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Accurately forecasting household energy consumption remains a challenge due to the variability 

introduced by user behavior, appliance diversity, and environmental conditions. Smart homes have also 

become a key solution to the expanding global energy demands in the residential arena through the 

introduction of new strategies to maximize and control the use of energy. Smart systems comprise 

sophisticated sensors and networked appliances to provide accurate, affordable, as well as ecofriendly 

management of energy. Yet, forecasting the use of energy in such homes is challenging with the differences 

in end-user behavior, weather, and appliance efficiencies. In this work, the use of machine learning (ML) 

algorithms Extra Tree Regression (ETR), Naive Bayes Regression (NBR), and Elastic Net Regression 

(ENR) to predict the use of energy in a home is presented. These are also optimized with Quadratic 

Interpolation Optimization (QIO) to adjust their hyper parameters. Experiments were performed using 

the Kaggle Smart Home Energy Usage dataset, which provides comprehensive synthetic data across 

various features of occupancy, appliance usage, temperature, and timestamped consumption data. The 

developed hybrid schemes were tested using the criteria of R² and RMSE in the training, validation, and 

testing stages. Out of the varied modeled algorithms, the ETQI (ETR + QIO) model realized the highest 

accuracy of R² = 0.985 and RMSE = 0.245 while outperforming NBQI (NBR + QIO) with R² = 0.974 and 

RMSE = 0.233 and ENQI (ENR + QIO) with R² = 0.952 and RMSE = 0.319. These conclusions reflect 

the ability of optimized ML algorithms to drive more effective energy efficiency strategies in the smart 

home scenario. 

Povzetek:Članek predstavi QIO-optimizirane regresijske modele (ETQI, NBQI, ENQI) za napoved porabe 

energije v pametnih domovih, kjer ETQI doseže najvišjo točnost in stabilnost. 

 

1 Introduction 
Due to the unending demand for energy consumption in 

various parts of the world, especially in the residential 

sector, efforts towards enhancing energy management 

have been considered imperative [1]. Integrated homes 

with multiple devices and sensors are considered a 

significant step in energy matters [2]. Such dwellings can 

manage, regulate, and optimize energy intake in unique 

and valuable ways that preserve the environment while 

saving the homeowner's money [3]. However, predicting 

energy use in smart homes has unique difficulties since 

several variables affect energy use, including appliance 

efficiency, weather, and user behavior [4]. A smart home 

consists of two interactive elements: an intelligent 

network and a smart load comprising sensors, actuators, 

middleware, and a network [5], [6]. A bright house can 

focus on three primary goals: maximizing the percentage 

of home automation, making energy regulation more 

straightforward, and reducing environmental releases [7]. 

Today, smart buildings have become a phenomenon as 

they are overwhelming the world by developing brighter 

built spaces through the application of leading-edge 

computational and communication technologies [8]. 

Public awareness will relate to building automation, where 

operations are controlled through instruments and 

microcontrollers in an information exchange process [9]. 

Secondly, smart buildings utilize integrated systems that  

forecast energy consumption, hence triggering energy 

conservation and cost minimization [10]. More 

significantly, this is crucial given that it is proven that, 

within developed countries, buildings utilize 

approximately 40% of primary energy [11]. 

Energy regulation in the smart home relies on 

efficient appliances and increasing consumer engagement 

in demand-side management, energy management 

systems, and appliance design [12]. Many studies have 

demonstrated that appliance design and efficiency are 

paramount; outdated appliances and consumer ignorance 

of their efficiency are also significant concerns [13]. The 

authors continue to advocate stricter regulations over 

appliances, but the responsibility for energy efficiency lies 

with the consumer. Indeed, several studies have shown a 

high correlation between awareness of the amount of 

energy used and the actual consumption. Real-time 

feedback, through smartphones or fixed-site monitoring 

equipment, is encouraging, but there is still much interface 

opacity and technological issues. Energy efficiency 

extends beyond smart appliances into other areas like 

space heating, despite possible efficiencies from 

thermostat positioning. Managing smart home systems 

requires the customer's awareness and experience. Intertek 
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defines a smart home as a home with network-connected 

appliances that are managed remotely [14]. 

The current research seeks to (1) contrast the accuracy 

of the three machine learning regression algorithms Extra 

Tree Regression (ETR), Naive Bayes Regression (NBR), 

and Elastic Net Regression (ENR) in modeling energy 

usage in the home, (2) assess the impact of Quadratic 

Interpolation Optimization (QIO) on the improvement of 

the accuracy of these models, and (3) ascertain the most 

significant features responsible for the energy usage trend 

from the feature importance analysis. 

1.1 Related works 

This section investigates various research articles on 

appliances and socio-economic factors concerning energy 

consumption. Pratt et al. [15] presented data collection of 

hourly end-use from 140 commercial buildings and 454 

residential homes from the Pacific Northwest. They 

mainly research the development of techniques to predict 

energy use profiles, with a special interest in refrigeration 

and freezer loads. A data acquisition system is presented 

that monitors 12 to 16 channels for energy consumption. 

Data from UK households was analyzed using a Markov 

Chain Monte Carlo approach. At the same time, Guo et al. 

utilized a Hidden Markov model to identify and estimate 

the energy consumption of individual appliances from 

aggregated power signals. Other techniques from machine 

learning have been used in various works: Ling et al. [16], 

Veit et al. [17], and Arghira et al. [18] analyzed neural 

networks (NNs), forecasting methods, and multiple 

regression techniques. Bharati et al. applied KNN, SVM, 

stochastic gradient descent, random forests, and neural 

networks for the classification attributes of the energy 

dataset [19]. They also utilized neuro-fuzzy inference for 

superconductor dataset feature prediction. Scott et al. [20] 

deployed a NARX Gaussian Process regression scheme 

and a linear regression scheme to predict energy loads 

from UK data, attaining a low prediction error of 0.26% 

[1], [2].  

Other research filtered data from 1,628 households for 

electricity consumption, using the following criteria as a 

basis: weather, location, age of building, ownership, 

energy-efficient fixtures, and even income class [3], [4]. 

The analysis determined that weather, location, and floor 

area were the most significant factors in energy 

consumption. Nevertheless, daytime occupancy of the 

home was related to reduced appliance efficiency [21]. 

Overall, all literature underlines these different elements 

as an understanding of patterns in energy usage. Recent 

studies have introduced advanced forecasting and control 

models for smart energy systems. Razghandi et al. 

proposed a Seq2Seq model integrated with Q-learning for 

predictive control in smart homes [5]. Pan applied tree-

based models optimized with War SO for accurate solar 

energy forecasting [6]. Nakıp et al. developed an rTPNN-

based framework for joint forecasting and appliance 

scheduling in smart environments, achieving near-optimal 

scheduling and high predictive performance [7]. 

Table 1 gives a comparative overview of the 

significant studies in the area of predicting smart home 

energy usage. Comparison of the studies is in terms of the 

datasets, the machine learning algorithms used, the 

adopted feature engineering techniques, and model 

performances as measured by RMSE and R². The 

comparison highlights the novelty and strength of the 

adopted approach in this research, Quadratic Interpolation 

Optimization (QIO), in its ability to improve model 

performances in energy forecasting tasks.

