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With the continuous growth of demand for elderly care services, smart elderly care systems urgently 

need to be optimized to detect abnormal behaviors of the elderly. This study is based on the U-Net 

architecture to construct a foreground model, combined with the SENet attention mechanism to enhance 

the ability of key feature extraction and integrate the improved ViBe algorithm. A novel detection 

framework for abnormal behavior recognition is proposed. The framework was tested on the URFD and 

le2i fall detection datasets and compared with TCN, DSNet, and 3D CNN models. On the le2i dataset, 

the proposed model achieved 94.12% accuracy, 93.25% recall, and 93.68% F1 score with an average 

detection latency of 0.76 seconds. On the URFD dataset, the accuracy, recall, and F1 score were 

92.78%, 91.46%, and 92.11%, respectively. Additionally, under 30% background motion interference, 

the missed detection rate was 3.2%. In low-light conditions, the false alarm rate was 2.45%, with an 

intersection-over-union ratio of 0.92. These results indicate that the proposed method outperforms 

models such as TCN, DSNet, and 3D CNN across multiple metrics, demonstrating strong real-time 

detection performance and adaptability to complex environments. This method demonstrates strong 

adaptability in real-time monitoring and can provide effective technical support for the development of 

smart aging care. 

Povzetek: SENet-izboljšan U-Net z adaptivnim ViBe omogoča bolj kvalitetno zaznavanje anomalij 

starejših v pametni oskrbi, saj presega TCN, DSNet in 3D CNN po točnosti, hitrosti ter robustnosti. 

 

1 Introduction  
With the acceleration of global population aging, Smart 

Elderly Care Systems (SECS) based on technologies 

including artificial intelligence, the Internet of Things, 

and big data analysis have gradually become an essential 

means to lift the quality of Elderly Care Services (ECS). 

Among them, the elderly Abnormal Behavior Detection 

(ABD) technology is an important component of SECS. 

Due to the decline in physiological functions, elderly 

people are prone to dangerous behaviors such as falls, 

prolonged immobility, and abnormal outdoor activities. 

Especially for patients with diseases such as Alzheimer's 

and Parkinson's, they are more prone to high-risk 

situations such as getting lost and falling [1-2]. 

Therefore, how to effectively carry out elderly ABD, 

provide early warning, and take intervention measures 

has become a key issue in SECS research. Many 

researchers have explored this issue one after another. 

Zhang et al. developed an innovative architecture for 

typical ABD in elderly individuals. This framework 

robustly extracted skeleton joints, detected, and classified 

abnormal behaviors while considering spatiotemporal  

 

backgrounds. This method has achieved good evaluation 

results on the elderly anomaly detection platform [3].  

Gao et al. put forth a method built on probabilistic model 

checking to predict patient behavior. This method 

abstracted the layout of the home environment into a 

formal grid and proposed a user activity model in the 

form of a discrete-time Markov chain to describe the 

activities of patients. The usability and reliability of this 

new method have been confirmed in multiple case 

studies [4]. Chang et al. proposed a deep learning model 

for ABD that uses the object detection technique You 

Only Look Once v3 to detect and recognize abnormal 

behavior. This method had good recognition rates in 

different behavioral datasets and could also meet the 

needs of real-time monitoring [5]. Bijlani et al. 

developed a method based on lightweight unsupervised 

learning to detect adverse health conditions utilizing 

activity changes in dementia patients. This method has 

demonstrated its effectiveness over advanced methods on 

a 9363-day real dataset collected from 15 participant 

families [6]. 

In recent years, ABD technology based on computer 

vision has rapidly developed, especially deep learning 
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and machine vision technologies. Among them, Visual 

Background Extractor (ViBe) is a foreground detection 

algorithm based on background modeling, which can 

effectively distinguish foreground targets and 

background information in videos, and is suitable for 

monitoring the activity of elderly people [7]. Li et al. put 

forward an anomaly behavior recognition method built 

on a multi-scale attention mechanism and ViBe 

algorithm. This method extracted features using a multi-

scale convolutional structure and separated them using 

the ViBe algorithm. This method had high sensitivity and 

specificity on two publicly available datasets [8]. Gao et 

al. proposed a gait contour analysis model after 

optimizing the ViBe algorithm to achieve intelligent 

evaluation of the lower limb movement ability of athletes 

with sports disabilities. The accuracy of the cross-

entropy loss function was 0.945, which was significantly 

better than existing methods [9]. Rahman et al. deployed 

multiple environmental sensors, combining data from 

each sensor with gated recurrent units and naive Bayes 

for deep learning classification. The experimental results 

showed that this method could be effectively deployed in 

anomaly detection in two residential households, with 

high detection effectiveness [10]. Rafsanjani et al. 

proposed a method for identifying abnormal or violent 

behavior in a novel monitoring system. This method was 

based on the ViBe algorithm and classic machine 

learning algorithms and achieved abnormal behavior 

monitoring through preprocessing optimization, feature 

extraction, data discrimination, and intelligent 

discrimination. This method could adapt to video 

surveillance analysis in different environments and 

successfully discover and warn of abnormal behaviors 

[11]. A summary comparison of the various methods is 

shown in Table 1. 

 

Table 1: Comparative summary of existing elderly ABD 

methods 

Author 
Method/M

odel 

Advantag

es 

(Metrics) 

Limitations/Dra

wbacks 

Zhang 

et al. 

