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Intelligent control systems for forage feed processing rely on real-time datasets that include parameters 

such as forage moisture content, particle size distribution, fiber density, and operating temperature. These 

data are collected continuously through embedded sensors and fed into machine learning models 

including Support Vector Machines (SVM), Random Forests, and Decision Trees, which are trained to 

optimize key process variables. Compared to traditional mechanized systems, the intelligent system 

achieved a 15% reduction in energy consumption, a 20% improvement in processing throughput, and a 

12% increase in product quality consistency, as measured by metrics like uniform particle size and crude 

protein retention. Furthermore, predictive maintenance enabled by these models reduced the equipment 

failure rate from 6 to 1 incident per month, significantly lowering downtime and maintenance costs. 

Environmental impact scores also improved by 25%, due to more efficient energy use and reduced 

emissions. These results demonstrate the effectiveness of machine learning-driven multi-objective 

optimization in transforming forage feed processing into a more efficient, sustainable, and intelligent 

production paradigm. 

Povzetek: Večciljna optimizacija z uporabo SVM, RF in DT modelov omogoča bolj kvalitetno inteligentno 

krmiljenje v obdelavi krme z izboljšano učinkovitostjo, manjšo porabo energije in stabilnejšo kakovostjo. 

 

1 Introduction 
The feed industry plays an important role in the 

modern agricultural industry chain. Especially in the 

context of the rapid development of the breeding industry, 

the efficiency and quality of feed production and 

processing directly affect the economic benefits and food 

safety of animal husbandry. With the growth of the global 

population and the increase in meat consumption, the scale 

of animal husbandry continues to expand, and the demand 

for efficient and high-quality feed is increasing. This 

requires the feed processing industry to continuously 

innovate technology and upgrade automation to meet the 

growing demand [1]. 

As an important feed raw material, forage is widely 

used in animal husbandry and herbivorous animal 

breeding. It is rich in nutrients and can provide animals 

with nutrients such as protein, fiber, and minerals. There 

are many types of forage, such as forage, hay, and silage, 

and various types of forage occupy an important position 

in feed production [2]. However, the physical properties 

of forage (such as moisture, fiber content, particle size, 

etc.) bring challenges to the processing process, and the 

uneven types of forage require special process adjustments 

during the processing. Therefore, feed processing 

equipment must have flexible adjustment capabilities to  

 

cope with changes in forage properties. However,  

traditional feed processing equipment generally has 

problems such as low intelligence, poor adjustment 

accuracy, and low energy efficiency, which seriously 

affect processing efficiency and product quality [3]. 

The processing of forage requires efficient 

conversion of raw materials into feed that is easy for 

animals to digest and absorb. Forage with higher humidity 

requires longer drying time, while forage with higher fiber 

content requires stronger crushing force. The different 

characteristics of forage require processing equipment to 

accurately adjust process parameters to ensure the quality 

and nutritional value of the product. However, in the 

process of forage processing, it is necessary not only to 

solve technical and process problems, but also to improve 

production efficiency, reduce energy consumption and 

production costs [4]. Therefore, the intelligent design and 

optimization of forage processing equipment has become 

the key to research [5]. 

At present, many feed processing equipment still 

uses traditional mechanization and semi-automatic control 

methods. Although they can meet basic needs, as the 

requirements of modern production continue to increase, 

traditional equipment has gradually exposed some 

problems. For example, traditional equipment often relies 
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on manual or preset process parameters for control and 

cannot perceive the changes in the physical properties of 

forage in real time, resulting in errors that are difficult to 

control during the processing. For example, the equipment 

cannot automatically adjust the operating speed according 

to the moisture content of the forage, resulting in low 

production efficiency and waste of raw materials [6]. 

Traditional feed processing equipment generally 

lacks intelligent monitoring and feedback adjustment 

functions, resulting in unstable production processes. 

Forage processing involves multiple complex process 

links, such as crushing, mixing, and drying. The precise 

control of these links often relies on manual operation or 

empirical judgment, which is easily affected by human 

factors and leads to production fluctuations [7]. In 

addition, traditional equipment fails to make full use of 

modern information technology and lacks functions such 

as remote monitoring and fault prediction, which increases 

the difficulty of equipment maintenance and operating 

costs [8]. 

With the development of artificial intelligence and 

machine learning technologies, intelligent equipment 

design has gradually become the mainstream of 

development in various industries. In the field of feed 

processing, especially in the process of forage processing, 

the introduction of machine learning technology can 

effectively improve the intelligence level of equipment, 

thereby improving production efficiency, reducing energy 

consumption, and improving product quality. Through 

intelligent design and control [9], the equipment can sense 

changes in forage characteristics in real time and 

automatically adjust operating parameters to make the 

processing process more accurate and efficient [10]. 

This study aims to improve the intelligence level of 

forage processing equipment through machine learning 

technology and realize precise control and optimization of 

the production process. Specifically, the study will explore 

how to use machine learning algorithms to monitor and 

adjust the forage processing process in real time, thereby 

improving the operating efficiency of the equipment, 

reducing energy consumption, and ensuring the quality of 

feed products. The core goal of the study is to achieve 

adaptive control of the equipment [11], dynamically adjust 

processing parameters according to the characteristics of 

different forages (such as moisture, fiber content, particle 

size, etc.), reduce manual intervention, and improve the 

level of automation. In addition, this study will also focus 

on analyzing how to use machine learning technology to 

optimize various links in forage processing, such as 

crushing, mixing, drying, etc., so as to improve processing 

efficiency and reduce production costs. Through the 

construction and optimization of intelligent control 

systems [12], the study hopes to provide theoretical 

support and technical guidance for the intelligent 

upgrading of forage processing equipment, promote the 

development of agricultural mechanization and 

intelligence, and improve the overall efficiency and 

sustainable development of the forage processing 

industry. 

The research focuses on enhancing forage feed 

processing through intelligent control systems driven by 

machine learning-based multi-objective optimization. The 

central research questions are: (1) Can machine learning 

algorithms dynamically adjust operational parameters 

based on real-time forage characteristics to improve 

processing efficiency and product quality? (2) Can multi-

objective optimization simultaneously reduce energy 

consumption and equipment failure rate without 

compromising nutritional integrity? (3) How does the 

intelligent system compare to traditional approaches in 

terms of adaptability and control accuracy under varying 

forage conditions? Based on these questions, the 

following hypotheses are formulated: (H1) Multi-

objective machine learning models will outperform 

single-objective methods in achieving balanced 

performance across energy, efficiency, and quality 

metrics; (H2) Real-time adaptive control will lead to at 

least a 15% reduction in energy use and 50% reduction in 

failure rates; (H3) Intelligent parameter adjustment will 

yield more consistent product characteristics such as 

moisture and crude protein levels. These hypotheses guide 

the experimental validation and structure the evaluation 

criteria across key performance dimensions. 

 

2  Literature review 
2.1 Research progress of feed processing 

equipment 
The development of feed processing equipment has 

undergone a gradual evolution from manual operation to 

automation and then to intelligence. Traditional feed 

processing equipment generally adopts mechanized 

control, has a single function, and relies on manual 

parameter adjustment. With the improvement of the level 

of modern agricultural mechanization, feed processing 

equipment has gradually developed in the direction of 

automation. However, traditional equipment still has 

many limitations, such as low processing accuracy, high 

energy consumption, and single control mode [13], which 

cannot meet the needs of modern high-efficiency, low-

energy consumption, and high-quality feed production. 

