑖,𝑟
𝑣 = 𝑝𝑖,𝑟

𝐼𝑡𝑒𝑟 + 𝑞7,𝑟 × 𝑞8,𝑟 × ((𝑔𝑟
𝐼𝑡𝑒𝑟 + 𝑝𝑖+1,𝑟

𝐼𝑡𝑒𝑟 − 2 × 𝑝𝑖,𝑟
𝐼𝑡𝑒𝑟) + 𝑣𝑖,𝑟

𝐼𝑡𝑒𝑟+1) (23)

𝑔𝑟
𝐼𝑡𝑒𝑟 represented the best position globally among all

the group members at that particular cycle.

▪ Walk and search for food

The way this process is set up, the 𝑖𝑡ℎ Wild Goose

changes course to follow its leading partner, suggesting

that the 𝑖𝑡ℎ goose tries to get close to the 𝑖 + 1𝑡ℎ goose,

denoted as (pi+1
Iter − pi

Iter). The following is the equation

that describes the movement and foraging behavior of the

wild goose, denoted as 𝑥𝑖
𝑤:

𝑥𝑖,𝑟
𝑤 = 𝑝𝑖,𝑟

𝐼𝑡𝑒𝑟 + 𝑞9,𝑟 × 𝑞10,𝑟 × (pi+1,r
Iter

− pi,r
Iter)

(24)

▪ Reproduction and evolution

A further phase of wild geese's life cycle concerns

reproduction and evolution. Using the migration equation

(𝑥𝑖
𝑣) and the equation dictating their walking and foraging

behavior (𝑥𝑖
𝑤), a model has developed. In all simulation

scenarios, the parameter 𝐶𝑟, which is employed in the

WGA algorithm described in this study, is uniformly set

at 0.5.

𝑥𝑖,𝑟
𝐼𝑡𝑒𝑟+1 = {

𝑥𝑖,𝑟
𝑣 𝑖𝑓 𝑞11,𝑟 ≤ 𝐶𝑟

𝑥𝑖,𝑟
𝑤 𝑜𝑡ℎ𝑒𝑤𝑖𝑠𝑒

(25)

▪ Death, migration, and ordered evolution

In some cases, the algorithm's population size is more

significant and efficient than the count of algorithmic

cycles, especially for certain functions.

In contrast, the count of algorithm cycles is more critical

and efficient when considering different functions than the

size of the WGA algorithm's population. A death phase

was added to ensure the algorithm converged uniformly to

all test functions. The algorithm starts the algorithm with

a maximum population size, 𝑁𝑝
𝑖 . Further, while the

algorithm is iterating, the inferior members within the

population are systematically removed according to the

formula in Eq. (26). It is a process whereby it goes on

reducing the population size to its eventual value

represented as 𝑁𝑝
𝑓
 in the last generation.

𝑁𝑝 = 𝑟𝑜𝑢𝑛𝑑 (𝑁𝑝
𝑖 − ((𝑁𝑝

𝑖

− 𝑁𝑝
𝑓) × (

𝐹𝐸𝑠

𝐹𝐸𝑠𝑚𝑎𝑥

)))
(26)

The count of evaluations a function has received is

indicated by 𝐹𝐸𝑠, and the maximum number permitted is

indicated by 𝐹𝐸𝑠𝑚𝑎𝑥.

The hyperparameter tuning method includes widely used

parameters from relevant literature, such as learning rate,

max depth, n_estimators, subsample, colsample_bytree,

and gamma, to make sure that the performance

comparisons were fair. For all hybrid methods, AOA,

HHO, and WGA were used to consistently optimize these

parameters. This is in line with conventional literature

settings, which backs up the stated accuracy and makes

286 Informatica 49 (2025) 281–296 S. Xue et al.

sure that the performance benefits weren't just because of

selective parameter modification.

The internal training procedure of XGBoost did not use

the optimization methods AOA, HHO, and WGA. Instead,

they were used to improve its hyperparameters. Each

optimizer looked through the solution space on its own to

find the best set of XGBoost parameters, such as the

learning rate, max depth, number of estimators, and

subsample ratio. The paper then utilized these improved

parameter values to train the XGBoost classifier, which

created three hybrid schemes: XGAO, XGHH, and

XGWG. This method improves the performance of the

model without changing the core algorithm of XGBoost.

There was no feature selection or ensemble architecture

used in this phase.

