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As big data and information technology continue to develop, improving the effectiveness of behavior
extraction and case matching in intelligent decision-making systems has become an urgent need. To this
end, this study proposes a behavior extraction and case matching model combining multi-level feature
learning and graph neural networks. Methodologically, the behavior feature extraction module is
constructed using a robustly optimized Transformer encoder representation model and a bidirectional
long short-term memory network. A graph attention network is introduced to optimize the topological
matching mechanism between cases. The model was validated on the CaseLaw and Twitter Sentiment140
datasets. The experimental results showed that the model achieved F1 scores of 90.89% and 93.89% for
the behavior extraction and case matching tasks, respectively. The average processing time for matching
was as short as 0.63 seconds. Compared with advanced methods such as T5, DGI, and MANN, this model
demonstrated significant advantages in terms of accuracy, recall rate, and matching efficiency.
Additionally, in testing with text-image multimodal data, the proposed model achieved an average
matching adjustment count of approximately 3.5, a matching throughput of up to 210 times per second,
and a matching confidence score of up to 0.92. These results fully validate the superiority and practicality
of this method in complex behavioral pattern analysis.

Povyetek: Za podrodje prava in veémodalnih podatkov je razvit model ROBERTa-BiLSTM-GAT, ki
zdruzuje vecnivojsko semanticno ucenje z grafno pozornostjo za hkratno ekstrakcijo vedenj in ujemanje
primerov. Jedro prispevka je adaptivno tehtanje konteksta ter topoloSkih razmerij med primeri, razsirjeno
na besedilno-slikovne vhode z lahkim vecmodalnim zlitjem in rezidualno optimizacijo za stabilno,

razlozljivo ujemanje.

1 Introduction

The use of behavior extraction and case matching
technologies in intelligent decision-making systems has
grown in popularity in recent years due to the quick
growth of big data, artificial intelligence, and natural
language processing (NLP) technologies. The technology
not only plays a core role in the fields of judicial precedent
analysis, financial risk control, medical diagnosis, and
intelligent recommendation, but also shows important
application value in network security, social media public
opinion monitoring, and emergency event warning [1-2].
Although traditional behavior extraction methods rely on
rule matching and feature engineering and can achieve
some success in structured data environments, they still
face serious limitations when dealing with massive,
unstructured, and multimodal data. On the one hand, rule
matching methods need to manually define a large number
of complex rules, which makes it difficult to cope with
diverse and dynamically changing behavioral patterns. On
the other hand, feature engineering-based methods are
highly dependent on data quality and lack deep
understanding of contextual information, resulting in
limited generalization ability (GA) of the model. Recent
years witnessed a notable advancement in machine

learning-based behavior extraction techniques due to the
quick development of deep learning and NLP. Huang et
al. proposed a similar event matching algorithm by joint
bidirectional encoder representations from Transformers
(BERT) and bidirectional long short-term memory
(BIiLSTM) behavioral extraction of text data in order to
detect early and process emergency events quickly. The
outcomes demonstrated that the algorithm had a good
performance and high timeliness in case processing of
some real emergencies [3]. Kusal et al. proposed a method
for extracting emotional information from text that
combined graph neural networks (GNNs). This method
was designed to provide a deeper understanding of the
emotional state expressed in opinions and text
conversations. Experimental results showed that this
method accurately extracted emotional information from
various case files, providing users with clearer emotional
feedback [4]. Adel et al. proposed an alternative event
detection model for Hunger Games search based on BERT
and neumatic heuristic techniques. According to the
experimental results, the model demonstrated excellent
data behavior extraction when compared to the most
advanced event detection model [5]. Ren et al. proposed a
threat knowledge extraction algorithm by combining
knowledge graph technology and improved GNN. The
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experimental results indicated that the algorithm was more
accurate and time-sensitive for threat behavior extraction
in intelligence [6].

In recent years, methods such as multilevel feature
learning and GNN have become important research
directions for solving behavior extraction and case
matching problems [7]. Li et al. found that the finite length
of short electronic record texts led to severe information
sparsity. Therefore, this study combined GNN to propose
a learning mechanism for power system event detection.
The results showed that the mechanism achieved
convincing results on general domain event detection
datasets [8]. Gao et al. found that the linguistic complexity
and ambiguity of textual descriptions in causal event
extraction tended to lead to a less accurate extractor.
Therefore, the researchers proposed a novel intra-event
causality extraction method by combining GNN and
causal association graph. The results indicated that the
method outperformed the most advanced baseline method
on two publicly available datasets [9]. Peng et al. argued
that existing streaming social messaging event detection
methods usually face ambiguous event features and thus
have low accuracy and generalization capabilities. For this
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reason, the researchers proposed a new reinforcement-
weighted multi-relational GNN framework based on
GNN. The results showed that the framework
demonstrated superior robustness and accuracy in a wide
range of cross-lingual social event detection [10].
According to Wan et al., the primary goal of all event
extraction in NLP to date has been to extract events from
sentences. Because of this, the researchers used GNN to
extract event behavior before creating a multi-focus
graph-based framework to manage the extraction task.
Numerous tests proved the method's efficacy, and the
outcomes revealed that it performed better than the most
sophisticated baseline techniques. [11]. Gams et al.
primarily use twenty-four laws of the information society
to explain the relationship between the information society,
electronics, and artificial intelligence. These laws
constitute a new set that is not currently present in the
literature and highlight the core driving mechanisms of the
information society and advances in artificial intelligence
[12]. A summary comparison of the various literature
sources is shown in Table 1.