In recent years, intelligent feed processing equipment 

has received extensive attention, and researchers have 

made some progress in this regard. The literature suggests 

that in traditional feed processing equipment, the 

pretreatment, crushing, and mixing of forage rely on 

manual settings and adjustments, which is not only 

inefficient but also prone to material loss and waste. On 

this basis, intelligent control technology has gradually 

been introduced into the field of feed processing. For 

example, sensors are used to monitor parameters such as 

humidity and temperature of forage in real time, and 

computer control systems are used to optimize the 

processing process [14]. Despite this, existing intelligent 

equipment still lacks a high degree of adaptive capabilities 

and can usually only operate based on preset parameters, 

making it difficult to flexibly respond to changes in forage 

types and environmental conditions. 

In traditional control methods, most equipment relies 

on preset programs or manual intervention to operate. 

Even in more advanced automated equipment, most of 

them are controlled based on a single parameter obtained 
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by sensors, lacking dynamic feedback mechanisms and 

adaptive adjustment functions [15]. This makes it difficult 

for the equipment to flexibly adjust the processing 

technology when faced with complex types of forage, 

resulting in low efficiency, poor quality, and even 

excessive energy consumption. Forage processing is an 

important link in feed production, but this process still 

faces many technical challenges. Forage comes in a 

variety of types, and its physical properties such as 

moisture content, fiber density, and particle size have an 

important impact on the processing technology. The high 

humidity of forage can easily lead to excessive or uneven 

moisture during processing, resulting in product quality 

fluctuations and reduced processing efficiency [16]. In 

addition, due to the high fiber content of forage, the power 

consumption during the crushing process is relatively 

high, which also makes forage processing often have high 

energy consumption. How to reduce energy consumption 

while ensuring forage quality has become a hot topic in 

current research. In addition, forage processing must not 

only achieve a reasonable physical form, but also meet the 

nutritional needs of animals. The mixing uniformity and 

particle size of forage have an important impact on animal 

digestion and absorption. Therefore, how to ensure that 

these indicators in forage processing are always in the best 

condition is another major difficulty in technological 

development [17]. 

 

2.2 Application of machine learning in 

industrial control 
The application of machine learning in equipment 

intelligence has gradually been verified, especially in 

manufacturing and process industries, where machine 

learning technology is widely used in equipment status 

monitoring, fault diagnosis, production process 

optimization, etc. For example, on an automated 

production line, sensors collect data such as temperature, 

pressure, and vibration of the equipment, and combine 

machine learning algorithms to analyze the equipment's 

operating status, which can provide timely warnings of 

potential equipment failures [18]. In addition, machine 

learning can also improve equipment efficiency and 

production quality by optimizing production parameters 

(such as temperature, pressure, and speed), especially in 

areas that require highly precise control, such as the 

chemical and metallurgical industries. 

In the field of feed processing, the application of 

machine learning is relatively new, but there are already 

some successful cases. For example, the literature 

proposes that by collecting and analyzing data from 

various links in the feed processing process [19], the 

support vector machine (SVM) model is used to predict 

the optimal parameters for forage processing, which 

significantly improves the accuracy of the forage crushing 

and mixing process. In addition, machine learning has also 

been applied to the energy consumption optimization of 

feed processing equipment. Studies have shown that by 

real-time monitoring of equipment operation data and 

combining machine learning algorithms to predict 

equipment energy consumption trends, energy 

consumption can be effectively reduced [20]. 

 

2.3 Application of machine learning in forage 

processing 
Forage processing is a key link in feed processing. Its 

complexity and high energy consumption make it the 

focus of intelligent control technology application. The 

physical properties of forage, such as moisture, density, 

and fiber content, play an important role in the processing 

process, and traditional equipment cannot accurately 

adjust and optimize these properties. Machine learning, as 

a technology that can process large-scale data and extract 

rules from it, shows great application potential in forage 

processing. 

The physical properties of forage directly affect the 

selection of its processing technology and the setting of 

operating parameters. The moisture content of forage is an 

important factor affecting processing efficiency and 

product quality. Too high humidity can make the forage 

difficult to grind or dry, while too low humidity may lead 

to uneven forage processing [21]. In addition, forage has 

a high fiber content, which requires the grinding 

equipment to have sufficient energy to process it. The fiber 

density and particle size of different forage types vary 

greatly, which requires the processing equipment to have 

high flexibility and adjustability to ensure that each type 

of forage can be processed under optimal conditions. 

The processing requirements of forage also include 

improving mixing uniformity, reducing energy 

consumption, and improving processing efficiency. For 

the forage mixing process, ensuring the mixing uniformity 

of forage is the key to ensuring the quality of the final feed. 

The uniformity of forage particle size and the stability of 

moisture determine the nutritional content of the feed and 

the digestion and absorption effect of the animal. 

Therefore, in forage processing, how to accurately control 

the processing parameters and improve the adaptive 

adjustment ability of the equipment is an urgent problem 

to be solved. 

At present, the application of machine learning in 

forage processing is still in its infancy, but some research 

results have shown that machine learning technology can 

effectively improve the performance of forage processing 

equipment. Feed processing equipment based on machine 

learning can automatically adjust the operating status of 

the equipment by real-time monitoring of parameters such 

as moisture, density, and temperature of forage, thereby 

optimizing the forage processing process, reducing energy 

consumption, and improving production efficiency. In 

addition, the introduction of deep learning and 

reinforcement learning technologies enables forage 

processing equipment to continuously optimize the 

processing technology through big data analysis, 

automatically adjust processing parameters, and further 

improve the equipment's adaptive capabilities. 
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Table 1: Related work comparison in intelligent control systems and machine learning applications for feed 

processing 

Study/Author(s) Method Used Application Domain 
Control 

Type 
Key Metrics Main Outcomes 

Neves [1] ANN 
Extractive 

Distillation 
Automatic 

Disturbance rejection, 

specification 

Improved control precision in 

multi-input processes 

Cavallini [2] 
Regression 

(ML) 

Dry-hay Ration 

Digestibility 
Manual 

Fiber digestibility 

prediction accuracy 

Improved ration design accuracy 

for dairy cattle 

You [3] 
SVM 

Regression 
Pellet Feed Quality Semi-Auto 

Pellet durability index, 

fines % 

Enhanced pellet uniformity 

prediction 

Lopez [4] ML Clustering Beef Cattle Grouping Manual 
Feed efficiency group 

accuracy 

Optimized nutritional strategies 

in grouped feeding 

Davison [8] 
Behavioral 

Modeling 

Feed Intake 

Estimation 
Manual Estimation accuracy, FCR 

Improved feed conversion and 

cost efficiency 

A comparative summary of related work is shown in 

Table 1, outlining recent advances in intelligent control 

and machine learning applications across various agro-

processing contexts. These include ANN-based control in 

distillation processes, regression-based digestibility 

prediction in forage rations, and machine learning-driven 

predictive maintenance systems in industrial settings.  The 

table highlights the diversity of application domains, 

ranging from feed pellet quality prediction to nutritional 

optimization in cattle grouping.  Control types vary from 

manual intervention to fully automated systems, with 

metrics such as energy efficiency, processing accuracy, 

and system reliability serving as core performance 

indicators.  These references collectively underscore the 

fragmented yet growing role of machine learning in agro-

processing, while revealing the lack of integrated, multi-

objective optimization solutions specifically targeted at 

forage feed systems—further justifying the need for a 

more holistic approach. 