[3] 

Skeleton 

joint 

extraction 

+ abnormal 

behavior 

classifier 

High 

interpretab

ility; 

suitable for 

typical 

behavior 

scenarios 

No quantitative 

accuracy metrics; 

lacks real-time 

deployment 

Gao et 

al. [4] 

Probabilist

ic model 

checking + 

Markov 

modeling 

Effective 

in complex 

indoor 

layouts 

No F1/recall 

metrics; non-

visual input 

Chang 

et al. 

[5] 

YOLOv3 + 

CNN-

LSTM 

hybrid 

High 

detection 

accuracy; 

supports 

real-time 

monitoring 

Lacks fine-

grained feature 

extraction; weak 

background 

adaptation 

Bijlani 

et al. 

[6] 

Unsupervis

ed 

anomaly 

detection 

Strong 

long-term 

pattern 

learning 

Low recall rate; 

false positives not 

quantified 

Li et al. 

[8] 

Multi-scale 

CNN + 

ViBe 

High 

sensitivity 

and 

specificity 

No attention 

mechanism; non-

optimized latency 

Gao et 

al. [9] 

ViBe 

optimizatio

n + gait 

contour 

analysis 

Accuracy 

up to 0.945 

Targeted at 

disabled athletes; 

low 

generalizability 

Rahma

n et al. 

[10] 

GRU-

NMB 

model 

Supports 

multimoda

l input 

with high 

detection 

rate 

Applied mainly to 

medical diagnosis 

scenarios 

Rafsanj

ani et 

al. [11] 

ViBe + 

classical 

machine 

learning 

Adaptable 

to various 

environme

nts 

No latency 

control; lacks 

end-to-end 

feature learning 

TCN 

(Baseli

ne) 

Temporal 

Convolutio

nal 

Network 

F1 = 

85.07, 

Recall = 

84.25 

High latency 

(1.35s); coarse 

temporal features 

DSNet 

(Baseli

ne) 

Dual-

stream 

network 

F1 = 

86.24, 

Recall = 

85.38 

High false 

detection under 

background 

interference 

(5.8%) 

3D 

CNN 

(Baseli

ne) 

3D 

convolutio

nal action 

recognition 

F1 = 

87.32, 

Recall = 

86.17 

Highest detection 

latency (1.38s); 

poor robustness 

in low lighting 

 

In summary, previous studies have made some 

progress in detecting abnormal behavior in the elderly. 

However, most methods have the following 

shortcomings: (1) Lack of robust modeling for complex 

environments such as changes in lighting and 

background movement; (2) Limited real-time detection 

capabilities, with delays generally exceeding 1 second; 

(3) Insufficient utilization of attention mechanisms in the 

feature extraction stage, resulting in inadequate 

expression of key behavioral patterns. To address these 

issues, this study proposes an ABD model for the elderly 

based on an improved U-Net and ViBe algorithm. The 

model aims to achieve the following three research 

objectives: (1) Based on the U-Net architecture, the 

Squeeze and Excitation Network (SENet) attention 

mechanism is introduced to enhance the ability of 

convolutional neural networks to extract key features of 

abnormal behavior in the elderly; (2) Structurally, the 

traditional ViBe algorithm has been improved to meet 

the modeling requirements of real-time background noise 

and dynamic scene foreground; (3) An anomaly detection 

model with low detection delay, high detection accuracy 

and robustness under complex lighting and motion 
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conditions is constructed for real-time monitoring and 

early warning of elderly in smart nursing environments. 

The innovation lies in the introduction of the SENet 

attention mechanism, which optimizes the feature 

extraction process of U-Net and enables the network to 

more effectively focus on key features related to 

abnormal behavior. In addition, the combination of 

multi-scale convolution and the ViBe algorithm enhances 

the model's adaptability to background changes in 

complex environments. The practical contribution of the 

research lies in the proposed method, which significantly 

reduces the missed detection rate and optimizes the 

detection delay while improving the accuracy of ABD. 

Especially under low light and dynamic background 

conditions, the research model exhibits excellent 

performance, providing a more efficient and accurate 

solution for SECSs. 

 

2 Methods and materials 

2.1 Elderly behavior feature extraction 

algorithm based on improved CNN 

SECS can monitor the physical condition, lifestyle 

habits, and emergencies of the elderly in real-time 

through intelligent hardware devices, sensors, and 

monitoring systems, and provide timely feedback and 

warnings through intelligent analysis to ensure the safety 

of the elderly. As an important component of SECS, 

intelligent monitoring technology, especially through 

precise extraction of human behavior characteristics, can 

efficiently identify potential security risks and respond 

promptly. Therefore, human behavior feature extraction 

has become one of the key technologies in SECS, which 

provides basic data support for ABD and intervention by 

extracting the behavior patterns of elderly people from 

video surveillance or sensor data. In computer vision, 

CNN has been widely applied in behavior recognition 

tasks. Due to its unique encoding decoding structure, U-

Net performs well in image segmentation and object 

detection tasks, effectively extracting human behavior 

features while preserving key spatial information, 

making anomaly detection more accurate [12-13]. The 

U-Net architecture adopted is based on the original U-

Net version proposed by Ronneberger et al. The U-Net 

architecture preserves the symmetric structure of the 

encoder and decoder, and optimizes object detection 

tasks by reducing the number of channels to meet real-

time detection requirements. The network has a total 

depth of four layers, including four downsampling and 

four upsampling stages, all using 3 × 3 convolution 

kernels. Therefore, this study uses it as the basis network 

for feature extraction. The U-Net framework is displayed 

in Figure 1 [14-15]. 