Table 1: Summary comparison of various methods

Author(s)

Method/Model

Advantages (Specific Metrics)

Limitations/Drawbacks

Huang et al. [3]

BERT+BILSTM

High timeliness, suitable for
emergency cases

Lacks graph-structured optimization

Kusal et al. [4]

GNN for sentiment

Accurately captures emotions

Lacks temporal modeling; weak

handles ambiguous texts well

extraction across multiple case files generalization
Adel et al. [5] BERT-+heuristic search High extraction accuracy; No contextual semantic fusion
outperforms baseline methods mechanism
Ren et al. [6] Knowledge High accuracy in threat behavior Relies heavily on entity relationship
' graph+improved GNN extraction; fast response quality
Lietal. [7] GNN for event detection High detection rate; effective for Limited ability in modelmg complex
sparse short texts relationships
Significant F1 improvement; - .
Gao et al. [9] GNN-+causal graph Efficiency issues on large-scale data

Peng et al. [10]

Multi-relational GNN

Strong robustness; high accuracy in
cross-lingual detection

Complex feature fusion; high training
cost

Wan et al. [11]

Multi-focal GNN

Superior to baselines in multitask
event extraction

Adaptability to long text unclear
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Gams et al. [12] Information society laws

Introduces new theoretical
perspectives in Al and information

Lacks empirical validation or dataset
application

In conclusion, behavior extraction and case matching
have advanced significantly in previous research.
However, these methods perform poorly when dealing
with multimodal data, which lacks effective hierarchical
feature modeling. Furthermore, they cannot make full use
of graph structure information to optimize the similarity
calculation between cases during case matching. To
address the above issues, the study proposes a behavior
extraction and case matching algorithm that incorporates
multilevel feature learning and GNN, aiming to further
improve the effectiveness of case matching and decision
making at this stage. Specific objectives include (1) There
is a need to develop a multi-level semantic feature
extraction module based on ROBERTa and BiLSTM to
capture both local and global behavioral information. (2)
There is a need to introduce graph attention networks
(GATS) to optimize similarity computation by modeling
complex inter-case relationships through adaptive
attention mechanisms (AMs). (3) The models are
systematically evaluated for matching accuracy,
processing efficiency and robustness on legal and social
multimodal datasets such as CaseLaw and Twitter
Sentiment140. First, robustly optimized bidirectional
encoder representations from Transformers approach
(RoBERTa) with BiLSTM combined with self-attention
mechanism (SAM) is used to extract multilevel semantic
from input text features. Second, the case knowledge
graph is constructed based on the relationship between the
cases, and the topological information between the cases
is modeled using GAT. The study's innovations include:
On the one hand, a multi-level feature fusion technique is
suggested, allowing the model to capture both global

S
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semantic information and local behavioral patterns. On the
other hand, GAT is introduced for case matching, which
optimizes the matching weights between cases through an
adaptive AM to improve the model's ability to model
complex behavioral data. The contribution of the study is
to propose a behavior extraction and case matching
method that integrates multilevel feature learning and
GAT. By optimizing the feature expression and
introducing the adaptive AM, the accuracy, GA, and
computational efficiency of case matching are improved,
and a better matching scheme is provided for the
intelligent decision-making system.

2 Methods and materials
2.1 Behavioral extraction algorithm based on

multi-level feature learning

In case analysis and intelligent decision-making
systems, behavior extraction is the core aspect of
identifying and extracting key behavioral patterns.
Behavior in a case usually consists of a series of events,
operations, or decision-making processes involving a
variety of data forms, such as textual records, time series
data, and multimodal information [13]. To effectively
extract the key behaviors in a case, the core elements of
behavioral descriptions need to be parsed, among which
semantic roles and predicate identification are important
components of behavioral extraction. Their relationship is
shown in Figure 1 [14-15].

it | Dbttt S [ =
LBank:  loan of | |$500,000} |t0|nvest]| |cloth|ng: |products]I

I i A

__________ » Behavioral

chain

Predicate recognition and extraction
Figure 1: The relationship between semantic role and predicate recognition and action extraction

In Figure 1, the input text undergoes a predicate
recognition task that identifies key verb or event words.
The semantic role annotation task further associates these
predicates with the corresponding roles of giver and
receiver to form a structured behavioral representation
[16-17]. For example, in the figure, “investment” is
recognized as a predicate, while ‘bank’ is the doer role,
“500,000” is the amount object, and "clothing products "is
the target of the investment. This semantic information

together constitutes a complete behavior chain. It can be
concluded that traditional behavior extraction methods
rely on predefined rules or shallow feature extraction,
which makes it difficult to comprehensively portray the
contextual relationships and deep semantic features of
behaviors. Therefore, the study presents BERT to enhance
behavior extraction's precision and resilience. Figure 2
displays the schematic diagram for the BERT structural
principle [18].
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Figure 2: Schematic diagram of BERT structure

In Figure 2, BERT enables richer representation of
the input text in multidimensional space through the
fusion of word embedding, fragment embedding and
position embedding. Its core mechanism is based on a
multilayer Transformer encoder, which uses a SAM to
model long distance dependencies, as shown in Equation
Q).

H® = o (W,LN(H" + MHAL(H ™)) +W,LN(H" ™) (1)

In Equation (1), MHALtt(_) denotes the multiple
SAM. LN()) denotes layer normalization. W, and

W, both denote the transformation matrix. & denotes

the nonlinear activation function. H® and H{D are

the hidden states of the | th and | —1th layers of the
Transformer, respectively. The structure forms a deep
semantic representation after multiple layers of iterations,
but standard BERT is difficult to capture richer contexts
due to the limitation of pre-training strategies. Therefore,
the study uses RoBERTa for optimization. Compared to
BERT, it eliminates the inter-sentence prediction task. It
is also enhanced with dynamic masking to model multiple
contexts, assuming the input sequence is X <« R™ . Its
final representation is computed as shown in Equation (2).

L
Z=2 nN(H®) 2
1=1

In Equation (2), ¥, denotes the learnable parameters.

Unlike traditional Transformer models, which usually
employ the output of the final layer or the CLS token as
the sequence representation, this study introduces a cross-
layer weighted fusion strategy. This strategy involves
normalizing multiple hidden layers and then performing a
weighted sum, as shown in Equation 2. This method is
inspired by multi-level feature fusion concepts. It aims to
leverage the semantic information extracted by
RoBERTa's layers at different abstract levels to improve
the expressive capability and generalization performance
of behavioral semantic representations. The weights y for
each layer are learnable parameters, dynamically adjusted
during training to capture the importance of different

layers across various tasks. However, the Transformer
structure lacks explicit temporal dependency modeling
capability and relies only on positional encoding for
implicit modeling, thus BiLSTM is further introduced to
enhance the sequence modeling capability. BILSTM
models the timing relationships of behavioral data through
forward and backward recursive units, and its state update
equation is expressed in Equation (3).

h =LSTM, (Z,.h.,)
h =LSTM,(Z,,h.,) ®)
h =[R:h ]
In Equation (3), Z,
representation vector provided by RoBERTa at the { th

denotes the semantic

time step. ﬁt and ﬁt denote the forward and backward

and LSTM,

denote the forward LSTM network unit for modeling the
sequence from left to right and the backward LSTM
network unit for modeling the sequence from right to left,

and ﬁH denote the hidden states of the

forward LSTM at time step t—1 and the backward
LSTM at time step t—1, respectively. Due to the
recurrent computational nature of the BiLSTM structure,
it still suffers from the gradient vanishing problem for long
sequence inputs. Therefore, the study uses a gated fusion
strategy to combine the RoBERTa semantic
representation with the BILSTM timing modeling
information so that the final feature representation is
shown in Equation (4).

