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This work aims to improve the passage efficiency of small passenger vehicles in highway environments. 

It proposes a Multi-Strategy Fusion Particle Swarm Optimization (MSF-PSO) algorithm to optimize 

travel time, lane utilization, lane-change frequency, and driving stability. The model architecture utilizes 

adaptive inertia weight adjustment to balance global and local search capabilities while implementing 

dynamic learning factor optimization to enhance individual and swarm learning capacities of particles. 

Also, it incorporates K-means clustering for population diversity maintenance and employs a Cauchy 

disturbance mechanism to facilitate particle escape from local optima. These components work 

synergistically to enable the algorithm to demonstrate faster convergence speed and superior global 

search capability in complex traffic environments. The algorithm undergoes validation on the SUMO 

traffic simulation platform using high-precision trajectory data from the HighD dataset. Experimental 

results demonstrate that compared to baseline algorithms, including Particle Swarm Optimization (PSO), 

Genetic Algorithm (GA), and Adaptive Particle Swarm Optimization (APSO), MSF-PSO significantly 

improves traffic efficiency and driving stability. Specifically, MSF-PSO reduces the average travel time 

to 243.7 seconds after 100 iterations, demonstrating remarkable improvements over baseline algorithms. 

This performance represents reductions of 8.6% compared to Haris & Nam (266.6 seconds), 11.4% versus 

APSO (275.4 seconds), 18.5% relative to PSO (299.2 seconds), and 19.8% compared to GA (303.8 

seconds). Additionally, MSF-PSO achieves higher lane utilization (88.8%), lower lane-changing 

frequency (2.3 times/vehicle), and reduced speed fluctuation variance (7.9 km²/h²). Therefore, this work 

provides support for optimization in intelligent transportation. 

Povzetek: Avtorji so razvili  metodo MSF-PSO za namensko vodenje malih osebnih vozil po avtocestah, 

pri čemer upoštevajo: adaptivno težo, dinamična učenja, K-means diverziteto, Cauchy motnjo. V 

SUMO/HighD se tako zniža čas poti, menjave pasov in varianca hitrosti. 

 

1 Introduction 

In recent years, with the acceleration of global 

urbanization and the continuous increase in the number of 

motor vehicles, the traffic flow pressure on highways has 

been growing. This leads to problems such as decreased 

passage efficiency, frequent traffic accidents, and rising 

carbon emissions [1]. Traffic control systems have been 

evolving toward intelligent, refined, and dynamic 

optimization to optimize highway management and 

improve the passage efficiency of specific vehicle types. 

Small passenger vehicles (such as sedans and sports utility 

vehicles) dominate the highways, and their driving 

characteristics differ significantly from larger vehicles 

(such as trucks and buses) [2]. Therefore, a dedicated 

highway control system for small passenger vehicles helps 

optimize traffic flow, increase road capacity, and reduce  

 

safety risks associated with mixed traffic. However, 

traditional traffic control methods mainly rely on fixed  

rules and historical experience, which are difficult to adapt 

dynamically to changing traffic conditions. There is a 

pressing need to introduce advanced optimization 

algorithms to achieve smarter and more efficient traffic 

flow management. 

Particle Swarm Optimization (PSO) is a typical swarm 

intelligence optimization algorithm. It simulates bird flock 

foraging behavior, where particles share information to 

look for the optimal solution and continuously adjust their 

movement trajectories to approach the global optimum [3, 

4]. However, current research mainly focuses on signal 

control optimization and path planning, with limited 

involvement in dedicated traffic flow management for 

specific vehicle categories. Additionally, PSO faces 

challenges in convergence speed, global optimality, and 
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real-time performance in complex traffic environments. 

This necessitates the combination of traffic flow modeling 

and simulation techniques to achieve more precise 

optimization control. 

This work addresses the challenge of achieving 

coordinated optimization between passenger vehicle 

traffic efficiency and safety in dynamic highway 

environments through an improved PSO algorithm. The 

work specifically examines how the MSF-PSO algorithm 

outperforms conventional PSO and Adaptive Particle 

Swarm Optimization (APSO) across varying traffic 

densities (low, medium, high) and disruptive events 

(accidents, ramp merging). It demonstrates significant 

advancements in four key indicators: reduced lane-

changing frequency, enhanced lane utilization efficiency, 

decreased average travel time, and minimized speed 

fluctuations. This work proposes a PSO-based dedicated 

highway control system for small passenger vehicles. It 

constructs a traffic flow optimization model and uses PSO 

for lane allocation, speed guidance, and traffic flow 

optimization. Specifically, the work first establishes a 

dedicated highway control model for small passenger 

vehicles. Then, it defines an optimization objective 

function that includes minimizing travel time, increasing 

lane utilization, reducing lane-change frequency, and 

improving passage safety. Moreover, an improved PSO 

algorithm is adopted to enhance convergence speed and 

computational efficiency through adaptive parameter 

adjustment. Finally, the system is tested in a simulation 

environment and compared with traditional rule-driven 

control methods to evaluate its optimization performance 

in different traffic flow scenarios. The work provides a 

new optimization approach for developing intelligent 

transportation system (ITS), offering theoretical support 

and practical reference for future autonomous driving 

environments and intelligent road infrastructure. 

2 Related work 
Recently, intelligent traffic control methods have been 

widely applied to highway management optimization, 

with numerous scholars conducting related research. Jin et 

al. [5] combined pattern recognition and deep learning 

methods to improve vehicle detection accuracy and real-

time performance. Meanwhile, this method optimized 

traffic flow monitoring and accident early warning 

systems, thus providing data-driven support for highway 

intelligent control. Cui et al. [6] proposed a real-time 

monitoring and scheduling optimization framework based 

on the Internet of Things (IoT) and artificial intelligence, 

improving highway management efficiency. Agrahari et 

al. [7] focused on applying deep reinforcement learning 

(DRL), fuzzy control, and other methods in highway 

signal optimization. They indicated that improving signal 

system adaptability to dynamic traffic flow can effectively 

alleviate congestion. However, challenges in 

computational complexity and data quality should be 

solved. Wang & Geng (2024) [8] constructed a multi-node 

bilateral control model to deal with the traffic flow in 

blocked sections, which improved the vehicle traffic 

efficiency and the adaptive regulation ability of 

congestion. However, the delay and coordination of sensor 

data in actual deployment still posed challenges. Wang [9] 

explored the application of integrated intelligent signal 

control systems in highway traffic management. The study 

demonstrated that intelligent control systems could reduce 

average waiting time and energy consumption. 

