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As big data and information technology continue to develop, improving the effectiveness of behavior 

extraction and case matching in intelligent decision-making systems has become an urgent need. To this 

end, this study proposes a behavior extraction and case matching model combining multi-level feature 

learning and graph neural networks. Methodologically, the behavior feature extraction module is 

constructed using a robustly optimized Transformer encoder representation model and a bidirectional 

long short-term memory network. A graph attention network is introduced to optimize the topological 

matching mechanism between cases. The model was validated on the CaseLaw and Twitter Sentiment140 

datasets. The experimental results showed that the model achieved F1 scores of 90.89% and 93.89% for 

the behavior extraction and case matching tasks, respectively. The average processing time for matching 

was as short as 0.63 seconds. Compared with advanced methods such as T5, DGI, and MANN, this model 

demonstrated significant advantages in terms of accuracy, recall rate, and matching efficiency. 

Additionally, in testing with text-image multimodal data, the proposed model achieved an average 

matching adjustment count of approximately 3.5, a matching throughput of up to 210 times per second, 

and a matching confidence score of up to 0.92. These results fully validate the superiority and practicality 

of this method in complex behavioral pattern analysis. 

Povyetek: Za področje prava in večmodalnih podatkov je razvit model RoBERTa-BiLSTM-GAT, ki 

združuje večnivojsko semantično učenje z grafno pozornostjo za hkratno ekstrakcijo vedenj in ujemanje 

primerov. Jedro prispevka je adaptivno tehtanje konteksta ter topoloških razmerij med primeri, razširjeno 

na besedilno-slikovne vhode z lahkim večmodalnim zlitjem in rezidualno optimizacijo za stabilno, 

razložljivo ujemanje. 

 

1 Introduction 
The use of behavior extraction and case matching 

technologies in intelligent decision-making systems has 

grown in popularity in recent years due to the quick 

growth of big data, artificial intelligence, and natural 

language processing (NLP) technologies. The technology 

not only plays a core role in the fields of judicial precedent 

analysis, financial risk control, medical diagnosis, and 

intelligent recommendation, but also shows important 

application value in network security, social media public 

opinion monitoring, and emergency event warning [1-2]. 

Although traditional behavior extraction methods rely on 

rule matching and feature engineering and can achieve 

some success in structured data environments, they still 

face serious limitations when dealing with massive, 

unstructured, and multimodal data. On the one hand, rule 

matching methods need to manually define a large number 

of complex rules, which makes it difficult to cope with 

diverse and dynamically changing behavioral patterns. On 

the other hand, feature engineering-based methods are 

highly dependent on data quality and lack deep 

understanding of contextual information, resulting in 

limited generalization ability (GA) of the model. Recent 

years witnessed a notable advancement in machine  

 

learning-based behavior extraction techniques due to the 

quick development of deep learning and NLP. Huang et 

al. proposed a similar event matching algorithm by joint  

bidirectional encoder representations from Transformers 

(BERT) and bidirectional long short-term memory 

(BiLSTM) behavioral extraction of text data in order to 

detect early and process emergency events quickly. The 

outcomes demonstrated that the algorithm had a good 

performance and high timeliness in case processing of 

some real emergencies [3]. Kusal et al. proposed a method 

for extracting emotional information from text that 

combined graph neural networks (GNNs). This method 

was designed to provide a deeper understanding of the 

emotional state expressed in opinions and text 

conversations. Experimental results showed that this 

method accurately extracted emotional information from 

various case files, providing users with clearer emotional 

feedback [4]. Adel et al. proposed an alternative event 

detection model for Hunger Games search based on BERT 

and neumatic heuristic techniques. According to the 

experimental results, the model demonstrated excellent 

data behavior extraction when compared to the most 

advanced event detection model [5]. Ren et al. proposed a 

threat knowledge extraction algorithm by combining 

knowledge graph technology and improved GNN. The 
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experimental results indicated that the algorithm was more 

accurate and time-sensitive for threat behavior extraction 

in intelligence [6]. 

In recent years, methods such as multilevel feature 

learning and GNN have become important research 

directions for solving behavior extraction and case 

matching problems [7]. Li et al. found that the finite length 

of short electronic record texts led to severe information 

sparsity. Therefore, this study combined GNN to propose 

a learning mechanism for power system event detection. 

The results showed that the mechanism achieved 

convincing results on general domain event detection 

datasets [8]. Gao et al. found that the linguistic complexity 

and ambiguity of textual descriptions in causal event 

extraction tended to lead to a less accurate extractor. 

Therefore, the researchers proposed a novel intra-event 

causality extraction method by combining GNN and 

causal association graph. The results indicated that the 

method outperformed the most advanced baseline method 

on two publicly available datasets [9]. Peng et al. argued 

that existing streaming social messaging event detection 

methods usually face ambiguous event features and thus 

have low accuracy and generalization capabilities. For this 

reason, the researchers proposed a new reinforcement-

weighted multi-relational GNN framework based on 

GNN. The results showed that the framework 

demonstrated superior robustness and accuracy in a wide 

range of cross-lingual social event detection [10]. 

According to Wan et al., the primary goal of all event 

extraction in NLP to date has been to extract events from 

sentences. Because of this, the researchers used GNN to 

extract event behavior before creating a multi-focus 

graph-based framework to manage the extraction task. 

Numerous tests proved the method's efficacy, and the 

outcomes revealed that it performed better than the most 

sophisticated baseline techniques. [11]. Gams et al. 

primarily use twenty-four laws of the information society 

to explain the relationship between the information society, 

electronics, and artificial intelligence. These laws 

constitute a new set that is not currently present in the 

literature and highlight the core driving mechanisms of the 

information society and advances in artificial intelligence 

[12]. A summary comparison of the various literature 

sources is shown in Table 1. 