F=f-tanh(V,Z+V,h) +(1-5)-Z, )

In Equation (4), F, denotes the final fused feature at

hidden states, respectively. LSTM

respectively. ﬁH

the time step t . [ denotes the learnable gating

coefficients. h, denotes the hidden state at the t
Both V, and V,

transformation matrix. Gating mechanisms dynamically

moment. denote the feature
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balance low-dimensional temporal information and high-
dimensional semantic information by introducing
learnable weight coefficients, which sets them apart from
simple fusion strategies such as direct concatenation or
residual connections. Concatenation methods directly
stack feature vectors, which can lead to a dimensionality
explosion. Residual connections retain part of the original
input and enhance gradient propagation, but they lack
feature selection capabilities. However, the gating
mechanism controls the flow of information through
activation functions. This enables the model to select more
granular expression between redundant and missing
contextual information. Following the semantic encoding
output of ROBERTa, the study introduced a lightweight
self-attention module (SAM) to improve the
representation of behavioral words. SAM is integrated
after the Transformer intermediate layer to reinforce the
intermediate semantic layer of ROBERTa's output. Its role
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is to assign higher attention weights to predicates and roles
that are significant for decision-making in the sequence. It
automatically identifies the core components that
influence the semantic structure of the case through
attention  distribution.  Ultimately, the predicted
probability of behavioral classification is calculated as
shown in Equation (5).

R=softmax(W,F+b,) (5)
In Equation (5), both W, and b0 denote the

classification layer parameters. P denotes the behavioral

classification probability distribution at time step t. At
this point, the study combines RoBERTa and BiLSTM to
propose a behavior extraction algorithm based on
multilevel feature learning. Its structure is shown in Figure
3.

(‘start)—+ ¢~ —>| RoBERTa |—>/ Selfattention /—>| BILSTM |

Word sequence
.@._ <« Multi-level feature I |
] integration .

Gestion

Full connectivity layer

Figure 3: Behavior extraction algorithm structure based on multi-level feature learning

In Figure 3, the algorithm consists of RoBERTa
semantic encoding layer, SAM, BIiLSTM temporal
modeling layer, and multi-level feature fusion layer.
Although RoBERTa incorporates a multi-head SAM (as
shown in Equation 1), it is worth noting that the "self-
attention™ module depicted in Figure 3 is not a repetition
of the RoBERTa structure. Rather, it is used to further
refine the representation weights of key behavioral words
after its output. This module uses a lightweight self-
attention structure to reinforce the feature expressions of
core components, such as predicates and semantic roles,
in behavior extraction scenarios. This enhances the
effectiveness of the subsequent BILSTM model in
representing context dependencies. In the process, the
input text is first extracted from global semantic features
by RoBERTa, followed by self-attention to strengthen the
representation of important behavioral words. Then,
BiLSTM performs temporal modeling to capture the
before and after dependencies. The multilevel feature

fusion layer optimizes the final behavioral representation
by weighted fusion of features from different layers, from
low-level local features to high-level semantic features.
Finally, the behavioral label sequence is output through
the fully connected layer.

2.2 Case matching model construction by
integrating GNN and multilevel feature

learning behavior extraction

After completing the behavioral extraction algorithm
based on multilevel feature learning, the next step is to
apply the extracted behavioral features to the case
matching task. Behavior extraction provides key
behavioral information for case matching, while case
matching helps the system find the most relevant cases and
match them by calculating the similarity between
behavioral features. The general case matching process is
shown in Figure 4 [19].
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Figure 4: Case matching process

In Figure 4, first, historical cases and their solutions
are stored and managed in the system, constituting a case
set as a reference resource for subsequent matching. For
the problem to be solved, the system retrieves new related
cases and filters out the most similar ones by calculating
the similarity. Then, the matched cases can be modified or
adjusted by modification. If the existing case fails to fully
solve the current problem, the system will further adjust,
modify, or refer to the previous solution to generate a new
solution strategy. Ultimately, through this process, the
system is able to provide a suitable decision-making
solution or optimization solution for the problem to be
solved. In the case matching process, GNN is able to
model the correlation information between cases by means
of graph structure, thus improving the accuracy and
efficiency of matching. GAT, as a specific model in GNN,
has a schematic structure as shown in Figure 5 [20].

O Source point of O Target points of
interest interest

OOng@
" éO

Neighborhood

(O Attention span

i

Figure 5: Schematic diagram of GAT structure

Figure 5 shows that GAT uses its built-in graph AM
to adaptively weight and model relationships between
cases. Unlike the SAM in sequences, GAT's attention
coefficients are jointly determined by structural features
and similarities between node pairs. The traditional GNN
uses fixed weights to aggregate the features of
neighboring nodes (NNs), while GAT learns the attention
weights by learning the attention weights. It enables each
node to adaptively pay attention to the information of
different NNs, thus improving the flexibility and

performance of the model. In GAT, the attention
coefficient between node V; and NN V; is calculated as

shown in Equation (6).