As a swarm intelligence-based optimization algorithm, 

PSO has gained wide application in intelligent traffic 

optimization in recent years due to its simple computation 

and fast convergence speed. It has been applied in tasks 

such as path optimization, signal control, and traffic 

scheduling. In path optimization, Zhi & Zuo [10] proposed 

a collaborative path-planning method for multiple 

autonomous underwater vehicles based on adaptive multi-

population PSO. Although this method was primarily 

applied in underwater environments, its potential for 

intelligent traffic optimization improved PSO's global 

search capability and the efficiency of multi-vehicle 

cooperative path optimization. Haris & Nam [11] 

introduced a distance-dependent fast-converging PSO 

algorithm for optimizing the path planning of intelligent 

vehicles. The findings indicated that this method could 

effectively reduce computational complexity and improve 

path search speed, offering an efficient path-planning 

solution for intelligent traffic optimization. However, its 

adaptability in dynamic traffic environments should be 

further studied. Huang et al. [12] presented a collaborative 

path-planning method for multiple unmanned aerial 

vehicles based on column vector PSO combined with a 

genetic targeting mechanism. It provided new 

optimization ideas for path planning in autonomous 

vehicles within intelligent transportation, and enhanced 

path generation robustness and convergence speed. 

In signal control, Zhang [13] combined gray system theory 

with intelligent signal optimization to achieve real-time 

traffic signal control optimization, reduce traffic delays, 

and improve the response capabilities of ITS. An & Bae 

[14] proposed a traffic signal timing optimization method 

based on PSO-Bacterial Foraging Optimization (BFO). 

The findings suggested that this method could reduce 

vehicle waiting time and increase intersection throughput. 

PSO optimized global search, and BFO fine-tuned signal 

timing, providing an efficient hybrid intelligent 

optimization strategy for intelligent traffic signal 

optimization. Qasim et al. [15] integrated the IoT, Arduino, 

and infrared sensors to achieve intelligent traffic signal 

control optimization. This boosted the dynamic 

adjustment ability of green light duration to adapt to 

complex traffic patterns, thus enhancing the adaptability 

of ITS. 

Considering traffic scheduling, He (2024) [16] proposed 

an automated network traffic scheduling algorithm based 

on DRL, which effectively realized the intelligent 

allocation and load balancing of dynamic traffic data. 

However, the real-time performance and convergence 

speed in large-scale and complex road networks should be 

improved. Yang & Wang (2025) [17] combined DRL and 
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convolutional neural networks (CNNs) for logistics path 

optimization, markedly improving scheduling efficiency 

and resource utilization rate. Nevertheless, the 

adaptability and robustness of the model to sudden traffic 

conditions must be enhanced.  

The current research status of each scholar is further 

summarized in Table 1.

Table 1: Summary of the current research status of various scholars 

Scholar Application  Technology Result/Performance Disadvantage 

Jin et al. [5] 

Traffic flow 

monitoring and 

accident early 

warning 

Pattern recognition + 

deep learning 

Improved the 

detection accuracy 

and real-time 

performance 

Relying on a large amount 

of data, the model training 

was complex 

Cui et al. [6] 

Improved the 

management 

efficiency of 

highways 

IoT + artificial 

intelligence 

Enhanced 

management 

efficiency 

Insufficient adaptability to 

dynamic changes 

Agrahari et 

al. [7] 

Highway signal 

optimization 
DRL and fuzzy control 

Improved signal 

system adaptability, 

alleviated 

congestion 

The computational 

complexity was high, and 

the requirements for data 

quality were strict 

Wang & 

Geng [8] 

Traffic flow control 

in blocked sections 

A multi-node bilateral 

control model 

Enhanced traffic 

efficiency and 

regulatory capacity 

The problem of sensor data 

delay and coordination 

Wang [9] 
Highway traffic 

management 

Intelligent signal 

control systems 

Reduce waiting 

time and energy 

consumption 

The adaptability to 

extreme traffic incidents 

was not taken into 

consideration 

Zhi & Zuo 

[10] 

 A collaborative 

path-planning for 

multiple 

autonomous 

underwater vehicles 

Adaptive multi-

population PSO 

Boosted global 

search ability 

It was only applicable to 

specific environments and 

lacked universality 

Haris & 

Nam [11] 

The path planning 

of intelligent 

vehicles 

Distance-dependent 

fast-converging PSO 

Reduced 

computational 

complexity and 

improved search 

speed 

Insufficient adaptability to 

dynamic traffic 

environments 

Huang et al. 

[12] 

A collaborative 

path-planning 

method for multiple 

unmanned aerial 

vehicles 

Column vector PSO+ 

genetic targeting 

mechanism 

Enhanced path 

generation 

robustness 

The algorithm had a high 

complexity and limited 

real-time performance 

Zhang [13] 
Traffic signal 

optimization 

Gray system theory + 

intelligent signal 

optimization 

Realize real-time 

signal control 

optimization 

Insufficient adaptability to 

sudden traffic incidents 

An & Bae 

[14] 

Traffic signal 

timing optimization 
PSO-BFO 

Reduced waiting 

time and increased 

intersection 

throughput 

The convergence speed 

was slow, and it was prone 

to fall into a local optimum 

Qasim et al. 

[15] 

Intelligent traffic 

signal control 

IoT + Arduino + 

infrared sensor 

Improved the 

dynamic adjustment 

ability 

Strong hardware 

dependence and poor 

scalability 

He [16] 
Automated network 

traffic scheduling  
DRL 

Improved the 

scheduling 

efficiency and real-

time performance 

Insufficient real-time 

performance in large-scale 

and complex road 

networks 

Yang & 

Wang [17] 
Route optimization DRL+CNN 

Enhanced 

scheduling 

efficiency and 

adaptability 

Insufficient adaptability to 

sudden traffic conditions 
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In summary, existing research mainly focuses on overall 

traffic flow optimization, with limited attention given to 

refined control strategies for small passenger vehicles, 

making it difficult to meet the specific passage demands 

of certain vehicle categories. In addition, as a common 

optimization algorithm, PSO has made some progress in 

path planning and signal control. However, its real-time 

optimization capability in complex traffic environments 

still needs improvement. Existing methods are mostly 

used for static optimization, which struggles to adapt to 

sudden congestion and dynamic flow changes. 

Additionally, intelligent traffic management involves 

multiple optimization goals, such as lane allocation, speed 

guidance, and flow control. However, current research 

often focuses on single optimization tasks and fails to 

effectively balance multi-objective optimization (MOO) 

needs. To fill these research gaps, this work proposes a 

PSO-based optimization framework for dedicated 

highway control of small passenger vehicles, which 

expands the application of PSO in MOO, real-time flow 

regulation, and intelligent traffic decision-making. This 

provides new ideas for the development of future 

autonomous driving and intelligent road infrastructure. 