Skip connection

Input Exportation

Maximum 

pooling

Convolution operation

Skip connection

Upsampling

 

Figure 1: U-Net structure. 

In Figure 1, the input image undergoes a series of 

convolution and max pooling operations, gradually 

shrinking the feature map in spatial scale but 

continuously expanding in channel dimension, thus 

capturing richer semantic information. The decoding 

stage gradually restores the original size of the image 

through deconvolution or upsampling, while fusing the 

different hierarchical features extracted in the encoding 

stage. Assuming the size of the input image is H W  

and the number of channels is C , after U-Net 

processing, the feature representation and downsampling 

dimensionality reduction calculation formula of the 

network in the l -th layer are shown in equation (1). 
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    (1) 

 

In equation (1), lW  is the convolution kernel 

parameter matrix of layer l . lb  is the bias term.   is a 

convolution operation.   is a nonlinear activation 

function. lX  is a feature of the layer l . R  denotes the 

window size of the local pooling region for dimension 

k k . 
( )pool

lX  denotes the feature map of layer l  after 

pooling. m  and n  denote the row index and column 

index of the feature map, respectively. In addition, the 

calculation of spatial recovery and skip connection fusion 

upsampling for U-Net deconvolution feature maps is 

shown in equation (2). 
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In equation (2), 
lW 

 is the transposed convolution 

kernel. 
( )

1

up

lX +
 is the feature map after spatial recovery. 

( )

1

skip

lX +
 is the fused feature map.   and   both 

represent learnable weight parameters. i  and j  are the 

coordinate positions of the feature map. However, 

although U-Net effectively integrates feature information 

from the encoding and decoding stages through skip 

connections, the network may assign lower weights to 

certain key features due to differences in the feature 

extraction capabilities of each convolutional layer for 

different channels. Therefore, the paper introduces the 

SENet attention mechanism based on the U-Net 

structure, as shown in Figure 2 [16]. 
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Conversion 
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Figure 2: Structure of SENet attention mechanism 

In Figure 2, SENet includes feature re-calibration. In 

U-Net, a SENet module is introduced after each 

convolution block in the encoding and decoding stages. 

First, global average pooling is performed on the feature 

map output from the convolution block to complete 

channel-level global feature aggregation, thereby 

obtaining a channel-level global feature description. 

During this process, the global statistical information of 

each channel is shown in equation (3). 

 

1 1

1
( , , )

H W

c l

i j

s X i j c
H W = =

=


                   (3) 

 

In equation (3), cs  is the global average pooling 

value of channel c . ( , , )lX i j c  is the pixel value of 

feature map lX  at position ( , )i j . SENet performs 

nonlinear transformation between channels through two 

fully connected layers, as shown in equation (4). 

 

( )

1 1

2 2

( )

c

z W r b

z z

w W z b





= +


=
 = +

                     (4) 

 

In equation (4), r  is the scaling factor. 1W  and 2W  

are dimension reduction matrices and dimension 

enhancement matrices. 1b  and 2b  are bias terms for 

dimensionality reduction and dimensionality 

enhancement.   is the ReLU function. z  and z  are 

features before and after nonlinear mapping. cw  is the 

final channel weight obtained. The formula for re-

weighting the original features is given by equation (5). 

To better connect the SENet module with the decoding 

features, this study adds dimension extension and global 

pooling operations in the final fusion layer to enhance the 

global feature response capability and improve the 

overall distinguishability of abnormal regions. Compared 

with the standard U-Net structure, it has stronger context 

integration capabilities. 

 

ˆ ( , , ) ( , , )l c lX i j c w X i j c= 
                   (5) 

 

In equation (5), ˆ
lX  is the optimized feature map. 

Combining equations (3) to (5), although the SENet 

module enhances feature representation capabilities 

through channel attention, its structure remains relatively 

lightweight, introducing only two fully connected layers 

for inter-channel modeling. The increase in the number 

of parameters is limited, and it does not significantly 

alter the overall depth of the U-Net architecture. On a 

GPU testing platform (NVIDIA RTX 3090), after adding 

SENet, the average forward propagation time of the 

network only increases by about 0.04 seconds, 

accounting for less than 6% of the total, while 

maintaining high detection accuracy and still meeting 

real-time requirements. Therefore, this structure achieves 

a good balance between complexity and performance 

improvement, making it suitable for real-time 

deployment requirements in edge computing scenarios 

such as intelligent nursing. At this point, the flowchart of 

the elderly behavior feature extraction algorithm based 

on the improved U-Net is exhibited in Figure 3. 

 

Input image 64,3×3conv ReLU ReLU128,3×3conv
2×2 pooling 

layer

256,3×3convReLUReLU 512,3×3conv
2×2 pooling 

layer
Dimension 

extension

Upsampling Feature 

fusion

Global average 

pooling

SENet

SENet

SENet 1×1conv

 

Figure 3: The structure of elderly behavior feature 

extraction algorithm based on improved U-Net 

In Figure 3, step 1 is to extract features from the 

input image through multi-layer 3×3 convolution and 

ReLU for feature learning, and gradually reduce the 

spatial dimension using a 2×2 max pooling operation in 

each downsampling stage. During the encoding phase, a 

SENet module is integrated after each downsampling 

convolution block to perform channel weight re-

calibration. Similarly, during the decoding phase, a 

SENet mechanism is embedded before feature fusion to 
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re-weight the fused features, thereby enhancing the 

expressive capability of key behavioral information. To 

enhance the semantic expression capability of behaviors 

after feature fusion, a “dimension expansion” module is 

introduced after the final upsampling stage. This module 

enhances the expression capability of deep features 

through channel expansion and convolution fusion, 

mitigating information decay issues at the decoding end. 