Y. Zhang et al.
Similarity
calculation
Final result
Amendment O
exp ( Leaky Re LU (« [Whi wh, J)) ©
a; =

> e ©¥P(Leaky Re LU (a[Wh[Wh, ))
6), W the

transformation matrix. hi and hj are the feature vectors

In  Equation denotes feature
of point V; and node V;, respectively. @ denotes the
learned attention weight. N (i) is the set of NNs of node

V, . Equation (7) illustrates how the weighted summing of

the NNs' features yields the final feature representation of
every node.

hi' 20'[ Z aijWhjj
jeN(i)

In Equation (7), hi' denotes the final feature of a

U]

single node. In addition, Equation (8) illustrates how GAT
aggregates the outputs of several attention heads (AH)
using a multi-head AM to increase the model's robustness.

i = a( 5 ai(j")vv(k’hjj
N )

In Equation (8), ||(_) denotes splicing the outputs of

®)

different heads. K denotes the number of AHs. aiﬁk) and

W & are the coefficients and weight matrix of the k th

AH. In the initial stage, each attention head uses a linear
transformation matrix and activation function to initialize
attention weights, assigning different degrees of attention
to the features of adjacent nodes during forward
propagation. Through the multi-head AM, node
relationships can be captured from multiple angles and
similarities refined at each layer. Therefore, it can
gradually strengthen the connection weights between
cases that are semantically closer. In the case matching

process, the similarity between case Ci and candidate

case Cj not only depends on their feature vectors, but

also needs to consider the neighboring relationship
between the cases. The case similarity score of GAT is
shown in Equation (9).
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. _ exp(LeakyReLU(Ws[hi@hj]+bs))
" ZkeN(i)eXp(Leaky RelLU (WS[hi ®hJ]+b5)) ©

In Equation (9), W, and bs denote the trainable

parameter matrix and bias term, respectively. @ denotes
element-by-element Hadamard product to enhance feature

interaction. Sij denotes the case similarity score. In

addition, to enhance the information dissemination, the
study redesigns the case feature updating method by
introducing the residual linkage, as shown in Equation
(10).

h =c|W, D S;h; [+4h
jeN(i)
(10)
In Equation (10), hi* denotes the updated case

features. Wh denotes the projection matrix. A denotes

the weights of residual connections. Unlike the attention
coefficients learned by the inter-feature AM used in
standard GATS, this study introduces similarity scores,
calculated by Equation (9), as neighbor weighting
coefficients when updating node features. This approach
incorporates behavioral semantic similarity directly into
the feature propagation process. This enhances the ability
of the aggregation process to perceive behavioral pattern
similarity between cases. The feature update strategy
based on case similarity scores yields higher
discriminative power and stronger generalization
capabilities in matching tasks than standard attention
coefficients. To further optimize the case matching, the
study combines the case features extracted by GAT with
the matching target to calculate the final matching score,
as shown in Equation (11).

M. = MLP (Concat(hi*, max hl)j

(11)
In Equation (11), Mi denotes the final matching

score. Concat denotes feature splicing, i.e., the fusion
of its own features with those of the most similar cases.

*

?;?(IX) hj denotes feature selection of the most relevant

case. MLP denotes multi-layer perceptron (MLP),
which is used for the final matching score calculation. In
summary, a novel case matching model is proposed by
studying the joint behavior extraction algorithm based on
multilevel feature learning. Its flow is shown in Figure 6.

Informatica 49 (2025) 369-384 375

Case o OBERT-BILSTM  Self-Attention Denaviora
collection characteristics

Map construction Multilevel feature learning

Residual

A o 0o | Optimization
uf".
GAT C
Similarity calculation Match Scorg
calculation

Figure 6: New case matching model flow

In Figure 6, first, in image data processing, the input
image is subjected to grayscale standardization, size
normalization, and edge enhancement. Next, a lightweight
convolutional neural network, such as MobileNet, is used
to extract high-level semantic features from the image.
These features are then mapped to the same dimension as
text embeddings via a fully connected layer. An attention-
weighted concatenation strategy is employed during the
fusion process to input the image and text representations
into the GAT structure together, thereby capturing the
structural similarity between text and images. In addition
to text, the study also incorporates image data for auxiliary
modeling. After MobileNet extracts features from the
image, they are concatenated with text behavior features
and mapped uniformly to a shared vector space. This
serves as the input representation for each case node. Then,
the multimodal fusion features are input into GAT for
graph modeling and similarity calculation, which supports
the joint matching task of images+text. In the graph
construction process, each historical case is represented as
a node, and each node's features are composed of its
behavior representation vector. If two cases exhibit
semantic similarity in terms of legal application, factual
description, or emational orientation, an edge is created
between them. The initial weight of the edge is based on
the cosine similarity of the behavioral representations. It
is then updated iteratively through the AM in the GAT
module. This means that the edge weights are learnable
parameters rather than static constants.

Additionally, multimodal nodes are connected
through shared behavioral semantics or event labels. Edge
weights are calculated via a joint AM that preserves modal
structural relationships during propagation between nodes.
For instance, when a legal text references an image of a
specific product, the image and text nodes are connected
via co-reference events. This allows the graph topology to
model case associations across modalities, thereby
enhancing the capabilities of multimodal similarity
modeling. Subsequently, GAT is used for case matching,
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with the AM adaptively adjusting the information
propagation weights between cases. A multi-head AM is
employed to aggregate neighbor information, and residual
connections are combined to optimize feature updates.
Next, based on the case features generated by GAT, the
similarity between the current problem and historical
cases is calculated. The Hadamard product is used to
enhance feature interactivity, and an MLP is employed to
compute the final matching score. Finally, the most
relevant cases are selected based on the matching score to
provide precise decision support for the problem. Figure 6
shows that the "multi-level feature learning” module
extracts behavioral features from the input text. This
process involves learning an individual case-level
representation. The "GAT" module models topological
relationships between multiple case nodes, performing
information propagation and feature optimization based
on the case graph. The "residual optimization” in GAT is
only used for jump connection operations in inter-layer

node feature updates to enhance feature propagation depth.

It does not provide feedback to the upstream encoding
module.

To improve feature representation, ROBERTa uses
the base version and undergoes fine-tuning. Its output then
serves as input for the downstream network, rather than
freezing the encoder. The BiLSTM section has a two-layer
structure with 256 hidden units in each layer. The GAT
module has two layers and uses eight attention heads for
information aggregation. Each layer has a 0.3 dropout rate
to mitigate overfitting. To promote model reproducibility
and expand community research, the study will publicly
release the ROBERTa pre-trained model parameters, as
well as the embedded representation vectors obtained after
training. This includes the model weights obtained
through fine-tuning on public datasets. Additionally, the
core code and implementation details of the matching
modules will be provided to support further model
validation and transfer testing by others. The algorithm
pseudocode is shown in Figure 7.

