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Recognizing the emotions of the elderly is key to achieving personalized services in smart home environments. 

Traditional methods have difficulty capturing the correlation and temporal information of multimodal features. 

To this end, the study proposes a multimodal emotion recognition model that integrates the EfficientFace and 

Transformer structures to construct an improved attention mechanism. A modal interaction compensation term 

is introduced into the similarity calculation to improve the ability to model dynamic dependencies between 

modalities. Meanwhile, the dynamic importance factor is used to adaptively adjust feature weights. The model 

was tested on IEMOCAP and self-constructed EMED datasets. The emotion recognition precision reached up 

to 94.37%, the recall rate reached 93.64%, the F1 value was 94.21, and the specificity reached 94.85%. 

Additionally, the model achieved 96.24% classification accuracy and 94.13% emotional intensity on easily 

confused categories, such as "disgust" and "contempt," with a minimum detection latency of 0.55 seconds. The 

results show that the model exhibits excellent performance in multimodal fusion and emotion recognition for 

the elderly, and is suitable for the task of smart home emotion monitoring. 

Povzetek: Članek uvaja izboljšan EfficientFace-Transformer z nadgrajenim mehanizmom pozornosti za 

multimodalno prepoznavo čustev starejših, ki dosega boljšo točnost, stabilnost in nizko zakasnitev v pametnih 

domovih. 

 

1  Introduction 
With the acceleration of global aging process, smart home as 

an emerging technology can provide convenient life services 

for the elderly. At the same time, the special needs of the 

elderly population in terms of physiology, psychology and 

cognition make emotion recognition (ER) an important 

research direction in smart home systems. Emotion is an 

important part of human psychological activities. Changes in 

the emotions of the elderly are often influenced by health 

conditions, environmental factors, and social interactions. 

Moreover, ER can provide personalized services for smart 

home systems to optimize the living experience of the 

elderly [1-3]. To solve the issues of elderly people having 

trouble recognizing emotions and traditional machine 

learning models’ incapacity to adequately capture the 

nonlinear relationship between physiological signal data, 

Feng G et al. proposed a recursive mapping method of ER in 

conjunction with a visual transformer. According to 

experimental results, this method’s recognition accuracy was 

up to 94.35%, which was higher than that of the 

conventional approach [4]. Using an inverted neural network 

as the main body and training data from audio and video 

modalities, Sreevidya et al. created an automated emergency 

room system designed especially for the elderly.  

 

Experimental results showed that the system showed a 

minimum relative improvement of 6.5% for happy emotions  

and a maximum relative improvement of 46% for sad 

emotions compared to the baseline model [5]. Park H et al. 

used MobileNet-V2 to recognize six emotions for different 

age groups. The results showed that the ER of teenagers was 

more obvious than that of older people, and the model 

recognition accuracy was up to 83.7% [6]. To investigate the 

emotional experience of the elderly when using smart 

terminals, Lu et al. The researchers proposed a novel 

accessibility ER model for the elderly after combining with 

the support vector machine network. The outcomes 

displayed that the model had the highest accuracy in 

detecting the negative emotions of the elderly when using 

the terminal. Moreover, it could help reflect the design 

defects of the terminal application technology [7]. 

Speech recognition, image processing, natural language 

processing, and other domains have made extensive use of 

the attention mechanism (AM) in recent years. Multimodal 

learning and time-series data analysis have seen particularly 

impressive outcomes [8, 9]. To investigate the hidden 

emotional states from human motion, Zhao et al. proposed a 

human multi-site ER method that combined a fuzzy 

algorithm, AM, and multiple inertial measurement units. The 

outcomes revealed that the method had the highest accuracy 
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of 94.02% for six common types of emergencies [10]. 

Saganowski developed a two-channel recognition technique 

in an attempt to improve the robustness of the existing ER 

technique by introducing the AM to optimize the attention of 

the traditional convolutional recognition network. 

Experimental results indicated that the effectiveness of this 

technique for human ER was stronger than before the 

improvement [11]. According to Zhou et al., the majority of 

ER models now in use overlook inter-feature interactions 

and fall short of capturing the crucial complimentary benefits 

between contextual and facial information in video clips. 

According to the findings, the network was quite successful 

in predicting the emotions associated with work-related 

stress based on visual emotional evidence [12]. Lin et al. 

came to the conclusion that emotional shifts brought on by 

outside factors were accompanied by measurable and 

identifiable alterations in physiological signals. For this 

reason, this study proposed a dynamic ER model by 

combining EEG signals, ECG signals, EMG signals, and 

AM. The experimental results indicated that the model was 

robust to ER in application scenarios with different 

physiological signals and was suitable for different occasions 

of ER work [13]. The review of the above literature is 

summarized in Table 1. 

 

Table 1: Literature review summary comparison table 

Authors Method/Model Advantages (Metrics) Limitations 

Feng G et al. [3] 
Visual Transformer+recurrent 

mapping 
Accuracy up to 94.35% 

Dependent on physiological signals, 

weak generalization 

Sreevidya P et 

al. [4] 

Audio-visual 

Fusion+recurrent neural 

network 

46% improvement for sadness; 

6.5% for happiness 

No refined cross-modal interaction 

mechanism 

Park H et al. [5] MobileNet-V2 Accuracy up to 83.7% 
Limited performance on elderly 

users 

Lu J et al. [6] 
SVM-based emotion 

recognition model 

High accuracy in detecting 

negative emotions 

Limited to mobile terminal usage 

scenarios 

Zhao Y et al. [8] 
IMU+Attention+Fuzzy 

Algorithm 

Accuracy up to 94.02% for six 

emotions 
Single modality based on IMU only 

Saganowski S 

[9] 

Dual-channel CNN with 

Attention 

Improved performance over 

standard CNN 

Insufficient modeling of inter-modal 

interaction 

Zhou S et al. 