Each optimizer (AOA, HHO, WGA) is employed to

tune key XGBoost hyperparameters: learning rate,

max_depth, n_estimators, subsample, colsample_bytree,

and gamma. The objective of each metaheuristic is to

maximize classification accuracy on the validation set

using 5-fold cross-validation. The fitness function for

optimization is defined by the average validation

accuracy, ensuring consistent and fair evaluation across all

schemes.

4 Numerical databases
To ensure data quality and consistency, multiple

preprocessing steps were implemented. Records

containing missing or incomplete values were excluded

from the dataset to prevent analytical bias. Continuous

numerical features including source bytes, destination

bytes, and connection duration were normalized using

Min-Max scaling to standardize the feature range. Outlier

detection was performed using the Z-score method, and

data points exceeding three standard deviations from the

mean were removed. These preprocessing procedures

were essential to enhance the stability and performance of

the machine learning models when applied to real-world

smart home network traffic data.

The dataset, which included 148,518 occurrences, was

split into training and testing sets using a 70/30 ratio and

data is taken from this website

(https://www.kaggle.com/datasets/arnavsmayan/smart-

home-energy-usage-dataset). Stratified sampling was

used throughout the split to preserve the original class

distribution in both sets. This method made sure that any

class label, whether it was normal or attack, was fairly

represented in both subsets. This lowered the chance of

sampling bias. During the creation of the model, the

training set was tested again with 5-fold cross-validation

to make sure that the model's performance was stable and

consistent across different subsets. This validation method

let the metaheuristic optimizers fine-tune hyperparameters

without the danger of overfitting.

The dataset comprises 148,518 labeled samples

categorized into two primary classes: normal and attack.

Specifically, 38,792 instances (26.1%) are labeled as

normal traffic, while 109,726 instances (73.9%) represent

various types of cyber-attacks, indicating a moderate class

imbalance. This distribution was preserved during training

and testing through stratified sampling to ensure fair

representation. The imbalance was further addressed

through performance evaluation metrics such as precision,

recall, and F1-score, which offer a more reliable

assessment under skewed class conditions.

This work considers an extensive database, which was

collected with much difficulty using data mining

methodologies, including 148,518 occurrences, to assess

the efficiency of different frameworks to enhance attack

detection accuracy in network security systems. A wide

range of critical parameters is included in the database that

may contribute to analyzing network traffic and detecting

possible security threats. These would encompass

attributes for the duration in seconds that the connection

lasted, whether TCP, UDP, and ICMP; service HTTP,

FTP; flag, or the state of the connection; source bytes,

which are the amount of data bytes sent from the source;

destination bytes, which are the amount of data bytes sent

from the destination; and a variety of other flags that

indicate whether the source and destination IPs match, the

count of incorrect fragments, urgent packets, logged-in

status, and a variety of connection counts and error rates.

Whether the connection is considered an attack or not is

the target variable for the analysis. The interaction

between these parameters and how they relate to each

other in a pictorial form is done using a correlation matrix

in Fig. 3, where the varied shading indicates the direction

and magnitude of the correlation. A high positive

correlation implies a tendency for one parameter to

increase along with another, which could indicate a higher

chance of an attack. On the other hand, a strong negative

correlation indicates that a parameter tends to decrease as

one increases, suggesting that some parameters may not

be directly correlated with the likelihood of an attack. Less

to no correlation is indicated by lighter shades in the

matrix, indicating that specific parameters have little to no

effect on one another.

Metaheuristic-Enhanced XGBoost Framework for Intrusion Detection… Informatica 49 (2025) 281–296 287

Figure 3: The graph shows the correlation between input and output

Feature selection is an essential machine learning

component, which is especially important for improving

interpretability and model performance. In this case, it

entails determining which pertinent parameters impact the

accuracy of attack detection frameworks. As displayed in

Fig. 4, the visual representation emphasizes the

importance of different parameters according to how they

affect feature selection. At 0.5368, source bytes (src bytes)

are the most critical parameter, followed by destination

bytes (dst bytes) at 0.43029 and service at 0.42483. These

features indicate that the type of service accessed and the

amount of data transferred are strong predictors of

possible attacks. In contrast, the urgent parameter has a

value of 0, indicating the less significant contribution of

this feature towards the model's prediction capability for

the future. Therefore, based on the most relevant features,

the researchers' schemes would be simplified,

computational complexity would be reduced, and the

accuracy of attack detection would be improved. This

leads, over time, to even more robust cybersecurity

solutions. Besides strengthening the model, it also helps

understand the root patterns associated with network

attacks.