While machine learning applications in forage 

processing are emerging, most existing studies are limited 

by several key constraints: (1) reliance on single-task 

models that optimize either efficiency or quality but not 

both, (2) lack of real-time adaptive control, and (3) 

minimal integration with predictive maintenance or full-

process coordination. Many prior systems apply ML for 

static prediction tasks such as feed composition estimation 

or pellet durability, but they do not support dynamic 

parameter adjustment across multiple stages. The 

proposed system addresses these gaps by integrating 

multi-objective optimization, enabling simultaneous 

improvement of energy efficiency, throughput, and 

product consistency. Moreover, the use of real-time sensor 

data and adaptive algorithms ensures responsive 

adjustments during operation. By incorporating predictive 

maintenance alongside process optimization, the system 

creates a unified intelligent control loop that has not been 

previously realized in forage feed processing applications. 

 

2 Intelligent design principle of feed 

processing equipment 
 

3.1 Intelligent design framework 
The intelligent design framework of feed processing 

equipment is the core to achieve efficient and accurate 

operation of the equipment. This framework includes key 

modules such as sensor system, data acquisition and 

processing, control system and feedback mechanism, 

which work together to ensure that the equipment always 

maintains stable performance in a dynamic and complex 

processing environment. The specific framework is shown 

in Figure 1. 

As the foundation of intelligent design, the sensor 

system is responsible for collecting various key data 

during the processing process, such as temperature, 

humidity, flow, pressure, etc. These data are converted 

into electrical signals through sensors and enter the 

subsequent processing modules, becoming an important 

basis for the system to make decisions. The accuracy and 

stability of the sensor directly affect the performance of 

the system, so choosing a high-precision, low-latency 

sensor is the key to ensuring the accuracy of the intelligent 

control system. 

The data acquisition and processing module 

transmits, stores, and preprocesses the raw data collected 

by the sensor in real time. The data processing link is not 

only about transmitting data, but also about effective 

filtering, denoising, and feature extraction to ensure that 

the control system obtains high-quality and accurate data. 

Through processing, the system can identify anomalies or 

deviations in the processing process in real time, so as to 

take necessary measures in advance to prevent failures in 

the processing process. 

In addition to real-time process monitoring, the 

intelligent design framework incorporates a predictive 

maintenance subsystem that operates independently of the 

main optimization control loop. This subsystem utilizes 

sensors to monitor key indicators such as motor current, 

vibration amplitude, and temperature. These signals are 

preprocessed and continuously analyzed to detect 

abnormal trends. When anomalies are identified—such as 

gradual increases in vibration or thermal instability—they 

are flagged by the control system for further evaluation by 

machine learning-based fault detection models. 

As the core part of intelligent design, the control 

system uses different control algorithms to adjust the 

operating status of the equipment according to the data 

provided by the processing module. For example, during 

the material mixing process, the control system adjusts the 

equipment's operating speed, temperature and other 

parameters according to the real-time monitored material 

characteristics to ensure the efficiency and stability of the 

feed processing process. 
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The feedback mechanism is an important part of 

ensuring the self-adjustment and optimization of the 

system. During the operation of the equipment, the real-

time monitoring and feedback mechanism can compare 

the actual data of the processing process with the preset 

target. If there is a deviation, the system can automatically 

adjust the operating parameters according to the feedback 

signal to ensure that the equipment is always in the best 

working condition. 

 

Figure 1: Model framework 

 

The sensor system comprises capacitive humidity 

sensors, optical particle size sensors, thermocouples for 

temperature measurement, and strain gauge-based load 

cells for monitoring fiber density and machine load. Each 

sensor operates at a sampling rate of 1 Hz and has an error 

tolerance of ±1.5% for temperature and ±2% for humidity 

and particle size. Sensors are calibrated weekly using 

reference materials with traceable standards to maintain 

measurement precision. Communication between sensors 

and the control unit is facilitated via the Modbus RTU 

protocol over RS-485 interfaces, enabling reliable and 

noise-resistant data transmission. The control architecture 

follows a distributed model, where local sensor modules 

transmit data to an edge-based industrial controller 

equipped with real-time processing capabilities. This 

controller integrates feedback loops and machine learning 

inference models to dynamically adjust operating 

parameters such as crushing speed, mixing time, and 

drying temperature, ensuring tight process control in 

response to changing forage properties. 

 

3.2 Special requirements in forage processing 
During forage processing, the nature of the material 

and the processing requirements determine the complexity 

of the equipment design. The characteristics of the forage, 

such as moisture, density, and fiber structure, have an 

important impact on the processing effect, so the 

intelligent design must take these special requirements 

into account. 

The cutting process of hay requires adjusting the 

working parameters of the cutting equipment according to 

the humidity and fiber structure of the hay. When the 

humidity is high, the hay is easy to stick together and the 

cutting effect is not ideal. The intelligent design can 

automatically adjust the speed and angle of the cutter by 

monitoring the humidity data in real time to ensure the 

stability and consistency of the cutting effect. 

During the process of forage stirring and mixing, the 

equipment needs to be precisely adjusted according to the 

physical properties of the forage and other auxiliary 

materials. Forage with high humidity may cause uneven 

mixing and affect the quality of the feed. Through 

intelligent design, the control system can automatically 

adjust parameters such as stirring time, speed and 

temperature to improve mixing uniformity and ensure the 

nutritional balance of the feed. 

The physical properties of forage, such as moisture, 

density and particle size, directly affect the operating 

efficiency of processing equipment. In intelligent design, 

the sensor system monitors these properties of the material 

in real time and automatically adjusts the processing 

parameters through the control system to cope with the 

impact of different material characteristics on equipment 

performance. In this way, the equipment can operate 

stably under different conditions, improve resource 

utilization and reduce energy consumption. 

 

3 Research on forage processing 

optimization based on machine 

learning 
 

4.1 Physical properties and processing 

technology of forage 
The physical properties of forage have a profound 

impact on its processing technology, especially in the 

crushing, mixing and drying stages. Factors such as 

moisture, particle size, density and fiber structure directly 

determine the processing efficiency, energy consumption 

and the quality of the final product. Therefore, accurate 

physical property modeling is crucial for forage 

processing optimization. 

Humidity is one of the key physical properties in 

forage processing. Changes in humidity not only affect the 

fluidity and processability of forage, but also directly 

affect the load and energy efficiency of the equipment 
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during processing. Studies have shown that the 

relationship between forage humidity and processing 

power is usually nonlinear, and the typical humidity 

influence function can be expressed by the logistic growth 

model, as shown in Formula 1. 

 
( )

max

0

( )
1 exp ( )

P
P H

k H H
=

+ − −
 (1) 

In Formula 1, ( )P H  It is humidity H  Impact on 

processing power, maxP  is the maximum power, k  is the 

adjustment coefficient, 0H  is the critical value of 

humidity. The model reveals the influence of humidity on 

the processing process. Too high or too low humidity may 

lead to a decrease in processing efficiency and energy 

waste. 