[10] 

Cross-attention+hybrid 

feature weighting 

Effective fusion of facial and 

contextual cues 

Complex modeling, lacks real-time 

performance 

Lin W et al. [11] 
EEG/ECG/EMG+dynamic 

attention 

High robustness across 

physiological modalities 

Heavy reliance on sensors, low 

adaptability 

 

In summary, although existing research has produced some 

results in the field of ER, significant deficiencies remain in 

addressing the complexity of emotional expression and the 

unique multimodal feature interactions of the elderly 

population. These deficiencies are evident in the rough 

modal information fusion strategy and limited cross-modal 

dynamic modeling capability. This makes it difficult to meet 

the demand for high-precision, low-latency ER in smart 

homes. To this end, the study focuses on the following core 

research questions: (1) Can the introduction of dynamic 

importance factors significantly improve the accuracy of 

modal feature weight adjustment? (2) Can the modal 

interaction compensation term enhance the co-modeling 

capability between audio and video? (3) Can the 

combination of the above mechanisms improve the F1 value 

by at least three percentage points over the baseline model? 

To validate the above questions, the study focuses on two 

key challenges of multimodal ER in older adults. First, it 

proposes an end-to-end recognition model that incorporates  

 

 

the EfficientFace-Transformer structure with an improved 

AM. The model introduces a dynamic importance factor and 

a modal interaction compensation term. These terms 

strengthen the deep interaction relationship between the 

audio and video modalities, as well as the ability to regulate 

weights. This allows for more efficient information fusion 

and robust modeling while maintaining the integrity of the 

modal representation. The core innovation of this study is the 

application of an optimized AM to ER scenarios for the 

elderly for the first time. A generalizable, multimodal 

emotion fusion framework is systematically constructed and 

verified for actual smart home requirements in terms of 

performance and practicability. This provides a feasible path 

and theoretical support for constructing a personalized 

emotion service system. 
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2. Methods and materials 

2.1 Multimodal emotion recognition based on 

EfficientFace-Transformer 
Due to the special physiological, psychological, and 

cognitive needs of the elderly, their emotional expressions 

are often different from those of young people and are 

affected by a variety of factors, such as health status, living 

environment, and social interactions [14-15]. Therefore, a 

single ER method may not be able to comprehensively and 

accurately reflect the emotional state of older adults. The 

multimodal fusion approach is a useful technique for 

enhancing ER’s accuracy and robustness. By integrating 

data from multiple modalities, such as facial expression, 

speech, movement, heart rate, etc., it can make up for the 

possible limitations of a single modality and provide a more 

comprehensive and accurate emotion analysis [16-17]. 

Whereas the effectiveness of the multimodal fusion method 

mainly relies on the close collaboration of data layer (DL), 

feature layer (FL), and decision layer (DeL). The schematic 

diagram of DL, FL, and DeL is shown in Figure 1 [18]. 
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Figure 1: Diagram of data layer, decision layer, and feature layer of multimodal fusion 

 

Figure 1(a), 1(b), and 1(c) shows the schematic diagram of 

DL, DeL, and FL of multimodal fusion. Data from different 

modalities such as audio and video in the DL are directly fed 

into the system and fused to form a joint multimodal data 

representation. Subsequently, these data are passed through a 

unified feature extraction module to extract key features and 

a classifier to classify the emotions. The DeL and FL 

processes are roughly similar, differing only in the order of 

feature classification and data fusion. It can be concluded 

that the multimodal fusion method can capture the emotion 

information more comprehensively and improve the 

robustness and accuracy of ER compared to the single 

modality recognition method. However, traditional 

multimodal fusion recognition methods often use separate 

feature extraction and simple fusion strategies when dealing 

with data from different modalities, which makes it difficult 

to fully explore the inter-modal correlations and temporal 

information [19]. For this reason, the study relies on the 

complementary information between different modalities 

and makes full use of this feature to propose an end-to-end 

ER model for the elderly. Figure 2 displays the model’s 

structure. 

In Figure 2, in the audio modality, the features of the audio 

signal are first extracted by Mel-frequency cepstral 

coefficients (MFCC) feature extraction algorithm, which 

generates audio features reflecting the rhythm, pitch, and 

emotion intensity of speech. In video modality, features of 

facial expressions in video frames are extracted using 

EfficientFace network structure. Next, one-dimensional 

convolutional coding is applied to the audio and video 

features to improve their temporal modeling capabilities. 

Then, they are fed into the Transformer module, which uses 

its self-AM to capture intra- and inter-modal feature 

relationships and generate fused multimodal feature 

representations. The fused features are further 

dimensionality reduction processed through the fully 

connected layer to extract the key emotion information 

features. Finally, the Softmax classifier is used to complete 

the emotion classification task, outputting the recognition 

outcomes of the emotion categories including pleasure, 

anger, sadness, surprise, and so on. To ensure reproducibility 

and stable training of the model, the study implements the 

following configuration: The Transformer module is set as a 

stacked structure of three layers, each of which contains 

eight heads of multi-head attention. The embedding 

dimension is 256. The width of the feedforward layer is 512. 