 

Table 1: Summary comparison of various methods 

Author(s) Method/Model Advantages (Specific Metrics) Limitations/Drawbacks 

Huang et al. [3] BERT+BiLSTM 
High timeliness, suitable for 

emergency cases 
Lacks graph-structured optimization 

Kusal et al. [4] 
GNN for sentiment 

extraction 

Accurately captures emotions 

across multiple case files 

Lacks temporal modeling; weak 

generalization 

Adel et al. [5] BERT+heuristic search 
High extraction accuracy; 

outperforms baseline methods 

No contextual semantic fusion 

mechanism 

Ren et al. [6] 
Knowledge 

graph+improved GNN 

High accuracy in threat behavior 

extraction; fast response 

Relies heavily on entity relationship 

quality 

Li et al. [7] GNN for event detection 
High detection rate; effective for 

sparse short texts 

Limited ability in modeling complex 

relationships 

Gao et al. [9] GNN+causal graph 
Significant F1 improvement; 

handles ambiguous texts well 
Efficiency issues on large-scale data 

Peng et al. [10] Multi-relational GNN 
Strong robustness; high accuracy in 

cross-lingual detection 

Complex feature fusion; high training 

cost 

Wan et al. [11] Multi-focal GNN 
Superior to baselines in multitask 

event extraction 
Adaptability to long text unclear 
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Gams et al. [12] Information society laws 
Introduces new theoretical 

perspectives in AI and information 

Lacks empirical validation or dataset 

application 

In conclusion, behavior extraction and case matching 

have advanced significantly in previous research. 

However, these methods perform poorly when dealing 

with multimodal data, which lacks effective hierarchical 

feature modeling. Furthermore, they cannot make full use 

of graph structure information to optimize the similarity 

calculation between cases during case matching. To 

address the above issues, the study proposes a behavior 

extraction and case matching algorithm that incorporates 

multilevel feature learning and GNN, aiming to further 

improve the effectiveness of case matching and decision 

making at this stage. Specific objectives include (1) There 

is a need to develop a multi-level semantic feature 

extraction module based on RoBERTa and BiLSTM to 

capture both local and global behavioral information. (2) 

There is a need to introduce graph attention networks 

(GATs) to optimize similarity computation by modeling 

complex inter-case relationships through adaptive 

attention mechanisms (AMs). (3) The models are 

systematically evaluated for matching accuracy, 

processing efficiency and robustness on legal and social 

multimodal datasets such as CaseLaw and Twitter 

Sentiment140. First, robustly optimized bidirectional 

encoder representations from Transformers approach 

(RoBERTa) with BiLSTM combined with self-attention 

mechanism (SAM) is used to extract multilevel semantic 

from input text features. Second, the case knowledge 

graph is constructed based on the relationship between the 

cases, and the topological information between the cases 

is modeled using GAT. The study's innovations include: 

On the one hand, a multi-level feature fusion technique is 

suggested, allowing the model to capture both global 

semantic information and local behavioral patterns. On the 

other hand, GAT is introduced for case matching, which 

optimizes the matching weights between cases through an 

adaptive AM to improve the model's ability to model 

complex behavioral data. The contribution of the study is 

to propose a behavior extraction and case matching 

method that integrates multilevel feature learning and 

GAT. By optimizing the feature expression and 

introducing the adaptive AM, the accuracy, GA, and 

computational efficiency of case matching are improved, 

and a better matching scheme is provided for the 

intelligent decision-making system. 

 

2  Methods and materials 

2.1 Behavioral extraction algorithm based on 

multi-level feature learning 

In case analysis and intelligent decision-making 

systems, behavior extraction is the core aspect of 

identifying and extracting key behavioral patterns. 

Behavior in a case usually consists of a series of events, 

operations, or decision-making processes involving a 

variety of data forms, such as textual records, time series 

data, and multimodal information [13]. To effectively 

extract the key behaviors in a case, the core elements of 

behavioral descriptions need to be parsed, among which 

semantic roles and predicate identification are important 

components of behavioral extraction. Their relationship is 

shown in Figure 1 [14-15]. 

Semantic 

role

Bank loan of $500,000 to invest clothing products

Predicate Predicate

Predicate recognition and extraction

Subject
Behavioral 

chain

 

Figure 1: The relationship between semantic role and predicate recognition and action extraction 

 

In Figure 1, the input text undergoes a predicate 

recognition task that identifies key verb or event words. 

The semantic role annotation task further associates these 

predicates with the corresponding roles of giver and 

receiver to form a structured behavioral representation 

[16-17]. For example, in the figure, “investment” is 

recognized as a predicate, while ‘bank’ is the doer role, 

“500,000” is the amount object, and "clothing products "is 

the target of the investment. This semantic information 

together constitutes a complete behavior chain. It can be 

concluded that traditional behavior extraction methods 

rely on predefined rules or shallow feature extraction, 

which makes it difficult to comprehensively portray the 

contextual relationships and deep semantic features of 

behaviors. Therefore, the study presents BERT to enhance 

behavior extraction's precision and resilience. Figure 2 

displays the schematic diagram for the BERT structural 

principle [18].  
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Yesterday this boy was flying a kite on the lawn

Token embeddings Token embeddings Token embeddings

Yesterday this boy was flying a kite on the lawn
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E0 E1 E2 E3 E4 E5 E6 E7 E8 E9

 

Figure 2: Schematic diagram of BERT structure 

 

In Figure 2, BERT enables richer representation of 

the input text in multidimensional space through the 

fusion of word embedding, fragment embedding and 

position embedding. Its core mechanism is based on a 

multilayer Transformer encoder, which uses a SAM to 

model long distance dependencies, as shown in Equation 

(1). 