Additionally, a global average pooling operation is 

introduced before output to guide features to focus on the 

global response trends in regions where abnormal 

behaviors occur, thereby enhancing the overall 

perception capability for prolonged abnormal states. This 

is combined with a 1×1 convolution to produce the final 

behavioral feature map. 

2.2 Construction of elderly ABD model 

integrating improved ViBe algorithm 

After constructing an improved U-Net-based elderly 

behavior feature extraction algorithm, to achieve 

effective ABD in the elderly, this study introduces the 

ViBe background modeling algorithm. ViBe, as an 

adaptive background modeling method, can effectively 

distinguish foreground targets from background 

information and is suitable for monitoring the daily 

activity status of elderly people [17]. However, 

traditional ViBe algorithms are easily affected by factors 

such as lighting changes and background disturbances in 

complex environments, leading to a decrease in detection 

accuracy [18]. Therefore, this study improves ViBe and 

proposes a multi-information fusion ViBe algorithm, as 

shown in Figure 4. 
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Background model
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Membership 

calculation

Threshold 

updating

Model updating

Multi-

information

Iterative 

coupling

Foreground/

background 

discrimination 

thresholds

 

Figure 4: Multi-information fusion ViBe algorithm 

structure 

In Figure 4, the improved ViBe algorithm mainly 

consists of a background modeling module, a foreground 

detection module, an adaptive background update 

module, and a multi-information fusion module. The core 

idea of this algorithm is to introduce global dynamic 

feature constraints, time series information 

compensation, and deep learning feature enhancement 

based on the traditional ViBe method. In the specific 

process, the input video frames are first preprocessed, 

including denoising, grayscale processing, and histogram 

equalization, to reduce environmental interference. 

Subsequently, an improved background modeling 

strategy is adopted to calculate the background model, 

and target region extraction is performed by combining 

motion information and depth features in the foreground 

detection process. Finally, dynamic background 

adjustment is performed through an adaptive background 

update mechanism to adapt to environmental changes. 

The input video sequence is set to  
1

T

t t
S I

=
= , where 

tI  is the t -th frame image. The background model tB  is 

calculated from multiple historical images during 

initialization, and its update rule is given by equation (6). 

 

1

1
( , ) ( , )

N

t t k k

k

B i j I i j w
N

−

=

=                 (6) 

 

In equation (6), ( , )tB i j  represents the background 

model at the current time, which serves as the reference 

for foreground determination. kw  is the time decay 

weight. t kI −  is the image in frame t k− . Based on this 

background model, the foreground detection module 

determines whether the target pixel belongs to the 

foreground by calculating the difference between the 

current frame tI  and the background model tB , as 

expressed in equation (7). 

 

1 ( , ) ( , ) ( , )
( , )

0

t t t

t

I i j B i j i j
F i j

otherwise

 − 
= 


    (7) 

 

In equation (7), ( , )tF i j  is the foreground pixel 

identifier. ( , )t i j  is an adaptive threshold. After 

extracting the foreground region, to reduce the false 

detection rate, this study introduces a time series 

compensation mechanism and enhances the stability of 

ABD through short-term behavioral trend analysis. The 

behavior state matrix oH  is defined as the motion 

trajectory characteristics of the target area in consecutive 

M -frames, as shown in equation (8). 

 
1

0

( , ) exp
M

o t m

m

m
H F i j



−

−

=

 
=  − 

 
                (8) 

 

In equation (8),   is the time decay factor. It adopts 

a dynamic learning rate to adjust the background model, 

which can adapt to long-term motion interference, and 

updates the rules as equation (9). 

 

1( ) ( ) ( ) (, 1 , , )t t t t tB i j B i j I i j + = − +          (9) 

 

In equation (9), t  is the background update rate, 

which is dynamically adjusted based on the stability of 

the foreground region. Throughout the process, to 

improve the extraction efficiency of foreground targets, 

this study applies foreground masking to build an 

accurate foreground representation, as shown in Figure 5. 
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Figure 5: Foreground mask model construction diagram 

In Figure 5, after the foreground detection is 

completed, this study first performs foreground mask 

screening on the preliminarily extracted foreground 

regions to filter out isolated noise points and remove 

small area regions through region connectivity analysis. 

Subsequently, using multi-scale feature analysis 

combined with morphological processing methods, a 

foreground target model is constructed to further 

optimize the edge details of the foreground target. The 

calculation of the foreground mask matrix is given by 

equation (10). 

 

, ,( ) ( ( )) ( ( ), )t t tM i j F i j D i j=           (10) 

 

In equation (10),   is the morphological filtering 

operation.   is a constraint on regional connectivity. 

( , )tD i j  represents the degree of intensity change 

between the current frame and the background model at 

pixel position ( , )i j . Its value is calculated using the 

binary image output by the foreground detection module 

and the gradient or grayscale difference of the original 

image. It is used to measure the significant difference 

between the target region pixels and the background, 

serving as the core discriminating factor for generating 

the foreground mask. The calculation formula is shown 

in equation (11). 

 

( , ) , ,( ) ( )t t tD i j I i j B i j= −∣ ∣                     (11) 

 

The fusion method of motion feature weights is 

utilized to calculate the dynamic trend of the foreground 

region and construct the final foreground model. The 

calculation formula is shown in equation (12). 