Moreover, the activation function is GELU. A dropout 

operation with a rate of 0.1 is added in the fusion stage to 

prevent overfitting. The model is trained using the Adam 

optimizer with an initial learning rate of 1×10-4, a batch size 

of 32, and 120 training rounds. The Early Stopping strategy 

is introduced to stabilize convergence performance. Figure 3 

displays the schematic diagram of the 

EfficientFace-Transformer, which serves as the backbone 

network of the entire recognition model. 
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Figure 2: Multimodal end-to-end emotion recognition model for the elderly 
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Figure 3: EfficientFace-Transformer diagram 

 

In Figure 3, first, the data of video modality is fed into the 

EfficientFace network for multi-stage feature extraction. 

Among them, Stage 1 completes the generation of 

preliminary feature representations through convolutional 

and maximum pooling layers. Stages 2 to 4 use stacked 

inverted residual blocks to extract high-level semantic 

features of the video modality. In terms of processing the 

temporal dimension of video frames, the study employs a 

strategy combining frame-level feature splicing and average 

pooling. First, feature vectors are extracted for each frame 

independently. Next, frame sequence feature representations 

are obtained by splicing the frames one by one in the 

temporal dimension. Finally, frame sequence features are 

integrated via time-averaged pooling to generate compact 

feature vectors representing the entire video clip. Stage 5 

generates compact feature vectors by global average pooling 

dimensionality reduction. Meanwhile, the audio modality is 

processed by a 1D convolutional layer on the input MFCC 

features to extract the key features of the audio modality. 

Next, the features of the video modality and the features of 

the audio modality are used as inputs to the Transformer 

module, respectively. The Transformer computes the 

relationship between Q, K, and V through its self-AM to 

dynamically capture the intra- and inter-modal interaction 

features. Subsequently, after pooling operation, the fused 

features of audio and video modalities are further 

compressed and integrated, and finally the task of classifying 

emotion categories is accomplished through the fully 

connected layer. Since the audio is a one-dimensional 

temporal data, it needs to be first framed and windowed to 

maintain its temporal structure, and the computation process 

is shown in Equation (1) [20]. 

( ) ( ) ( )= + nx x Rm na m          (1) 

In Equation (1), ( )nx m  denotes the signal of n  frame. 

m  denotes the time index within the frame. R  denotes 

the interval between the upper and lower frames. ( ) m  

denotes the window function. The video data consists of a 

series of consecutive frames, and the frames need to be 

sampled, grayscaled and normalized in preprocessing to 

extract the key expression information related to emotions. 

The computational formula is shown in Equation (2). 

( , )
'( , )





−
=

I x y
I x y             (2) 

In Equation (2), ( , )I x y  and '( , )I x y  are the pixel values 

before and after normalization, respectively. ( , )I x y  is the 

mean of the pixel values. ( , )I x y  is the standard deviation 

of the pixel values. After preprocessing, the formula for 

calculating the filtered energy on the Mel scale is shown in 

Equation (3). 

1

2
( ) ( )

−=

= 
i

i

f

i i

k f

E X k H k           (3) 

In Equation (3), 
iE  is the energy of the i th Mel filter. 
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( )iH k  is the transfer function of the i th filter. 
if  and 

1−if  are the upper and lower limits of the Mel filter 

frequency, respectively. 2
( )X k  denotes the frequency 

domain power spectrum. Equation (4) illustrates how the 

Transformer module determines the attention weights. 

, ),(
 

=  
 
 

T

k

QK
Attention Q K V softmax V

d
   (4) 

In Equation (4), Q , K , and V  distributions denote the 

query, key, and value matrices. 
kd  denotes the dimension 

of the key vector for mapping the fused features to the 

sentiment category probability distribution. Equation (5) 

displays the computational formula. 

1

( )
+

+

=

= =



T
i i

T
j j

w z b

C w z b

j

e
P y i z

e
      (5) 

In Equation (5), ( )=P y i z  denotes the probability that the 

sample belongs to emotion category i . z  denotes the 

fusion feature. 
iw  and 

ib  denote the weight and bias of 

the i th emotion category, respectively. C  denotes the 

total number of emotion categories. 

 

 

 

 

 

2.2 Optimization of a multimodal emotion 

fusion recognition model for the elderly 

incorporating the attention mechanism 
After constructing the completed 

EfficientFace-Transformer-based multimodal emotion 

fusion recognition model, it is found that the 

EfficientFace-Transformer is a multimodal information 

fusion of audio and video at a later stage. This, while better 

able to preserve the independent feature representation of 

each modality, still has some limitations in capturing the 

deep inter-modal interactions and joint dynamic properties. 

Specifically, the late fusion strategy mainly relies on a single 

fusion layer before classification for the integration of modal 

features, which may lead to insufficient inter-modal 

information interactions, thus affecting the robustness and 

accuracy of ER [21]. To improve the ability to model 

multimodal feature interactions, the study optimized the 

self-AM of the standard Transformer module. The 

Transformer still serves as the modal fusion backbone 

network in the overall design, but the part that computes 

internal attention is replaced with an improved AM. This 

mechanism introduces three terms to the standard dot 

product attention: a modal interaction compensation term, a 

dynamic importance factor, and a cross-modal enhancement 

term. These terms enhance the inter-modal collaborative 

modeling capability. Figure 4 shows the structure of the 

traditional dot product AM for comparison purposes. Figure 

5 shows the structure of the improved attention module 

embedded in the Transformer of the final model, as 

proposed in the study. Figure 4 shows the structure of the 

standard dot product AM for comparison with the improved 

mechanism. The improved mechanism has not been directly 

applied to the final model [22]. 
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Figure 4: Attention mechanism diagram 

 

Figure 4 shows that the AM is divided into three stages. 