Table 1: Comparative summary of key studies 

Study Dataset Algorithm Feature Engineering Results (RMSE, 

R²) 

Pratt et al. [15] ELCAP, 140 buildings, 

454 homes 

Custom Regression 

Techniques 

Manual Load Profiling RMSE: N/A, R²: 

N/A 

Guo et al.  [8] UK Aggregated Load Hidden Markov 

Model 

Appliance-level 

Disaggregation 

RMSE: ~0.32, R²: 

~0.91 

Ling et al. [16] Synthetic Short-term 

Load 

Neural Networks Fuzzy Feature 

Selection 

RMSE: 0.29, R²: 

0.94 

Bharati et al. [19] FICTA Dataset KNN, SVM, RF Plot Analysis RMSE: ~0.27, R²: 

~0.92 

Scott et al. [20] UK Smart Meter NARX + Gaussian 

Process 

None Specified RMSE: 0.26, R²: 

0.95 

Current Study Kaggle Smart Home ETR, NBR, ENR + 

QIO 

Quadratic Interpolation 

Optimization 

ETQI: RMSE: 

0.245, R²: 0.985 

 

1.2 Objectives  

Tree-based machine learning approaches were used in 

preference to deep learning solutions because of their 

reduced training time, improved interpretability, and good 

results on structured, table-like datasets such as the Smart 

Home Energy dataset. They use less data preprocessing 

and computational power as opposed to neural networks 

and are more apt for real-world, real-time applications in 

smart homes. This paper discusses a few Machines  

 

Learning (ML) schemes that can be used for energy usage 

prediction in smart homes, mainly focusing on Extra Tree 

Regression (ETR), Naive Bayes Regression (NBR), and 

Elastic Net Regression (ENR). Each of these schemes has 

unique advantages when it comes to the estimation of 

energy consumption data. ETR has been widely 
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recognized for its efficiency in handling a large volume of 

data and its robustness to outliers, especially in the case of 

complex energy-use consumption patterns. In contrast to 

the above, NBR relies on a probability-based method that 

correctly addresses the uncertainty in the data, thereby 

leading to better prediction accuracy. 

First, ENR embodies the characteristics of both Lasso 

and Ridge regressions and has stronger robustness for high 

correlations between features. Second, Quadratic 

Interpolation Optimization (QIO) is applied to improve 

the predictiveness of these schemes further. The QIO 

optimizer is essential in hyperparameter optimization, 

enabling it to find the best-fitted parameters for each 

model. The result is a holistic approach that leads to the 

development of predictive schemes with better 

performance, thus providing the most valuable insight into 

energy consumption efficiency in smart homes. This paper 

contributes to further understanding and optimally 

steering energy management within residential settings 

with the help of advanced ML techniques. 

The remainder of this paper is organized as follows: 

Section 2 provides a detailed description of the dataset and 

preprocessing techniques. Section 3 explores the influence 

of occupancy status on energy consumption in smart 

homes. Section 4 presents the mathematical schemes, 

including the machine learning models and the QIO 

optimization process. Section 5 discusses the experimental 

results and model evaluations. Finally, Section 6 

concludes the study and outlines future research 

directions. 

2 Data description 

2.1 Data preprocessing  

Before model training, various steps in the preprocessing 

of the data were performed. Missing continuous variable 

values were replaced using mean substitution, but rows 

with missing categorical values were deleted as they were 

of low frequency. Continuous features like temperature 

and energy consumption were normalized with min–max 

scaling to have uniform contribution to the model during 

training. The day-of-week and season variables were 

encoded with one-hot encoding in order to maintain model 

consistency with non-numerical data. Timestamp data was 

also processed to its day, month, and hour components to 

enable more effective capturing of temporal trends in the 

energy behavior. The data was partitioned randomly to 

70% for training, 15% for validation, and 15% for testing, 

with the aim of having a representative feature value 

distribution across phases. Five independent trials were 

conducted to ensure consistency of results. 

Temporal characteristics were analyzed to augment 

their prediction value. The raw timestamp was analyzed to 

extract hour, day, and month numbers to identify periodic 

trends in energy use. The categorical characteristics "day 

of week" and "season" were encoded using one-hot 

encoding to preserve non-ordinal connections among the 

categories. This encoding enabled the models to leverage 

temporal context without creating erroneous hierarchies. 

No embedding layers were utilized, as the models are tree-

based and proficiently manage one-hot encoded features. 

2.2 Data description  

All these details were obtained from the Smart Home 

Energy Usage Dataset from Kaggle, as noted at this link. 

The given dataset contains synthetic data, essential for 

further research on different scenarios related to the 

energy optimization subject within smart homes. Thus, the 

availability of data regarding electricity consumption, 

appliance usage, temperature settings, and occupancy 

status is critical for researchers and developers who want 

to enhance contemporary dwellings' energy efficiency and 

home automation. It is formatted in a manner that allows 

the detection of relevant consumption data, further 

facilitating the identification of potential energy-saving 

issues and optimization of home energy consumption to 

support automation. This dataset is useful in further 

research to analyze energy intensities to improve smart 

home operations and other automated processes that aim 

to improve home energy efficiency.  

Timestamp: This column specifies the precise day 

and time the data was collected to allow comparison of 

customers' purchasing patterns at various time intervals.  

Home-id: A unique number assigned to each house, 

allowing for comparisons and evaluations of the energy 

efficiency of various residences.  

Energy-consumption-kWh: This column's first 

parameter, which allows for evaluating total energy 

consumption, is the energy usage measured in kilowatt-

hours (kWh). 

Temperature-setting-C: This feature displays the 

houses inside temperature in degrees Celsius, which is 

highly useful for estimating the energy a heater or air 

conditioner would use in a certain household. 

Occupancy status: Indicates whether the house was 

occupied or unoccupied when the data was gathered, 

allowing the impact of presence on energy usage to be 

shown.  

Appliance: It classifies the kind of appliance being 

used, including air conditioning units, washing machines, 

and dishwashers, helping to determine each appliance's 

contribution to the overall amount of energy used. 

Usage-duration-minutes: The number of minutes an 

appliance was on helps distinguish between the quantity 

of energy used and the period the device was in use.  

Season: The year when the data was collected since 

these aids in analyzing the patterns of energy consumption 

associated with each season, for instance, winter, spring, 

summer, or fall.  

Day-of-week: This variable establishes the day of the 

week to differentiate daily energy use. 

Holiday: A flag variable that, to filter out days that 

could vary due to the holiday, is equal to 1 if the day was 

a holiday and zero otherwise.  

Therefore, it can be used in trend analysis, forecasting 

overall energy usage, enhancing intelligent automation at 

home, and, more importantly, developing automated 

energy-saving solutions. It allows for deeper and more 
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practical analysis of energy use in smart homes, thus 

making an environment even more effective and efficient. 

The use of a synthetic dataset offers controlled 

conditions for model development and evaluation; 

however, it also presents limitations in terms of real-world 

applicability. Synthetic data may not capture the full 

complexity, variability, and noise present in actual 

household energy consumption patterns. Consequently, 

model performance observed in this study may not fully 

generalize to real-world deployments. Future work will 

incorporate real datasets, such as UK-DALE or REDD, to 

evaluate model robustness under realistic operational 

conditions and validate applicability in practical smart 

home environments. 