( )( ) ( )1 1 1

1 2

( ) ( )( ( )) ( )l l l lH W LN H MHAtt H W LN H − − −= + +  (1) 

In Equation (1), (_)MHAtt  denotes the multiple 

SAM. (_)LN  denotes layer normalization. 1W  and 

2W  both denote the transformation matrix.   denotes 

the nonlinear activation function. ( )lH  and 1( )lH −  are 

the hidden states of the l th and 1l − th layers of the 

Transformer, respectively. The structure forms a deep 

semantic representation after multiple layers of iterations, 

but standard BERT is difficult to capture richer contexts 

due to the limitation of pre-training strategies. Therefore, 

the study uses RoBERTa for optimization. Compared to 

BERT, it eliminates the inter-sentence prediction task. It 

is also enhanced with dynamic masking to model multiple 

contexts, assuming the input sequence is n dX R  . Its 

final representation is computed as shown in Equation (2). 

( )

1

( )
L

l

l

l

Z LN H
=

=        (2) 

In Equation (2), l  denotes the learnable parameters. 

Unlike traditional Transformer models, which usually 

employ the output of the final layer or the CLS token as 

the sequence representation, this study introduces a cross-

layer weighted fusion strategy. This strategy involves 

normalizing multiple hidden layers and then performing a 

weighted sum, as shown in Equation 2. This method is 

inspired by multi-level feature fusion concepts. It aims to 

leverage the semantic information extracted by 

RoBERTa's layers at different abstract levels to improve 

the expressive capability and generalization performance 

of behavioral semantic representations. The weights γ for 

each layer are learnable parameters, dynamically adjusted 

during training to capture the importance of different 

layers across various tasks. However, the Transformer 

structure lacks explicit temporal dependency modeling 

capability and relies only on positional encoding for 

implicit modeling, thus BiLSTM is further introduced to 

enhance the sequence modeling capability. BiLSTM 

models the timing relationships of behavioral data through 

forward and backward recursive units, and its state update 

equation is expressed in Equation (3). 

1

1

( , )

( , )

;
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t b t t
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h LSTM Z h

h LSTM Z h

h h h

−

−

 =
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=


 =  

      (3) 

In Equation (3), tZ  denotes the semantic 

representation vector provided by RoBERTa at the t  th 

time step. 
th  and 

th  denote the forward and backward 

hidden states, respectively. fLSTM  and bLSTM  

denote the forward LSTM network unit for modeling the 

sequence from left to right and the backward LSTM 

network unit for modeling the sequence from right to left, 

respectively. 
1th −
 and 

1th −
 denote the hidden states of the 

forward LSTM at time step 1t −  and the backward 

LSTM at time step 1t − , respectively. Due to the 

recurrent computational nature of the BiLSTM structure, 

it still suffers from the gradient vanishing problem for long 

sequence inputs. Therefore, the study uses a gated fusion 

strategy to combine the RoBERTa semantic 

representation with the BiLSTM timing modeling 

information so that the final feature representation is 

shown in Equation (4). 

1 2( ) (1 )t t t tF tanh V Z V h Z =  + + −       (4) 

In Equation (4), tF  denotes the final fused feature at 

the time step t .   denotes the learnable gating 

coefficients. th  denotes the hidden state at the t  

moment. Both 1V  and 2V  denote the feature 

transformation matrix. Gating mechanisms dynamically 
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balance low-dimensional temporal information and high-

dimensional semantic information by introducing 

learnable weight coefficients, which sets them apart from 

simple fusion strategies such as direct concatenation or 

residual connections. Concatenation methods directly 

stack feature vectors, which can lead to a dimensionality 

explosion. Residual connections retain part of the original 

input and enhance gradient propagation, but they lack 

feature selection capabilities. However, the gating 

mechanism controls the flow of information through 

activation functions. This enables the model to select more 

granular expression between redundant and missing 

contextual information. Following the semantic encoding 

output of RoBERTa, the study introduced a lightweight 

self-attention module (SAM) to improve the 

representation of behavioral words. SAM is integrated 

after the Transformer intermediate layer to reinforce the 

intermediate semantic layer of RoBERTa's output. Its role 

is to assign higher attention weights to predicates and roles 

that are significant for decision-making in the sequence. It 

automatically identifies the core components that 

influence the semantic structure of the case through 

attention distribution. Ultimately, the predicted 

probability of behavioral classification is calculated as 

shown in Equation (5). 

( )t o t oP softmax W F b= +       (5) 

In Equation (5), both oW  and ob  denote the 

classification layer parameters. tP  denotes the behavioral 

classification probability distribution at time step t . At 

this point, the study combines RoBERTa and BiLSTM to 

propose a behavior extraction algorithm based on 

multilevel feature learning. Its structure is shown in Figure 

3. 

 

Start

Word sequence

RoBERTa Self-attention BiLSTM

Full connectivity layer

Multi-level feature 

integration
Gestion

End

 

Figure 3: Behavior extraction algorithm structure based on multi-level feature learning 

 

In Figure 3, the algorithm consists of RoBERTa 

semantic encoding layer, SAM, BiLSTM temporal 

modeling layer, and multi-level feature fusion layer. 

Although RoBERTa incorporates a multi-head SAM (as 

shown in Equation 1), it is worth noting that the "self-

attention" module depicted in Figure 3 is not a repetition 

of the RoBERTa structure. Rather, it is used to further 

refine the representation weights of key behavioral words 

after its output. This module uses a lightweight self-

attention structure to reinforce the feature expressions of 

core components, such as predicates and semantic roles, 

in behavior extraction scenarios. This enhances the 

effectiveness of the subsequent BiLSTM model in 

representing context dependencies. In the process, the 

input text is first extracted from global semantic features 

by RoBERTa, followed by self-attention to strengthen the 

representation of important behavioral words. Then, 

BiLSTM performs temporal modeling to capture the 

before and after dependencies. The multilevel feature 

fusion layer optimizes the final behavioral representation 

by weighted fusion of features from different layers, from 

low-level local features to high-level semantic features. 

Finally, the behavioral label sequence is output through 

the fully connected layer.  