These stages gradually complete feature weighting, 

strengthen the interaction between audio and video, and 

highlight key emotional information. The initial step 

involves mapping the input characteristics into query, key, 

and value vectors. Then, using the dot product, the similarity 

score between each query and all keys is calculated. The 

weight matrix is obtained in the second stage by normalizing 

the similarity scores produced in the first stage using the 

Softmax function. Equation (6) displays the calculating 

formula. 

exp( ( , ) )
1 max

exp( ( , ) )

 +
 =
 +
 

i j m

ij

i j mj

F Q K W
S soft

F Q K W
 (6) 

In Equation (6), 1ijS  denotes the i th row and j th 

column element of the normalized weight matrix. 

( , )i jF Q K  denotes the similarity score matrix obtained 

from the first stage by Equation (4). 
mW  denotes the modal 

association weight vector. In the third stage, the attention 

value is also combined with the residual connections 

between modalities to preserve the original features of the 

modalities and enhance the training stability of the model. 
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Equation (7) displays the computational formula. 

  1 =  +AttentionValue S V U          (7) 

In Equation (7),   denotes the residual scale factor. U  

denotes the initial input features. V  denotes the initial 

eigenvalue matrix. In order to capture the deep interactions 

between audio and video more effectively, the AM is 

improved in this study. The improved AM is shown in Fig. 5. 

Its structure is used to replace the standard self-attention 

module in Transformer and embedded into the final model. 
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Figure 5: Improved attention mechanism diagram 

 

In Figure 5, the improved AM is mainly generated by the 

similarity computation improvement, the weight 

normalization dynamic adjustment, and the enhancement of 

the final attention value. In the similarity calculation stage, 

the modal interaction compensation term is introduced. By 

combining the dot product similarity with the modal 

interaction compensation term, the dynamic dependency 

modeling between modes is realized. In the weight 

normalization stage, a dynamic importance factor is added. 

The generated dynamic importance factor is able to 

adaptively adjust the weights of modal features by 

computing the differences between the global features of 

audio and video modalities. In the attention value generation 

stage, a cross-modal feature (CMF) enhancement term is 

added. The fusion effect of audio and video modalities is 

further enhanced by feature splicing and weight adjustment. 

In this process, the similarity score is calculated as shown in 

Equation (8). 

(

'( , )

,( ) )


= +




=   −

T

m

k

T

m b

QK
F Q K B

d

B W ReLU Q K

     (8) 

In Equation (8), 
mB  denotes the modal interaction 

compensation term. 
bW  denotes the learnable modal 

compensation weight matrix.   denotes the modal balance 

bias. kd  denotes the dimension of the key vector. 

'( , )F Q K  denotes the similarity score after considering 

the modal compensation term. Then, the dynamic 

importance factor is added in the weight normalization stage. 

The 
mD  calculation formula is shown in Equation (9). 

( ( ))=  −m d a vD W G G            (9) 

In Equation (9), mD  denotes the dynamic moderator based 

on modal significance. 
aG  and 

vG  denote the global 

features of audio and video modalities, respectively. 
dW  

denotes the importance adjustment weights.   denotes the 

Sigmoid function. Finally, in the attention value generation 

stage, the feature representation is further optimized by 

introducing CMF enhancement terms in combination with 

inter-modal contextual information. The attentions value 

calculation at this time is shown in Equation (10). 

  1  =  + + mAttentionValue S V U C      (10) 

In Equation (10),  AttentionValue  denotes the final 

stage attentional output result. 1S V  denotes the first 

stage attentional output. 
mC  denotes the CMF 

enhancement term, which is calculated as shown in Equation 

(11). 

( ( )),= m c a vC W Concat G G          (11) 

In Equation (11), 
cW  denotes the cross-modal 

enhancement weight matrix. (_)Concat  denotes the 

feature splicing operation. In summary, the study finally 

proposes a novel multimodal emotion fusion recognition 

model for the elderly that combines 

EfficientFace-Transformer and improved attentions. Figure 

6 displays the model’s structure. 
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Figure 6: New multimodal emotion fusion recognition model for the elderly 

 

Figure 6 shows that the video modalities' features are first 

extracted through the EfficientFace network for multilayer 

representation. Meanwhile, the audio modalities' features are 

encoded through a one-dimensional convolutional layer to 

preserve their time-series information. During the 

intermediate fusion phase, the Transformer module uses an 

improved AM, as shown in Fig. 5. This mechanism replaces 

the standard self-attention operation to improve the model's 

ability to represent global relationships between modalities. 

The modal feature weights are adaptively adjusted through 

an improved AM combined with a dynamic importance 

factor, which significantly enhances the deep inter-modal 

interaction capability. Specifically, the AM dynamically 

introduces a modal compensation term and a global feature 

enhancement term on top of Q, K, and V. The model is 

designed to capture emotionally relevant CMFs more 

accurately. This enables the model to capture emotionally 

relevant CMFs more accurately. The fused features are 

further processed through a 1D convolutional layer to 

enhance feature compactness. It is also combined with a 

global pooling layer to generate the final emotion feature 

representation, and finally the recognition of emotion 

categories is completed by a classification layer. Finally, the 

identification of emotion categories is accomplished through 

the classification layer. This is the model architecture that 

represents the final model proposed in the results and 

conclusions section. The algorithmic pseudo-code of the 

final model is shown in Figure 7. 