3 Small passenger vehicle highway 

control method 

3.1 Traffic flow modeling 

To accurately assess the passage efficiency of small 

passenger vehicles, this work constructs a traffic flow 

model suitable for various traffic volume scenarios. It 

employs the SUMO traffic simulation platform [18] to 

model highway traffic flow and simulate the movement of 

small passenger vehicles on different lanes. The highway 

environment is set as a bidirectional six-lane road, with 

some lanes designated as priority lanes for small 

passenger vehicles to optimize passage strategies for 

specific vehicle categories. The experimental scenarios 

include three conventional traffic flow states: low, 

medium, and high, along with the inclusion of unexpected 

events (such as accidents or ramp merges) to simulate 

more complex traffic environments, as detailed in Table 2. 

Table 2: Traffic flow modeling parameter settings 

Scenario 
Traffic density 

(vehicles/hour) 
Speed range (km/h) Lane occupancy (%) Accident rate (%) 

Low flow 1000 - 2500 90 - 130 30 - 50 1-3 

Medium flow 3000 - 4500 70 - 110 50 - 70 3-7  

High flow 5000 - 7000 50 - 90 70 - 85 5-12  

Emergency event 4000 - 6000 30 - 80 75 - 90 10-20  

 

The experimental implementation of accident scenarios 

involves configuring specific collision events within the 

SUMO traffic simulation platform. Based on accident 

characteristics documented in the HighD dataset, the 

simulation randomly selects a lane and generates a virtual 

accident obstruction at a predetermined location. The 

obstruction's dimensions correspond to average vehicle 

sizes and typical lane occupation ranges observed in actual 

traffic incidents. The simulation models vary accident 

severity levels (minor, moderate, severe) by adjusting 

obstruction duration parameters. Minor incidents persist 

for 5-10 minutes, moderate incidents for 10-20 minutes, 

and severe incidents for 20-35 minutes. During active 

accident periods, vehicles automatically adjust speed and 

routing according to SUMO's driver behavior models to 

circumvent the obstruction, realistically replicating 

accident-induced traffic flow disruptions. 

In the traffic flow model for highway control of small 

passenger vehicles, the process specifically includes data 

collection, data preprocessing, SUMO traffic flow 

simulation, optimization computation using the improved 

PSO algorithm [19], optimization scheme output, and 

simulation verification. Figure 1 provides a detailed 

illustration. 
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Figure 1: Flowchart of the traffic flow model for highway control of small passenger vehicles. 

In Figure 1, the process begins with acquiring traffic flow 

data from the highway monitoring system, followed by 

data cleansing and normalization to ensure consistency 

and applicability. Next, a simulation scenario is 

constructed on the SUMO platform to simulate the 

operation of small passenger vehicles on highways, 

incorporating different traffic densities and traffic events. 

Subsequently, optimization computation is performed 

using the improved PSO algorithm to adjust lane selection, 

speed limit strategies, and traffic flow control, generating 

an optimized scheme. Finally, the optimized scheme is 

input into the simulation system for validation and 

compared with traditional rule-based methods to analyze 

improvements in small passenger vehicle traffic efficiency 

after optimization. 

The traffic flow optimization objectives of this work 

include minimizing average travel time, improving lane 

utilization, reducing lane-changing frequency, and 

optimizing speed guidance strategies to achieve the 

optimal traffic scheme under different traffic flow 

conditions. 

1) Minimizing Average Travel Time 

This optimization objective aims to reduce the travel time 

of small passenger vehicles on highways, thereby 

improving traffic efficiency. It can be written as Equation 

(1): 

1

1
min

N

avg i

i

T T
N =

=   (1) 

avgT  means the average travel time of all small passenger 

vehicles, in seconds (s); N denotes the total number of 

vehicles; 
iT  represents the travel time of the i-th vehicle 

from the entrance to the exit, in seconds (s). This 

optimization objective requires the improved PSO 

algorithm to adjust strategies such as lane allocation and 

speed limit guidance to reduce the travel time of small 

passenger vehicles and improve traffic efficiency.   

2) Improving Lane Utilization 

This optimization objective aims to improve the overall 

road efficiency by reasonably allocating lane resources 

and reducing congestion. It can be expressed as Equation 

(2):   

1

1
max

M
j

lane

j j

V
U

M C=

=   (2) 

laneU  represents lane utilization, in percentage (%). M is 

the total number of lanes on the highway, 
jV  represents 

the current traffic flow on the j-th lane, in vehicles/hour; 

and 
jC  is the maximum capacity of the j-th lane, in 

vehicles/hour. This optimization objective requires 

balancing the load across different lanes to avoid severe 

congestion on some lanes while other lanes remain 

underutilized.   

3) Reducing Lane-Changing Frequency   

This optimization objective aims to reduce the number of 

lane changes, improve driving stability, and reduce 

accident risks. The objective function can be expressed as 

Equation (3):   

1

1
min

N

avg i

i

LC LC
N =

=   (3) 

avgLC  represents the average number of lane changes, in 

occurrences; 
iLC  is the number of lane changes for the i-

th vehicle, in occurrences; N refers to the total number of 

vehicles. This optimization objective encourages the 

improved PSO algorithm to adjust speed guidance and 

lane allocation strategies, thus minimizing lane changes as 

much as possible and improving traffic stability.   

4) Optimizing Speed Guidance Strategy 

This optimization objective aims to maintain a stable 

speed for small passenger vehicles through reasonable 

speed control, and reduce congestion and accidents caused 

by speed fluctuations. The objective function for 
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optimizing the speed guidance strategy can be expressed 

as Equation (4):   

2

1

( )
1

min
N

var i opt

iN
  

=

= −  (4) 

var  represents the variance of speed fluctuations, in 

km²/h²; 
i  stands for the actual speed of the i-th vehicle, 

in km/h;
opt denotes the optimal recommended speed for 

small passenger vehicles, in km/h. This optimization 

objective requires the PSO algorithm to dynamically 

adjust the recommended speed, reduce speed fluctuations, 

and enable vehicles to travel at a more stable speed, 

thereby improving the overall stability of the traffic flow. 

 

3.2  Construction and analysis of the 

optimized control model based on the 

improved PSO algorithm 

This work implements an intelligent traffic control model 

based on the improved PSO to address the optimization 

needs of small passenger vehicles on highways. The 

model enhances the traffic efficiency of small passenger 

vehicles by optimizing lane allocation, speed guidance, 

and traffic flow regulation. Due to the weak adaptability 

of traditional PSO in complex traffic environments, this 

work adopts an improved multi-strategy fusion PSO 

(MSF-PSO) algorithm. The algorithm incorporates 

optimization strategies such as adaptive inertia weight, 

dynamic learning factors, K-means clustering, and 

Cauchy disturbance to improve optimization performance. 