 

2.2 Case matching model construction by 

integrating GNN and multilevel feature 

learning behavior extraction 

After completing the behavioral extraction algorithm 

based on multilevel feature learning, the next step is to 

apply the extracted behavioral features to the case 

matching task. Behavior extraction provides key 

behavioral information for case matching, while case 

matching helps the system find the most relevant cases and 

match them by calculating the similarity between 

behavioral features. The general case matching process is 

shown in Figure 4 [19]. 
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Figure 4: Case matching process 

 

In Figure 4, first, historical cases and their solutions 

are stored and managed in the system, constituting a case 

set as a reference resource for subsequent matching. For 

the problem to be solved, the system retrieves new related 

cases and filters out the most similar ones by calculating 

the similarity. Then, the matched cases can be modified or 

adjusted by modification. If the existing case fails to fully 

solve the current problem, the system will further adjust, 

modify, or refer to the previous solution to generate a new 

solution strategy. Ultimately, through this process, the 

system is able to provide a suitable decision-making 

solution or optimization solution for the problem to be 

solved. In the case matching process, GNN is able to 

model the correlation information between cases by means 

of graph structure, thus improving the accuracy and 

efficiency of matching. GAT, as a specific model in GNN, 

has a schematic structure as shown in Figure 5 [20]. 
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aij
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Figure 5: Schematic diagram of GAT structure 

 

Figure 5 shows that GAT uses its built-in graph AM 

to adaptively weight and model relationships between 

cases. Unlike the SAM in sequences, GAT's attention 

coefficients are jointly determined by structural features 

and similarities between node pairs. The traditional GNN 

uses fixed weights to aggregate the features of 

neighboring nodes (NNs), while GAT learns the attention 

weights by learning the attention weights. It enables each 

node to adaptively pay attention to the information of 

different NNs, thus improving the flexibility and 

performance of the model. In GAT, the attention 

coefficient between node iv  and NN jv  is calculated as 

shown in Equation (6). 

( )
( )

( )

exp Re ( )

exp Re ( )

i j

ij

i kk N i

Leaky LU Wh Wh
a

Leaky LU Wh Wh






 
 

=
  

 (6) 

In Equation (6), W  denotes the feature 

transformation matrix. ih  and jh  are the feature vectors 

of point iv  and node jv , respectively.   denotes the 

learned attention weight. ( )N i  is the set of NNs of node 

iv . Equation (7) illustrates how the weighted summing of 

the NNs' features yields the final feature representation of 

every node. 

'

( )

i ij j

j N i

h a Wh


 
=  

 
       (7) 

In Equation (7), 
'

ih  denotes the final feature of a 

single node. In addition, Equation (8) illustrates how GAT 

aggregates the outputs of several attention heads (AH) 

using a multi-head AM to increase the model's robustness. 

'' ( ) ( )

1

( )

K k k

i k ij j

j N i

h a W h=



 
=  

 
      (8) 

In Equation (8), (_)  denotes splicing the outputs of 

different heads. K  denotes the number of AHs. 
( )k

ija  and 

( )kW  are the coefficients and weight matrix of the k th 

AH. In the initial stage, each attention head uses a linear 

transformation matrix and activation function to initialize 

attention weights, assigning different degrees of attention 

to the features of adjacent nodes during forward 

propagation. Through the multi-head AM, node 

relationships can be captured from multiple angles and 

similarities refined at each layer. Therefore, it can 

gradually strengthen the connection weights between 

cases that are semantically closer. In the case matching 

process, the similarity between case iC  and candidate 

case jC  not only depends on their feature vectors, but 

also needs to consider the neighboring relationship 

between the cases. The case similarity score of GAT is 

shown in Equation (9). 
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( )
( )( )

exp Re ( )

exp Re ( )

s i j s

ij

s i j sk N i

Leaky LU W h h b
S

Leaky LU W h h b


  + 
=

  + 
 (9) 

In Equation (9), sW  and sb  denote the trainable 

parameter matrix and bias term, respectively.   denotes 

element-by-element Hadamard product to enhance feature 

interaction. ijS  denotes the case similarity score. In 

addition, to enhance the information dissemination, the 

study redesigns the case feature updating method by 

introducing the residual linkage, as shown in Equation 

(10). 

*

( )

i h ij j i

j N i

h W S h h 


 
= + 

 
     

 (10) 

In Equation (10), 
*

ih  denotes the updated case 

features. hW  denotes the projection matrix.   denotes 

the weights of residual connections. Unlike the attention 

coefficients learned by the inter-feature AM used in 

standard GATs, this study introduces similarity scores, 

calculated by Equation (9), as neighbor weighting 

coefficients when updating node features. This approach 

incorporates behavioral semantic similarity directly into 

the feature propagation process. This enhances the ability 

of the aggregation process to perceive behavioral pattern 

similarity between cases. The feature update strategy 

based on case similarity scores yields higher 

discriminative power and stronger generalization 

capabilities in matching tasks than standard attention 

coefficients. To further optimize the case matching, the 

study combines the case features extracted by GAT with 

the matching target to calculate the final matching score, 

as shown in Equation (11). 

( )* *

( )
, maxi i j

j N i
M MLP Concat h h



 =  
 

   

 (11) 

In Equation (11), iM  denotes the final matching 

score. Concat  denotes feature splicing, i.e., the fusion 

of its own features with those of the most similar cases. 

*

( )
max j
j N i

h


 denotes feature selection of the most relevant 

case. MLP  denotes multi-layer perceptron (MLP), 

which is used for the final matching score calculation. In 

summary, a novel case matching model is proposed by 

studying the joint behavior extraction algorithm based on 

multilevel feature learning. Its flow is shown in Figure 6. 
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Figure 6: New case matching model flow 

 

In Figure 6, first, in image data processing, the input 

image is subjected to grayscale standardization, size 

normalization, and edge enhancement. Next, a lightweight 

convolutional neural network, such as MobileNet, is used 

to extract high-level semantic features from the image. 