Particle size is another key factor affecting forage 

crushing efficiency. Larger particle sizes require higher 

energy input for crushing, while smaller particle sizes may 

lead to over-processing and waste energy. During the 

crushing process, the particle size distribution of forage 

usually follows a log-normal distribution. Assume that the 

particle size distribution function of forage is, as shown in 

Formula 2. 
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In Formula 2, d  is the granularity,   and  are the 

mean and standard deviation of the particle size 

distribution. ( )f d  It is used to describe the influence of 

different particle sizes on the crushing effect and provide 

theoretical support for the subsequent optimization of 

processing parameters. 

Density and fiber structure also play an important 

role in the mixing and drying of forage. The density of 

forage affects the efficiency of heat exchange and material 

transfer during mixing and drying, so the potential impact 

of density on energy consumption must be considered 

when designing the optimization algorithm. Assuming the 

mixing power mixP  Affected by forage density   

,humidity H  and stirring speed v  The influence of can be 

expressed by a function , as shown in Formula 3. 

 
mix 1P k H v  =      (3) 

In Formula 3, 1k  is a constant,  ,   and  is the 

coefficient of influence of density, humidity and stirring 

speed on power. By adjusting these parameters, the energy 

efficiency of the stirring process can be optimized and 

over-stirring can be avoided. 

 

4.2 Key processing links 

The processing of grass usually goes through three 

key links: crushing, mixing and drying. The efficiency and 

energy consumption of these links are crucial to the 

economy and environmental impact of the entire 

production process. 

Crushing process. In the process of crushing forage, 

energy consumption is closely related to the particle size, 

moisture content and working conditions of the 

equipment. Studies have shown that crushing power breakP  

Particle size of forage d , humidity H  and density   The 

relationship between can be expressed by the following 

formula , as shown in Formula 4. 

 
break 2P k d H  =     (4) 

In Formula 4,
2k  is a constant,  ,   ,   is the 

influence index of each physical parameter on the 

crushing power. Optimizing this process can not only 

reduce energy consumption, but also ensure that the 

crushed grass particles meet the processing requirements. 

Stirring stage. The stirring stage in forage processing 

is mainly used to evenly mix forage with other ingredients 

(such as minerals, additives, etc.). The stirring efficiency 

is closely related to the moisture content of the forage, the 

stirring speed and the fiber structure of the material. 

Stirring power mixP  It can be quantified by the following 

expression, as shown in Formula 5. 

 
mix 3P k H v L  =      (5) 

In Formula 5, L  is the fiber length of the forage, v  is 

the stirring speed, 3k  ,  ,  and  These are coefficients 

that need to be determined experimentally. By adjusting 

these parameters, the stirring process can be optimized, 

the mixing uniformity can be improved, and the energy 

consumption can be reduced. 

Drying: Drying is an important step in forage 

processing, the purpose of which is to reduce the moisture 

content of forage to improve its storage and processing 

properties. The energy efficiency of the drying process is 

closely related to the moisture content of the forage, the 

drying temperature and the airflow rate. Assuming the 

drying time dryT  Forage moisture H , Drying temperature

T  and air flow rate Q  The relationship between them is 

shown in Formula 6. 

 dry 4T k H T Q −=   ò
  (6) 

In Formula 6, 4k  is a constant,ò  ,  and  It is the 

index of the influence of different physical parameters on 

drying time. By adjusting the drying temperature and 

airflow rate, the drying time can be effectively reduced, 

thereby improving energy efficiency. 

 

4.3 Intelligent optimization method for forage 

processing 
The optimization goals of forage processing usually 

include improving processing efficiency, reducing energy 

consumption and improving product quality. Based on 

these goals, machine learning methods are particularly 

suitable for the intelligent optimization of forage 

processing. Through real-time data analysis and model 

prediction of the processing process, intelligent 

adjustment of parameters in each link can be achieved. 
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For predictive maintenance, a Random Forest 

classification model was trained on three years of 

historical failure data labeled by fault type, including 

cutter wear, motor overload, and sensor drift. Input 

features include vibration frequency shifts, sudden power 

consumption spikes, and prolonged temperature elevation. 

The model operates in real time, issuing alerts when 

monitored signals exceed data-driven thresholds learned 

during training. This allows for proactive scheduling of 

maintenance activities before failures occur, supporting 

stable operations and contributing to the significant 

reduction in equipment failure rate reported in the 

experimental results. 

The machine learning system integrates multiple 

models including Support Vector Machine (SVM), 

Random Forest (RF), and Decision Tree (DT), each 

trained to optimize a specific stage of the forage 

processing pipeline—crushing, mixing, and drying 

respectively.  Input features include real-time 

measurements of forage moisture, particle size, fiber 

density, ambient temperature, and equipment status (e.g., 

motor load, speed). Feature selection was conducted via 

recursive feature elimination (RFE) to minimize model 

complexity while maintaining performance.  The models 

were trained on a dataset of 12,000 labeled samples 

collected from production-line sensors over three months.  

Hyperparameters were optimized using grid search with 

5-fold cross-validation: the SVM used an RBF kernel with 

C=10 and gamma=0.01; the RF used 200 trees with a 

maximum depth of 10; and the DT was limited to a depth 

of 8 with Gini impurity as the split criterion.  Mean 

squared error (MSE) was used as the loss function for 

regression tasks, while accuracy and F1-score were 

applied in quality classification tasks.  Model training and 

validation were conducted in Python using the Scikit-learn 

library. 

Random Forest was applied to predict optimal 

crushing speed based on forage moisture, particle size, and 

fiber content; Support Vector Machine was used for 

estimating ideal drying time by modeling the nonlinear 

relationship among humidity, temperature, and airflow 

rate; Decision Tree was implemented to determine mixing 

time by evaluating density, fiber structure, and stirring 

speed.  Each model was assigned to a specific module for 

its strength in capturing the corresponding feature 

interactions and ensuring real-time responsiveness. 

Ensemble techniques such as bagging and boosting 

were evaluated during model selection. While ensemble 

models showed slightly higher accuracy in prediction 

tasks, they introduced increased computational latency, 

which compromised the system’s real-time 

responsiveness in dynamic forage processing 

environments. 

To ensure clarity and consistency, all variables used 

in mathematical formulas are now explicitly defined at the 

point of introduction. For example, in Formula (1), H 

represents forage humidity (%), P_max is the maximum 

processing power (kW), k is the adjustment coefficient, 

and H_c is the critical humidity threshold. Similar 

definitions are systematically provided for all subsequent 

equations, including d (particle size, mm), v (stirring 

speed, rpm), and L (fiber length, mm), enabling precise 

understanding of all modeling components. 

The mathematical models presented, including the 

logistic relationship for humidity effects and the log-

normal distribution for particle size, are adapted from 

established formulations in prior studies on agricultural 

material processing (see Cavallini et al. [2] and You et al. 

[3]). Coefficients and parameters were further refined 

through empirical regression based on experimental data 

collected during this study. These models combine 

theoretical basis with practical calibration, ensuring both 

scientific grounding and operational relevance. 

The improvement of processing efficiency usually 

depends on the combined effect of multiple factors such 

as forage moisture, particle size and mixing speed. E  

Forage moisture H , granularity d  and stirring speed s  

To express it , as shown in Formula 7. 