Figure 2 illustrates the optimized control model process 

based on the MSF-PSO algorithm. 
Start

Initialize parameters

Randomly initialize particle positions and velocities

Calculate fitness function J

Is termination 

condition met?

Output optimal solution

Adaptively adjust inertia weight

Dynamically adjust learning factors

K-means to maintain particle diversity

Cauchy perturbation to prevent local optima

Update particle velocities

Update particle positions

Calculate new fitness values

Update personal and global best values

Update best values

Yes

No

 

Figure 2: Flowchart of the MSF-PSO-based optimization control model. 

In the proposed MSF-PSO-based optimization control 

model, a MOO function based on MSF-PSO is developed 

to optimize the highway traffic flow of small passenger 

vehicles. The function comprehensively considers 

minimizing average travel time, improving lane utilization, 

reducing lane-changing frequency, and optimizing speed 

guidance. 

Taking into account the above optimization objectives, 

this work constructs the following weighted MOO 

function for the traffic flow model of small passenger 

vehicle highway control: 

1 2 3 4min avg lane avg varJ wT w U w LC w= − + +  (5) 

J represents the comprehensive optimization objective 

function; w1, w2, w3, and w4 are the weight coefficients for 

each objective (satisfying w1 + w2 + w3 + w4=1). 

The selection of these weight coefficients is based on 

expert knowledge and practical traffic management 

requirements to balance performance and trade-offs 

among different objectives. Specifically, minimizing the 

average travel time (Tavg) receives the highest weight 

(w1=0.4) as it represents the core indicator of traffic 

efficiency. Lane utilization (Ulane) is assigned a weight of 

w2=0.3 to optimize road resource allocation. Lane-

changing frequency (LCavg) carries a weight of w3=0.2 to 

reduce driving risks and improve traffic flow stability. 

Speed fluctuation variance (p) weights w4=0.1 to decrease 
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energy consumption and emissions. Experiments are 

conducted under different traffic flow conditions to verify 

the rationality of these weight coefficients, as detailed in 

Table 3. The result demonstrates that this weight 

combination achieves optimal performance across 

multiple scenarios, effectively balancing objectives while 

maintaining high adaptability and reliability. 

Table 3: Optimization results under different traffic flow 

conditions. 

Traffic 

flow 

conditi

ons 

avgT  

(%) 

laneU  

(%) 

avgLC  

(%) 
var  (%) 

Low 

flow 
12.5 8.8 33.9 43.7 

Mediu

m flow 
11.8 9.2 32.5 41.3 

High 

flow 
10.5 10.1 30.2 38.5 

 

The negative sign indicates the aim to maximize lane 

utilization, while the other optimization objectives are all 

minimized.  

The optimization of this objective function needs to be 

solved under certain constraints. They mainly include 

traffic density, lane capacity, and safety distance 

constraints, ensuring the feasibility of the optimization 

results, as expressed in Equations (6) and (7): 

max

1 1 1

,
M M M

j j j

j j j

V C 
= = =

     (6) 

( )
2

min,
2

i

safeD i d i N
a


 +    (7) 

j  refers to the actual traffic density of the j-th lane; 
max  

is the maximum allowable density. ( )safeD i  represents the 

safety distance between the i-th vehicle and the preceding 

vehicle, in meters (m); a denotes the maximum 

deceleration of the vehicle, in meters per second squared 

(m/s²); and dmin stands for the minimum safe following 

distance, in meters (m). In this work, the safety distance 

calculation utilizes real-time vehicle trajectory data. For 

each vehicle, the HighD dataset provides current position 

coordinates (including lane position and longitudinal 

position within the lane) along with speed information. 

The longitudinal distance between consecutive vehicles in 

the same lane is computed using their positional 

coordinates. Considering each vehicle's braking 

performance and current speed, the minimum safe 

distance from the preceding vehicle is calculated 

according to Equation (7). The maximum deceleration rate 

(a) is predetermined based on vehicle type and road 

conditions, while the minimum safe following distance 

complies with traffic regulations and driving safety 

standards. This methodology enables real-time safety 

distance evaluation, providing critical safety constraints 

for the optimization control model. 

In this work, the constraints of the optimization model 

(such as safety distance, lane capacity, traffic density, and 

others) are implemented through a penalty mechanism. 

Specifically, for infeasible solutions, that is, those that 

violate the constraints, they are not discarded directly. 

Instead, they are punished by introducing penalty terms 

into the objective function. The purpose of this penalty 

mechanism is to guide the optimization algorithm to 

gradually move away from the infeasible area during the 

search process, thus finding a feasible solution that 

satisfies all the constraint conditions. 

For the safety distance constraint (Equation (7)), if the 

actual distance of a vehicle from the preceding vehicle is 

smaller than the minimum safety distance dmin, a penalty 

value is imposed on the vehicle’s optimization objectives 

(such as average travel time or speed fluctuation variance) 

in the objective function. The magnitude of the penalty 

value is proportional to the degree of violation of the 

safety distance, meaning that a greater violation results in 

a higher penalty value. For example, if the actual distance 

dactual is less than dmin, the penalty term can be expressed 

as Equation (8): 
2

min

min

actual

safe

d d
Penalty

d


 −
=  

 
 (8) 

α is a penalty coefficient used to adjust the intensity of the 

penalty. In this way, the optimization algorithm prioritizes 

solutions that satisfy the safety distance constraint, 

ensuring the feasibility and safety of optimization results 

in practical applications. 

For the lane capacity constraint (Equation (6)), if the 

actual traffic flow Vj on a lane exceeds its maximum 

capacity Cj, a penalty value is added to the lane’s 

optimization objective (lane utilization) in the objective 

function. The penalty term can be written as Equation (9): 
2

j j

capacity

j

V C
Penalty

C


 −
=  

 
 

 (9) 

β is a penalty coefficient used to adjust the intensity of the 

penalty. If the lane traffic flow Vj≤Cj (the maximum 

capacity), the penalty term is zero, indicating that the 

lane’s traffic flow is within the allowable range. 