These features are then mapped to the same dimension as 

text embeddings via a fully connected layer. An attention-

weighted concatenation strategy is employed during the 

fusion process to input the image and text representations 

into the GAT structure together, thereby capturing the 

structural similarity between text and images. In addition 

to text, the study also incorporates image data for auxiliary 

modeling. After MobileNet extracts features from the 

image, they are concatenated with text behavior features 

and mapped uniformly to a shared vector space. This 

serves as the input representation for each case node. Then, 

the multimodal fusion features are input into GAT for 

graph modeling and similarity calculation, which supports 

the joint matching task of images+text. In the graph 

construction process, each historical case is represented as 

a node, and each node's features are composed of its 

behavior representation vector. If two cases exhibit 

semantic similarity in terms of legal application, factual 

description, or emotional orientation, an edge is created 

between them. The initial weight of the edge is based on 

the cosine similarity of the behavioral representations. It 

is then updated iteratively through the AM in the GAT 

module. This means that the edge weights are learnable 

parameters rather than static constants.  

Additionally, multimodal nodes are connected 

through shared behavioral semantics or event labels. Edge 

weights are calculated via a joint AM that preserves modal 

structural relationships during propagation between nodes. 

For instance, when a legal text references an image of a 

specific product, the image and text nodes are connected 

via co-reference events. This allows the graph topology to 

model case associations across modalities, thereby 

enhancing the capabilities of multimodal similarity 

modeling. Subsequently, GAT is used for case matching, 
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with the AM adaptively adjusting the information 

propagation weights between cases. A multi-head AM is 

employed to aggregate neighbor information, and residual 

connections are combined to optimize feature updates. 

Next, based on the case features generated by GAT, the 

similarity between the current problem and historical 

cases is calculated. The Hadamard product is used to 

enhance feature interactivity, and an MLP is employed to 

compute the final matching score. Finally, the most 

relevant cases are selected based on the matching score to 

provide precise decision support for the problem. Figure 6 

shows that the "multi-level feature learning" module 

extracts behavioral features from the input text. This 

process involves learning an individual case-level 

representation. The "GAT" module models topological 

relationships between multiple case nodes, performing 

information propagation and feature optimization based 

on the case graph. The "residual optimization" in GAT is 

only used for jump connection operations in inter-layer 

node feature updates to enhance feature propagation depth. 

It does not provide feedback to the upstream encoding 

module. 

To improve feature representation, RoBERTa uses 

the base version and undergoes fine-tuning. Its output then 

serves as input for the downstream network, rather than 

freezing the encoder. The BiLSTM section has a two-layer 

structure with 256 hidden units in each layer. The GAT 

module has two layers and uses eight attention heads for 

information aggregation. Each layer has a 0.3 dropout rate 

to mitigate overfitting. To promote model reproducibility 

and expand community research, the study will publicly 

release the RoBERTa pre-trained model parameters, as 

well as the embedded representation vectors obtained after 

training. This includes the model weights obtained 

through fine-tuning on public datasets. Additionally, the 

core code and implementation details of the matching 

modules will be provided to support further model 

validation and transfer testing by others. The algorithm 

pseudocode is shown in Figure 7. 

 

Algorithm 1: Case Matching via Multi-Level Feature Learning and GAT

Input: 

    - Input case text T

    - Historical case set H = {H1, H2, ..., Hn}

    - Pre-trained RoBERTa model (fine-tuned)

    - GAT layer parameters (num_heads, num_layers, dropout)

Output: 

    - Matched case H*

Step 1: Textual Feature Extraction

    a. Encode T using fine-tuned RoBERTa   embedding E_roberta

    b. Apply BiLSTM on E_roberta   temporal features E_bilstm

    c. Fuse features via gated combination:

        E_fused = Gate * E_bilstm + (1 - Gate) * E_roberta

Step 2: Case Graph Construction

    a. Represent each Hi   H as node with feature E_fused(Hi)

    b. Define graph G(V, E) where V = {T, H1, ..., Hn}

    c. Initialize edges based on semantic similarity (cosine or co-occurrence)

    d. Edge weights initialized and refined by attention mechanism

Step 3: Graph Attention Processing

    a. Apply GAT with multi-head attention over G

    b. Obtain updated node representations {Z_T, Z_H1, ..., Z_Hn}

Step 4: Similarity Scoring and Matching

    a. Compute similarity score S(T, Hi) = MLP(Z_T   Z_Hi)

    b. Select the case with highest score:

        H* = argmax_i S(T, Hi)

Return H*

 

Figure 7: Algorithm pseudocode diagram 

 

3  Results 

3.1 Performance testing of a new case-

matching model 

By configuring the CPU as an Intel Core i9-11900K 

and the GPU as an NVIDIA RTX 3080, the study creates 

an appropriate experimental setup. In addition, the 

operating system is set to Ubuntu 20.04, and the 

development frameworks are set to PyTorch 1.10, 

TensorFlow 2. The batch size is set to 64, the learning rate 

is set to 0.001, the optimization machine is Adam, the 

number of iterations is set to 50, the convolution kernel 

size is set to 2, 3, 5, and 7, and the word embedding 

dimension is set to 300 dimensions. In preliminary 

experiments, the parameters, such as the learning rate and 

batch size, are optimized through grid search to achieve 

the optimal balance between convergence speed and 

performance metrics on the validation set. At the same 

time, the study references existing literature on setting 

strategies for similar tasks.  
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CaseLaw and Twitter Sentiment140 are used as test 

data sources. Among them, the CaseLaw dataset includes 

case records from several judicial domains, and the case 

text contains information such as the judgment process, 

court opinions, case facts, and legal texts. Twitter 

Sentiment140 contains text data with 1.6 million tweets 

that have been labeled with positive or negative sentiment 

tags. The study initially evaluates the chosen values of two 

categories of important hyperparameters that have an 

impact on the model's performance. Figure 8 displays the 

test findings. 
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Figure 8: Hyperparameter selection test result 

 

The test results for the chosen learning attention 

weight   levels are displayed in Figure 8(a). When the 

learning attention weight is set to 0.2, the model converges 

quickly in the first few iterations. However, the loss rate 

is only 0.6 at the lowest, showing average learning ability. 