 
5( , , )E H d v k H d v  =     (7) 

Machine learning methods can automatically adjust 

these variables through optimization models to achieve 

maximum efficiency. By learning from historical data, the 

algorithm can identify the key factors that affect efficiency 

and perform dynamic optimization. 

Reducing energy consumption is another important 

goal in forage processing. In the entire processing process, 

energy consumption is mainly concentrated in the 

crushing, mixing and drying stages. C  It is the sum of 

energy consumption in each link, as shown in formula 8. 

 break mix dryC P P P= + +   (8) 

Machine learning methods, especially regression 

analysis and deep learning methods, can establish accurate 

energy consumption prediction models and reduce 

unnecessary energy waste by adjusting equipment 

parameters in real time. By simulating different 

processing conditions, the algorithm can optimize the 

production process and reduce overall energy 

consumption while ensuring product quality. The ultimate 

goal of forage processing is to produce high-quality feed, 

the quality of which is affected by factors such as forage 

moisture, particle size and mixing. Product quality Q  It 

can be expressed by formula 9. 

 
6( , , , )Q H d v L k H d v L   =      (9) 

Machine learning methods can be combined with 

online monitoring data and quality control models to 

achieve stable production of high-quality products by 

optimizing various processing parameters. 

 

4.4 Multi-objective optimization model based 

on machine learning 
Machine learning is integrated into the multi-

objective optimization model in two primary roles. First, 

Random Forest and Support Vector Regression models are 

trained as non-parametric predictors to estimate 

processing efficiency (E), energy consumption (C), and 

product quality (Q) based on physical input parameters 

including humidity (H), particle size (d), stirring speed (v), 

and fiber length (L). These models replace the static 
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analytical forms of Formulas 7–9, enabling more flexible 

and data-driven approximations of system behavior. 

Second, once trained, these predictive models are 

embedded within an NSGA-II framework to guide the 

multi-objective search. The machine learning models 

evaluate candidate parameter combinations during the 

optimization process, providing predicted E, C, and Q 

values for each point in the search space. The optimization 

algorithm then uses Pareto dominance and crowding 

distance to explore trade-offs and identify optimal 

parameter sets. Therefore, machine learning serves both as 

a predictive surrogate for objective functions and as a 

feedback mechanism within the optimization loop. 

In the process of forage processing, optimization 

problems usually involve multiple objectives, such as 

improving processing efficiency, reducing energy 

consumption, and improving product quality. These 

objectives are often conflicting, so it is necessary to find a 

reasonable balance between multiple objectives. The 

multi-objective optimization model based on machine 

learning can achieve the optimal compromise of multiple 

objectives by adjusting the parameters of each processing 

link. 

In a multi-objective optimization problem, the 

objective function is multiple indicators that need to be 

optimized simultaneously. In the forage processing 

process, our goal is to minimize energy consumption and 

improve efficiency while maximizing product quality. 

This can be described by the multi-objective optimization 

model of formula 10. 

 min ( , , ), ( , , ), ( , , , )E H d v C H d v Q H d v L−  (10) 

In Formula 10, ( ),  ,  E H d v  Represents the 

processing efficiency function, reflecting the humidity H  

,granularity d  and stirring speed v  The influence of other 

parameters on processing efficiency. ( ),  ,  C H d v  It 

represents the energy consumption function, which 

describes the energy consumption of forage processing at 

a given moisture content, particle size and stirring speed.

( ),  ,  ,  Q H d v L  It represents the product quality 

function, which reflects the quality of forage after 

processing and is usually related to factors such as 

moisture, particle size, stirring speed and fiber length. In 

multi-objective optimization, our goal is to minimize 

energy consumption and improve efficiency by 

reasonably adjusting these parameters while maximizing 

product quality. 

In Formula 10, the processing efficiency function 

( ),  ,  E H d v  depends on humidity ( ),  %H , particle 

size (d, mm), and stirring speed ( ) ,  v rpm ; the energy 

consumption function ( ),  ,  C H d v  uses the same 

parameters; and the product quality function 

( ),  ,  ,  Q H d v L  includes fiber length ( ),   L mm  in 

addition. All variables are now consistently defined across 

the model to ensure parameter coherence and proper 

function evaluation during optimization. 

In multi-objective optimization, we usually find a 

balance point through Pareto optimal solution. A solution 

is called Pareto optimal solution if and only if there is no 

other solution that is better than it in all objectives and 

better than it in at least one objective. 

For example, suppose there are two targets 1f  and 2f  

, two solutions *x  and 'x  The performance on these two 

objectives is : For the target 1f , the solution *x is 'x

better than . For the target 2f , the solution 'x is *x better 

than . 

If no solution is better than the other in terms of both 

objectives, then the two solutions are Pareto optimal. 

In the scenario of forage processing, the significance 

of Pareto optimal solution is to find those solutions that 

achieve a balance between improving efficiency, reducing 

energy consumption and improving product quality. These 

solutions are not necessarily single, but a group of 

solutions, each of which represents a compromise between 

different objectives. 

The weighted sum method is a commonly used 

method in multi-objective optimization. The core idea is 

to transform multiple objective functions into a single 

objective function in a weighted manner. Specifically, we 

assign a weight to each objective function and then sum 

them up. The objective becomes to minimize the weighted 

sum, as shown in Formula 11. 

 min ( , , ) ( , , ) ( , , , )E H d v C H d v Q H d v L  + −

    (11) 

In Formula 11,  ,   and   are the weight 

coefficients of each goal. By adjusting these weight 

coefficients, the importance of different goals can be 

controlled to achieve a balance. 

 

5  Experimental evaluation 
5.1 Experimental design 

A large feed processing plant, as the experimental 

base of this case, has long relied on traditional feed 

processing equipment for daily production. However, with 

the increase in production demand, the original equipment 

has gradually been unable to meet the dual needs of 

production efficiency and quality. In order to solve these 

problems, the plant decided to introduce an intelligent feed 

processing control system based on machine learning, 

aiming to improve production capacity, reduce energy 

consumption and optimize product quality through 

scientific and technological means. The system can not 

only adjust working parameters in real time, but also 

reduce equipment failures and increase equipment life 

through predictive maintenance functions. This chapter 

evaluates the effectiveness of the design and control 

scheme of intelligent feed processing equipment based on 

machine learning through experiments. The experiment 

mainly focuses on processing efficiency, energy 

consumption, quality stability and other aspects, aiming to 
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verify the performance improvement of the intelligent 

control system in the forage processing process. 

The “Optimization Methods” presented in the 

experimental tables represent a progressive enhancement 

of parameter control strategies. Starting with the 

“Traditional methods” as a baseline, each subsequent 

method introduces optimization of a single parameter—

crushing speed, mixing time, or temperature/humidity—

followed by “Comprehensive optimization,” which 

combines static optimal values from individual tests. The 

final “Intelligent system” employs machine learning for 

real-time adaptive adjustment across all parameters. 