Fig.1 presents the relationship between measured and 

predicted values, showing the model's capability to detect 

patterns and accuracy in prediction. 
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Figure 1: The links between input and output variables assessed utilizing a marginal histogram plot 

3 Exploring the influence of 

occupancy status on energy 

consumption in smart homes 
Energy consumption in smart homes is closely related to 

the occupancy status range, and it is primarily associated 

with HVAC. For instance, in the U.S., HVAC accounts for 

43% of residential energy consumption, while it increases 

to 61% in colder regions like Canada and the U.K. Energy 

savings of up to 20-30% have also been estimated by 

switching these systems off. At the same time, the 

residents are asleep or away. However, these savings have 

often been hard to realize. Many residents do not usually 

change their thermostats, while programmable 

thermostats frequently result in higher energy use due to 

incorrect settings or user disinterest [22]. Occupancy-

based control strategies have gained attention for 

improving energy efficiency by aligning HVAC 

operations with real-time user presence. Studies show that 

dynamic occupancy detection using sensors or predictive 

models can significantly reduce unnecessary energy 

consumption. Integrating occupancy data into energy 

prediction models enhances forecasting accuracy and 

enables proactive control, which is essential for smart 

home automation systems aiming to balance comfort, cost, 

and environmental sustainability. 

4 Mathematical schemes 
All experiments were implemented in Python version 

3.13.3 using Visual Studio Code as the development 

environment. The machine learning models were 

developed using the scikit-learn library, which provided 

tools for model training, evaluation, and cross-validation. 

The average runtime for base models was 

approximately 1.4 seconds for NBR, 3.1 seconds for ENR, 

and 4.2 seconds for ETR. When optimized with QIO, 

runtimes increased to 48.6 seconds for NBQI, 76.4 

seconds for ENQI, and 101.8 seconds for ETQI. This 

added time reflects QIO’s iterative tuning process, which 

enhances model performance and generalization. 

4.1 Extra tree regression (ETR) 

Geurts et al. [23] first introduced ETR, initially inspired 

by the Random Forest (RF) scheme. The ETR tactic 

generates regression trees, or sets of unpruned choices, in 

line with the conventional top-down methodology [23]. 

The RF scheme does the regression in two steps: bagging 

and bootstrapping. During the bootstrapping process, each 

tree develops to generate a collection of DTs using a 

sample from a stochastic training dataset. Upon arriving at 

the ensemble, the decision tree (DT) nodes undergo 

division by implementing a two-step bagging process. The 

first stage involves the selection of various random subsets 

of training data. The decision-making procedure is 

concluded by choosing the ideal subset and its value [24]. 

Breiman [25] thought of the RF scheme as being 

composed of several DTs where 𝐺(𝑥, 𝜃𝑟) displays the 

𝐺𝑡ℎ the unified individual distribution pattern assigned 

before the tree grows, denoted by θ in the prediction tree. 

Breiman is used to average and combine all of the trees, 

resulting in an ensemble of trees (a forest) of G(x). The 

procedure is shown in Eq (1): 

𝐺(𝑥, 𝜃1, … , 𝜃𝑟) =
1

𝑅
∑𝐺(𝑥, 𝜃𝑟)

𝑅

𝑟=1

 (1) 

There are two basic differentiations between RF and 

ETR. By randomly choosing a subset of all the cutting 

locations, the ETR separates nodes in the first place. It also 

cultivates trees by utilizing all of the learning samples to 

lessen bias. Two variables in the ETR technique control 

the splitting process: 𝑘 and 𝑛𝑚𝑖𝑛 .where the 𝑛𝑚𝑖𝑛  Variable 

indicates the least sample size needed to discriminate 

across nodes, and k r displays the number of 

characteristics the node randomly picks. Furthermore, 𝑘 

and 𝑛𝑚𝑖𝑛, respectively, determine the medium result noise 

intensity and the feature extraction strength. These two 

elements reduce overfitting and boost the accuracy of the 

ETR scheme [26], [27].  

4.2 Naive Bayes Regression 

The example below looks at the challenge of anticipating 

a numerical goal value 𝑌. Qualities in E (𝑋1,  𝑋2, . . . , 𝑋𝑚). 

are 𝑚. Features may be actual, quantitative, nominal, or a 

collection of unordered values [28]. To lower the 

predicted prediction error, 𝑌 might be selected if the 
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probability density function 𝑓( 𝑌 ∣ 𝐸 ) of the target value 

was known. However, 𝑓(𝑌 ∣ 𝐸) is usually unknown and 

necessitates data estimates. It is expected that the features. 

𝑋1,  𝑋2, . . . , 𝑋𝑚 are independent of the goal value 𝑌 when 

Naive Bayes uses the Bayes theorem. 

𝑓(𝑌 | 𝐸)  =
𝑓(𝐸, 𝑌 )

∫ 𝑓 (𝐸, 𝑌)𝑑𝑌
 

=
𝑓(𝐸 | 𝑌 )𝑓(𝑌 )

∫ 𝑓(𝐸│𝑌)𝑓(𝑌)𝑑𝑌
 

(2) 

The Probability Density Function (PDF) of example 

E for a particular target value 𝑌 is known as the like hood, 

or 𝑓(𝐸 | 𝑌), the pdf of the goal value before any examples 

are seen is known as the prior f(Y). Naive Bayes is 

represented in terms of attribute independence by Eq (2). 

𝑓(𝑌 | 𝐸)  

=
𝑓(𝑋1 | 𝑌 )𝑓( 𝑋2 | 𝑌 ) ···  𝑓(𝑋𝑚 | 𝑌 )𝑓(𝑌 )

∫ 𝑓(𝑋1 | 𝑌 )𝑓( 𝑋2 | 𝑌 ) ···  𝑓(𝑋𝑚 | 𝑌 )𝑓(𝑌 ) 𝑑𝑌
 

(3) 

It is now possible to compute the individual PDFs 

𝑓(𝑋𝑖  | 𝑌).  instead of computing the overall pdf 𝑓(𝐸 | 𝑌). 
This reduction in dimensionality makes the learning task 

much more manageable. Since more data are needed to 

predict accurately 𝑓(𝑋𝑖  | 𝑌), this method is more 

trustworthy than estimating 𝑓(𝐸 | 𝑌).  

4.3 Elastic Net Regression (ENR) 

It is a high-performance linear regression technique that 

combines the best features of L1 (Lasso) and L2 (Ridge) 

regularization strategies. Its dual regularization strategy 

reduces multicollinearity and overfitting in high-

dimensional datasets, encourages sparsity and stability in 

coefficient estimates, and improves the predictive 

accuracy and interpretability of the model [29], [30]. 