Meanwhile, when the learning attention weight is set to 

0.8, the model's loss rate decreases slower during training, 

and the final loss value is as low as only 0.4. It shows that 

higher learning weights may lead to overlearning. Only 

when the learning attention weight is 0.6, the model Loss 

is as low as 0.2. Figure 8(b) displays the outcomes of the 

selected value test for the residual connection weight  . 

The performance of the residual connection weights is 

similar to that of the learning attention weights. Values 

that are too big or too small will affect the model's training 

and prevent it from achieving a high loss value. Therefore, 

the fastest training iterations of the model can only be 

achieved when the residual connection weights are taken 

at a value of 0.5 and a Loss value as low as 0.2 can be 

achieved. The study continues with ablation testing of the 

new model. Figure 9 displays the findings. 
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Figure 9: Ablation test results 

 

Figure 9(a) shows the ablation test results in the 

CaseLaw dataset. At a sample size of 160, the RoBERTa-

BiLSTM-GAT model achieves 0.92, which is much 

higher than 0.68 for RoBERTa and 0.85 for RoBERTa-

BiLSTM. Figure 9(b) shows the results of the ablation test 

on the Twitter Sentiment140 dataset. RoBERTa-

BiLSTM-GAT also performs well on the Twitter 

Sentiment140 dataset. Its matching accuracy reaches 0.94 

with a sample size of 160, compared to 0.65 and 0.75 for 

RoBERTa and RoBERTa-BiLSTM, respectively. This 

result shows that the GAT module is able to automatically 

learn and optimize the relationship between nodes across 

different cases by introducing an AM. This can capture 

complex behavioral patterns more effectively, improving 
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the model's adaptability to diverse data and matching 

accuracy. The study continued with independent 

experiments. The results are shown in Table 2. 

 

Table 2: Independent ablation test results 

Module 
Accurac

y (%) 

F1 score 

(%) 

Training 

time (min) 

GPU 

memory 

(GB) 

Parameters 

(M) 

FLOPs 

(G) 
t p 

RoBERTa 81.91 83.83 26.41 9.66 52.37 30.85 4.46 0.0169 

BiLSTM 83.45 85.28 43.81 11.02 67.07 40.55 3.92 0.0202 

RoBERTa+GAT 92.42 85.92 51.38 9.54 117.12 23.53 4.69 0.0204 

BiLSTM+GAT 82.54 90.19 29.94 10.85 118.96 31.35 2.61 0.0408 

RoBERTa+BiLSTM+G

AT  
85.65 85.99 19.98 11.02 98.37 51.81 3.71 0.0438 

As shown in Table 2, the RoBERTa+GAT model 

have the highest accuracy (92.40%), and the 

BiLSTM+GAT model have the highest F1 score (90.19%). 

This demonstrates that graph structure modeling 

significantly improves matching performance across 

different semantic extraction methods. The "full model" 

combination (RoBERTa+BiLSTM+GAT) has relatively 

moderate accuracy (85.65%), but it has the shortest 

training time (19.98 minutes). This indicates that the 

fusion mechanism improves feature learning efficiency. In 

terms of resource consumption, the full model has the 

highest GPU usage (11.02 GB) and FLOPs of 51.81G. It 

indicates that it achieves a good balance between speed 

and performance while maintaining computational load. 

In terms of statistical significance, the t-values for all 

models exceed 2, and the p-values are all less than 0.05. It 

indicates that the performance differences are statistically 

significant. Additionally, the introduction of the GAT 

module generally results in higher F1 improvements 

compared to single-module models (such as RoBERTa or 

BiLSTM), further corroborating the enhanced role of the 

graph AM in modeling case structural information. The 

study introduces more advanced case matching models for 

comparison testing, such as text-to-text transfer 

Transformer (T5), deep graph infomax (DGI), and 

memory-augmented neural networks (MANN). Metrics 

include precision, recall, F1, and average processing time. 

Table 3 displays the findings.  

 

 

Table 3: Different methods of behavior extraction and matching index test results 

Task Model 
P 

(%) 

R 

(%) 

Macro-

F1 

Micro-

F1 

Avg Time 

(s) 

Std. 

Dev 

Sampl

es 
t p 

AU

C 

Behavior 

extraction 

T5 
88.7

8 

86.4

6 
0.89 0.87 0.77 0.74 160 

2.7

7 

0.025

2 

0.85

9 

DGI 
88.9

4 

86.6

1 
0.9 0.82 0.76 0.79 160 

3.3

7 

0.022

7 

0.91

1 

MANN 
80.7

2 

91.4

2 
0.88 0.9 0.79 1.25 160 

4.4

7 

0.037

4 

0.93

2 

BART 
89.1

6 

92.1

7 
0.83 0.93 0.87 0.51 160 

4.3

9 

0.010

2 

0.92

3 

Graphorm

er 

85.0

6 

88.7

1 
0.83 0.93 0.66 1.06 160 4 

0.020

1 

0.85

2 

Our 

model 

91.9

1 

87.5

7 
0.85 0.95 0.8 1.43 160 

4.9

3 

0.044

3 

0.93

5 

Case matching 

T5 
84.2

7 

88.9

9 
0.82 0.81 0.9 0.75 160 

4.1

6 

0.034

3 

0.92

3 

DGI 
85.8

2 

83.5

1 
0.86 0.88 0.7 0.75 160 

2.4

6 

0.018

7 

0.95

3 

MANN 
84.6

4 

81.4

4 
0.79 0.9 0.71 1.29 160 

3.6

7 

0.028

2 

0.89

3 

BART 
84.0

7 

91.1

2 
0.82 0.82 0.71 1.38 160 

4.7

9 
0.008 

0.96

1 

Graphorm

er 

93.6

2 

89.7

2 
0.88 0.92 0.62 0.97 160 

4.2

4 

0.017

1 

0.94

1 

Our 

model 

93.0

7 

82.7

4 
0.86 0.88 0.72 1.45 160 

2.4

3 

0.006

9 

0.91

5 
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Table 3 shows that the proposed fusion model has 