288 Informatica 49 (2025) 281–296 S. Xue et al.

Figure 4: F Statistics feature selection method conducted for the database

5 Result and discussion
The convergence process of three different hybrid

schemes, each using a different optimization algorithm

and derived from the XGBC scheme, is displayed in Fig.

5. The schemes are displayed in the following ways: The

pink line displays XGWG, the green line displays XGHH,

and the blue line displays XGAO. The accuracy of all

three schemes is initially low and shows a noticeable

improvement as the count of cycles increases from 0 to

200. The XGWG and XGHH schemes reach a stable

accuracy by the 140th cycle, while the XGAO model

achieves a stable accuracy level at the 150th cycle. The

XGAO model surpasses the other schemes with the

highest accuracy of 0.9901, beating out the XGHH model

with 0.9837 and the XGWG model with 0.9663 in the final

cycle outcomes. This implies that the XGAO model is the

most efficient of all the schemes considered. The XGAO

model reached stable accuracy by the 150th iteration,

whereas the XGHH and XGWG models did so by the

140th iteration. Even though XGAO converged a little

later, it did a better job overall and had a higher ultimate

accuracy. Each optimization technique needed about 200

fitness tests for each run. These findings show that there is

a good trade-off between how quickly the system

converges and how well it performs in the end. This is

especially true for XGAO, which had the best

classification accuracy of all the hybrid schemes.

The training runtimes were recorded on a system with

an Intel Core i3-1215U CPU and 8GB RAM. The baseline

XGBC model completed training in approximately 2.5

minutes. The metaheuristic-augmented models required

more time due to iterative optimization: XGAO trained in

~7 minutes, XGHH in ~10 minutes, and XGWG in ~13

minutes. These runtimes reflect single-pass training and

demonstrate the additional computational cost associated

with metaheuristic tuning.

Figure 5: Convergence graph of the hybrid schemes

Metaheuristic-Enhanced XGBoost Framework for Intrusion Detection… Informatica 49 (2025) 281–296 289

Thirty percent was set aside for testing, and seventy

percent was used for training in the database used in this

investigation. Four primary metrics were utilized to

review the scheme's productivity: accuracy, precision,

recall, and F1-score. The independent XGBC model

recorded an accuracy of 0.946, as displayed in Table 2.

Comparatively, during the training phase, the XGWG

scheme had the highest accuracy at 0.966, the XGHH

model attained 0.984, and the XGAO model demonstrated

the highest accuracy at 0.991. These outcomes indicate

that optimizing frameworks led to notable improvements;

moreover, the standalone model's performance was

enhanced by the AOA optimizer by 4.76%, the HHO

optimizer by 4.02%, and the WGA optimizer by 2.11%.

Additionally, Fig. 6 visually validates the numerical

outcomes presented in Table 2, demonstrating the

schemes' relative efficacy. Table 2 shows the XGBoost

Classifier (XGBC) with different accuracy scores for the

training (0.946), testing (0.953), and combined datasets

(0.948). To be fair and consistent, the study now utilizing

the "All" accuracy of XGBC (0.948) as the baseline for all

of the hybrid schemes' (XGAO, XGHH, and XGWG)

performance increase percentages. Based on this, the

XGAO model did 4.11% better ((0.987–0.948)/0.948), the

XGHH model did 3.79% better, and the XGWG model did

1.90% better. These new values replace the old ones and

make sure that the text and Table 2 match up. This change

makes it easier to compare the performance of different

models and prevents misunderstanding that might come

from using different baselines.

The paper did an ablation study to see how different

optimization tactics affected the outcome. The baseline

XGBoost Classifier (XGBC) has a test accuracy of 95.3%.

When combined one at a time, XGBC+WGA got 96.7%

(+1.47%), XGBC+HHO got 98.3% (+3.15%), and

XGBC+AOA got 98.7% (+3.56%). The paper also used a

random search-based tuning method for benchmarking,

which gave us 96.0% accuracy (+0.74%). The XGAO

model not only had the highest accuracy of all the

schemes, but it also showed statistically significant

improvements (p < 0.05) when compared to the baseline

using paired t-tests. These results show that metaheuristic

optimization works to make IDS better and that AOA is

better than random or uninformed approaches at tweaking

hyperparameters quickly.