4.3.1 Direct representation 

𝑃(𝑦|𝛽, 𝜎2) = 𝑁(𝑦|𝑋𝛽, 𝜎2𝐼𝑛) This is the probability for 

this article, where 𝛽 is a p-vector that contains the 

regression coefficients. Where 𝑋 is a matrix of predictor 

variables with 𝑛 ×  𝑝 dimensions. Since it is assumed that 

the vector y and the columns of 𝑋 are demeaned, the model 

does not contain an intercept [31], [32]. In this approach, 

estimations of the linear regression parameters are usually 

𝛽̂ =
𝑎𝑟𝑔𝑚𝑖𝑛

𝛽
(𝑦 − 𝑋𝛽)𝑇(𝑦 − 𝑋𝛽) + 𝜆𝐽(𝛽) (4) 

Taking into account a regularization parameter 𝜆 >
 0 and a nonnegative punishment function 𝐽. 
𝑝(𝛽|𝜆, 𝛼)  ∝  𝑒𝑥𝑝[− 𝜆  {𝛼|𝛽|2

+ (1 −  𝛼)|𝛽|1}]  , 
(5) 

This study extends the Bayesian connection to the 

ELR procedure by providing a properly normalized and 

explicated version of the prior. 

𝑝(𝛽|𝛼, 𝜆, 𝜎2)  ∝  𝑒𝑥𝑝 [− 
𝜆

2𝜎2
  {𝛼|𝛽|2

+ (1 −  𝛼)|𝛽|1}]  , 
(6) 

As a result, the penalty 𝜆 now has a size of 2𝜎2. This 

formulation states that for given values of 𝜎2 and 𝛼, the 

posterior mode will be the naïve elastic net estimate with 

an overall penalty of 𝜆. This prior is a double-exponential 

distribution when 𝛼 =  0. When 𝛼 ≈  1, it has the 

properties of a normal distribution. The integration of Eq. 

(6) displays that the normalizing constant is available in 

closed form until the univariate standard normal 𝑐𝑑𝑓 is 

assessed. The appropriate reduced-scale density function 

from the previous 

𝑝(𝛽|𝜆, 𝛼, 𝜎2)

=∏{(0.5). 𝑁− (𝛽𝑗|
1 −  𝛼

2𝛼
,
𝜎2

𝜆𝛼
)

𝑝

𝑗=1

+ (0.5). 𝑁+ (𝛽𝑗| −
1 −  𝛼

2𝛼
,
𝜎2

𝜆𝛼
)} , 

(7) 

In truncated normal distributions, 𝑁−and 𝑁+ are 

appropriately adjusted density functions. 

𝑁+(𝑡|𝑚, 𝑠2) ≡
𝑁(𝑡|𝑚, 𝑠2)

𝜙(𝑚 𝑠⁄ )
1(𝑡 

≥  0)   𝐴𝑛𝑑    𝑁−(𝑡|𝑚, 𝑠2)

≡
𝑁(𝑡|𝑚, 𝑠2)

𝜙(−𝑚 𝑠⁄ )
1(𝑡 <  0), 

(8) 

A normal distribution's tails will always contain the 

univariate standard normal CDF and 𝜙. 𝛽𝑗  since the 

location parameter for the positive component in Eq. (7) 

is always negative. 

Here's another interpretation of the preceding: 𝑒𝑡 𝑍 =
{−1, 1}𝑝 be the set of all p-vectors that can have members 

±1, and let 𝒪𝑧 ⊂ ℝ
𝑝 be the orthant that corresponds to 

each vector z in 𝑍. 𝛽𝑗 ≥  0 for 𝒵𝑗  =  1  and 𝛽𝑗 <  0 for 

𝒵𝑗  =  −1 if 𝛽 ∈ 𝑂𝑧. The previous Eq. (6) may thus be 

rewritten as 

𝑝(𝛽|𝜆, 𝛼, 𝜎2)

= 2−𝑝𝜙(
𝛼 −  1

2𝜎 √𝛼/𝜆
)

−𝑝

×∑𝑁(𝛽|
𝛼 − 1

2𝛼
𝑧,
𝜎2

𝜆𝛼
𝐼𝑝) 1(𝛽 ∈  𝑂𝑧).

𝑧∈𝒵

 

(9) 

An "orthant normal" prior is produced by describing 

each piece over a distinct orthant, proving that the prior is 

piecewise normal. The results are as follows when the 

prior is stated in terms of 𝜆1 and 𝜆2. 

𝑝(𝛽|𝜆1, 𝜆2 , 𝜎
2) = 2−𝑝𝜙(

−𝜆1

2𝜎 √𝜆2 
)

−𝑝

 

×∑𝑁(𝛽| −
𝜆1
2𝜆2 

𝑧,
𝜎2

𝜆2 
𝐼𝑝) 1(𝛽 ∈  𝑂𝑧).

𝑧∈𝒵

 

(10) 

From now on, the 
(𝜆1, 𝜆2 )  unless otherwise noted, the formulation is 

used. The posterior distribution is obtained by multiplying 

the probability of the regression scheme by Eq. (10) and 

using the Bayes theorem. 

𝑝(𝛽|𝑦, 𝜆1, 𝜆2 , 𝜎
2)

=∑𝜔𝑧𝑁
[𝑧]

𝑧∈𝒵

(𝛽|𝜇𝑧, 𝜎
2𝑅), (11) 

Following the trimming of the 2𝑃orthant, the 

weighted sum of the normal distributions 
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𝑁[𝑧](𝛽|𝑚, 𝑠)

≡
𝑁(𝛽|𝑚, 𝑠)

𝑃(𝑧,𝑚, 𝑠)
1(𝛽 

∈  𝑂𝑧),      𝑤ℎ𝑒𝑟𝑒           𝑃(𝑧,𝑚, 𝑠)

= ∫ 𝑁(𝑡|𝑚, 𝑠)𝑑𝑡,
 

𝒪𝑧

 

(12) 

Symbolizes a multivariate standard orthant integral. 

Since each component is specified on a different orthant, 

the posterior and the prior are multivariate piecewise 

normal. Its posterior distribution is its set of parameters. 

𝑅 = (𝑋𝑇𝑋 + 𝜆2 𝐼𝑝)
−1
     𝑎𝑛𝑑   𝜇𝑧

= 𝛽̂𝑅 −
, 𝜆1
2
𝑅𝑧, 

(13) 

The ridge regression estimate in this instance is 

represented as 𝛽̂𝑅 = 𝑅𝑋
𝑇𝑦, with a penalty of 𝜆2. The 

weights for every orthostat make up the last components 

of the posterior. 

𝜔𝑧 = 𝜔
−1
𝑃(𝑧. 𝜇𝑧, 𝜎

2𝑅)

𝑁(0|𝜇𝑧 , 𝜎
2𝑅)

,    𝑤ℎ𝑒𝑟𝑒  𝜔 

=∑
𝑃(𝑧, . 𝜇𝑧, 𝜎

2𝑅)

𝑁(0|𝜇𝑧, 𝜎
2𝑅)

.

 

𝑧∈𝑍

 

(14) 

4.3.2 Representation of mixtures 

Several studies employing Bayesian modeling have used 

scale mixes of normal distributions. One can obtain the 

orthant normal distribution by merging several scale 

mixes of various normal distributions. 