Algorithm: Multimodal Emotion Recognition with Improved Attention Mechanism

Inputs:

    - V: video frame sequence (T × H × W)

    - A: audio MFCC sequence (T × F)

    - EfficientFace backbone (pretrained)

    - Transformer encoder parameters θ

Output:

    - Predicted emotion label y_pred

1: # === Feature Extraction ===

2: For each frame v in V:

3:     f_v   EfficientFace(v)

4: f_a   Conv1D(MFCC(A))

5: # === Improved Attention Mechanism ===

6: Compute Q, K, V from [f_v, f_a]

7: Att_base   softmax((Q × Kᵀ) /  d_k + W_m)        # modal relevance

8: Att_res   Att_base × V + λ × f_v                 # residual connection

9: B_m   W_b × ReLU(Q × Kᵀ   γ)                      # modality compensation

10: D_m   σ(W_d × (G_a   G_v))                       # dynamic importance factor

11: C_m   W_c × Concat(G_a, G_v)                     # cross-modal enhancement

12: Att_final   Att_res + D_m + C_m                  # final attention output

13: # === Classification ===

14: Fused_feature   GlobalAvgPooling(Att_final)

15: y_pred   Softmax(Linear(Fused_feature))

16: # === Training Procedure ===

17: Loss   CrossEntropy(y_pred, y_true)

18: Optimizer: Adam (lr = 1e-4, batch_size = 32)

19: Train for 120 epochs with early stopping

 

Figure 7: Algorithmic pseudo-code for the final model 
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3. Results 

3.1 Performance test of multimodal emotion 

fusion recognition model for the elderly 
The study is set up with AMD Ryzen 9 5950X for CPU, 

NVIDIA GeForce RTX 3090 for GPU, 64GB of RAM, and 

Ubuntu 20.04 for the operating system. The PyTorch 

framework is also used for model implementation. Two 

multimodal ER datasets are used for model validation: 

IEMOCAP and the self-constructed EMED dataset. 

IEMOCAP (Interactive Emotional Dyadic Motion Capture 

Database) is a publicly available multimodal emotion dataset 

containing audio and video data of 10 actors expressing 

multiple emotion categories such as anger, happiness, 

sadness, surprise, etc. The EMED (Elderly Multimodal 

Emotion Dataset) is a dataset designed for this study. It is 

intended for use with an elderly population and is designed 

to elicit real emotional responses through natural 

conversations, image stimulation, and situational recollection. 

It also synchronizes facial video and voice signals. Facial 

videos and voice recordings are collected simultaneously. 

The dataset includes the five most common emotional states 

of the elderly: pleasure, sadness, anger, anxiety, and 

neutrality. It covers multiple home environments and 

interaction scenarios to simulate the actual perceptual needs 

of smart home applications. The study first tests the selected 

values of two types of hyperparameters that have a large 

impact on the pre-signal feature extraction and mid-signal 

feature fusion. The test results are shown in Figure 8. 

The test results for the emotion weights are displayed in 

Figure 8(a). The test results of calculating the importance 

regulatory weights are displayed in Figure 8(b). Figure 8 

shows the average of five independent training runs 

performed with the corresponding weight settings, 

represented by each loss curve. While the standard deviation 

is not shown directly in the figure, the average trend of all 

configurations remains consistent across multiple runs, and 

the convergence interval fluctuates minimally, with a 

maximum standard deviation of less than ±0.025. This 

verifies the reproducibility and controllability of the 

hyperparameters on the model's convergence. In Figure 8(a), 

the loss function of the model decreases the fastest when the 

emotion weight is 0.6, and the loss value after final 

convergence is the lowest. It indicates that the model can 

more effectively balance the significance of features from 

various emotion categories with this weight value, increasing 

feature extraction accuracy and efficiency. When the weights 

take the value of 0.2 or 0.8, the convergence speed of the 

model becomes slower and the final loss value is higher. It 

indicates that too low or too high emotion weights can lead 

to bias in the model’s capture of emotion information. In 

Figure 8(b), the model has the least fluctuation at the 

beginning of the iteration when the weights take the value of 

0.75. The downward trend of the loss function is the most 

stable, and the final loss value is also optimal. This suggests 

that the model may distribute the weight percentage of 

various modal features more efficiently at this weight value. 

Thus, it can capture important emotional information more 

precisely during the feature fusion process. However, the 

model’s iterative process exhibits greater volatility and 

worse convergence when the weights are set to 0.25 or 1.00. 

It implies that incorrect weighting could result in a drop in 

feature fusion effectiveness. The study tested the model for 

ablation and the results are shown in Figure 9. Among them, 

attention denotes the use of the standard dot product AM (as 

shown in Figure 4) and improved attention denotes the 

introduction of the optimization structure of modal 

interaction compensation with importance factors (as shown 

in Figure 5). 
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Figure 8: Hyperparameter value test 
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Figure 9: Ablation test results 

 

Figure 9(a) displays the outcomes of the model ablation test 

in the IEMOCAP and EMED dataset. In Figure 9(a), the 

EfficientFace-Transformer-Improved attention model has 

the highest accuracy of 92.8% for a sample size of 300, 

which is significantly better than the other models. In 

contrast, the EfficientFace model has the lowest accuracy of 

about 86.4%. The introduction of the Transformer and 

improved AM significantly improves the modeling ability 

and recognition performance of intermodal interactions. 