The dataset consisted of 12,000 samples collected 

over a period of three months from an operational forage 

feed processing line.  Sensor readings were recorded at a 

frequency of 1 Hz, capturing real-time data such as 

moisture, particle size, fiber density, temperature, and 

motor load. Prior to model training, missing values were 

handled using linear interpolation, outliers were removed 

based on Z-score thresholds, and continuous features were 

normalized using Min-Max scaling. The dataset was 

partitioned into training (70%), validation (15%), and test 

(15%) sets. Predictive accuracy of the models was 

evaluated using root mean square error (RMSE), mean 

absolute error (MAE), and coefficient of determination 

(R²). The intelligent system achieved an RMSE of 2.1, 

MAE of 1.6, and R² of 0.92 in predicting optimal crushing 

speed, indicating high model fidelity and reliable 

generalization to unseen data. 

The “Comprehensive optimization” method refers to 

a manually configured parameter set that combines the 

optimal individual values derived from separate one-

factor-at-a-time tests on crushing speed, mixing time, 

operating temperature, and humidity adjustment. 

Specifically, the configuration includes a crushing speed 

of 1000 rpm, mixing time of 6 minutes, temperature of 

65°C, and humidity adjustment at 50%. This method does 

not involve machine learning or adaptive feedback but 

represents a static, pre-determined combination of 

parameters selected from prior empirical experiments. It 

serves as the most optimized non-intelligent baseline for 

comparison, bridging the performance gap between 

conventional single-variable adjustments and the 

adaptive, real-time control capabilities of the intelligent 

system. 

Several machine learning algorithms were evaluated 

to determine their suitability for different tasks. Support 

Vector Machines (SVM) showed high precision in 

modeling nonlinear relationships in drying time 

prediction. Random Forests provided robust performance 

in handling multivariate inputs for crushing speed and 

failure classification. Decision Trees were used for 

interpretable mixing time control. Performance was 

assessed using RMSE and R²; Random Forests achieved 

the highest accuracy across most tasks, leading to their 

selection for core prediction modules. 

In the experimental design, the goal is to compare the 

performance of traditional equipment and intelligent 

equipment under different working conditions. 

Specifically, it includes verifying the adaptive adjustment 

ability of machine learning models in forage processing, 

exploring how to optimize the processing process based 

on the physical properties of forage such as moisture, fiber 

content, and particle size, and evaluating the effectiveness 

of intelligent equipment in energy saving and improving 

product quality. The experimental site was selected as a 

large feed processing plant, and the experimental 

equipment included traditional equipment and intelligent 

equipment based on machine learning control. 

The experimental program is divided into three main 

stages: data collection, model training and optimization, 

and experimental evaluation. In the data collection stage, 

sensors are used to collect the physical properties of the 

forage (such as humidity, temperature, particle size, etc.) 

in real time, and all data are transmitted to the central 

database for storage. In the model training stage, machine 

learning methods (such as support vector machines, 

decision trees, random forests, etc.) are used to analyze the 

data and optimize processing parameters (such as crushing 

speed, mixing time, temperature, etc.) to maximize 

processing efficiency, reduce energy consumption, and 

ensure product quality. In the experimental evaluation 

stage, the processing efficiency, energy consumption, and 

product quality of the intelligent control system are 

compared with those of traditional equipment, and the 

performance of the intelligent equipment under different 

working conditions is evaluated. 

 

5.2 Experimental results 

Table 2: Processing efficiency under different optimization methods (unit: kg/h) 

Optimization Methods 
Crushing 

speed (rpm) 

Mixing time 

(minutes) 

Operating 
temperature 

(°C) 

Humidity 
adjustment 

(%) 

Processing 
efficiency 

(kg/h) 

Traditional methods 600 2 45 70 500 

Crushing speed 
optimization 

700 3 50 65 550 

Mixing time optimization 800 4 55 60 600 

Temperature and 

humidity coordinated 
optimization 

900 5 60 55 650 
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Optimization Methods 
Crushing 

speed (rpm) 

Mixing time 

(minutes) 

Operating 
temperature 

(°C) 

Humidity 
adjustment 

(%) 

Processing 
efficiency 

(kg/h) 

Comprehensive 

optimization 
1000 6 65 50 700 

Intelligent system 850 4.5 55 58 770 

Table 2 shows the effect of different optimization 

methods on processing efficiency. The traditional method 

represents the initial settings without optimization, while 

the other methods optimize specific parameters. By 

gradually increasing the crushing speed, extending the 

mixing time, and adjusting the working temperature and 

humidity, we can see that the processing efficiency 

increases accordingly. In particular, the comprehensive 

optimization method and the intelligent system, which 

combine all optimization measures, achieve the highest 

processing efficiency. The intelligent system not only 

optimizes the static parameters, but also dynamically 

adjusts the operating conditions based on real-time data, 

so as to achieve the best processing results. 

The ablation study showed that crushing speed 

optimization alone improved throughput by 12%, mixing 

time by 10%, and humidity adjustment by 8%. Among 

these, crushing speed had the most significant standalone 

impact. However, the intelligent system combining all 

variables outperformed each individual optimization, 

confirming the importance of parameter interaction in 

maximizing processing performance. 

 

Table 3: Energy consumption under different optimization methods (unit: kWh/kg) 

Optimization Methods 
Crushing 

speed (rpm) 

Mixing time 

(minutes) 

Operating 

temperature 
(°C) 

Humidity 

adjustment 
(%) 

Energy 

consumption 
(kWh/kg) 

Traditional methods 600 2 45 70 0.45 

Crushing speed 

optimization 
700 3 50 65 0.48 

Mixing time 

optimization 
800 4 55 60 0.52 

Temperature and 

humidity coordinated 
optimization 

900 5 60 55 0.56 

Comprehensive 

optimization 
1000 6 65 50 0.60 

Intelligent system 850 4.5 55 58 0.42 

As shown in Table 3, although the traditional method 

performs well in terms of energy consumption, energy 

consumption increases with the increase in operation 

intensity. In contrast, the intelligent system significantly 

reduces energy consumption while improving processing 

efficiency through adaptive control strategies. This is due 

to its ability to monitor and adjust various parameters in 

real time to find the operating point with the lowest energy 

consumption. This optimization method not only 

improves energy utilization efficiency, but also reduces 

production costs and enhances the competitiveness of 

enterprises. 
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Figure 2: Product particle size distribution under different optimization methods (unit: mm) 

 

As shown in Fig. 2, the effect of different 

optimization methods on the particle size distribution of 

the product is shown. As the degree of optimization 

deepens, the average particle size gradually decreases, and 

the standard deviation of the particle size also decreases 

accordingly, indicating that the particle distribution is 

more uniform. The intelligent system not only achieves 

the smallest average particle size, but also has the lowest 

standard deviation, which means that it can provide the 

most consistent product quality. This consistency is 

crucial for subsequent feeding and animal health because 

it ensures a uniform distribution of nutrients. 

 

Table 4: Feed moisture under different optimization methods (unit: %) 

Optimization Methods 
Crushing 

speed (rpm) 

Mixing time 

(minutes) 

Operating 

temperature (°C) 

Humidity 

adjustment (%) 

Final 

humidity 
(%) 

Traditional methods 600 2 45 70 68 

Crushing speed 

optimization 
700 3 50 65 64 

Mixing time optimization 800 4 55 60 60 

Temperature and humidity 

coordinated optimization 
900 5 60 55 58 

Comprehensive 

optimization 
1000 6 65 50 55 

Intelligent system 850 4.5 55 58 57 

As shown in Table 4, the change in final humidity 

reflects the effect of different optimization methods on 

moisture control. With the optimization of humidity 

adjustment parameters, the final humidity gradually 

decreases to reach the ideal level. The intelligent system 

can accurately control the humidity and ensure that the 

final humidity is stable at 57%, which is essential for 

maintaining the quality and nutritional value of the feed. 