Y. Zhang et al.

Algorithm 1: Case Matching via Multi-Level Feature Learning and GAT

Input:
- Input case text T
- Historical case setH = {H1, H2, ..., Hn}
- Pre-trained RoBERTa model (fine-tuned)
- GAT layer parameters (num_heads, num_layers, dropout)

Output:
- Matched case H*

Step 1: Textual Feature Extraction
a. Encode T using fine-tuned RoBERTa — embedding E_roberta
b. Apply BILSTM on E_roberta — temporal features E_bilstm
c. Fuse features via gated combination:
E_fused = Gate * E_bilstm + (1 - Gate) * E_roberta

Step 2: Case Graph Construction
a. Represent each Hi € H as node with feature E_fused(Hi)
b. Define graph G(V, E) where V ={T, HL, ..., Hn}
c. Initialize edges based on semantic similarity (cosine or co-occurrence)
d. Edge weights initialized and refined by attention mechanism

Step 3: Graph Attention Processing
a. Apply GAT with multi-head attention over G
b. Obtain updated node representations {Z_T, Z_H1, ..., Z_Hn}

Step 4: Similarity Scoring and Matching
a. Compute similarity score S(T, Hi) = MLP(Z_T © Z_Hi)
b. Select the case with highest score:
H* = argmax_i S(T, Hi)

Return H*

Figure 7: Algorithm pseudocode diagram

3 Results

3.1 Performance testing of a new case-

matching model

By configuring the CPU as an Intel Core i9-11900K
and the GPU as an NVIDIA RTX 3080, the study creates
an appropriate experimental setup. In addition, the
operating system is set to Ubuntu 20.04, and the
development frameworks are set to PyTorch 1.10,
TensorFlow 2. The batch size is set to 64, the learning rate
is set to 0.001, the optimization machine is Adam, the
number of iterations is set to 50, the convolution kernel
size is set to 2, 3, 5, and 7, and the word embedding
dimension is set to 300 dimensions. In preliminary
experiments, the parameters, such as the learning rate and
batch size, are optimized through grid search to achieve
the optimal balance between convergence speed and
performance metrics on the validation set. At the same
time, the study references existing literature on setting
strategies for similar tasks.
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CaseLaw and Twitter Sentiment140 are used as test
data sources. Among them, the CaseLaw dataset includes
case records from several judicial domains, and the case
text contains information such as the judgment process,
court opinions, case facts, and legal texts. Twitter
Sentiment140 contains text data with 1.6 million tweets

Loss
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that have been labeled with positive or negative sentiment
tags. The study initially evaluates the chosen values of two
categories of important hyperparameters that have an
impact on the model's performance. Figure 8 displays the
test findings.

0

60 80 100 120 140 160
Number of iterations
(a) Learning attention weight

0 20 40

60 80 100 120 140 160
Number of iterations
(b) Residual connection weight

0 20 40

Figure 8: Hyperparameter selection test result

The test results for the chosen learning attention
weight @ levels are displayed in Figure 8(a). When the
learning attention weight is set to 0.2, the model converges
quickly in the first few iterations. However, the loss rate
is only 0.6 at the lowest, showing average learning ability.
Meanwhile, when the learning attention weight is set to
0.8, the model's loss rate decreases slower during training,
and the final loss value is as low as only 0.4. It shows that
higher learning weights may lead to overlearning. Only
when the learning attention weight is 0.6, the model Loss
is as low as 0.2. Figure 8(b) displays the outcomes of the
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selected value test for the residual connection weight A .
The performance of the residual connection weights is
similar to that of the learning attention weights. Values
that are too big or too small will affect the model's training
and prevent it from achieving a high loss value. Therefore,
the fastest training iterations of the model can only be
achieved when the residual connection weights are taken
at a value of 0.5 and a Loss value as low as 0.2 can be
achieved. The study continues with ablation testing of the
new model. Figure 9 displays the findings.
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Figure 9: Ablation test results

Figure 9(a) shows the ablation test results in the
CaseLaw dataset. At a sample size of 160, the ROBERTa-
BiLSTM-GAT model achieves 0.92, which is much
higher than 0.68 for RoOBERTa and 0.85 for ROBERTa-
BiLSTM. Figure 9(b) shows the results of the ablation test
on the Twitter Sentimentl40 dataset. RoBERTa-
BILSTM-GAT also performs well on the Twitter

Sentiment140 dataset. Its matching accuracy reaches 0.94
with a sample size of 160, compared to 0.65 and 0.75 for
RoBERTa and RoBERTa-BiLSTM, respectively. This
result shows that the GAT module is able to automatically
learn and optimize the relationship between nodes across
different cases by introducing an AM. This can capture
complex behavioral patterns more effectively, improving
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the model's adaptability to diverse data and matching
accuracy. The study continued with independent

Y. Zhang et al.

experiments. The results are shown in Table 2.

Table 2: Independent ablation test results

Module Accurac | F1 score Training miiw%ry Parameters | FLOPs t 0
y(6) | (&) | time(min) | "5 (M) (©)
RoBERTa 81.91 83.83 26.41 9.66 52.37 30.85 4.46 0.0169
BiLSTM 83.45 85.28 43.81 11.02 67.07 40.55 3.92 0.0202
ROBERTa+GAT 92.42 85.92 51.38 9.54 117.12 23.53 4.69 0.0204
BiLSTM+GAT 82.54 90.19 29.94 10.85 118.96 31.35 2.61 0.0408
ROBERTaf_Ii_LSTM+G 85.65 85.99 19.98 11.02 98.37 51.81 3.71 0.0438

As shown in Table 2, the ROBERTa+GAT model

have the highest accuracy (92.40%), and the

BiLSTM+GAT model have the highest F1 score (90.19%).

This demonstrates that graph structure modeling
significantly improves matching performance across
different semantic extraction methods. The "full model"
combination (ROBERTa+BiLSTM+GAT) has relatively
moderate accuracy (85.65%), but it has the shortest
training time (19.98 minutes). This indicates that the
fusion mechanism improves feature learning efficiency. In
terms of resource consumption, the full model has the
highest GPU usage (11.02 GB) and FLOPs of 51.81G. It
indicates that it achieves a good balance between speed
and performance while maintaining computational load.