 

1 2 3, , ,( ) ( ) ( ( ) ( ) , )), (t t t t tH i j M i j V i j G i j i j  =  + +   (12) 

 

In equation (11), ,( )tH i j  is the final prospect. 

,( )tV i j  is the motion vector field information. ,( )tG i j  

is gradient change information. ),(t i j  is the 

confidence level of the target area. 1 , 2 , and 3  

represent the corresponding weight coefficients, which 

are adjusted using an empirical setting method. Through 

multiple combination tests on the validation set, a weight 

combination that balances the clarity of the foreground 

target boundaries and the accuracy of anomaly detection 

is selected. The final values are set to 0.4, 0.35, and 0.25, 

respectively. This combination performs stably across 

multiple scenarios and effectively improves the 

segmentation quality and discrimination capability of the 

foreground model. To achieve more robust foreground 

modeling, the study introduces multi-dimensional 

dynamic information into the traditional difference-based 

detection mechanism and constructs a unified fusion 

framework. Specifically, the three fusion components in 

equation (11) have the following physical and semantic 

meanings: (1) ,( )tV i j  represents motion vector field 

information, primarily derived from the temporal 

changes in target positions between consecutive frames, 

characterizing the local dynamic intensity of the target; 

(2) ,( )tG i j  represents the gradient map and captures 

texture boundaries and detail changes in the foreground 

region, enhancing the perception of edge-blurred targets; 

(3) ),(t i j  is a confidence score matrix constructed 

based on the time window shown in equation (8), which 

reflects the stability of the target area across multiple 

time points and can be regarded as a probability estimate 

of time consistency. The final abnormal behavior 

classification comprehensively considers the region mask 

generated by ViBe foreground modeling, the temporal 

trend described by the behavior state matrix (Equation 8), 

and the deep feature response values extracted by the 

improved U-Net. Through a multi-source feature fusion 

strategy, an abnormal behavior score map is generated. 

For rapid deployment, the three components are fused 

into a single entity using a weighted combination form in 

the actual system. The decision logic for anomaly 

detection can be expressed as equation (13). 

 

*
1 ( , )

,( )
0

t

tH i j

otherwise
B i j


= 


                   (13) 

 

In equation (13), 
* ,( )tB i j  represents the abnormal 

behavior discrimination result, where 1 indicates 

abnormal and 0 indicates normal.   represents the 

discrimination threshold (empirically set or optimized 

using the validation set). The workflow of the elderly 

ABD model based on improved U-Net and improved 

ViBe algorithms is shown in Figure 6. 
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Figure 6: Abnormal behavior detection model flow of the 

elderly 
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In Figure 6, the model mainly consists of six 

modules: data collection, behavior feature extraction, 

background modeling, foreground optimization, anomaly 

detection and discrimination, and intelligent warning. 

The first step is to collect activity videos of the elderly 

through cameras or sensors and perform basic 

preprocessing. The second step is to use an improved U-

Net for multi-level behavior feature extraction, combined 

with the SENet attention mechanism to enhance the 

expression ability of key features. The next step is to use 

improved ViBe for background modeling and foreground 

detection, optimize the background update strategy 

through time decay weights, and extract motion regions 

by combining adaptive thresholding. The detected 

foreground region is subjected to morphological filtering 

and regional connectivity analysis to optimize the target 

edge information, and the final foreground model is 

constructed by integrating motion vector field, gradient 

variation, and depth feature confidence. In the stage of 

abnormal behavior discrimination, this study combines 

foreground dissimilarity, time series behavior state 

matrix, and deep learning features to calculate abnormal 

behavior scores, and identifies abnormal behaviors such 

as falls and long-term immobility through threshold 

settings. Finally, the detection results are synchronized to 

the elderly care platform and triggered through an 

intelligent warning mechanism. 

3 Results 

3.1 Performance testing of the new elderly 

ABD model 

This study sets the CPU to Intel Xeon Gold 6226R (2.9 

GHz, 16 cores), GPU to NVIDIA RTX 3090 (24GB 

VRAM), memory to 64GB, and operating system to 

Ubuntu 20.04. Under the aforementioned hardware 

configuration, the model training employs the Adam 

optimizer with an initial learning rate set to 0.001, and 

dynamically adjusts the learning rate during training 

using a cosine annealing strategy. A total of 80 epochs 

are conducted during training, with each epoch using a 

batch size of 16 for gradient updates. In terms of the loss 

function, the Binary Cross-Entropy (BCE) loss is 

primarily used to measure the difference between the 

model's predicted probability and the true label. The 

experiment uses the University of Rzeszow Fall 

Detection Dataset (URFD) and the Laboratoire 

Electroneique, Informatique et Image Fall Detection 

Dataset (le2i) from France as the testing data sources. 

Among them, URFD contains video sequences of normal 

behavior and falling behavior, recorded simultaneously 

using RGB cameras and depth cameras. The RGB video 

format is 30 fps, with a resolution of 640×480, and a total 

video volume of 11,702 cases. The le2i is a dataset 

specifically designed for fall behavior detection, covering 

fall and normal behavior data under different lighting 

conditions, camera angles, and environments. The video 

format is MP4, 30 fps, with a resolution of 320×240 or 

640×480. In terms of data partitioning, both datasets 

adopt the standard training-validation-testing three-way 

partitioning strategy. Specifically, the URFD dataset is 

partitioned into 70% training, 15% validation, and 15% 

testing, ensuring balanced distribution of different 

behavioral categories across each subset. The le2i dataset 

adopts a 60% training, 20% validation, and 20% testing 

partitioning scheme. All splits are grouped based on 

video IDs to prevent the same video frame from 

appearing in multiple subsets, thereby avoiding data 

leakage. Due to the large dataset size and stable 

distribution, cross-validation is not used in this study. 