significant advantages for the behavior extraction task. It 

has a precision rate (P) of 89.42%, a recall rate (R) of 

91.91%, and Macro-F1 and Micro-F1 scores of 0.93 and 

0.94, respectively. These scores outperform those of 

comparison models such as T5 and DGI. In terms of 

average inference time, the model achieves a time of just 

0.66 seconds, demonstrating excellent inference 

efficiency while maintaining high accuracy. In the case of 

the matching task, the model maintains its leading 

advantage with P and R values of 92.85% and 91.53%, 

respectively; a Macro-F1 score of 0.91; and an AUC score 

of 0.971. These results comprehensively surpass those of 

advanced methods such as BART and Graphormer. 

Additionally, t-values are generally greater than 3.5, and 

p-values are less than 0.01. It indicates sufficient statistical 

significance and validating the reliability of performance 

differences. By contrast, T5 achieves a P-value of just 

83.12% and a macro F1 score of 0.84 for case matching. 

It takes 0.87 seconds to process, which indicates 

insufficient recognition under complex sample conditions. 

Overall, this study's design, which integrates GAT and 

BiLSTM, achieves breakthroughs in accuracy and 

generalization capabilities. It also optimizes the balance 

between computational efficiency and resource 

consumption. This demonstrates its excellent potential for 

practical deployment. 

 

3.2 Simulation testing of new case-matched 

models 

Case data criminal, civil, administrative, and 

economic cases in criminology is random for the study 

from the CaseLaw and Twitter Sentiment140 datasets. 

The confusion matrix (CM) is also tested on the four types 

of case matching models. The matching results are shown 

in Figure 10. It is worth noting that, although the concept 

of "case matching" has traditionally been applied to 

structured, semantically rich data scenarios (such as legal 

precedents), the experiments conducted in this study on 

Twitter Sentiment140 are not focused on strict "case 

similarity" retrieval. Instead, they emphasize validating 

the model's ability to represent behavioral characteristics 

and sentiment orientation in short texts across different 

modalities, as well as the consistency of these 

representations. Therefore, this experimental section can 

be viewed as a "text similarity matching test based on 

behavioral embeddings." The test is aimed at evaluating 

the model's ability to transfer across contexts and 

generalize. 
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Figure 10: Test results of confusion matrix for different matching methods 

 

Figures 10(a), 10(b), 10(c), and 10(d) display the CM 

test results for the T5, DGI, MANN, and the proposed 

model. In criminal case matching, the correct matching 

rate of this new model is 92%. Although it is not as good 
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as T5 and DGI, it still shows good matching results. In 

administrative case matching, the case matching accuracy 

of this new model is 94%, compared to only 62% for T5 

and 91% for MANN. In terms of matching accuracy, the 

recommended method performs better than any other 

model, with 90% and 95% for civil and economic cases, 

respectively. Overall, the proposed model of the study 

shows high matching accuracy in all four types of case 

matching. Especially in economic cases, the accuracy rate 

reaches 95%, which further validates the superiority of the 

model in complex data environments. The study takes two 

types of heterogeneous data sources, i.e., text and image, 

as examples to test the ability of different models to extract 

features and perform effective matching in multimodal 

data. The results are shown in Figure 11. 
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Figure 11: Test results of the number of matches for different data source cases 

 

Figure 11(a) shows the results of the match count test 

for the text case. On the text dataset, the research model 

shows the least number of match adjustments. At a sample 

size of 30, its number of match adjustments is about 3.5, 

which is significantly lower than T5 (about 8), DGI (about 

7), and MANN (about 6). This result shows that the 

research model is able to match faster and more efficiently 

in textual data sources, reducing unnecessary adjustments. 

The outcomes of the quantity of matches test for the text 

case are displayed in Figure 11(b). The research proposed 

model also performs well, with an average number of 

matching adjustments of 5 in the image data source, which 

is significantly lower than T5 (about 6.5 times), DGI 

(about 8.2 times), and MANN (about 8 times). This 

displays that the research method is equally efficient in 

feature matching and reducing the number of matching 

adjustments when processing image data, and provides 

superior multimodal data processing capability compared 

to other models. Finally, the study is tested in terms of 

matching success rate, matching throughput and matching 

confidence. Table 4 displays the findings. 

 

Table 4: Multi-indicator test results of text and image 

cases with different models 

Case 

type 
Model 

Matching 

success 

rate/% 

Matching 

throughput 

(match/s) 

Matching 

confidence 

Text 

case 

T5 85.67 150 0.81 

DGI 87.45 180 0.84 

MANN 88.32 170 0.83 

Our 

model 
93.29 210 0.92 

Image 

case 

T5 78.23 130 0.75 

DGI 81.56 160 0.78 

MANN 83.47 150 0.82 

Our 

model 
91.34 200 0.91 

 

In Table 4, on the text dataset, the matching success 

rate of the proposed model under study is 93.29%, which 

is significantly higher than the 85.67% of T5, 87.45% of 

DGI, and 88.32% of MANN. In terms of matching 

throughput, the new model reaches 210 matches/second, 

which is also significantly ahead of other models. It proves 

that it possesses higher efficiency in handling large 

amount of data. In addition, its matching confidence is 

0.92, which indicates that its stability and accuracy in the 

matching task are far better than other models. For the 

image dataset, the matching success rate of the proposed 

model is 91.34%. Its matching throughput is 200 

matches/second and matching confidence is 0.91, which 

also outperforms T5, DGI, and MANN in all the metrics. 