Table 2: XGBC base schemes achieved outcomes through the performance evaluators

Section Model
Metric values

Accuracy Precision Recall F1-Score

Train

XGBC 0.946 0.946 0.946 0.946

XGWG 0.966 0.967 0.966 0.966

XGHH 0.984 0.984 0.984 0.984

XGAO 0.991 0.991 0.991 0.991

Test

XGBC 0.953 0.953 0.953 0.953

XGWG 0.967 0.967 0.967 0.967

XGHH 0.983 0.983 0.983 0.983

XGAO 0.987 0.987 0.987 0.987

All

XGBC 0.948 0.948 0.948 0.948

XGWG 0.966 0.967 0.966 0.966

XGHH 0.984 0.984 0.984 0.984

XGAO 0.987 0.987 0.987 0.987

290 Informatica 49 (2025) 281–296 S. Xue et al.

Figure 6: Vertical step plot to illustrate the schemes' performance across various phases

The classification method divides the outcomes of

smart home detection into two grades: accurate detection

and inaccurate detection. Three metrics were utilized to

review productivity: recall, precision, and F1-score, as

displayed in Table 3. The outcomes show that, in both

categories, the XGAO model consistently performed

better than other schemes. The XGAO model effectively

returned actual positives; therefore, precision equaled

0.991, recall equaled 0.989, and the F1-score for correct

detection was 0.990. Moreover, in the class of incorrect

detections, it also showed fantastic outcomes: An F1-score

of 0.991, recall of 0.991, and precision of 0.990. These

outcomes indicated how the XGAO model effectively

differentiates correct detection from incorrect detection in

a smart home, hence having the potential for further

development in smart home technology with increased

dependability.

The words "Right detection" and "Wrong detection" in

Table 3 and Fig. 7 were meant to show the difference

between the right and wrong categorization of two real

classes: "attack" (positive class) and "normal" (negative

class). But this language might not be in line with how

performance reviews are usually done. To make them fit

with how they are usually used, these categories have been

changed to performance metrics assessed per class. For

example, the "attack" class and the "normal" class each

have their own accuracy, recall, and F1-score. This change

makes sure that the metrics are in line with binary

classification criteria for class-based assessments. Figure

7's pie charts have also been made clearer to show the

distribution of accurate and wrong predictions across these

two classes, not the results of the detections. This change

makes things clearer and brings the assessment

methodology in line with standard ways of reporting

performance in categorization jobs.

Table 3: Schemes’ performance in the four different conditions

Model
Metric

values

Grade

Right detection Wrong detection

XGBC

Precision 0.953 0.944

Recall 0.937 0.958

F1-score 0.945 0.951

XGWG

Precision 0.988 0.949

Recall 0.941 0.989

F1-score 0.964 0.969

XGHH

Precision 0.987 0.981

Recall 0.979 0.988

F1-score 0.983 0.985

XGAO

Precision 0.991 0.990

Recall 0.989 0.991

F1-score 0.990 0.991

A thorough visual representation of how different

machine learning schemes performed in terms of detection

abilities can be found in Fig. 7.

▪ Right Detection

The pie chart in the Right Detection section shows the

share of correct classifications that the schemes were able

Metaheuristic-Enhanced XGBoost Framework for Intrusion Detection… Informatica 49 (2025) 281–296 291

to produce. Each slice corresponds to a specific model,

representing its performance metrics by color.

Interestingly, 4,772 instances, or 20.4% of all correct

detections, are explained by the XGAO model. The fact

that further schemes contribute considerably to 4,826

correct detections relates to their efficiency in pinpointing

positive cases.

▪ Wrong Detection

By contrast, the Wrong Detection section is depicted

with a pie graph showing the schemes' performance

concerning wrong detection. The total count of incorrect

detections is 5,354. Again, XGAO makes up 20.1% of the

false detections in this category, with 5,308 counts.

Comparably, the XGHH model performs 20.1%, with

5,290 incorrect classifications, while the XGWG model

also performs 20.1%, with 5,297 instances. They all show

how tough it is to decrease false positives in all the

schemes.

Fig. 7 used to group results into "Right detection" and

"Wrong detection," which might have caused confusion.

These labels were used to show which cases were

correctly and mistakenly classified across all classes, but

they did not show which cases were true positives, true

negatives, false positives, or false negatives. The graphic

and its explanation have been changed to show counts and

percentages of standard categorization outcomes per

model, with unambiguous labels (TP, TN, FP, FN) to

make them more in line with conventional assessment

standards. Also, performance interpretation now focuses

on standard measures like accuracy, precision, recall, and

F1-score, which are presented by class. This makes it

easier to compare models and understand their

performance in real life.