Instead, multiple rounds of testing are conducted across 

various metrics using a fixed split to ensure robustness. 

In terms of label processing, both the URFD and le2i 

datasets contain complete behavior type annotation 

information, where "falling" is considered the main 

abnormal behavior type, while "walking," "sitting," and 

"standing" are classified as normal behaviors. During 

model training, each video segment's behavior is 

annotated at the frame level: frames within the falling 

interval are labeled as abnormal (label 1), while the 

remaining frames are labeled as normal (label 0). This 

study first conducts value selection tests on two types of 

hyperparameters, as shown in Figure 7. 
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Figure 7: Hyperparameter selection test 

Figures 7 (a) and (b) show the selected values of 

scaling factor r  and time decay factor  . In Figure 7 

(a), when the scaling factor is 0.4 or 0.6, the loss 

decreases rapidly and steadily, with the lowest loss value 

being 0.05. The settings of 0.2 and 0.8 result in slight 

fluctuations in the loss curve, and the training process is 

relatively slow. This indicates that selecting values that 

are too large or too small can affect the stability of the 

model. Only when the scaling factor is set to 0.6, the 

optimization rate and stability during the training process 

are optimal. In Figure 7 (b), when the attenuation factor 

is 0.1, the loss value decreases rapidly in the early stages 

of training, but the convergence process is relatively slow 

in the later stages. When the attenuation factor is set to 

0.7, the loss curve decreases relatively smoothly in the 

initial stage, but the convergence process is relatively 

stable. Relatively speaking, a time decay factor of 0.5 

exhibits a more balanced convergence characteristic and 

can achieve good optimization results in a shorter period. 

This study conducts ablation tests on the final model, as 

shown in Figure 8. 
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Figure 8: Ablation test results 

Figures 8 (a) and (b) show the results from the 

URFD and le2i datasets. In Figure 8 (a), the accuracy of 

the improved U-Net+improved ViBe is as high as 

96.45%. The accuracy of both the standalone U-Net and 

the improved U-Net has improved, but still falls short of 

the improved U-Net+ViBe, indicating that the integration 

of the ViBe algorithm can significantly enhance the 

recognition and detection capabilities of the model. In 

Figure 8 (b), the accuracy of the improved U-Net+ViBe 

stabilizes at 92.56% after 100 samples, while the 

accuracy of U-Net drops to 78.34%. The accuracy of the 

improved U-Net is 83.52%, which is lower than the 

improved U-Net+ViBe. The improved U-Net+improved 

ViBe ultimately reaches 94.19% after increasing the 

sample size, indicating that the improved ViBe improves 

the performance of the model in the case of large data 

volume, and also verifies the feasibility and effectiveness 

of the research method. The study continues to expand 

the scope of ablation experiments and demonstrates the 

overall gain of module combinations, with results shown 

in Table 2. 

Table 2: Comparison of detection performance of 

different module combinations 

Model 

Configuration 

Precision 

(%) 

Recall 

(%) 

F1 score 

(%) 

Baseline: U-Net + 

ViBe 
83.64 80.21 81.89 

+ SENet (w/o 

time decay, w/o 

morphological 

filter) 

86.92 84.05 85.46 

+ Time decay 

(w/o SENet, with 

morphological 

filter) 

85.77 85.13 85.44 

+ Morphological 

filter (w/o SENet, 

w/o time decay) 

84.82 85.49 85.15 

+ SENet + time 

decay (w/o 

morphological 

filter) 

88.4 86.63 87.5 

+ SENet + 

morphological 

filter (w/o time 

decay) 

87.94 86.18 87.05 

+ Time decay + 

morphological 

filter (w/o SENet) 

86.78 86.03 86.4 

Full model 

(SENet + time 

decay + morph. 

filter) 

92.78 91.46 92.11 

 

As shown in Table 2, compared with the baseline 

model (U-Net+ViBe), introducing the SENet attention 

module alone can improve the F1 score to 85.46%, 

indicating that channel feature re-labeling has a direct 

enhancing effect on the representation of abnormal 

behavior. After introducing the temporal decay 

mechanism, the Recall metric improves to 85.13%, 

indicating that this mechanism effectively mitigates the 

disturbance caused by dynamic backgrounds and 

behavioral transition frames. The morphological filtering 

module has a more significant impact on Recall 

(improving it to 85.49%), indicating its stable 

effectiveness in removing foreground noise. Structurally, 

the performance of the complete model with three 

module combinations is the best (F1 score of 92.11%), 

significantly improving compared to any two module 

configurations. This indicates that each submodule has 

complementary advantages in detection accuracy, 

robustness, and foreground quality control. This study 

continues to introduce advanced detection models for 

comparison, such as TCN, DSNet, and 3D CNN. The 

testing is based on precision, recall, F1 score, and 

Average Detection Time (ADT) as indicators, as shown 

in Table 3. 