For the traffic density constraint, if the actual traffic 

density 
j  on a lane exceeds the preset maximum 

allowable density 
max , a penalty value is incorporated on 

the lane’s optimization objective (lane utilization) in the 

objective function. The calculation of the penalty term 

reads: 
2

max

max

j

densityPenalty
 




− 
=  

 
 (10) 

 is a penalty coefficient employed to adjust the intensity 

of the penalty. The penalty term is zero if the traffic 

density 
j  is less than or equal to the maximum allowable 

density 
max . This illustrates that the density of this lane 

is within the safe range. 
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The incorporation of these penalty terms enables the 

optimization algorithm to simultaneously consider both 

objective optimization and constraint satisfaction when 

calculating the objective function value. Solutions 

violating constraints receive significantly increased 

objective function values through penalty terms, thereby 

reducing their fitness. This approach ensures gradual 

solution quality improvement during the search process. 

Also, it guarantees that final optimization results satisfy 

both performance objectives and practical traffic 

management constraints regarding safety and capacity. 

Here, to enhance the efficiency of the optimization 

solution, the standard PSO is improved. First, adaptive 

inertia weight adjustment controls the particle's search 

ability, allowing the algorithm to perform a more 

extensive global search in the early stages and gradually 

converge to the optimal solution in the later stages. The 

dynamic adjustment of the inertia weight adopts a 

Sigmoid variation strategy, with its update equation given 

in Equation (11):   

( )max min

min (γ /2)1
( )

t T

w w
w t w

e− −

−
= +

+
 (11) 

( )w t  represents the inertia weight at the current iteration 

t; 
maxw  and 

minw  are the maximum and minimum values 

of the inertia weight, typically set as 
maxw  = 0.9 and 

minw  

= 0.4; γ  means the steepness parameter of the Sigmoid 

curve; T denotes the maximum number of iterations. 

The parameter γ  plays a critical role in governing the 

inertia weight decay process, where larger γ  values 

accelerate decay while smaller values prolong it. This 

work systematically evaluates different γ  values (ranging 

from 0.05 to 0.2) and observes their impact on 

optimization performance. Figure 3 visually demonstrates 

the effect of the adaptive inertia weight strategy by 

presenting decay curves under various γ  values across 

iterations. 

 

Figure 3: Convergence results under different γ  

conditions. 

Figure 3 reveals that γ =0.1 produces an optimal inertia 

weight transition from 0.9 to 0.4, facilitating balanced 

search behavior. This smooth transition helps the 

algorithm conduct an extensive global search in the early 

stage and gradually focus on local search in the later stage, 

achieving a good balance between global exploration and 

local development. Consequently, γ =0.1 is identified as 

the most appropriate value for achieving robust 

optimization performance. Consequently, γ  =0.1 is 

regarded as the most appropriate value. It can ensure that 

the algorithm smoothly transitions from global search to 

local search during iteration. It also prevents the algorithm 

from prematurely falling into the local optimal solution. 

Moreover, it does not affect the convergence speed of the 

algorithm due to the excessively long global search time. 

Next, the adaptive adjustment of the learning factors can 

dynamically balance global and local search capability 

during the optimization process. Its update equations are 

given in Equations (12) and (13):   

( )max min

1 1max

1 1( )
c c t

c t c
T

− 
= −  (12) 

( )max min

2 2max

2 2( )
c c t

c t c
T

− 
= −  (13) 

1c  and 
2c  represent the individual learning factor and the 

group learning factor, respectively; max

1c  and min

1c  are the 

maximum and minimum values for 
1c , typically set as 

max

1c  = 2.5 and min

1c  = 1.5; max

2c  and min

2c  are the 

maximum and minimum values for 
2c , typically set as 

max

2c  = 2.5 and min

2c  = 1.5. 

To prevent premature convergence of PSO, this work uses 

K-means clustering after each iteration to classify the 

particle swarm and adjust the search direction of 

individual particles, maintaining the diversity of the 

population. In addition, a Cauchy disturbance strategy is 

introduced to enhance the ability of the particle swarm to 

escape from local optima in the later stages of iteration 

[20]. This strategy involves adding a Cauchy distribution 

random variable to the velocity update equation of some 

particles, as shown in Equation (14):   

( )0,1new

i iX X Cauchy= +   (14) 

new

iX  represents the updated position of the particle; τ is 

the disturbance intensity factor; and )0,1(Cauchy  is the 

disturbance value randomly drawn from the Cauchy 

distribution. 

Through the integration of the above optimization 

strategies, the improved PSO can achieve faster 

convergence speed, better global search capability, and 

more stable optimization results when solving the 

highway control problem for small passenger vehicles. 

Figure 4 depicts the pseudocode flow of the MSF-PSO-

based optimization control model. 
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#Input: Control parameters (Lane_Selection, Speed_Limit, Traffic_Control)

#Output: fitness value J

# Initialize particle positions and velocities

# Particle position represents control parameters:

# [lane_speed_1, lane_speed_2, ..., speed_limit]

particles = np.random.uniform(low=30, high=120, size=(NUM_PARTICLES, 4))

velocities = np.random.uniform(-1, 1, (NUM_PARTICLES, 4))

# Evaluate initial personal best and global best

pbest_positions = particles.copy()

pbest_fitness = np.array([compute_fitness(pos) for pos in particles])

gbest_index = np.argmin(pbest_fitness)

gbest_position = pbest_positions[gbest_index]

# Main PSO loop

for t in range(MAX_ITER):

    # Update dynamic PSO parameters

    w = w_max - ((t / MAX_ITER) * (w_max - w_min))

    c1 = c1_min + ((t / MAX_ITER) * (c1_max - c1_min))

    c2 = c2_min + ((t / MAX_ITER) * (c2_max - c2_min))

    for i in range(NUM_PARTICLES):

        # Update velocity

        r1, r2 = np.random.rand(2)

        velocities[i] = (

            w * velocities[i]

            + c1 * r1 * (pbest_positions[i] - particles[i])

            + c2 * r2 * (gbest_position - particles[i])

        )

        # Update position

        particles[i] += velocities[i]

        # Run simulation and extract performance metrics

        sim_output = run_simulation(particles[i])

        metrics = extract_metrics(sim_output)

        # Check feasibility (e.g., safety distance constraint)

        if is_feasible(metrics['v_i'], metrics['a'], metrics['L_min']):

            # Compute fitness using multi-objective function

            current_fitness = compute_fitness(metrics)

            # Update personal best

            if current_fitness < pbest_fitness[i]:

                pbest_positions[i] = particles[i]

                pbest_fitness[i] = current_fitness

    # Update global best

    new_gbest_index = np.argmin(pbest_fitness)

    if pbest_fitness[new_gbest_index] < 

compute_fitness(extract_metrics(run_simulation(gbest_position))):

        gbest_position = pbest_positions[new_gbest_index]

# Return final optimal solution

print("Optimal control parameters:", gbest_position)
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Figure 4: Pseudocode flowchart of the MSF-PSO-based 

optimization control model. 