Figure 7: Visualization depicting the performance evaluation of the developed schemes

SHAP (SHapley Additive exPlanations) sensitivity

analysis was conducted to interpret feature influence on

model predictions by quantifying each input parameter's

marginal contribution. This method enhances model

transparency and highlights which features contribute

most to correct and incorrect classifications. Fig. 8

presents the SHAP impact scores for both correct (top) and

incorrect (bottom) detections. In the right detection chart,

features such as Dst Bytes, Count, and Dst Host Srv Count

show positive contributions, indicating their importance in

accurately identifying attack instances. Notably, Src Bytes

has a negative impact, implying potential suppression of

correct detections when misestimated. Conversely, in the

wrong detection chart, Src Bytes and Logged In exhibit

the highest SHAP values, suggesting their

misinterpretation plays a key role in incorrect

classifications. Minor contributions are observed from

features like Flag and Service.

292 Informatica 49 (2025) 281–296 S. Xue et al.

Figure 8: SHAP sensitivity analysis.

The Wilcoxon signed-rank test was used to statistically

assess the performance differences between the base

XGBoost model and its metaheuristic-enhanced variants

(XGB_AOA, XGB_HHO, XGB_WGA). This non-

parametric test is suitable for comparing paired samples

where the distribution cannot be assumed to be normal. It

evaluates whether the median differences between paired

observations are statistically significant, making it

appropriate for performance comparisons in ML. Table 4

presents the results of the Wilcoxon test. The P Value

indicates the statistical significance of the difference,

while the Stat column shows the corresponding Wilcoxon

rank statistic. Notably, XGB_WGA shows a highly

significant result (p = 4.05E-35), indicating a meaningful

performance deviation. Similarly, XGB_HHO yields a

significant result (p = 3.97E-03). However, XGB_AOA

returns a non-significant p-value (0.424), suggesting no

substantial difference relative to the baseline under the

null hypothesis. The base XGB model's high test statistic

(59,512.5) reflects its relative deviation from the

optimized models. These results confirm that certain

metaheuristic strategies contribute statistically significant

improvements.

Table 4: Wilcoxon test.

Models P Value Stat

XGB_AOA 4.24E-01 2323

XGB_HHO 3.97E-03 5312

XGB_WGA 4.05E-35 9804

XGB 6.88E-04 59512.5

Metaheuristic-Enhanced XGBoost Framework for Intrusion Detection… Informatica 49 (2025) 281–296 293

Fig. 9 shows the results of a 5-fold cross-validation that

was done to check how stable and generalizable the

suggested model is. Each part (K1 to K5) shows how

accurate the results were in one of the five folds. The

accuracy values were between 0.936 and 0.950, with K5

having the best result. The round shape stresses

homogeneity between folds, which means that the

classification results are the same and the performance

doesn't vary much. This shows that the model is strong

across multiple data sets. Cross-validation was very

important during hyperparameter tuning since it made sure

that the metaheuristic optimizers chose configurations that

worked well in general, not only on one training subset.

These results support the accuracy of the performance

measurements that were reported throughout the trial.

Figure 9: K-fold cross validation.

When compared to known IDS approaches, the

suggested XGAO model works better. For example, [14]

and [15] both got 96.7% and 89.24% correct, whereas [16]

got 99.33% correct using a Random Forest method on

huge data. came up with an SVM-based model that was

only 93.64% accurate and had a high false alarm rate of

20.28%, which makes it hard to use in real life. [18] [21]

and [23], have showed promise in lowering false positives.

However, when used in large-scale or resource-limited

settings like smart homes, they frequently have significant

computational complexity and scaling problems. The

XGAO model, on the other hand, had a training accuracy

of 99.1% and a test accuracy of 98.7%, with a far lower

false positive rate of 0.86%. These results show that the

method is both accurate and useful. The Arithmetic

Optimization Algorithm (AOA) improves XGBoost by

automatically adjusting hyperparameters. This makes it a

great balance between speed of convergence and search

space exploration, which is especially useful for finding

complex and varied network intrusions in smart home

situations. To support deployment in smart home

environments, model complexity and interpretability are

critical. The proposed XGAO model maintains a moderate

model size with an average inference time under 0.15

seconds per instance, making it suitable for real-time

monitoring. Although deep models often struggle with

transparency, XGBoost allows examination of feature

contributions. In future work, SHAP (SHapley Additive

exPlanations) values will be employed to visualize

individual feature impacts and improve model

explainability. Additionally, the use of interpretable input

features such as data volume and service type enables

security professionals to trace detection outcomes to

specific network behaviors. These properties enhance the

practical value of the XGAO model for on-device or edge-

level deployment in smart home intrusion detection

systems with limited computational resources.