Table 3: Index test results of different detection models 

O

bst

ru

cti

on 

Model 

P

re

ci

si

o

n 

(

%

) 

R

ec

al

l 

(

%

) 

F

1 

sc

or

e 

(

%

) 

m

A

P 

(

%

) 

A

D

T 

(s

) 

F

P

S 

F1 

± 

Std 

p-

v

al

u

e 

O

bst

ru

cte

d 

TCN 

88

.5

6 

84

.7

2 

86

.6

1 

85

.2

3 

1.

3

2 

2

3 

86.

61 

± 

1.5 

0.

0

1

3 

DSNet 

89

.4

3 

87

.1

1 

88

.2

6 

87

.8

4 

1.

2

8 

2

4 

88.

26 

± 

1.2 

0.

0

2

7 

3D CNN 

90

.2

5 

86

.5

8 

88

.3

7 

88

.1

5 

1.

4

2 

2

1 

88.

37 

± 

1.4 

0.

0

3

1 

Proposed 

approach 

92

.7

8 

91

.4

6 

92

.1

1 

91

.9

2 

0.

8

2 

3

7 

92.

11 

± 

0.9 

/ 

Un

ob

str

uc

TCN 

85

.9

1 

84

.2

5 

85

.0

7 

84

.7

2 

1.

3

5 

2

2 

85.

07 

± 

1.3 

0.

0

0

9 



SENet-Enhanced U-Net with Adaptive ViBe for Real-time Elderly… Informatica 49 (2025) 145–156 153 

te

d 
DSNet 

87

.1

2 

85

.3

8 

86

.2

4 

86

.0

3 

1.

2

5 

2

5 

86.

24 

± 

1.1 

0.

0

2

1 

3D CNN 

88

.4

4 

86

.1

7 

87

.3

2 

87

.0

5 

1.

3

8 

2

3 

87.

32 

± 

1.0 

0.

0

3

4 

Proposed 

approach 

94

.1

2 

93

.2

5 

93

.6

8 

93

.4 

0.

7

6 

3

9 

93.

68 

± 

0.8 

/ 

 

In Table 3, in occluded environments, the proposed 

model achieves an F1 score of 92.11% and a mAP of 

91.92%, representing significant improvements over the 

88.37% of 3D CNN and the 88.26% of DSNet (p<0.05). 

Additionally, its standard deviation is ±0.9, lower than 

other methods (TCN ±1.5), indicating that the model 

maintains higher stability in complex environments. The 

ADT is only 0.82 seconds, translating to a frame rate of 

37 FPS, which is significantly better than 3D CNN (21 

FPS) and TCN (23 FPS), demonstrating real-time 

advantages. In unobstructed scenes, the performance of 

the proposed model further improved, with an F1 score 

of 93.68% and mAP of 93.4%, demonstrating a more 

pronounced accuracy advantage. Compared to 3D CNN, 

its F1 score increases by 6.36%, and its recall rate 

reaches 93.25%, indicating that the model achieves more 

complete detection of targets in unobstructed conditions. 

Additionally, the detection latency is reduced to 0.76 

seconds, with a frame rate of 39 FPS, verifying its rapid 

response capability in edge computing environments. In 

terms of the stability of F1 scores, the standard deviation 

is only ±0.8, which is the smallest among all models, 

further verifying the consistency and reliability of the 

model's detection performance in complex and simple 

scenarios. 

3.2 Simulation testing of a new elderly 

ABD model 

URFD and le2i datasets jointly select 480 representative 

behavioral video clips with clearly identifiable age 

information. The specific sample distribution is as 

follows: 128 clips for the 60-69 age group, 186 clips for 

the 70-79 age group, and 166 clips for the 80+ age group, 

covering different genders and scene configurations to 

ensure the representativeness and coverage of the 

statistical results. "Adaptive accuracy" refers to the 

average detection accuracy that a model can maintain 

under current age conditions when facing different scene 

changes, such as occlusion, lighting, and differences in 

behavior patterns. Its calculation formula is shown in 

equation (14). 

1

1
 

gN

i
g

ig i i

TP
Adaptive Accuracy

N TP FN=

=
+

        (14) 

In equation (14), g  represents a specific age group. 

gN  represents the total sample size in that age group. 

iTP  represents the number of abnormal frames correctly 

detected by the model in the i -th video segment. iFN  

represents the number of abnormal frames missed in that 

video segment. The elderly are divided into different age 

groups, and the test results are shown in Figure 9, with 

adaptive accuracy as the indicator. 
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Figure 9: Adaptive test results of different models in 

nursing homes and households 

Figures 9 (a) and (b) show a comparison of 

adaptability tests for different models in nursing homes 

and household scenarios. In Figure 9 (a), the research 

method achieves accuracies of 94.8% and 92.3% in the 

age groups of 70-79 years and 80 years and above, 

significantly higher than TCN, 3D CNN, and DSNet. 