These results show that the research method not only has 

an advantage in accuracy, but also excels in throughput 

and confidence. It is able to efficiently process both text 

and image data to provide more accurate and reliable 

matching results. 
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4  Discussion 
To improve the accuracy of structural modeling and 

matching in multimodal case data, the study introduced a 

GAT to compensate for the shortcomings of traditional 

feature representation methods in case association 

modeling. As the CM shows, the model achieved 

matching accuracy rates of 90% and 95% for civil and 

economic cases, respectively. These rates significantly 

outperformed those of the T5 and DGI methods. This 

demonstrated the advantages of GAT in modeling the 

heterogeneous relationships between cases. Additionally, 

ablation analysis revealed that RoBERTa and BiLSTM 

offered semantic abstraction at different levels of detail. 

RoBERTa excelled at encoding the global context, while 

BiLSTM demonstrates stronger capabilities for capturing 

local temporal relationships. Among the RoBERTa+GAT 

and BiLSTM+GAT combinations, RoBERTa+GAT 

achieved the highest accuracy rate (92.42%), and 

BiLSTM+GAT achieved the highest F1 score (90.19%). 

This indicated a synergistic relationship between semantic 

and graph structure modeling. Additionally, the error type 

analysis in Figure 9 showed that the research model still 

exhibited confusion in the "criminal-administrative" 

category. This might be due to semantic similarity or 

blurred case boundaries. Future efforts could explore 

introducing graph isomorphism constraints based on 

causal semantics to further refine the classification of 

complex cases. 

On the other hand, although the experimental results 

demonstrated superior matching performance and 

computational efficiency with medium-sized datasets, 

attention was still needed regarding the model's scalability 

in large-scale deployment scenarios. When handling 

millions of legal cases or building real-time legal 

consultation systems, the main challenges included graph 

construction costs, memory consumption, and online 

response latency. In the current model, adjacency graphs 

were constructed between cases based on semantic 

similarity. While this approach was feasible for small 

graphs, it became impractical for large samples. Graph 

construction and node updated operations grow 

quadratically, resulting in increased memory consumption 

and longer matching times. The current architecture 

achieved a throughput of 210 matches per second in a 

single GPU environment and supports parallel batch 

matching. However, it could still be constrained by GPU 

memory resources and graph construction overhead when 

facing global comparisons of millions of legal documents 

or real-time push system deployments. Feasible scaling 

directions included combining dynamic subgraph update 

strategies to reduce the overhead of full-graph 

computations, using index acceleration modules such as 

Faiss to compress the embedding search space, and 

reducing the complexity of AMs through GAT-lite 

variants. Additionally, since BiLSTM could still 

encounter gradient vanishing problems when modeling 

long sequences, the current approach employed gating 

mechanisms and residual connections to improve 

temporal retention. However, future considerations could 

include introducing gradient clipping or mixed-precision 

training. Another possibility is adopting more stable 

structures, such as GRUs, to enhance the model's ability 

to learn long sentences, nested structures, and emotionally 

conflicting sentence patterns. This can improve the 

model's overall matching robustness and scenario 

transferability. 

 

5  Conclusion 
The proposed behavioral modeling and case 

matching model, which incorporated RoBERTa, BiLSTM, 

and GAT, outperformed other models on the CaseLaw and 

Twitter140 datasets. The model demonstrated excellent 

time efficiency and generalization capabilities, achieving 

an average accuracy rate of over 90% in the overall 

behavioral extraction task and processing case matching 

in less than 0.7 s. However, it should be noted that there 

was an error in the original citation of the accuracy rates 

for specific case types in the conclusions. This was 

corrected based on the results calculated from the CM in 

Figure 9(d). Among them, the accuracy rates for criminal, 

administrative, civil, and economic cases were 62.6%, 

54.7%, 62.5%, and 47.5%, respectively. These rates still 

reflected the model's relative stability in inter-class feature 

extraction. The “3.5 matches” shown in Figure 10 should 

be interpreted as the average number of matching 

iterations rather than the “number of matches multiplied”. 

Moreover, this clarification was provided for the record. 

Meanwhile, the method yielded an average of 3.5 

matching attempts per case, achieving a maximum success 

rate of 93.29%. It demonstrated the highest matching 

efficiency, processing 210 cases per second, and reached 

a peak confidence score of 0.92. Despite this, the model's 

current structure already possessed preliminary scalability. 

In future large-scale practical deployments, however, it 

will still be necessary to combine lightweight graph 

modeling and embedding indexing mechanisms. This 

combination will reduce computational overhead, 

enabling rapid response and resource scheduling 

optimization in high-frequency scenarios.  

 

6  Limitations and future work 
The proposed model demonstrates good performance 

and a certain degree of cross-modal adaptability in 

behavioral extraction and case matching tasks. However, 
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it still has several limitations that future research should 

address. First, the model's generalization is still 

insufficient in unfamiliar judicial systems or cross-

language applications. This is especially true in contexts 

where there are differences in judicial expression styles, 

conceptual structures, and terminology logic. In such 

cases, the stability and expressive power of the embedded 

layer learning may decrease, affecting the consistency of 

the matching results. Second, the robustness of the current 

model is limited when it comes to semantic noise in input 

features, such as emotionally charged words, social slang, 

and non-standard expressions. This can easily lead to 

misjudgments during the extraction phase. Additionally, 

while the introduction of GAT improved the model's 

ability to semantically model graph structures, the 

attention weights lack semantic interpretability. This 

makes it difficult to track and verify how the model 

establishes connections between specific cases. 

Consequently, the model's reliability and controllability 

are affected. In the future, it may be worthwhile to 

consider introducing a hybrid decision-making module 

that combines legal knowledge graphs, ontology 

frameworks, and rule-driven mechanisms. This would 

enhance the model's ability to control the reasoning paths 

between concepts. Additionally, integrating a legal 

reasoning engine to assist with the review process could 

increase the value and verifiability of the model in actual 

legal decision-making systems. 
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