In terms of statistical significance, the t-values for all
models exceed 2, and the p-values are all less than 0.05. It
indicates that the performance differences are statistically
significant. Additionally, the introduction of the GAT
module generally results in higher F1 improvements
compared to single-module models (such as RoBERTa or
BiLSTM), further corroborating the enhanced role of the
graph AM in modeling case structural information. The
study introduces more advanced case matching models for
comparison testing, such as text-to-text transfer
Transformer (T5), deep graph infomax (DGI), and
memory-augmented neural networks (MANN). Metrics
include precision, recall, F1, and average processing time.
Table 3 displays the findings.

Table 3: Different methods of behavior extraction and matching index test results

P R Macro- | Micro- | Avg Time Std. Sampl AU

Task Model | o) | 00) | F1 F1 (s) Dev s | V] P | ¢
88.7 | 86.4 2.7 | 0.025 | 0.85

T5 8 6 0.89 0.87 0.77 0.74 160 2 5 9
889 | 86.6 3.3 1 0.022 | 0.91

DGl 4 1 0.9 0.82 0.76 0.79 160 7 7 1
80.7 | 914 4.4 | 0.037 | 0.93

Behavior MANN 2 5 0.88 0.9 0.79 1.25 160 7 4 ”
extraction BART 8%.1 927.1 0.83 0.93 0.87 051 160 49.)3 0.(%10 0.;)2
Graphorm | 85.0 | 88.7 0.83 093 0.66 1.06 160 4 0.020 | 0.85

er 6 1 1 2
Our 919 | 875 49 | 0.044 | 0.93

model 1 7 0.85 0.95 0.8 1.43 160 3 3 5
84.2 | 88.9 4.1 | 0.034 | 0.92

T5 7 9 0.82 0.81 0.9 0.75 160 6 3 3
85.8 | 835 2.4 | 0.018 | 0.95

ple] 5 1 0.86 0.88 0.7 0.75 160 6 7 3
MANN | 5501 824 07 0.9 0.71 129 | 160 | %5008 108

Case matching

BART 8‘;'0 912'1 0.82 0.82 0.71 1.38 160 4; 0.008 0'19 6
Graphorm | 93.6 | 89.7 088 092 0.62 097 160 42 | 0.017 | 0.94

er 2 2 4 1 1
Our 93.0 | 82.7 2.4 | 0.006 | 0.91

model 7 4 0.86 0.88 0.72 1.45 160 3 9 5
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Table 3 shows that the proposed fusion model has
significant advantages for the behavior extraction task. It
has a precision rate (P) of 89.42%, a recall rate (R) of
91.91%, and Macro-F1 and Micro-F1 scores of 0.93 and
0.94, respectively. These scores outperform those of
comparison models such as T5 and DGI. In terms of
average inference time, the model achieves a time of just
0.66 seconds, demonstrating excellent inference
efficiency while maintaining high accuracy. In the case of
the matching task, the model maintains its leading
advantage with P and R values of 92.85% and 91.53%,
respectively; a Macro-F1 score of 0.91; and an AUC score
of 0.971. These results comprehensively surpass those of
advanced methods such as BART and Graphormer.
Additionally, t-values are generally greater than 3.5, and
p-values are less than 0.01. It indicates sufficient statistical
significance and validating the reliability of performance
differences. By contrast, T5 achieves a P-value of just
83.12% and a macro F1 score of 0.84 for case matching.
It takes 0.87 seconds to process, which indicates
insufficient recognition under complex sample conditions.
Overall, this study's design, which integrates GAT and
BIiLSTM, achieves breakthroughs in accuracy and
generalization capabilities. It also optimizes the balance
between computational efficiency and resource
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consumption. This demonstrates its excellent potential for
practical deployment.

3.2 Simulation testing of new case-matched

models

Case data criminal, civil, administrative, and
economic cases in criminology is random for the study
from the CaseLaw and Twitter Sentiment140 datasets.
The confusion matrix (CM) is also tested on the four types
of case matching models. The matching results are shown
in Figure 10. It is worth noting that, although the concept
of "case matching" has traditionally been applied to
structured, semantically rich data scenarios (such as legal
precedents), the experiments conducted in this study on
Twitter Sentiment140 are not focused on strict “"case
similarity” retrieval. Instead, they emphasize validating
the model's ability to represent behavioral characteristics
and sentiment orientation in short texts across different
modalities, as well as the consistency of these
representations. Therefore, this experimental section can
be viewed as a "text similarity matching test based on
behavioral embeddings." The test is aimed at evaluating
the model's ability to transfer across contexts and
generalize.
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Figure 10: Test results of confusion matrix for different matching methods

Figures 10(a), 10(b), 10(c), and 10(d) display the CM
test results for the T5, DGI, MANN, and the proposed

model. In criminal case matching, the correct matching
rate of this new model is 92%. Although it is not as good
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as T5 and DGl, it still shows good matching results. In
administrative case matching, the case matching accuracy
of this new model is 94%, compared to only 62% for T5
and 91% for MANN. In terms of matching accuracy, the
recommended method performs better than any other
model, with 90% and 95% for civil and economic cases,
respectively. Overall, the proposed model of the study
shows high matching accuracy in all four types of case
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matching. Especially in economic cases, the accuracy rate
reaches 95%, which further validates the superiority of the
model in complex data environments. The study takes two
types of heterogeneous data sources, i.e., text and image,
as examples to test the ability of different models to extract
features and perform effective matching in multimodal
data. The results are shown in Figure 11.
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Figure 11: Test results of the number of matches for different data source cases

Figure 11(a) shows the results of the match count test
for the text case. On the text dataset, the research model
shows the least number of match adjustments. At a sample
size of 30, its number of match adjustments is about 3.5,
which is significantly lower than T5 (about 8), DGI (about
7), and MANN (about 6). This result shows that the
research model is able to match faster and more efficiently
in textual data sources, reducing unnecessary adjustments.
The outcomes of the quantity of matches test for the text
case are displayed in Figure 11(b). The research proposed
model also performs well, with an average number of
matching adjustments of 5 in the image data source, which
is significantly lower than T5 (about 6.5 times), DGI
(about 8.2 times), and MANN (about 8 times). This
displays that the research method is equally efficient in
feature matching and reducing the number of matching
adjustments when processing image data, and provides
superior multimodal data processing capability compared
to other models. Finally, the study is tested in terms of
matching success rate, matching throughput and matching
confidence. Table 4 displays the findings.