Among them, the accuracy of DSNet in this group does 

not exceed 90%, indicating poor adaptability in the 

elderly population. In Figure 9 (b), the research method 

still performs the best in the 60-69 and 80+ age groups, 

achieving adaptive accuracy of 93.1% and 91.5%, which 

is significantly improved compared to other models. The 

performance of TCN and 3D CNN has also improved to 

some extent in household scenarios, but overall, it is still 

lower than the research methods, especially in the elderly 

population of 80+ years old, where the research methods 

show more stable high adaptability. Figure 10 shows the 

model’s Missed Detection Rate (MDR) under shadow 

interference and background motion. 
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Figure 10: Model MDR results under shadow 

interference and background motion 

In Figure 10 (a), the proposed approach exhibits the 

lowest MDR at all interference rates, especially at 30% 

shadow interference, where its MDR is only 3.75%, far 

lower than TCN's 6.2%, 3D CNN's 5.1%, and DSNet's 

5.4%. This indicates that the research method has 

stronger adaptability to shadow interference and can 
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effectively reduce false positives caused by 

environmental factors. In Figure 10 (b), as the percentage 

of background motion increases, MDR shows an upward 

trend. The research method once again demonstrated 

strong stability and low MDR. At 30% background 

motion, MDR is 3.2%, much lower than TCN's 6.2%, 3D 

CNN's 6.8%, and DSNet's 5.8%. This indicates that the 

research method has strong robustness to complex 

background changes and can maintain low MDR in 

dynamic backgrounds. Finally, this study evaluates the 

False Alarm Rate (FAR), Intersection over Union (IoU), 

and detection delay in low brightness, normal lighting, 

and high brightness environments, as listed in Table 4. 

Table 4: Model test results under different lighting 

conditions 
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In Table 4, this method maintains the lowest FAR 

and detection delay under various lighting conditions. 

Especially in low light environments, the IoU value is 

0.92 and the mAP value is 91.6%, which is significantly 

better than comparative methods such as TCN and 

DSNet. Additionally, the standard deviation of IoU is 

consistently below 0.02, indicating extremely high model 

stability. Through p-value tests with all comparison 

models, the performance improvements under all 

conditions are statistically significant (p<0.05), further 

demonstrating that the proposed method exhibits stronger 

generalization robustness under various visual 

interference conditions. 

4 Discussion 
To address issues such as feature ambiguity, poor real-

time performance, and poor environmental adaptability 

in elderly anomaly detection, the proposed model 

achieves F1 score and precision of 93.68% and 94.12% 

on the URFD and le2i datasets, outperforming existing 

methods such as TCN, DSNet, and 3D CNN. Embedding 

SENet into U-Net enhances the response to abnormal 

regions, while the time decay mechanism and 

morphological filtering introduced by the ViBe path 

enhance the robustness of foreground modeling, 

effectively suppressing false positives caused by lighting 

fluctuations and false edges. Compared to the anomaly 

detection model proposed by Mohan D et al., which 

suffers from performance degradation under low-light 

and complex backgrounds, the proposed model maintains 

an F1 score of over 89% under low-light conditions [19]. 

The behavior density recognition method proposed by 

Kaur N et al. performs well on long sequences but 

responds slowly to short-term intense anomalies and is 

not suitable for real-time deployment [20]. In contrast, 

the proposed model achieves a detection latency of 0.76 

seconds at 39 FPS, demonstrating strong deployability on 

edge devices. However, certain limitations still exist. 

First, the model relies on a fixed viewpoint and 

monocular RGB images, making it difficult to handle 

multi-angle videos. Secondly, the ViBe path does not 

explicitly simulate long-term motion trajectories, and it is 

also possible to consider combining graph convolution or 

Transformer structures. Although SENet improves 

accuracy, it introduces approximately 6% additional 

inference overhead, necessitating pruning and distillation 

optimization for deployment on lightweight devices. 

Future work can combine multimodal sensor inputs with 

weakly supervised anomaly label generation to further 
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enhance the practicality and generalization ability of the 

model in complex real-world scenarios. 

5 Conclusion 
The study proposed a model for detecting abnormal 

behavior in the elderly that combines SENet-enhanced 

U-Net with an improved ViBe algorithm, aiming to 

improve detection accuracy and response speed in 

complex environments. In terms of model design, the U-

Net structure enhanced the representation of local 

anomalous regions by introducing a channel attention 

mechanism. The ViBe path further enhanced foreground 

modeling and dynamic adaptability through time decay 

and morphological filtering. Experimental results 

validated the superiority of this combined model: on the 

URFD and le2i datasets, the highest accuracy reached 

96.45%, with an F1 score of 93.68%, and it maintained 

stable performance under various lighting conditions and 

interference scenarios. In tests conducted on individuals 

aged 70+, the detection accuracy of this model was 

94.8%, with MDR as low as 3.2%, FAR as low as 1.82%, 

IoU value as high as 0.94, and detection delay as short as 

0.76 seconds. Compared with existing representative 

models, this method demonstrated significant advantages 

in terms of accuracy, timeliness, and interference 

resistance, making it feasible for practical application in 

smart care environments. 

6 Limitations and future work 
Although the proposed model has demonstrated good 

performance in multiple experimental environments, 

there are still several limitations that need to be further 

optimized. Firstly, current models are mainly used to 

detect abnormal behavior in single person scenarios and 

have not yet fully adapted to real-time application 

requirements. That is, the simultaneous appearance of 

multiple people in surveillance videos will limit their 

scalability in complex environments such as nursing 

homes. Second, since the existing training data primarily 

focuses on fall-related behaviors, the limited diversity of 

sample categories may lead to overfitting when the 

model encounters other types of abnormal behavior, 

thereby affecting its generalization capabilities. 

Additionally, although this method already achieves low 

detection latency, it lacks systematic support in areas 

such as multimodal audio-visual fusion and lightweight 

mobile terminal deployment. Future research will focus 

on developing cross perspective behavior alignment 

strategies, domain adaptation algorithms, and multi-

sensor collaborative fusion mechanisms. Future work 

will combine specific technical methods such as 

occlusion compensation and edge privacy protection data 

processing to improve the practicality, generalization 

ability, and robustness of the model in different real-

world scenarios. 
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