6 Conclusion
The paper wraps up with an in-depth analysis of machine

learning for classifying smart home responses for attack

detection as correct or incorrect by utilizing the Extreme

Gradient Boosting Classifier (XGBC) as its central

classifier. This classifier was further improved by three

optimization frameworks: the Arithmetic Optimization

Algorithm (AOA), Horse Herd Optimization (HHO), and

Wild Geese Algorithm (WGA). These optimizations

yielded three hybrid schemes: XGWG, XGHH, and

XGAO, which were designed to accomplish increased

performance in classification.

Feature selection, an essential feature, requires time to

find efficient sources such as source bytes, destination

294 Informatica 49 (2025) 281–296 S. Xue et al.

bytes, and services. This extensive selection pays off

significantly in terms of the overall performance of the

schemes. Two stages were created: one testing set and one

training set with 70% of the data. The performance

comparison of the schemes was strict because the schemes

were evaluated on well-established machine learning

evaluation metrics.

The outcomes show that the XGBC model performs

much better using the AOA optimization algorithm. The

XGAO hybrid scheme achieves an astounding accuracy of

0.987, as opposed to 0.948 for the baseline XGBC model.

This is a noteworthy 4.11% improvement. Apart from

accuracy, the XGAO model exhibited exceptional

performance in other assessment metrics, confirming its

position as the most efficient model in this investigation.

The XGAO model performed exceptionally well in

classifying correct and incorrect detections, correctly

identifying 4,772 out of 4,826 correct detections with an

error rate of only 1.12%. Moreover, the XGAO model

correctly identified 5,308 out of 5,354 cases in the context

of incorrect detections, yielding an error rate of 0.86%.

Together, these outcomes demonstrate how well the

XGAO model works to improve the dependability of

smart home attack detection systems, opening the door for

more study and use in this area.

One problem with this study is that it doesn't use

independent datasets to confirm its findings, which might

make it harder to apply the proposed models to other smart

home settings. Using metaheuristic optimizers works, but

it also makes it possible for the model to match the training

data too well. Also, the models were tested on only one

dataset, thus their performance may be different under

more diverse or unknown network situations. To fix these

problems, future work will incorporate more cross-domain

validation. Future research will focus on validating the

proposed models using more diverse and heterogeneous

datasets to assess generalizability across varying smart

home environments. Real-time deployment simulations

will also be conducted to evaluate model performance

under practical latency and resource constraints. In

addition, hybrid deep-learning approaches such as

combining convolutional neural networks (CNNs) with

metaheuristic-tuned ensemble models will be explored to

enhance feature extraction and classification accuracy.

These directions aim to strengthen the scalability,

adaptability, and real-world applicability of intrusion

detection systems in evolving smart home ecosystems.

Competing of interests
The scholars claim no competing interests.

Authorship Contribution Statement
Xu LIU: Writing-Original draft preparation,

Conceptualization, Supervision, Project administration.

Shaotong XUE: Methodology, Software

Meng ZHANG: Validation.

Lina GU: Language review

Data availability
The codes and dataset can be shared on request.

Declarations
Not applicable

Conflicts of interest
The authors declare that there is no conflict of interest

regarding the publication of this paper.

Author statement
The manuscript has been read and approved by all the

authors, the requirements for authorship, as stated earlier

in this document, have been met, and each author believes

that the manuscript represents honest work.

Funding
Not applicable

Ethical approval
All authors have been personally and actively involved in

substantial work leading to the paper, and will take public

responsibility for its content.

References
[1] A. Chaudhuri, Internet of Things, for Things, and

by Things. Auerbach Publications, 2018.
https://doi.org/10.1201/9781315200644

[2] J. Bugeja, A. Jacobsson, and P. Davidsson, “On

privacy and security challenges in smart connected

homes,” in 2016 European Intelligence and

Security Informatics Conference (EISIC), IEEE,

2016: 172–175. DOI: 10.1109/EISIC.2016.044

[3] L. Huber and L. J. Camp, “User-driven design in

smart homes: ethical aspects,” Handbook of smart

homes, health care and well-being. Springer,

Cham, S: 1–10, 2014. DOI 10.1007/978-3-319-

01583-5_7

[4] P. P. Gaikwad, J. P. Gabhane, and S. S. Golait, “A

survey based on Smart Homes system using

Internet-of-Things,” in 2015 International

Conference on Computation of Power, Energy,

Information and Communication (ICCPEIC),

IEEE, 2015: 330–335. DOI:

10.1109/ICCPEIC.2015.7259486

[5] M. K. Kuyucu, Ş. Bahtiyar, and G. İnce, “Security

and privacy in the smart home: A survey of issues

and mitigation strategies,” in 2019 4th

International Conference on Computer Science

and Engineering (UBMK), IEEE, 2019: 113–118.
DOI: 10.1109/UBMK.2019.8907037

[6] K. Liu, Z. Fan, M. Liu, and S. Zhang, “Hybrid

intrusion detection method based on k-means and

cnn for smart home,” in 2018 IEEE 8th annual

international conference on CYBER technology in

https://doi.org/10.1201/9781315200644
https://doi.org/10.1109/EISIC.2016.044
https://doi.org/10.1109/ICCPEIC.2015.7259486
https://doi.org/10.1109/UBMK.2019.8907037

Metaheuristic-Enhanced XGBoost Framework for Intrusion Detection… Informatica 49 (2025) 281–296 295

automation, control, and intelligent systems

(CYBER), IEEE, 2018: 312–317. DOI:

10.1109/CYBER.2018.8688271

[7] P. Shukla, “ML-IDS: A machine learning approach

to detect wormhole attacks in Internet of Things,”

in 2017 intelligent systems conference (IntelliSys),

IEEE, 2017: 234–240. DOI:

10.1109/IntelliSys.2017.8324298

[8] M. Mamdouh, M. A. I. Elrukhsi, and A. Khattab,

“Securing the internet of things and wireless sensor

networks via machine learning: A survey,” in 2018

International Conference on Computer and

Applications (ICCA), IEEE, 2018: 215–218. DOI:

10.1109/COMAPP.2018.8460440

[9] C. Perlich, “Learning Curves in Machine

Learning.,” 2010. DOI:10.1007/978-0-387-30164-

8_452

[10] F. Alghayadh and D. Debnath, “A hybrid intrusion

detection system for smart home security,” in 2020

IEEE International Conference on Electro

Information Technology (EIT), IEEE, 2020: 319–

323. DOI: 10.1109/EIT48999.2020.9208296

[11] R. Primartha and B. A. Tama, “Anomaly detection

using random forest: A performance revisited,” in

2017 International conference on data and

software engineering (ICoDSE), IEEE, 2017: 1–6.
DOI: 10.1109/ICODSE.2017.8285847

[12] A. Guezzaz, Y. Asimi, M. Azrour, and A. Asimi,

“Mathematical validation of proposed machine

learning classifier for heterogeneous traffic and

anomaly detection,” Big Data Mining and

Analytics, 4(1): 18–24, 2021. DOI:

10.26599/BDMA.2020.9020019

[13] Y. El Mourabit, A. Bouirden, A. Toumanari, and

N. E. Moussaid, “Intrusion detection techniques in

wireless sensor network using data mining

algorithms: comparative evaluation based on

attacks detection,” International Journal of

Advanced Computer Science and Applications, 6,

(9): 164–172, 2015.
DOI:10.14569/IJACSA.2015.060922

[14] A. Ghazali, W. Nuaimy, A. Al-Atabi, and I.

Jamaludin, “Comparison of classification models

for Nsl-Kdd dataset for network anomaly

detection,” Academic Journal of Science, 4(1):

199–206, 2015. DOI:10.1007/978-981-32-9343-

4_16

[15] J. Kevric, S. Jukic, and A. Subasi, “An effective

combining classifier approach using tree

algorithms for network intrusion detection,”

Neural Comput Appl, 28(Suppl 1): 1051–1058,

2017. https://doi.org/10.1007/s00521-016-2418-1

[16] A. A. A. Hadi and A.-A. Al-Furat, “Performance

analysis of big data intrusion detection system over

random forest algorithm,” International Journal of

Applied Engineering Research, 13(2): 1520–1527,

2018. https://doi.org/10.1016/j.procs.2020.04.133

[17] A. Karami, “An anomaly-based intrusion detection

system in presence of benign outliers with

visualization capabilities,” Expert Syst Appl, 108:

36–60, 2018.

https://doi.org/10.1016/j.eswa.2018.04.038

[18] J. Gu, L. Wang, H. Wang, and S. Wang, “A novel

approach to intrusion detection using SVM

ensemble with feature augmentation,” Comput

Secur, 86: 53–62, 2019.

https://doi.org/10.1016/j.cose.2019.05.022

[19] M. Tabash, M. Abd Allah, and B. Tawfik,

“Intrusion detection model using naive bayes and

deep learning technique.,” Int. Arab J. Inf.