Figure 4 presents the complete implementation process of 

the traffic control model based on the MSF-PSO algorithm, 

which focuses on optimizing traffic control parameters for 

passenger vehicles on highways through a simulation-

driven approach. In this implementation, each particle 

represents a set of adjustable control parameters, including 

recommended speeds for different lanes and global speed 

limits. These parameters interact with the SUMO 

simulator to extract performance indicators such as 

average travel time, lane utilization, lane-changing 

frequency, and speed fluctuation variance, which are then 

used to calculate fitness values. The objective function 

employs a weighted multi-objective value J to guide 

particle updates, ensuring the optimization process aligns 

with real-world traffic behavior. Additionally, safety 

distance constraints are enforced by dynamically verifying 

whether inter-vehicle spacing meets the minimum safety 

distance requirement (dmin) during each simulation phase, 

thus guaranteeing traffic safety. 

3.3 Experimental evaluation 

To validate the effectiveness of the proposed MSF-PSO 

algorithm in optimizing highway control for small 

passenger vehicles, this work conducts experimental 

evaluations based on the SUMO traffic simulation 

platform. The experimental scenario is set as a six-lane 

highway, with a total length of 5 km, and the maximum 

vehicle speed is set to 130 km/h. To ensure the authenticity 

and comparability of the simulation, the experimental data 

comes from the HighD dataset (https://www.highd-

dataset.com). It contains high-precision trajectory 

information of 11,500 vehicles on German highways, 

covering detailed traffic parameters such as speed, 

acceleration, lane position, and lane-changing behavior. 

Based on this dataset, different traffic flow scenarios are 

constructed, including low flow (1,000-2,500 

vehicles/hour), medium flow (3,000-4,500 vehicles/hour), 

and high flow (5,000-7,000 vehicles/hour). Simulations 

for sudden events (such as accidents or merging 

disruptions) are performed to assess the optimization 

capability of MSF-PSO under sudden congestion 

conditions.  

Emergency events are triggered by randomly establishing 

traffic flow interruption points during SUMO simulations, 

which may include temporary construction zones, sudden 

obstacles, or vehicle breakdowns. To maintain 

consistency of emergency scenarios across different 

algorithm tests, identical emergency scenarios are 

randomly generated at the start of each trial based on 

predefined parameters (event type, location, duration, etc.). 

These data are derived from statistical characteristics of 

similar emergencies recorded in the HighD dataset, 

ensuring test fairness and comparability. All algorithm 

evaluations use the same emergency scenario seed, 

enabling accurate performance comparisons under 

identical baseline conditions when responding to 

emergencies. 

The experimental computing environment includes an 

Intel i7-12700H processor, 32GB RAM, and an NVIDIA 

RTX 3070 GPU to ensure the efficient operation of the 

optimization algorithm. 

To evaluate the performance of the model, the MSF-PSO 

algorithm proposed is compared with Adaptive Particle 

Swarm Optimization (APSO) [21], PSO, Genetic 

Algorithm (GA) [22], and the model algorithm proposed 

by Haris & Nam (2024). Each algorithm is run 100 times, 

and the average value is taken for statistical analysis. To 

ensure the transparency and repeatability of the 

comparison, the configuration information of the 

benchmark algorithm used in the experiment is described 

in detail, including parameter settings and tuning 

processes, as listed in Table 4.

Table 4: Hyperparameter settings of each model algorithm. 

The name of 

the algorithm 

Range of 

inertia 

weight 

Cognitive 

coefficient 

(
1c ) 

Social 

coefficient 

(
2c ) 

Cauchy 

distribution 

setting 

Population 

size 

Maximum 

number of 

iterations 

Remark 

MSF-PSO 0.9 - 0.4 Adaptive Adaptive τ=0.1, λ=1.5 30 100 - 

https://www.highd-dataset.com/
https://www.highd-dataset.com/
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PSO 0.7 2 2 - 30 100 - 

APSO 0.9 - 0.4 2 2 - 30 100 - 

GA - - - - 30 100 - 

Haris & Nam 0.7 1.4 1.4 - 30 100 

Distance-

dependent 

fast 

convergence 

strategy 

Notes: 1) GA does not utilize inertia weights or learning factors as it operates as a population-based evolutionary 

algorithm. The crossover probability is 0.8, the mutation probability is 0.01, and the tournament selection method is 

adopted, with a tournament size of 2. 2) The MSF-PSO's Cauchy distribution configuration includes perturbation 

intensity factor (τ) and shape parameter (λ). 3) The Haris & Nam model employs a distance-dependent rapid convergence 

strategy to enhance optimization speed. 

 

The experiment mainly measures four key indicators: 

average travel time (
avgT ), lane utilization (

laneU ), lane-

changing frequency (
avgLC ), and speed stability (

var ). 

4 Results and discussion 

4.1 Performance analysis under different 

traffic flows 

The performance of the model algorithm proposed is 

analyzed across four key indicators under different traffic 

flow conditions. The specific results are suggested in 

Table 5. 

Table 5: Performance results under different traffic flow conditions. 

Traffic condition avgT (s) 
laneU ( %) avgLC (Number/vehicle) 

var  (km²/h²) 

Low flow 210.4 78.2 1.75 6.2 

Medium flow 243.7 88.8  2.3  7.9  

High flow 315.2 92.4 3.89 15.1 

Emergency event 398.5 70.3 5.62 25.6 

 

In Table 5, a comparison of the results for each traffic flow 

condition reveals that under medium traffic flow (3,000-

4,500 vehicles/hour), the traffic volume has noticeably 

increased but has not yet reached a state of severe 

congestion. The optimization algorithm shows remarkable 

effects and is highly representative. At this point, the 

average travel time is 243.7 seconds, which is an increase 

compared to the low-flow condition (210.4 seconds), but 

still much lower than the travel time under high-flow and 

sudden event conditions. This indicates that traffic under 

medium flow maintains relatively high passage efficiency. 

Meanwhile, lane utilization reaches 88.8%, substantially 

higher than the 78.2% under low flow. This indicates that 

the utilization of road resources is relatively balanced 

within this traffic range, allowing the optimization and 

control measures to be fully effective. Additionally, the 

lane-changing frequency is 2.3 times per vehicle, slightly 

higher than under low flow, but still significantly lower 

than the frequent lane changes observed under high flow 

and sudden event conditions. This suggests that, at this 

traffic level, driving behavior is relatively stable, reducing 

interference caused by lane changes. Finally, the speed 

fluctuation variance is 7.9 (km²/h²), slightly higher than 

under low flow but still much lower than under high flow 

and sudden event conditions. This indicates that, despite 

the increased traffic flow in medium flow, vehicle speeds 

remain relatively stable. Consequently, the indicators 

under medium flow reflect the effectiveness of traffic 

optimization while avoiding the severe congestion seen in 

high flow and the sharp deterioration caused by sudden 

events, making it a highly representative scenario. 