𝑃(𝛽|𝜎2,   𝜆1  , 𝜆2 )

=∏∫ 𝑁(𝛽𝑗|0,
𝜎2

𝜆2 
(1 − 𝜏𝑗))

1

0

𝑝

𝑗=1

× 𝐼𝐺(0,1) (𝜏𝑗|
1

2
,
1

2
(

𝜆1

2𝜎√  𝜆2 
)

2

)𝑑𝜏𝑗 , 

(15) 

In such case, the only viable place for the inverse 

gamma distribution is (𝐼𝐺(0,1)). There is a proof in the 

appendix. By adding latent variables 𝜏1, … , 𝜏𝑝 and 

deploying the notation 𝑆𝜏  =  diag(1 −  𝜏𝑗), the prior may 

be stated hierarchically below: 

𝑝(𝛽|𝜏, 𝜎2, 𝜆2 )

= 𝑁 (𝛽|0,
𝜎2

𝜆2 
𝑆𝜏) , 𝑝(𝛽|𝜎

2, 𝜆1, 𝜆2 )

=∏𝐼𝐺(0,1) (𝜏𝑗|
1

2
,
1

2
(

𝜆1

2𝜎√  𝜆2 
)

2

)

𝑝

𝑗=1

= 

2−𝑃𝜙 (
−𝜆1

2𝜎√  𝜆2 
)

−𝑃

(
𝜆2 

8𝜋𝜎2𝜆2 
)

𝑃
2⁄

 

× 𝑒𝑥𝑝 (
𝜆1
2 ∑ 𝜏𝑗

−1𝑝
𝑗=1

8𝜎2𝜆2 
) 

×∏𝜏
𝑗

−3
2⁄ 1(0 <  𝜏𝑗 <  1).

𝑝

𝑗=1

 

(16) 

Because 𝑃(β|𝜎2,   𝜆1  , 𝜆2 ) is a product of separate, 

unconstrained normal dispersion, the hierarchical 

representation is advantageous. The multivariate normal 

conditional posterior dispersion is thus given by 

p(β|𝑦, 𝜏, 𝜎2, 𝜆1, 𝜆2 ) = 𝑁(𝛽|𝛽̂𝑅𝜏 , 𝜎
2𝑅𝜏), where 𝑅𝜏  =

 ( 𝑋𝑇𝑋 + 𝜆2 𝑆𝜏
−1 )−1, and the mean vector is the ridge-

like estimate 𝛽̂𝑅𝜏 = 𝑅𝜏𝑋
𝑇𝑦.   

4.3.3 Relationship with the previous double-

exponential 

According to the research, the elastic net method is 

defined as follows: A continuum of penalties is produced 

by the penalty term 𝑃(β|𝜎2,   𝜆1  , 𝜆2 )when there is ridge 

regression (𝛼 =  1) and a lasso (𝛼 =  0) at both 

extremes. In other words, a continuum of priors between 

a double-exponential prior (𝛼 =  0) and a typical prior 

(𝛼 =  1) is indexed by the orthant normal prior. The 

relationship between regression schemeing and the lasso 

under the double-exponential prior has received more 

attention recently. Applying the scale mixing of regular 

representation, it makes sense to compare the double-

exponential before the ELR prior. A scaled penalty term 

may be used to derive the double-exponential prior under 

the restriction that −(𝜆2 /2)𝛽𝑗
2 − (𝜆1 /2)|𝛽𝑗|. This 

matches a prior when 𝜎2  =  1. 

𝑃(𝛽𝑗|𝜆1) =

𝜆1
2⁄

2
𝑒−

(
𝜆1

2⁄ )|𝛽𝑗|. (17) 

Scale mixing may be used to depict this antecedent 

using the findings of Andrews and Mallows (1974). 

𝛽𝑗|𝜃𝑗 = ~𝑁(0, 𝜃𝑗
2),      𝑃(𝛽𝑗|𝜆1) 

=
𝜆1
2

4
𝜃𝑗𝑒

−𝜆1
2𝜃𝑗
2

8
⁄
 ,     𝜃𝑗 > 0, 

(18) 

As an example, consider 𝜃𝑗
2 ∼ Exp (

𝜆1
2

8
) or, 

conversely, 𝜃𝑗 ∼ Weibull(2,
𝜆1
2

8
). The proper 

transformation may also denote the scale-mixture 

representation of the orthant typical prior. 

𝛽𝑗|𝜃𝑗 = ~𝑁(0, 𝜃𝑗
2),      𝑃(𝜃𝑗|𝜆1, 𝜆2) = 

𝜆1𝜃𝑗(𝜆2
−1 − 𝜃𝑗

2)
−
3
2

𝜆2√8𝜋 𝜙 (−
𝜆1

(2√𝜆2)
)

× 𝑒𝑥𝑝 {−
𝜆1
2(𝜆2

−1 − 𝜃𝑗
2)
−1

8𝜆2
2 } ,     0 < 𝜃𝑗

< 1/√𝜆2. 

(19) 

Significant shrinkage is correlated with small values 

of 𝜃𝑗. Increasing the value of 𝜆1 causes more shrinkage in 

both (17) and (18) as the mixing distribution gradually 

shifts in favor of lower values of 𝜃. Adding option 𝜆2 to 

(18) also results in more shrinking, but the final shrinkage 

is different from what would happen if 𝜆1 were to be 

lowered alone. Even while the distribution of θ tends to 

become more concentrated at the upper border of the 

support of θ at the nonzero value 𝜆2
−
1

2, it still prefers 

smaller values of 𝜃 as 𝜆2grows. 
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4.4 Quadratic interpolation optimization 

(QIO) 

QIO [9] was developed to handle problems related to 

continuous optimization. This process was modeled by the 

generalized quadratic interpolation (GQI) approach, 

which is used as a searching mechanism by the QIO 

algorithm to solve many types of optimization issues. The 

following two sections detail the algorithm's two phases, 

exploration and exploitation, comparable to those of the 

other metaheuristic algorithms. 

4.4.1 Method of exploration 

The QIO algorithm uses this strategy to preserve 

population diversity and avoid local minima. The 

following formulas show why this method updates each 

population solution using the GQI method. 

𝑣⃗𝑖
𝑡+1 = 𝑥⃗𝐼

∗(𝑡) + 𝑤1 ∙ (𝑥𝑟3⃗⃗ ⃗⃗ ⃗⃗ − 𝑥𝑟𝐼
∗⃗⃗ ⃗⃗⃗⃗ (𝑡)) 

+𝑟𝑜𝑢𝑛𝑑 (0.5. (0.05 + 𝑟1)) ∙ 𝑙𝑜𝑔
𝑟2
𝑟3

 
(20) 

Where the values in each of the three variables, 𝑟1 , 𝑟2, 

and  𝑟3, are produced at random and range from 0 to 1. As 

the current population's randomly chosen solution, 𝑥𝑟3⃗⃗ ⃗⃗ ⃗⃗ , 

the GQI function predicts (𝑥𝑟𝐼
∗⃗⃗ ⃗⃗⃗⃗ (𝑡) According to the 

following formula: 

𝑥⃗𝐼
∗(𝑡) = 𝐺𝑂𝐼(𝑥⃗𝐼

𝑡 , 𝑥𝑟1, 𝑥𝑟2, 𝑓(𝑥𝑟1⃗⃗ ⃗⃗ ⃗⃗ )), 𝑓(𝑥𝑟2⃗⃗ ⃗⃗ ⃗⃗ )) (21) 

Here 𝑥⃗𝐼
𝑡  is the ith solution, 𝑓(∙) is the fitness function, 

and 𝑥𝑟1⃗⃗ ⃗⃗ ⃗⃗  and 𝑥𝑟2⃗⃗ ⃗⃗ ⃗⃗  Are random solutions selected from the 

current population. In this Eq, GQI is the GQI function. It 

may be quantitatively generated for 𝑤1 with the following 

formula: 

𝑤1 = 3𝑛1𝑏 (22) 

𝑏 = 0.7 ∙ 𝑎 + 0.15 ∙ 𝑎 ∙ (cos (
5𝜋𝑡

𝑇𝑚𝑎𝑥
) + 1) (23) 

𝑎 = 𝑐𝑜𝑠 (
𝜋𝑡

2𝑇𝑚𝑎𝑥
) (24) 

Where 𝑛1 is a random number drawn from a normal 

dispersion, 𝑡 is the current function evaluation, and 

𝑇𝑚𝑎𝑥  is the maximum function evaluation. 