Figure 9(b) shows that the Improved attention model also 

performs best on the EMED dataset, with an accuracy of 

94.7% when the sample size reaches 300. In contrast, the 

EfficientFace model performs the worst, indicating the 

limited effectiveness of unimodality in the recognition of 

emotional features in the elderly. Improved AM and 

multimodal fusion strategy are more advantageous. 

Additionally, the accuracy curves in Fig. 8 are plotted based 

on the mean results of each group of model configurations 

that are trained independently five times with the same 

sample size. In the experiments, the standard deviation of the 

accuracy of each model under different sample sizes is 

calculated. The standard deviation of 

EfficientFace-Transformer-Improved Attention is controlled 

to be within ±1.2% when the number of samples is greater 

than 150. This significantly outperforms the other compared 

models. This result indicates that the model not only has 

high accuracy, but also performs stably with good statistical 

consistency under different training subsets. The study 

continues to test the effects of different modular incremental 

optimizations on the final model's performance. This 

includes the effects of independently introducing modal 

interaction compensation, a dynamic importance factor, and 

CMF enhancement terms. The results are shown in Table 2. 

 

Table 2: Modal interaction compensation and dynamic significant factor ablation test results 

Model Variant Emotional intensity/% mAP/% Detection delay/s 

Baseline (EfficientFace-Transformer) 89.14 91.78 0.62 

+ Modality Interaction Compensation 91.03 93.4 0.61 

+ Dynamic Importance Factor 90.84 93.18 0.61 

+ CMF Enhancement (Final) 93.67 95.24 0.55 

In Table 2, after adding only the modal interaction 

compensation term, the affective strength is increased from 

89.14% to 91.03%, and the mean average precision (mAP) 

from 91.78% to 93.40%. Meanwhile, the detection latency is 

slightly decreased to 0.61 s. The addition of the dynamic 

importance factor alone improves the affective strength to 

90.84%, the mAP to 93.18%, and the latency remains the 

same. Further incorporating CMF enhancement optimizes 

the model's performance, increasing the sentiment intensity 

and mAP to 93.67% and 95.24%, respectively, while 

reducing the detection latency to 0.55 seconds. This 

demonstrates significant improvements in accuracy and 

real-time performance through the synergistic optimization 

of multiple mechanisms. This ablation validation clearly 

shows that each component contributes to performance gains 

in different ways. The final improved model achieves 

systematic improvements in fusion performance while 

maintaining recognition efficiency. Visual geometry group 

face (VGGFace), face embedding network (FaceNet), and 

efficient neural network (EfficientNet) are introduced in the 

study. The precision, recall, F1 value, and specificity are 

used as metrics for comparison testing. Table 3 displays the 

findings. 

In Table 3, in the IEMOCAP dataset, the F1 value of the 

proposed model is studied to reach 92.44%, which is about 

3.29% higher than that of EfficientNet, and the specificity 

reaches 93.12%, reflecting its significant advantage in 

reducing misidentification. The suggested model’s 

performance is considerably better in the EMED dataset. 

Compared to the other models under comparison, the F1 

value, precision, and recall are all substantially higher at 

94.21%, 94.37%, and 93.64%, respectively. This indicates 
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that the proposed model under study has stronger 

generalization ability and robustness in specific scenarios 

targeting elderly ER. In contrast, VGGFace has relatively 

insufficient feature extraction capability due to its shallow 

network structure, which leads to its performance being 

lower than FaceNet and EfficientNet on both types of 

datasets. FaceNet and EfficientNet show significant 

improvement in ER performance through deeper network 

structure and optimization strategies. However, it still 

performs less well than the the proposed model in the 

complex multimodal emotion fusion task. 

 

3.2 Simulation test of multimodal emotion 

fusion recognition model for the elderly 
The study extracts seven types of emotional states (anger, 

disgust, fear, happiness, surprise, sadness, and contempt) 

from the IEMOCAP dataset. These states are used to test the 

fine-grained classification performance of multimodal ER. 

The study excludes the interference of other modal 

information, such as audio. It also compares the differences 

in emoji emotion classification performance between models 

in a unimodal manner. The study plotted the confusion 

matrix results are shown in Figure 10. 

Figure 10(a), 10(b), 10(c), and 10(d) shows the expression 

recognition results of VGGFace model, FaceNet model, 

EfficientNet model, and proposed model. The recognition 

accuracy of the research proposed model for the seven types 

of expressions, namely, angers, detest, fear, happy, amazed, 

sad, and comtempt, are 99%, 95%, 93%, 92%, 95%, 97%, 

and 96%, respectively, which surpass those of the other 

models by a considerable margin. Especially, it shows higher 

accuracy on the difficult-to-distinguish emoji categories such 

as detest and comtempt. In contrast, the VGGFace model, 

while better at recognizing ananger and comtempt, performs 

the worst with a recognition accuracy of only 69% on the 

fear category. In addition, the FaceNet model outperforms 

VGGFace overall, but has 76% and 72% on the amazed and 

fear categories, respectively, indicating its limited ability to 

distinguish complex expression features. The EfficientNet 

model recognizes the anger and sad categories better, but the 

accuracy on the amazed category is only 65%, which is also 

deficient. Receiver Operating characteristic curve (ROC) is 

used as an indicator to validate the most prominent 

expression emotions of anger and sadness, and the results are 

shown in Figure 11. 