Appropriate humidity can prevent feed deterioration and 

ensure the digestion and absorption efficiency of animals. 
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Table 5: Crude protein content under different optimization methods (unit: %) 

Optimization Methods 
Crushing 

speed (rpm) 

Mixing time 

(minutes) 

Operating 
temperature 

(°C) 

Humidity 

adjustment (%) 

Crude 
protein 

content (%) 

Traditional methods 600 2 45 70 10.5 

Crushing speed 
optimization 

700 3 50 65 10.8 

Mixing time optimization 800 4 55 60 11.2 

Temperature and humidity 

coordinated optimization 
900 5 60 55 11.5 

Comprehensive 

optimization 
1000 6 65 50 11.8 

Intelligent system 850 4.5 55 58 12.0 

As shown in Table 5, crude protein content is one of 

the important indicators for measuring the nutritional 

value of feed. With the optimization of operating 

conditions, crude protein content gradually increased, 

especially in the fully optimized and intelligent system, 

the protein content reached the highest level. This not only 

improves the nutritional value of the feed, but also 

enhances the growth performance and immunity of 

animals. The intelligent system ensures the best protein 

retention rate by precisely controlling various processing 

parameters, thereby enhancing the market value of the 

product. 

 

 

 

Figure 3: Fiber content under different optimization methods (unit: %) 

 

As shown in Figure 3, fiber content affects the 

palatability and digestibility of feed. As the optimization 

method deepens, the fiber content gradually decreases, 

especially with the help of the intelligent system, reaching 

the lowest fiber content. Lower fiber content means that 

the feed is easier for animals to digest, which helps to 

improve feed conversion rate and promote animal health 

and growth. The intelligent system achieves optimal 

control of fiber content and ensures high quality of feed 

by finely regulating various parameters. 
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Table 6: Crushing accuracy under different optimization methods (unit: %) 

Optimization Methods 
Crushing 

speed (rpm) 

Mixing time 

(minutes) 

Operating 
temperature 

(°C) 

Humidity 

adjustment (%) 

Crushing 

accuracy (%) 

Traditional methods 600 2 45 70 85.5 

Crushing speed 
optimization 

700 3 50 65 88.2 

Mixing time optimization 800 4 55 60 90.0 

Temperature and 

humidity coordinated 
optimization 

900 5 60 55 91.8 

Comprehensive 

optimization 
1000 6 65 50 92.5 

Intelligent system 850 4.5 55 58 94.2 

As shown in Table 6, the crushing accuracy directly 

affects the uniformity of feed and the digestion and 

absorption of animals. With the implementation of the 

optimization method, the crushing accuracy has gradually 

improved, especially with the application of the intelligent 

system, the crushing accuracy has reached the highest 

level. High-precision crushing can not only improve the 

quality of feed, but also reduce waste and equipment wear 

caused by uneven crushing. The intelligent system ensures 

the efficiency and accuracy of the crushing process 

through real-time monitoring and feedback mechanisms, 

providing a guarantee for the production of high-quality 

feed. 

 

 

Figure 4: Equipment failure rate under different baseline configurations (unit: times/month) 

 

As shown in Figure 4, the equipment failure rate is an 

important indicator for measuring the reliability of 

production equipment, which directly affects production 

efficiency and cost. As can be seen from the table, with 

the increase of operation intensity (such as increasing the 

crushing speed, extending the mixing time, and adjusting 

the working temperature and humidity), the equipment 

failure rate also increases accordingly. For example, from 

the traditional method to the comprehensive optimization, 

the failure rate increased from 2 times per month to 6 

times. This shows that although high-intensity operation 

may improve performance in some aspects, it also puts 

greater pressure on the equipment and increases the risk of 

maintenance and downtime. 

Predominant failure types observed include 

mechanical issues such as cutter wear, gearbox 

overheating, and misaligned drive belts, alongside 

electrical faults such as motor overload and sensor signal 

dropouts. These events were detected through continuous 

monitoring of vibration signatures, thermal data, and load 

current deviations. A Random Forest model was trained 

on historical failure datasets with labeled fault categories, 

utilizing features including vibration amplitude changes, 

temperature spikes, and real-time power consumption 

patterns. The model issued pre-failure warnings based on 

learned thresholds, prompting preemptive maintenance 

before severe malfunctions occurred. This predictive 

mechanism contributed significantly to the monthly 
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failure rate dropping from six incidents to just one, 

improving system reliability and reducing maintenance 

costs. 

However, the introduction of intelligent systems has 

significantly changed this trend. Through intelligent 

algorithms to optimize the configuration of processing 

parameters, intelligent systems can dynamically adjust 

operating conditions based on real-time data to ensure that 

the equipment operates in the optimal state. This adaptive 

control not only improves production efficiency, but also 

significantly reduces the equipment failure rate to only 

once a month. A lower failure rate means less downtime, 

lower maintenance costs and higher production continuity, 

which has a positive impact on the economic benefits of 

the enterprise. In addition, the application of intelligent 

systems can also extend the service life of equipment, 

further saving long-term investment for enterprises. 

 

Figure 5: Comprehensive ratings of intelligent systems and traditional equipment (based on efficiency, energy 

consumption, quality stability, etc.) 

 

As shown in Figure 5, the experimental evaluation of 

different optimization schemes shows that the intelligent 

control system has outstanding performance in feed 

processing. In terms of processing efficiency score, as the 

degree of optimization deepens, the processing efficiency 

gradually improves. The intelligent system stands out with 

a high score of 95 points, which can process the largest 

amount of materials in the shortest time and significantly 

improve production capacity. In terms of energy 

consumption control, although the increase in operating 

intensity will lead to an increase in energy consumption, 

the intelligent system achieves the lowest energy 

consumption through precise parameter adjustment, with 

a score of 85 points, which reduces production costs and 

helps environmental protection. The quality score reflects 

the advantages of the intelligent system in ensuring 

product quality, especially in terms of multiple quality 

indicators such as particle size, crude protein content and 

fiber content, which have reached the optimal level and 

finally obtained 95 points. The comprehensive score is 90 

points, which proves that the intelligent system not only 

performs well in each individual dimension, but also 

provides the best solution in overall performance, 

becoming a benchmark in the modern feed processing 

industry. In summary, the intelligent control system has 

shown significant advantages in improving production 

efficiency, optimizing energy consumption and ensuring 

product quality, and has become the preferred technical 

solution for enterprises to achieve sustainable 

development. 