4.4.2 Exploitation Strategy 

By carrying out the exploitation operator using the GQI 

approach in the regions surrounding the best-so-far 

solution, the QIO algorithm quickens the convergence of 

the near-optimal solution. The exploitation capabilities of 

the QIO algorithm are applied using the following formula 

for each solution in the population: 

𝑣⃗𝑖
𝑡+1 = 𝑥𝑏𝑒𝑠𝑡

∗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑡) + 𝑤2  

∙ (𝑥𝑏𝑒𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ − 𝑟𝑜𝑢𝑛𝑑(1 + 𝑟4) ∙
(𝑈 − 𝐿)

𝑈𝑟𝐷 − 𝐿𝑟𝐷
∙ 𝑥⃗𝑖,𝑟𝐷

𝑡 ) 
(25) 

The formula 𝑤2  is produced as follows: 𝑟4 displays a 

random number between 0 and 1, 𝑈 displays the 1 upper 

limit, and L displays the lower limit. 𝑥⃗𝑖,𝑟𝐷
𝑡   is a vector 

consisting of random dimensions picked 2 from the 

𝑖𝑡ℎ solution, where the best-so-far answer is denoted by 

𝑥𝑏𝑒𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ . 

𝑤2 = 3 ∙ (1 −
𝑡 − 1

𝑇𝑚𝑎𝑥
) 𝑛2 (26) 

Where 𝑛2 is a standard distribution-based random 

number. The GQI function calculates it for 𝑥𝑏𝑒𝑠𝑡
∗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑡), as 

shown by the following formula: 

𝑥𝑏𝑒𝑠𝑡
∗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑡)

= 𝐺𝑂𝐼(𝑥𝑏𝑒𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑥𝑟1,⃗⃗⃗⃗⃗⃗⃗⃗ 𝑥𝑟2,⃗⃗⃗⃗⃗⃗⃗⃗ 𝑓(𝑥𝑏𝑒𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ), 𝑓(𝑥𝑟1⃗⃗ ⃗⃗ ⃗⃗ ), 𝑓(𝑥𝑟2⃗⃗ ⃗⃗ ⃗⃗ )) 
(27) 

QIO acts as a hyperparameter optimizer for every base 

regression model in the suggested hybrid models. Extra 

Tree Regression optimizes factors like minimum samples 

per leaf and the number of estimators. In Naive Bayes 

Regression, smoothing parameters are changed, but in 

Elastic Net Regression, the mixing ratio and penalty 

severity are tweaked. During cross-validation, QIO uses 

its exploration and exploitation algorithms to repeatedly 

adjust these hyperparameters with the goal of lowering 

RMSE. The hyperparameter set that is being tuned for 

each individual model is represented by the "solution." 

In contrast to grid search and Bayesian optimization, 

QIO provides expedited convergence in low-dimensional 

hyperparameter spaces by effectively balancing 

exploration and exploitation phases.  Whereas grid search 

systematically assesses all possibilities and Bayesian 

optimization necessitates statistical modeling, QIO 

employs fewer evaluations to attain near-optimal answers.  

This study demonstrated that QIO attained convergence 

within acceptable timeframes (60–120 seconds), 

rendering it appropriate for lightweight systems with 

constrained processing resources. 

Fig. 2 represents the QIO flowchart.  
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Figure 2: QIO flowchart.

4.5 Performance evaluators 

This section represents a systematic framework for 

deploying hybrid schemes, along with an overview of the 

various assessment criteria concerning the accuracy and 

correlation of the schemes. The following mathematical 

formulae define the metrics for evaluation: 

𝑅2

=

(

 
∑ (𝑏𝑖 − 𝑏̅)(𝑚𝑖 − 𝑚̅)
𝑛
𝑖=1

√[∑ (𝑏𝑖 − 𝑏̅)
2𝑛

𝑖=1 ] [∑ (𝑚𝑖 − 𝑚̅)
2𝑛

𝑖=1 ]
)

 

2

 

Coefficient of Determination 

(28) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑚𝑖 − 𝑏𝑖)

2

𝑛

𝑖=1

 

Root Mean Square Error 

(29) 

𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑃𝑖 − 𝑇𝑖)

2
𝑛

𝑖=1
 

Mean Squared Error  

(30) 

𝑀𝐴𝑅𝐸 =
1

𝑟
∑
|𝑃𝑖 − 𝑇𝑖|

𝑇𝑖

𝑟

𝑖=1

  

Mean Absolute Relative Error 

(31) 

𝑛20_𝑖𝑛𝑑𝑒𝑥 =
𝑚20

𝑀
 

Normalized Mean Error Index 

(32) 
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𝑛 signifies sample size in Eqs. (28-32); 𝑏𝑖 signifies 

forecasted value, while 𝑝𝑖   signifies every single 

measurement in the sample, and 𝑇𝑖   Signifies actual value. 

𝑚𝑖  is the measured value, and mean predicted and 

measured values are represented as 𝑏̅ and 𝑚̅, respectively. 

 

❖ Hyper parameter  

Table 2 delineates the principal hyperparameters 

employed for the basic models (NBR, EN, ETR) and their 

respective QIO-optimized variants (NBQI, ENQI, ETQI).  

The number of restarts for the optimizer in the Naive 

Bayes models was substantially raised from 0 to 71, hence 

improving convergence stability.  The Elastic Net models 

vary in their regularization settings.  The optimization of 

QIO markedly decreased the L1 ratio, signifying a 

heightened focus on ridge-like regularization.  In the Extra 

Tree models, QIO adjusted the number of estimators from 

100 to 11 and raised the minimum number of samples per 

leaf from 1 to 4, enhancing generalization.  These 

modifications demonstrate the function of QIO in 

optimizing hyperparameter settings to improve model 

efficacy in prediction tasks. 

Table 2: Hyper parameters of hybrid and base models. 

Models n_restarts_optimizer alpha l1_ratio n_estimators min_samples_leaf 

NBR 0     

NBQI 71     

EN  1 0.5   

ENQI  3 0.0108   

ETR    100 1 

ETQI    11 4 

 

5 Result and discussion 
This section presents the results of the analyses done to 

assess smart home energy usage, focusing on the 

performance of different ML schemes in forecasting 

energy consumption. 

• Convergence 

Fig. 3 displays the performance comparison for each 

model across different iterations. As can be seen, for 

instance, the NBQI model had an initial value of RMSE of 

0.45, which decreased to 0.201 after 163 iterations, 

showing that this model takes much time to increase its 

accuracy. Similarly, ENQI starts with an approximate 

value of RMSE 0.55, then decreases after 104 iterations to 

0.296, showing the performance improvement advantage. 