Figure 11(a) shows the ROC curves of different models for 

the detection of anger emotion, and Figure 11(a) shows the 

ROC curves of different models for the detection of sadness 

emotion. Among them, the horizontal axis represents the 

false-positive rate, and the vertical axis represents the 

true-positive rate. The larger the area under the curve (AUC) 

value surrounded by the ROC curve and the horizontal and 

vertical coordinates, the better the model's performance. In 

Fig. 11(a), In the anger ER task, the ROC curve of the model 

proposed in this study is significantly higher than those of 

the other three comparative methods. It has a larger overall 

coverage area, and its final AUC value is 0.91. This is better 

than the values of EfficientNet (0.84), DenseNet (0.85), and 

Xception-DeepLab (0.82). As shown in Fig. 11(b), the 

model presented in this study still performs best for sadness 

detection, with an AUC value of 0.87. This demonstrates its 

ability to accurately perceive and model emotional changes. 

Notably, the ROC curves of other methods in both emotion 

categories show different degrees of jitter or a tendency to be 

close to the diagonal. In contrast, the proposed model can 

obtain a high true positive rate when the false positive rate is 

low. This indicates that the model possesses strong early 

differentiation ability while ensuring accuracy. The models 

are evaluated based on their performance in classification 

consistency for multimodal ER, as shown in Figure 12. This 

metric measures the consistency of a model's predicted 

results for each emotion type across multiple independent 

runs on the same sample set. Its computational formula is 

shown in Equation (12). 

1

1
consistentC
i

i i

n
ECC

C n=

=           (12) 

In Equation (12), C  represents the total number of 

emotion categories. in  represents the total number of 

samples in the test set for category i  emotions. 
consistent

in  

represents the number of samples with consistent prediction 

results over multiple times in this category. This indicator 

takes the value range of [0,1], which can be converted to 

percentage expression (unit: %). The higher value represents 

the more stable classification results of the model on the 

category of emotions. The study continues with emotion 

classification consistency as a metric. The results are shown 

in Figure 12. 

Figure 12(a) shows the different model emotion 

classification consistency test results under IEMOCAP 

dataset. Figure 12(b) shows the results of emotion 

classification consistency test for different models under 

EMED dataset. In Figure 12(a), the emotion classification 

consistency of the proposed model is always maintained at a 

high level in both types of data. It also rapidly approaches 

the ideal variation curve with the increase of the number of 

samples, and its emotion classification consistency reaches 

up to 96.24%. In contrast, the VGGFace model has the 

lowest consistency of 85.74%. When the number of samples 

is large, its classification stability significantly decreases. 

The FaceNet model performs more consistently in the 

medium sample size range, but its agreement rate is only 

about 90.23% at high sample sizes, failing to improve further. 

The EfficientNet model has a slightly higher agreement rate 

than FaceNet, but when dealing with complex emotion 

categories, its agreement rate increases significantly less than 

that of the proposed model. In summary, studying the 

proposed model shows better recognition accuracy and 

stability in a variety of ER tests and is suitable for complex 

ER tasks. To further evaluate the adaptability of the 

proposed models under different data distribution and 

acquisition scenarios, this study conducts cross-dataset 

validation experiments. Specifically, the models undergo 

cross-training on the IEMOCAP dataset and cross-testing on 
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the EMED dataset. This examination assesses the models' 

ability to recognize emotions in unseen samples from the 

target domain. Table 4 summarizes the main evaluation 

metrics of each model in this generalization test, including 

emotion intensity, detection latency, and mean accuracy of 

recognition (mAP). The goal is to validate the robustness 

and stability of the models in a cross-domain migration 

environment. Among them, the "detection latency" reported 

in Table 4 refers to the actual wall-clock time, in seconds, 

that the model experiences during the inference phase, from 

when the input modal features are loaded to when the 

emotion classification results are output. The measurement 

process includes the complete inference process of feature 

preprocessing (e.g., MFCC extraction and image 

normalization), multimodal coding, Transformer interaction 

modeling, and final classification prediction. 

 

Table 3: Multiple indicator test results 

Data set Model P/% R/% F1/% Specificity/% 

IEMOCAP 

VGGFace 84.32 83.47 83.89 85.14 

FaceNet 86.45 85.62 86.03 87.28 

EfficientNet 89.58 88.72 89.15 90.34 

Our model 92.84 91.96 92.44 93.12 

EMED 

VGGFace 85.21 84.36 84.78 86.19 

FaceNet 87.48 86.53 86.99 88.42 

EfficientNet 90.15 89.42 89.78 91.03 

Our model 94.37 93.64 94.21 94.85 
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Figure 10: Confusion matrix results for seven types of facial emotion recognition based on video modality in IEMOCAP 

dataset by different models 
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Figure 11: Statistical results of AUC indicators 
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Figure 12: Results of emotion classification consistency test for different models 