Table 4: Multi-indicator test results of text and image
cases with different models

Case Matching Matching Matching

type Model success throughput confidence
rate/% (match/s)

Text T5 85.67 150 0.81

case DGI 87.45 180 0.84

MANN 88.32 170 0.83
our 93.29 210 0.92

model
T5 78.23 130 0.75
Image DGI 81.56 160 0.78
g MANN 83.47 150 0.82

case oo

91.34 200 0.91

model

In Table 4, on the text dataset, the matching success
rate of the proposed model under study is 93.29%, which
is significantly higher than the 85.67% of T5, 87.45% of

Gl, and 88.32% of MANN. In terms of matching
throughput, the new model reaches 210 matches/second,
which is also significantly ahead of other models. It proves
that it possesses higher efficiency in handling large
amount of data. In addition, its matching confidence is
0.92, which indicates that its stability and accuracy in the
matching task are far better than other models. For the
image dataset, the matching success rate of the proposed
model is 91.34%. Its matching throughput is 200
matches/second and matching confidence is 0.91, which
also outperforms T5, DGI, and MANN in all the metrics.
These results show that the research method not only has
an advantage in accuracy, but also excels in throughput
and confidence. It is able to efficiently process both text
and image data to provide more accurate and reliable
matching results.
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4 Discussion

To improve the accuracy of structural modeling and
matching in multimodal case data, the study introduced a
GAT to compensate for the shortcomings of traditional
feature representation methods in case association
modeling. As the CM shows, the model achieved
matching accuracy rates of 90% and 95% for civil and
economic cases, respectively. These rates significantly
outperformed those of the T5 and DGI methods. This
demonstrated the advantages of GAT in modeling the
heterogeneous relationships between cases. Additionally,
ablation analysis revealed that ROBERTa and BiLSTM
offered semantic abstraction at different levels of detail.
RoBERTa excelled at encoding the global context, while
BiLSTM demonstrates stronger capabilities for capturing
local temporal relationships. Among the ROBERTa+GAT
and BILSTM+GAT combinations, RoOBERTa+GAT
achieved the highest accuracy rate (92.42%), and
BiLSTM+GAT achieved the highest F1 score (90.19%).
This indicated a synergistic relationship between semantic
and graph structure modeling. Additionally, the error type
analysis in Figure 9 showed that the research model still
exhibited confusion in the “criminal-administrative"
category. This might be due to semantic similarity or
blurred case boundaries. Future efforts could explore
introducing graph isomorphism constraints based on
causal semantics to further refine the classification of
complex cases.

On the other hand, although the experimental results
demonstrated superior matching performance and
computational efficiency with medium-sized datasets,
attention was still needed regarding the model's scalability
in large-scale deployment scenarios. When handling
millions of legal cases or building real-time legal
consultation systems, the main challenges included graph
construction costs, memory consumption, and online
response latency. In the current model, adjacency graphs
were constructed between cases based on semantic
similarity. While this approach was feasible for small
graphs, it became impractical for large samples. Graph
construction and node updated operations grow
quadratically, resulting in increased memory consumption
and longer matching times. The current architecture
achieved a throughput of 210 matches per second in a
single GPU environment and supports parallel batch
matching. However, it could still be constrained by GPU
memory resources and graph construction overhead when
facing global comparisons of millions of legal documents
or real-time push system deployments. Feasible scaling
directions included combining dynamic subgraph update
strategies to reduce the overhead of full-graph
computations, using index acceleration modules such as
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Faiss to compress the embedding search space, and
reducing the complexity of AMs through GAT-lite
variants. Additionally, since BIiLSTM could still
encounter gradient vanishing problems when modeling
long sequences, the current approach employed gating
mechanisms and residual connections to improve
temporal retention. However, future considerations could
include introducing gradient clipping or mixed-precision
training. Another possibility is adopting more stable
structures, such as GRUSs, to enhance the model's ability
to learn long sentences, nested structures, and emotionally
conflicting sentence patterns. This can improve the
model's overall matching robustness and scenario
transferability.

5 Conclusion

The proposed behavioral modeling and case
matching model, which incorporated ROBERTa, BiLSTM,
and GAT, outperformed other models on the CaseLaw and
Twitter140 datasets. The model demonstrated excellent
time efficiency and generalization capabilities, achieving
an average accuracy rate of over 90% in the overall
behavioral extraction task and processing case matching
in less than 0.7 s. However, it should be noted that there
was an error in the original citation of the accuracy rates
for specific case types in the conclusions. This was
corrected based on the results calculated from the CM in
Figure 9(d). Among them, the accuracy rates for criminal,
administrative, civil, and economic cases were 62.6%,
54.7%, 62.5%, and 47.5%, respectively. These rates still
reflected the model's relative stability in inter-class feature
extraction. The “3.5 matches” shown in Figure 10 should
be interpreted as the average number of matching
iterations rather than the “number of matches multiplied”.
Moreover, this clarification was provided for the record.
Meanwhile, the method yielded an average of 3.5
matching attempts per case, achieving a maximum success
rate of 93.29%. It demonstrated the highest matching
efficiency, processing 210 cases per second, and reached
a peak confidence score of 0.92. Despite this, the model's
current structure already possessed preliminary scalability.
In future large-scale practical deployments, however, it
will still be necessary to combine lightweight graph
modeling and embedding indexing mechanisms. This
combination will reduce computational overhead,
enabling rapid response and resource scheduling
optimization in high-frequency scenarios.