The real-time performance of the proposed model 

algorithm under different traffic conditions is further 

analyzed, as revealed in Figure 5. 
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Figure 5: Real-time results under various traffic conditions 

 

Figure 5 illustrates the computational performance of the 

MSF-PSO algorithm under different traffic conditions as 

follows. In low-traffic states, the average time per iteration 

is 0.37 seconds (with a worst-case scenario of 0.4 seconds), 

demonstrating efficient processing capabilities in light-

load traffic. The average time increases to 0.42 seconds 

(the worst: 0.49 seconds) under medium traffic and 

reaches 0.51 seconds (the worst: 0.55 seconds) under high 

traffic, still maintaining sub-second response and meeting 

real-time control requirements. Notably, in emergency 

event scenarios, the algorithm’s average time 

consumption stabilizes at 0.53 seconds (the worst: 0.6 

seconds), consistently below the 1-second real-time 

threshold of ITS. This result indicates that the MSF-PSO 

algorithm maintains stable computational efficiency 

across all scenarios, from low-load to peak congestion and 

sudden incidents. This provides a reliable guarantee for 

real-time decision-making in actual road control systems. 

4.2 Analysis of runtime complexity and 

convergence under diverse algorithms 

The runtime complexity (including standard deviation) of 

each algorithm in 100 iterations is denoted in Table 6. 

Table 6: The result of the runtime complexity of each algorithm. 

Algorithm 

Average 

computation time 

(seconds/iteration) 

Standard 

deviation 

(seconds) 

Total 

computation 

time 

(seconds 

/100 

iterations) 

MSF-PSO 0.4 0.05 40 

APSO 0.43 0.06 43 

PSO 0.38 0.04 38 

GA 0.51 0.06 51 

Haris & 

Nam 
0.44 0.03 44 

 

In Table 6, in terms of algorithm runtime complexity, 

MSF-PSO demonstrates excellent computational 

efficiency and stability. Regarding time per iteration, the 

standard PSO algorithm performs best (0.38 seconds), 

with MSF-PSO closely following at 0.4 seconds, incurring 

only a 5.3% increase in computational load compared to 

PSO and a 21.6% reduction compared to GA’s 0.51 

seconds. It is worth noting that although the iteration times 

of APSO and the Haris & Nam algorithm are similar to 

MSF-PSO (0.43-0.44 seconds), MSF-PSO has the 

smallest standard deviation (0.05 seconds). This indicates 

lower volatility in computation time and more stable 

operation. Considering total computational cost, MSF-

PSO requires 40 seconds to complete 100 iterations, 

remarkably outperforming GA (51 seconds) and matching 

PSO’s efficiency level of 38 seconds. This superiority in 

computational performance primarily stems from MSF-

PSO’s adoption of dynamic learning factors and K-means 

clustering strategies. This effectively controls 

computational complexity while ensuring optimization 

accuracy, giving it remarkable advantages in traffic 

control scenarios with high real-time requirements. 

The convergence results of each algorithm are further 

explored as indicated in Figure 6. 
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Figure 6: The convergence results of each algorithm. 

The convergence analysis in Figure 6 reveals significant 

performance differences among the algorithms. MSF-PSO 

demonstrates superior convergence characteristics, 

rapidly stabilizing to the optimal solution within 30 

iterations while maintaining the smallest standard 

deviation range (1-3). This verifies the effectiveness of its 

multi-strategy fusion approach in accelerating 

convergence. APSO and the Haris & Nam algorithm 

exhibit moderate convergence speeds, though the latter 

shows larger standard deviations (2-4), indicating weaker 

disturbance resistance. The standard PSO displays 

noticeably slower convergence due to its lack of adaptive 

mechanisms. GA presents characteristic oscillatory 

convergence patterns (with superimposed sinusoidal 

fluctuations), evidenced by its maximum standard 

deviation (3-6) and highest initial value (320). This 

reflects the inherent instability of traditional evolutionary 

algorithms in dynamic optimization scenarios. Notably, 

MSF-PSO's convergence curve consistently remains 

below those of other algorithms, and combined with its 

minimal standard deviation range, conclusively 

demonstrates dual advantages in both convergence speed 

and robustness. 

4.3 Performance analysis under different 

algorithms 

Further comparison of the results for each algorithm in 

terms of the four indicators under medium traffic flow is 

provided. Figures 7 to 10 present the specific comparison 

results. 
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Figure 7: Comparison of average travel time under 

different algorithms. 

 Figure 7 illustrates that the proposed MSF-PSO algorithm 

can achieve a lower average travel time within all training 

epochs compared with APSO, PSO, GA, and the model 

proposed by Haris & Nam (2024). After 100 epochs of 

training, the average travel time of MSF-PSO is further 

optimized to 243.7 seconds, which is 18.5% lower than 

PSO (299.2 seconds) and 19.8% lower than GA (303.8 

seconds). This demonstrates faster convergence speed and 

better optimization capability. The result indicates that 

MSF-PSO significantly enhances the traffic flow 

optimization efficiency by fusing multi-strategy 

techniques such as adaptive inertia weight adjustment, 

dynamic learning factors, and K-means clustering. It can 

reach a better convergence state with fewer training 

epochs, achieving a lower travel time. 
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Figure 8: Comparison of lane utilization under different 

algorithms. 

In Figure 8, the experimental results indicate that the 

MSF-PSO algorithm proposed performs excellently in 

optimizing lane utilization. It consistently achieves higher 

lane utilization across all training epochs and has obvious 

advantages compared to the model proposed by Haris & 

Nam (2024), APSO, PSO, and GA. Moreover, lane 

utilization shows an upward trend as the iteration epochs 

increase. After 100 epochs, MSF-PSO further optimizes 

lane utilization to 88.84%, which is 1.8% higher than 

Haris & Nam (2024) (87.05%), 4.7% higher than PSO 

(84.84%), and 8.8% higher than GA (81.68%). This result 

demonstrates that MSF-PSO enhances search capability 

through adaptive inertia weight adjustment, dynamic 

learning factor adjustments, and K-means clustering, and 

achieves more efficient lane resource optimization. It 

reaches a better convergence state with fewer training 

epochs, improving lane utilization and enhancing the 

balance and efficiency of traffic flow. 
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Figure 9: Comparison of lane-changing frequency under 

different algorithms. 