It was initiated at an RMSE value of 0.40 and managed to 

reduce it to 0.173 after 156 iterations. Therefore, ETQI is 

the best for smart home energy usage prediction. 

 

Figure 3: The convergence curve of the three hybrid schemes is presented 

• Comparison of predictive schemes for energy 

usage 

Table 3 displays the model performances based on 

five metrics during the training, validation, and testing 

steps. The 𝑅2  values of the schemes NBR, NBQI, ENR, 

ENQI, ETR, and ETQI were estimated to be 0.968, 0.980, 

0.949, 0.959, 0.976, and 0.985, respectively, in the 

modeling process. At this phase, ETQI performed better 

than any other schemes in sequence by NBQI schemes. 

Comparing the results of NBQI and NBR in the testing 

phase, NBQI outperforms with 𝑅2  values 0.974 and 

0.962, while their corresponding RMSE values are 0.233 

and 0.280. Similarly, ENQI performs better from the two 

variants, ENR and ENQI. It achieves an 𝑅2 of 0.952 and 
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an RMSE of 0.319 for ENQI, while the 𝑅2  value for ENR 

is 0.942 with 0.349 RMSE. Among all, ETR yields an 

𝑅2 of 0.956 and an RMSE of 0.302, while ETQI reaches 

an 𝑅2  value of 0.971 and an RMSE of 0.245 in the test 

phase. ETQI consistently achieved the lowest MAE and 

highest AUC in all phases, indicating superior precision 

and classification confidence. NBQI also performed 

competitively, especially in the validation and test phases. 

ENR and ENQI exhibited the weakest performance, with 

noticeably higher MAE and slightly lower AUC compared 

to tree-based schemes. 

The experimental results clearly demonstrate the 

effectiveness of QIO-enhanced models in improving 

prediction accuracy. As shown in Table 3, ETQI 

consistently achieved the lowest RMSE and highest R² 

across all phases, indicating superior generalization. The 

performance gap between base and optimized models 

highlights the impact of QIO in fine-tuning 

hyperparameters. Figs. 4 to 6 further confirm the 

robustness and consistency of ETQI and NBQI, with 

lower dispersion and tighter clustering around the median 

error values. 

Fig. 3 presents the performance of the schemes during 

all phases combined in a chart. It is seen from this figure 

that ETQI has performed the best; its 𝑅2 is higher, and its 

RMSE is lower than those of the other schemes. NBQI has 

ranked second best in performance. Conversely, ENR has 

been ranked the poorest model. 

Table 3: The result of developed schemes for NBR, ENR, and ETR 

 

The stand-alone effect of QIO on model performance 

was investigated using ablation. Using RMSE and R² 

measures across training, validation, and test sets, each 

baseline model ETR, NBR, ENR was matched to its QIO-

enhanced equivalent ETQI, NBQI, ENQI. Applying QIO 

regularly produced performance gains, according the 

results. In the test phase, for example, ETQI rose over 

ETR by lowering RMSE from 0.302 to 0.965 and raising 

R² from 0.956 to 0.961. Pairing t-tests on the RMSE values 

over five-fold cross-valuation divides helped one to 

evaluate statistical significance. All tests had p-values < 

0.01, verifying that the noted gains from QIO were 

statistically significant and not resulting from random 

fluctuation. These results confirm that QIO is a strong 

optimizing tool for improving model correctness. 

P
h

ase Model 
Index values 

R2 RMSE MSE MARE N20_index MAE AUC T
rain

 

NBR 0.968 0.258 0.067 0.069 0.960 0.173 0.970 

NBQI 0.980 0.201 0.041 0.054 0.994 0.135 0.974 

ENR 0.949 0.326 0.106 0.087 0.906 0.219 0.961 

ENQI 0.959 0.293 0.086 0.079 0.931 0.197 0.965 

ETR 0.976 0.222 0.049 0.060 0.986 0.149 0.971 

ETQI 0.985 0.173 0.030 0.047 0.997 0.117 0.976 V
alid

atio
n

 

NBR 0.958 0.295 0.087 0.078 0.921 0.191 0.967 

NBQI 0.971 0.245 0.060 0.065 0.958 0.158 0.974 

ENR 0.918 0.420 0.176 0.114 0.799 0.275 0.961 

ENQI 0.947 0.335 0.113 0.089 0.875 0.217 0.965 

ETR 0.949 0.329 0.108 0.088 0.881 0.215 0.971 

ETQI 0.968 0.260 0.068 0.070 0.941 0.170 0.976 T
est 

NBR 0.962 0.280 0.078 0.087 0.909 0.204 0.963 

NBQI 0.974 0.233 0.054 0.072 0.949 0.170 0.974 

ENR 0.942 0.349 0.122 0.110 0.829 0.256 0.961 

ENQI 0.952 0.319 0.101 0.098 0.860 0.232 0.965 

VOPO 0.956 0.302 0.091 0.094 0.882 0.220 0.971 

VothingR 0.971 0.245 0.060 0.076 0.943 0.179 0.976 
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Figure 4: The metric of expected and gauged values 

Fig.5 displays the maximum error of the schemes and 

their performance versus density. The stronger the 

performance of the schemes whose data points fall closer 

to the best-fitted line, the better. For example, the ETR 

scheme has more scattering around its best-fitted line, 

indicating that it performs less. In comparison, ETQI and 

NBQI have a higher density close to the best-fitted line, 

which means these two outperform the others. This is 

further evidenced by the fact that the distribution of their 

density would indicate both ETQI and NBQI performing 

very well during the training phase; in fact, it is toward 

this that the more compact points lying closer to the best-

fit line are pointing to indicate excellent robustness and 

accuracy in the prediction of results for this model when 

compared with other schemes, including ETR, which even 

fail to maintain consistency across phases. 

Fig. 6 compares the proposed schemes' error 

distribution in their training, validation, and testing 

phases: The x-axis represents the phases, and high density 

with clustering around the median line promises better 

performance. For instance, for NBR and NBQI, NBQI 

outperforms both in all three phases since it has a high 

density near the median line. More precisely, in 

comparing ENR versus ENQI, ENQI has more apparent 

clustering around the median, which means better 

accuracy. In the case of ETR and ETQI, ETR displays 

more significant scattering around the median line, which 

means that ETQI is much stronger than ETR because its 

distribution is tighter, which finally means better general 

performance of accuracy. 
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Figures 5 and 6: The dispersion of evolved hybrid schemes and error percentage on the box plot.
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Fig. 7 presents the feature selection of the best model 

that yielded the highest performance in predicting smart 

home energy usage. The radar chart points out the features 

that are of more importance to the performance of the 

model with values: appliance and occupancy status are 

closer to the outer edge, which represents higher 

importance, at values of 0.022 and 0.012, respectively; 

this identifies their significant influence on the 

performance. In contrast, the features, including home-id 

and holiday, are of low importance, with values ranging 

between -0.006 and -0.003, hence having minimal effects 

on the model. Lastly, the season has a moderate influence 

at 0.007. The chart displays that the main drivers are the 

appliance and occupancy status, which are the significant 

features that improve model accuracy. The least 

contributing feature is the temporal ones like holidays. 