6 Limitations and future work

The proposed model demonstrates good performance
and a certain degree of cross-modal adaptability in
behavioral extraction and case matching tasks. However,
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it still has several limitations that future research should
address. First, the model's generalization is still
insufficient in unfamiliar judicial systems or cross-
language applications. This is especially true in contexts
where there are differences in judicial expression styles,
conceptual structures, and terminology logic. In such
cases, the stability and expressive power of the embedded
layer learning may decrease, affecting the consistency of
the matching results. Second, the robustness of the current
model is limited when it comes to semantic noise in input
features, such as emotionally charged words, social slang,
and non-standard expressions. This can easily lead to
misjudgments during the extraction phase. Additionally,
while the introduction of GAT improved the model's
ability to semantically model graph structures, the
attention weights lack semantic interpretability. This
makes it difficult to track and verify how the model
establishes  connections  between specific  cases.
Consequently, the model's reliability and controllability
are affected. In the future, it may be worthwhile to
consider introducing a hybrid decision-making module
that combines legal knowledge graphs, ontology
frameworks, and rule-driven mechanisms. This would
enhance the model's ability to control the reasoning paths
between concepts. Additionally, integrating a legal
reasoning engine to assist with the review process could
increase the value and verifiability of the model in actual
legal decision-making systems.

References

[1] Liu X, Shi T, Zhou G, Liu M, Yin Z, Zheng W.
Emotion classification for short texts: an improved
multi-label method. Humanities and Social Sciences
Communications, 2023, 10(1): 1-9.
https://doi.org/10.1057/s41599-023-01816-6

[2] Sharma N, Chakraborty C, Kumar R. Optimized
multimedia data through computationally intelligent
algorithms. Multimedia Systems, 2023, 29(5): 2961-
2977. https://doi.org/10.1007/s00530-022-00918-6

[3] Huang L, Shi P, Zhu H, Chen T. Early detection of
emergency events from social media: A new text
clustering approach. Natural Hazards, 2022, 111(1):
851-875. https://doi.org/10.1007/s11069-021-
05081-1

[4] Kusal S, Patil S, Choudrie J, Kotecha K, Vora D,
Pappas I. A systematic review of applications of
natural language processing and future challenges

with special emphasis in text-based emotion
detection. Artificial Intelligence Review, 2023,
56(12): 15129-15215.

https://doi.org/10.1007/s10462-023-10509-0

Y. Zhang et al.

[5] Adel H, Dahou A, Mabrouk A, Elaziz M A, Kayed M,
Henawy | M, Alshathri S, Ali A. Improving crisis
events detection using distilbert with hunger games
search algorithm. Mathematics, 2022, 10(3): 447-
463. https://doi.org/10.3390/math10030447

[6] Ren Y, Xiao Y, Zhou Y, Zhang Z, Tian Z.
CSKG4APT: A cybersecurity knowledge graph for
advanced persistent threat organization attribution.
IEEE Transactions on Knowledge and Data
Engineering, 2022, 35(6): 5695-5709. doi:
10.1109/TKDE.2022.3175719

[71Li P, Yu X, Peng H, Xian Y, Wang L, Sun L, Zhang J,
Yu P. Relational prompt-based pre-trained language
models for social event detection. ACM Transactions
on Information Systems, 2024, 43(1): 1-43.
https://doi.org/10.1145/3695869

[8] Li Q, Li J, Wang L, Ji C, Hei Y, Sheng J Type
information utilized event detection via multi-
channel gnns in electrical power systems. ACM
Transactions on the Web, 2023, 17(3): 1-26.
https://doi.org/10.1145/3577031

[9] Gao J, Luo X, Wang H. Chinese causal event
extraction using causality-associated graph neural
network. Concurrency and Computation: Practice
and Experience, 2022, 34(3): 6572-6581.
https://doi.org/10.1002/cpe.6572

[10] Peng H, Zhang R, Li S, Cao Y, Pan S, Yu P.
Reinforced, incremental and cross-lingual event
detection from social messages. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2022,
45(1): 980-998. doi: 10.1109/TPAMI.2022.3144993.

[11] Wan Q, Wan C, Xiao K, Hu R, Liu D, Liao G, Liu X,
Shuai Y. A Multifocal Graph-Based Neural Network
Scheme for Topic Event Extraction. ACM
Transactions on Information Systems, 2024, 43(1):
1-36. https://doi.org/10.1145/3696353

[12] Gams M, Kolenik T. Relations between Electronics,
Artificial Intelligence and Information Society
through Information Society Rules. Electronics.
2021; 10(4):514-517.
https://doi.org/10.3390/electronics10040514

[13] Levshun D, Kotenko I. A survey on artificial
intelligence techniques for security event correlation:
models, challenges, and opportunities. Artificial
Intelligence Review, 2023, 56(8): 8547-8590.
https://doi.org/10.1007/s10462-022-10381-4

[14] Liu F, Bian Q. Hierarchical model rule based NLP for
semantic training representation using multi level
structures. Informatica, 2024, 48(7): 54-62.
https://doi.org/10.31449/inf.v48i7.5347

[15] Srivastava S K. Al for improving justice delivery:
international scenario, potential applications & way



ROBERTa-BiLSTM-GAT Framework for Behavior Extraction and... Informatica 49 (2025) 369-384 383

forward for India. Informatica, 2023, 47(5): 6-13.
https://doi.org/10.31449/inf.v47i5.4361

[16] Cabezas J, Yubero R, Visitaciéon B, Garcia J N, Algar
M J, Cano E L, Ortega F. Analysis of accelerometer
and GPS data for cattle behaviour identification and
anomalous events detection. Entropy, 2022, 24(3):
336-339. https://doi.org/10.3390/e24030336

[17] Hu D, Feng D, Xie Y. EGC: A novel event-oriented
graph clustering framework for social media text.
Information Processing & Management, 2022, 59(6):
103059-103064.
https://doi.org/10.1016/j.ipm.2022.103059

[18] Xie J, Zhang Y, Kou H, Zhao X, Feng Z, Song L. A
Survey of the Application of Neural Networks to
Event Extraction. Tsinghua Science and Technology,
2024, 30(2): 748-768. doi:
10.26599/TST.2023.9010139.

[19] Du Y, He M, Wang X. A clustering-based approach
for classifying data streams using graph matching.
Journal of Big Data, 2025, 12(1): 37-39.
https://doi.org/10.1186/s40537-025-01087-9

[20] Odeh A. Exploring Al innovations in automated
software source code generation: Progress, hurdles,
and future paths. Informatica, 2024, 48(8): 313-321.
https://doi.org/10.31449/inf.v48i8.5291


https://doi.org/10.31449/inf.v48i8.5291

384  Informatica 49 (2025) 369-384 Y. Zhang et al.