Table 4: Test results of emotion recognition index 

Data set Model Emotional intensity/% Detection delay/s mAP/% Inference cost/MB 

IEMOCA

P 

VGGFace 82.45 0.72 85.32 73 

FaceNet 85.62 0.68 88.45 88 

EfficientNet 89.14 0.62 91.78 91 

Our model 93.67 0.55 95.24 94 

EMED 

VGGFace 80.38 0.75 84.19 73 

FaceNet 84.21 0.69 87.56 88 

EfficientNet 88.92 0.63 91.03 91 

Our model 94.13 0.56 96.12 94 

In Table 4, on the IEMOCAP dataset, the study's proposed 

model performs optimally in terms of sentiment strength, 

detection latency, and mAP. Its computational inference cost 

is 94 MB per sample, which is an acceptable overhead for 

guaranteed accuracy. In terms of detection latency, the 

model outperforms VGGFace's 0.72 seconds and 

EfficientNet's 0.62 seconds with a minimum response time 

of 0.55 s. This reflects a clear real-time advantage. For the 

mAP, the model reaches 95.24%, which is an improvement 

of 6.79% and 3.46% compared to FaceNet and EfficientNet, 

respectively. In the EMED dataset, the model achieves a 

sentiment strength of 94.13% and an mAP of 96.12%. The 

detection latency is 0.56 seconds, maintaining the model's 

leading position and demonstrating its ability to adapt to 

varying inference loads. Overall, the proposed model 

improves multimodal fusion accuracy by introducing the 

dynamic AM while considering inference efficiency and 

computational cost. This demonstrates good practicality and 

balance. On the other hand, VGGFace has the weakest 

overall performance due to its ineffective modeling of 
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complex features between modalities. 

4  Discussion 

Aiming at the problems of rough modal fusion and 

insufficient dynamic dependency modeling in multimodal 

ER for the elderly, the study constructed a fusion model 

combining the EfficientFace-Transformer structure with an 

improved AM. 

The results of the ablation experiments demonstrated that 

improved ER performance stemed not only from the 

efficient feature extraction backbone network but also from 

the dynamic importance factor and the modal interaction 

compensation term introduced in the AM layer. The former 

could dynamically adjust the importance of different modal 

features, significantly enhancing the model's ability to adapt 

to heterogeneous cross-modal information. The latter 

mitigated the problem of modal misalignment by 

introducing a compensation mapping that made intermodal 

interaction more adequate. In comparison experiments in 

which each module was introduced one by one, recognition 

accuracy (mAP) improved from 91.78% to 95.24%. This 

verified the improved strategy's contribution to the 

performance of the multimodal fusion layer. 

In terms of computational resources, although the proposed 

model added an attention enhancement layer, the overall 

model size was only 94.00 MB and the inference latency 

was controlled within 0.55 seconds. The model considered 

both accuracy and inference efficiency. It was suitable for 

smart home edge device environments where both response 

time and resource overhead were limited. Meanwhile, the 

fusion mechanism proposed by the study has better 

interpretability than the direct splicing structure of the 

original EfficientFace and Transformer. By analyzing the 

change of the attention weight matrix, one can track the 

attention area and interaction mode of the model in different 

modes, which aids in understanding the process of ER. In 

terms of validation, the study tested the model on the 

publicly available multimodal IEMOCAP dataset and 

introduced the real-life EMED collection scenario dataset for 

cross-validation. This further enhances the generalizability 

and stability of the experimental results. A professional 

psychological annotator labels the EMED dataset based on 

the simultaneous evaluation of multichannel signals. This 

approach provides a higher degree of labeling consistency 

and clinical reliability. In the cross-dataset test, the model's 

strong robustness verifies its generalization ability. 

Meanwhile, the combined structure of the original 

EfficientFace and Transformer was established as a unified 

baseline. It was then reproduced using the same hardware, 

parameter configuration, and training strategy to ensure the 

fairness and reproducibility of the experimental findings. 

Despite the progress made in the study, it should be pointed 

out that the model is currently sensitive to high-noise modes, 

and the modal credibility estimation mechanism and 

adaptive gating fusion module can be further introduced in 

the future to improve the dynamic stability under 

multi-source imbalance conditions. At the same time, it can 

be extended to a high-dimensional multimodal ER 

framework that includes more channels such as text and 

physiological signals, in order to enhance its usefulness and 

breadth in intelligent interaction systems for the elderly. 

5  Conclusion 
For the multimodal elderly ER task, an end-to-end 

recognition model integrating EfficientFace-Transformer 

structure and improved AM was proposed. It integrated 

dynamic importance factor, modal interaction compensation 

term, and CMF enhancement module. Moreover, it 

strengthened the semantic alignment and feature synergy 

between audio and video modalities. The experiments were 

carried out on IEMOCAP and EMED datasets with multiple 

rounds of testing. The results showed that the proposed 

model achieved 95.24% in mAP, 93.67% in affective 

strength, and 0.55 s in detection latency on IEMOCAP. 

Meanwhile, this model achieved 96.12% in mAP, 94.13% in 

affective strength, and 0.56 s in latency on EMED, which 

were all significantly better than VGGFace, FaceNet with 

EfficientNet, and other comparison methods. To verify the 

statistical significance of the performance improvement, 

paired t-tests were used to analyze the detection latency and 

recognition accuracy. In this case, the p-value of the mAP 

improvement was less than 0.01, as well as the p-value of the 

difference in detection latency. This indicated that the 

proposed method had significant advantages in terms of both 

accuracy and efficiency. Additionally, cross-dataset 

validation demonstrates the model's robustness and 

generalization ability. This makes it applicable to the 

elderly's ER needs in complex environments, such as smart 

homes. 
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