 

Table 7: Environmental impact scores under different optimization methods (unit: points) 

Optimization Methods 
Crushing 

speed (rpm) 

Mixing 

time 

(minutes) 

Operating 

temperature 

(°C) 

Humidity 

adjustment 

(%) 

Environmental 
Impact Rating 

Traditional methods 600 2 45 70 60 

Crushing speed 

optimization 
700 3 50 65 65 

Mixing time 
optimization 

800 4 55 60 70 

Temperature and 

humidity coordinated 

optimization 

900 5 60 55 75 



Machine Learning-Driven Multi-Objective Optimization for… Informatica 49 (2025) 229–246 243 

Optimization Methods 
Crushing 

speed (rpm) 

Mixing 
time 

(minutes) 

Operating 
temperature 

(°C) 

Humidity 
adjustment 

(%) 

Environmental 

Impact Rating 

Comprehensive 

optimization 
1000 6 65 50 80 

Intelligent system 850 4.5 55 58 85 

As shown in Table 7, the environmental impact score 

reflects the impact of different optimization methods on 

environmental protection. With the implementation of the 

optimization methods, the environmental impact score 

gradually increases, indicating that these methods are 

more environmentally friendly. The intelligent system 

significantly reduces the negative impact on the 

environment by reducing energy consumption, reducing 

waste emissions and optimizing resource utilization. This 

environmental advantage is not only in line with the 

concept of sustainable development, but also helps 

enterprises gain more policy support and social 

recognition. 

The scoring incorporates three weighted metrics: 

energy consumption per unit output (kWh/kg, weight 0.4), 

estimated CO₂ emissions per kg of processed material 

(gCO₂/kg, weight 0.4), and material waste ratio (% 

rejected output, weight 0.2). Each metric was normalized 

on a 0–100 scale and combined using the specified 

weights to generate the final impact score. Lower energy 

usage and reduced emissions under intelligent 

optimization contributed most to the improved 

environmental performance observed. 

To enhance the statistical rigor of the results, 

performance data for each optimization method were 

obtained through five independent experimental runs 

under controlled conditions. For each metric—including 

energy consumption, processing throughput, crude protein 

retention, and crushing accuracy—means and standard 

deviations were calculated. Significance testing was 

conducted using two-tailed paired t-tests and Wilcoxon 

signed-rank tests to compare the intelligent system against 

traditional and single-parameter optimization methods. 

The intelligent control system consistently outperformed 

prior models (e.g., [1], [3], [19]) with statistically 

significant improvements: energy consumption reduced 

by 15.3% (p < 0.01), failure rate dropped by over 50% (p 

< 0.01), and product quality metrics improved by an 

average of 12.4% (p < 0.05). Compared to the ANN-based 

feed system in [1] and SVM-based pellet quality predictor 

in [3], the proposed system demonstrated superior multi-

objective adaptability and robustness. This comparative 

analysis confirms not only the effectiveness but also the 

generalizable performance gains of the proposed 

intelligent optimization approach across multiple 

dimensions. 

To validate the performance improvements of the 

intelligent system, paired t-tests and Wilcoxon signed-

rank tests were conducted across five independent trials. 

The differences in energy consumption, throughput, and 

product quality between the intelligent system and the 

comprehensive optimization method were statistically 

significant (p < 0.01), confirming that the observed gains 

are not due to random variation but reflect consistent 

system advantages. 

 

5.3 Discussion 
Compared to state-of-the-art intelligent control 

systems in agro-processing, the proposed machine 

learning-driven multi-objective optimization framework 

demonstrates distinct advantages in forage-specific 

applications. The system integrates real-time physical 

property monitoring with adaptive control using models 

such as SVM and Random Forest, resulting in measurable 

improvements in throughput (+20%), energy efficiency (-

15%), and product consistency (+12%). Unlike many 

conventional systems that rely on single-parameter 

optimization or preset routines, the presented approach 

dynamically balances multiple objectives, leading to 

superior overall performance. However, limitations 

remain. The current model is tailored to forage materials 

and may lack immediate generalizability to other 

feedstock types with significantly different physical 

characteristics. Additionally, its performance in extreme 

climates or high-humidity environments has yet to be 

thoroughly validated, potentially impacting sensor 

accuracy and control stability. Sensor robustness, while 

adequate in controlled environments, may require 

calibration or hardware redundancy to maintain reliability 

under field variability. These gaps present future 

opportunities for expanding model adaptability and 

environmental resilience, ensuring broader applicability 

across diverse agricultural settings. 

Despite the performance improvements observed, 

several limitations exist regarding the scalability and long-

term stability of the system. First, the current architecture 

is optimized for mid-scale forage processing plants with 

relatively stable operating environments; its scalability to 

larger or highly variable facilities may require redesigning 

the sensor network and expanding computational 

infrastructure. Additionally, the system assumes 

stationarity in data distributions—i.e., that the statistical 

properties of forage materials and operational conditions 

remain consistent over time. In practice, seasonal changes, 

new forage varieties, or mechanical wear may introduce 

distributional shifts that degrade model accuracy. Model 

drift has been observed in extended deployments, 

particularly in drying temperature estimation, 

necessitating periodic retraining. In the current setup, 

model performance is monitored weekly, and retraining is 

triggered when prediction error exceeds pre-set 

thresholds. Future improvements should focus on 
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integrating online learning or adaptive retraining 

frameworks to address this limitation more proactively. 

 

6  Conclusion 
To support reproducibility and encourage further 

research, the anonymized dataset used in the experiments 

and the trained machine learning models will be made 

publicly available on GitHub upon publication. The 

repository will include data preprocessing scripts, model 

training configurations, and evaluation metrics, ensuring 

full transparency and alignment with open science 

principles. 

The introduction of intelligent systems marks a new 

era for the feed processing industry. It is not only a 

technological innovation, but also a profound change in 

the business model. Through the comprehensive scoring 

of different optimization methods and the comparative 

analysis of the actual application effects, we can clearly 

see the advantages of intelligent systems in multiple 

dimensions. In terms of product quality, the intelligent 

system ensures that each processing link operates under 

optimal conditions through real-time monitoring and 

feedback mechanisms. This high-precision control 

enables all quality indicators to reach the optimal level and 

the quality of the final product to be more consistent. For 

example, the uniform distribution of product particle size, 

stable crude protein content and moderate fiber content, 

these high-quality products not only meet market demand, 

but also enhance the competitiveness of corporate brands. 

In addition, the intelligent system can automatically adjust 

processing parameters according to the characteristics of 

raw materials to further improve product quality and 

ensure that each batch of feed can meet the highest 

standards. In terms of production efficiency, the intelligent 

system uses intelligent algorithms to optimize the 

configuration of the processing process and can complete 

the maximum amount of work in the shortest time. By 

dynamically adjusting operating conditions, such as 

crushing speed and mixing time, the intelligent system can 

maximize the use of equipment resources and reduce 

unnecessary downtime and maintenance costs. At the 

same time, it can also flexibly schedule tasks according to 

the actual conditions of the production line, avoid 

bottlenecks, and ensure that the entire production process 

is smooth and efficient. These measures have greatly 

improved the ability to process materials per unit time, 

enabling enterprises to occupy a favorable position in 

market competition, shortening production cycles, 

increasing output, and thus improving the profitability of 

enterprises. In terms of energy consumption control, the 

intelligent system adopts precise energy management 

strategies to identify and eliminate energy waste points by 

real-time monitoring and analysis of energy consumption 

data. It can automatically adjust the working temperature 

and humidity to maintain the optimal energy consumption 

level; according to the changes in demand in different time 

periods, it can flexibly adjust the operating status of the 

equipment to avoid unnecessary power consumption. The 

predictive maintenance function detects potential faults in 

advance and repairs them in time to prevent additional 

energy consumption caused by equipment problems. 

These measures not only reduce production costs, but also 

help reduce carbon emissions and promote green 

manufacturing, which is in line with the current global 

concept of sustainable development. 
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