Technol., 17(2): 215–224, 2020.
DOI:10.34028/iajit/17/2/9

[20] M. H. L. Louk and B. A. Tama, “Exploring

ensemble-based class imbalance learners for

intrusion detection in industrial control

networks,” Big Data and Cognitive Computing,

5(4)72, 2021.

https://doi.org/10.3390/bdcc5040072

[21] D. N. Mhawi, A. Aldallal, and S. Hassan,

“Advanced feature-selection-based hybrid

ensemble learning algorithms for network

intrusion detection systems,” Symmetry (Basel),

14(7):1461, 2022.

https://doi.org/10.3390/sym14071461

[22] M. A. Bertoni, G. H. de Rosa, and J. R. F. Brega,

“Optimum-path Forest stacking-based ensemble

for intrusion detection,” Evol Intell, 15(3): 2037–

2054, 2022. https://doi.org/10.1007/s12065-021-

00609-7

[23] F. Jemili, R. Meddeb, and O. Korbaa, “Intrusion

detection based on ensemble learning for big data

classification,” Cluster Comput, 27(3): 3771–

3798, 2024. https://doi.org/10.1007/s10586-023-

04168-7

[24] Y. Jarraya, T. Madi, and M. Debbabi, “A survey

and a layered taxonomy of software-defined

networking,” IEEE communications surveys &

tutorials, 16(4): 1955–1980, 2014. DOI:

10.1109/COMST.2014.2320094

[25] M. K. Habib and A. K. Cherri, “Parallel

quaternary signed-digit arithmetic operations:

addition, subtraction, multiplication and

division,” Opt Laser Technol, 30(8): 515–525,

1998. https://doi.org/10.1016/S0030-

3992(99)00004-3

[26] L. Abualigah, A. Diabat, S. Mirjalili, M. Abd

Elaziz, and A. H. Gandomi, “The arithmetic

optimization algorithm,” Comput Methods Appl

Mech Eng, 376: 113609, 2021.
https://doi.org/10.1016/j.cma.2020.113609

[27] F. MiarNaeimi, G. Azizyan, and M. Rashki, “Horse

herd optimization algorithm: A nature-inspired

algorithm for high-dimensional optimization

problems,” Knowl Based Syst, 213: 106711, 2021.

https://doi.org/10.1016/j.knosys.2020.106711

[28] S. Mahdavi, M. E. Shiri, and S. Rahnamayan,

“Metaheuristics in large-scale global continues

optimization: A survey,” Inf Sci (N Y), 295: 407–428,

2015. https://doi.org/10.1016/j.ins.2014.10.042

https://doi.org/10.1109/CYBER.2018.8688271
https://doi.org/10.1109/IntelliSys.2017.8324298
https://doi.org/10.1109/COMAPP.2018.8460440
http://dx.doi.org/10.1007/978-0-387-30164-8_452
http://dx.doi.org/10.1007/978-0-387-30164-8_452
https://doi.org/10.1109/EIT48999.2020.9208296
https://doi.org/10.1109/ICODSE.2017.8285847
https://doi.org/10.26599/BDMA.2020.9020019
http://dx.doi.org/10.14569/IJACSA.2015.060922
http://dx.doi.org/10.1007/978-981-32-9343-4_16
http://dx.doi.org/10.1007/978-981-32-9343-4_16
https://doi.org/10.1016/j.procs.2020.04.133
https://doi.org/10.1016/j.eswa.2018.04.038
https://doi.org/10.1016/j.cose.2019.05.022
http://dx.doi.org/10.34028/iajit/17/2/9
https://doi.org/10.3390/bdcc5040072
https://doi.org/10.3390/sym14071461
https://doi.org/10.1109/COMST.2014.2320094
https://doi.org/10.1016/S0030-3992(99)00004-3
https://doi.org/10.1016/S0030-3992(99)00004-3
https://doi.org/10.1016/j.cma.2020.113609
https://doi.org/10.1016/j.knosys.2020.106711
https://doi.org/10.1016/j.ins.2014.10.042

296 Informatica 49 (2025) 281–296 S. Xue et al.