 

Figure 7: The feature selection method of the best-performed model 

K-fold cross-validation was utilized to guarantee the 

robustness and generalization capacity of the suggested 

models, dividing the dataset into five equal subsets (K=5).  

In each iteration, one-fold functioned as the validation set, 

while the other four were utilized as training data.  The 

procedure was executed five times, and the outcomes were 

averaged to reduce bias from any one data partition. Fig. 

8 depicts the R² scores achieved over the five folds for 

each foundational model: EN, NB, and ET.  The ET model 

consistently attained elevated R² values across all folds, 

signifying enhanced predictive stability.  NB also 

exhibited commendable performance, but with marginally 

more variability.  EN had the poorest performance overall, 

confirming the comparative efficacy of tree-based 

methodologies for smart home energy forecasting tasks. 
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Figure 8: K-fold cross validation. 

The Wilcoxon signed-rank test was utilized to evaluate 

the statistical significance of performance disparities 

between pairs of models.  This non-parametric test is 

appropriate for comparing the distributions of paired 

samples, particularly when normality is not assumed.  The 

assessment determines if variations in performance 

indicators (e.g., RMSE) are statistically significant over 

several trials.  Table 4 displays the results of the Wilcoxon 

test.  Comparisons incorporating ETQI typically produced 

elevated test results, signifying significant performance 

enhancements.  The disparity between NBR and ETQI 

yielded a value of 0.497, indicating a significant 

improvement.  Likewise, EN and ETQI achieved a score 

of 0.289, underscoring QIO's contribution to improving 

Elastic Net performance.  A significant correlation of 

0.787 was identified between ENQI and ETR, signifying 

considerable difference.  Certain entries yielded “nan” 

because of identical matched values or inadequate variety 

in the data, rendering statistical comparison impracticable. 

Table 4: Result of Wilcoxon test. 

Difference of models 
Parameter 

p_value statistic 

Def. between NBR and NBQI nan nan 

Def. between NBR and EN 55672394 0.279 

Def. between NBR and ENQI 55854704 0.460 

Def. between NBR and ETR 55782484 0.382 

Def. between NBR and ETQI 55885794 0.497 

Def. between NBQI and EN nan nan 

Def. between NBQI and ENQI nan nan 

Def. between NBQI and ETR nan nan 

Def. between NBQI and ETQI nan nan 

Def. between EN and ENQI 55655883 0.266 

Def. between EN and ETR 55700118 0.303 

Def. between EN and ETQI 55683398 0.289 

Def. between ENQI and ETR 56102618 0.787 

Def. between ENQI and ETQI 55848779 0.454 

Def. between ETR and ETQI 55702510 0.305 

 

Table 5 displays the confidence interval values 

corresponding to the predicted outcomes for three chosen 

models: NBR, EN, and ETR.  Metrics encompass test 

accuracy (TEST_ACC), log-likelihood scores 

(TEST_LOSS), and classification confidence 

(TEST_ACC_CC and TEST_LOSS_CC).  The values 

offer insight into the dependability and stability of the 

model.  NBR and ETR demonstrated negligible test 

accuracy mistakes (0.000), but EN displayed more 

fluctuation (0.001–0.009), indicating increased 

inconsistency in predictions.  All models had reasonably 

narrow loss intervals (about 9.2–11.6), signifying modest 

variation.  ETR exhibited remarkable stability in 

classification confidence, corresponding with its robust 

overall performance.  The confidence intervals affirm the 

durability of the ETR and NBR models, while 



Energy Consumption Prediction in Smart Homes Using QIO-Enhanced…                                  Informatica 49 (2025) 375–396   393                                                                                                                                        

underscoring EN's somewhat less steady performance 

under test conditions. 

Table 5: Confidence interval associated with the prediction results. 

 TEST_ACC TEST_LOSS TEST_ACC TEST_LOSS TEST_ACC TEST_LOSS 

NBR 0.000 11.674 0.000 10.590 0.000 9.237 

EN 0.001 11.660 0.006 10.237 0.009 9.256 

ETR 0.000 11.639 0.002 10.237 0.009 9.257 

6 Conclusion 
Smart homes have now started to present a solution for the 

increasing demand for energy from the residential sector. 

They are offering new ways of curbing and managing 

energy consumption. These smart modern homes are 

equipped with advanced sensors and smart devices that 

can provide accurate energy management, reducing costs 

while minimizing environmental impact. However, 

several challenges complicate this process, including user 

behavior, varying weather conditions, and the efficiency 

of household appliances. 

While dealing with these complexities, ML tactics can 

be deployed to predict energy usage in smart homes. Some 

of these schemes used in this paper include Extra Tree 

Regression (ETR), Naive Bayes Regression (NBR), and 

Elastic Net Regression (ENR). These schemes, enhanced 

by Quadratic Interpolation Optimization (QIO), deliver 

accurate predictions, optimizing energy efficiency in 

smart homes.  

A fascinating insight is recorded with the performance 

analysis of the schemes. ETQI has shown the best 

performance among all analysis phases with an 𝑅2 of 

0.982. The second best is NBQI, which also held excellent 

predictive capabilities with an 𝑅2 of 0.978. Elastic Net 

Regression is the weakest among the optimized schemes, 

with an 𝑅2 of 0.945. The following comparative analysis 

underlines the importance of choosing appropriate 

machine learning schemes that will contribute to advanced 

energy management strategies in smart homes and create 

a pathway toward more sustainable living environments. 

Despite its advantages, machine learning has certain 

limitations. The following are some limitations of smart 

home energy usage prediction using machine learning: it 

does not consider some exterior factors, including weather 

changes or incorrect appliance performances. This might 

be at the risk of overfitting if the schemes become too 

complicated and generalize poorly on new data. Finally, 

various devices and technologies for the realization of 

present ideas face severe tests in standardizing the input 

data, which may question the reliability of the prediction 

when implemented in real life. 

The present work suffers a restriction in relying on a 

single synthetic dataset. Resources and scope limitations 

limited the study to the Kaggle Smart Home Energy Usage 

dataset. Additional real-world datasets including UK-

DALE and REDD will be included in next study to 

evaluate the generalizability and robustness of the 

suggested models throughout several household energy 

usage scenarios. Particularly under dynamic household 

situations and data streams experienced in actual smart 

home scenarios, future research will investigate merging 

deep learning and online learning models to improve 

flexibility and accuracy in real-time energy prediction 

tasks. The present work offers high-accuracy energy 

consumption estimates, which form a fundamental 

component for energy efficiency improvement in smart 

homes even if it does not apply active control or 

scheduling algorithms. These predictive outputs can be 

included into future systems including demand-side 

management, load scheduling, or appliance-level control 

strategies, so enabling informed decision-making targeted 

at lowest energy consumption and maximum overall 

energy efficiency in home settings. Using smart home 

energy prediction models in the real world calls for 

handling various pragmatic issues. This cover addressing 

sensor noise, missing data management, and offering 

streaming or real-time prediction capability. Although the 

present work shows good performance in controlled 

circumstances, future research should concentrate on 

creating strong, adaptable systems competent of running 

under noisy, incomplete, and constantly changing data 

environments. 
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