Figure 9 suggests that the MSF-PSO algorithm proposed 

demonstrates outstanding performance in optimizing lane-

changing frequency. It significantly reduces the average 

number of lane changes per vehicle across all training 

epochs compared to Haris & Nam (2024), APSO, PSO, 

and GA. After 10 epochs, MSF-PSO achieves a lane-

changing frequency of 3.86 changes/vehicle, lower than 

GA (4.85 changes/vehicle) and PSO (4.52 

changes/vehicle), showing initial optimization effects. 

After 100 epochs, MSF-PSO optimizes lane-changing 

frequency to 2.27 changes/vehicle. It is 11.5% lower than 

Haris & Nam (2024) (2.57 changes/vehicle), 21.6% lower 

than APSO (2.90 changes/vehicle), 30.5% lower than PSO 

(3.27 changes/vehicle), and 33.9% lower than GA (3.44 

changes/vehicle). This result indicates that the proposed 

MSF-PSO model algorithm can enhance the search ability 

through diverse improvement measures, such as adaptive 

inertia weight adjustment, dynamic learning factor 

optimization, and K-means clustering. It enables vehicles 

to allocate lanes more rationally, reducing unnecessary 

lane changes, improving driving stability, reducing lane 

change interference, and optimizing traffic flow efficiency. 
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Figure 10: Comparison of speed fluctuation variance under different algorithms. 
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Figure 10 shows that the MSF-PSO algorithm proposed 

performs exceptionally well in reducing speed fluctuation 

variance. Across all training epochs, it outperforms Haris 

& Nam (2024), APSO, PSO, and GA, significantly 

improving driving stability. After 10 epochs, the speed 

fluctuation variance for MSF-PSO is 13.19 (km²/h²), about 

30% lower than GA (18.94 (km²/h²)) and PSO (18.28 

(km²/h²)), demonstrating initial optimization advantages. 

As training progresses, MSF-PSO further optimizes to 

7.93 (km²/h²) after 100 epochs, which is 13.7% lower than 

the Haris & Nam (2024) model (9.19 (km²/h²)), 39.4% 

lower than PSO (13.08 (km²/h²)), and 43.7% lower than 

GA (14.09 (km²/h²)). It showcases superior speed and 

stability control. This result confirms that the MSF-PSO 

algorithm, through adaptive inertia weight adjustment, 

dynamic learning factor optimization, and Cauchy 

disturbance mechanisms, enhances the stability and safety 

of traffic flow, offering notable advantages in intelligent 

traffic optimization. 

To verify the reliability of the results, analysis of variance 

(ANOVA) and independent sample t-tests (confidence 

level: 95%) are conducted on the performance indicators 

of each algorithm, as presented in Table 7.

Table 7: ANOVA and independent sample t-test results of various algorithms (mean ± standard deviation). 

Indicator MSF-PSO  
Haris & Nam 

(2024) 
APSO  PSO  GA  f-value p-value 

Average travel 

time (seconds) 
243.7 ± 5.2 257.3 ± 6.1 

268.4 ± 

7.3 

299.2 ± 

8.7 

303.8 ± 

9.1 
45.3 <0.001 

Lane utilization 

(%) 
88.8 ± 1.5 87.1 ± 1.8 

86.2 ± 

1.8 

84.8 ± 

2.1 

81.7 ± 

2.8 
32.1 <0.001 

Lane-changing 

frequency 

(changes/vehicle) 
2.3 ± 0.4 2.57 ± 0.5 

2.90 ± 

0.6 

3.27 ± 

0.6 

3.44 ± 

0.7 
28.7 <0.001 

Speed fluctuation 

variance (km²/h²) 
7.9 ± 0.9 9.19 ± 1.1 

9.80 ± 

1.2 

13.08 ± 

1.5 

14.09 ± 

1.8 
37.6 <0.001 

 

In Table 7, experimental results show MSF-PSO's 

statistically significant superiority (p<0.001) across all 

key performance indicators. Compared with other 

algorithms, MSF-PSO optimizes average travel time to 

243.7±5.2 seconds, representing a 5.3% improvement 

over the second-best Haris & Nam model (257.3±6.1 

seconds) and 18.5%-19.8% enhancements versus 

conventional PSO and GA approaches. The algorithm 

achieves 88.8±1.5% lane utilization, outperforming APSO 

(86.2±1.8%) by 3.0%. Simultaneously, this algorithm 

delivers the lowest lane-changing frequency (2.3±0.4 

changes/vehicle) and speed fluctuation variance (7.9±0.9 

km²/h²), representing 11.5% and 14.1% reductions, 

respectively, compared to the next-best performing 

algorithms. Crucially, MSF-PSO demonstrates the 

smallest standard deviations across all metrics, confirming 

the exceptional stability and reliability of its optimization 

results. These advantages primarily stem from the 

algorithm's integrated adaptive inertia weight, dynamic 

learning factors, and Cauchy disturbance mechanisms. 

These effectively address traditional algorithms' 

limitations in convergence speed and optimization 

accuracy while maintaining computational efficiency, 

thereby providing an advanced solution for real-time ITS 

optimization. 

Table 8 shows the sensitivity analysis of multi-objective 

weights. 

Table 8: Results of weight sensitivity analysis. 

Weight 

combination 

(w₁, w₂, w₃, 

and w₄) 

avgT

(s) 

laneU

( %) 

avgLC

(Number 

/vehicle) 

var  

(km/h)² 

(0.4, 0.3, 

0.2, 0.1) 
243.7 88.8 2.3 7.9 

(0.3, 0.3, 

0.3, 0.1) 
251.2 85.4 1.8 8.2 

(0.5, 0.2, 

0.2, 0.1) 
238.5 82.1 2.6 9.1 

 

Sensitivity analysis of multi-objective weight 

combinations reveals that different weight configurations 

significantly impact optimization results (as shown in 

Table 8). When using the baseline weight combination 

(0.4, 0.3, 0.2, 0.1), the algorithm achieves the best balance 

between travel time (243.7 seconds) and lane utilization 

(88.8%). Also, it maintains a low lane-changing frequency 

(2.3 times/vehicle) and speed fluctuation (7.9 km²/h²). 

Notably, increasing the weight of lane-changing 

frequency to 0.3 (combination 0.3, 0.3, 0.3, 0.1) markedly 

reduces lane-changing frequency to 1.8 times/vehicle (a 

21.7% decrease). However, the cost is an increase of 7.5 

seconds (3.1%) in travel time and a decrease of 3.4 

percentage points in lane utilization. Conversely, 

prioritizing travel time (weight: 0.5) yields the shortest 
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travel time (238.5 seconds) but reduces lane utilization to 

82.1% and increases lane-changing frequency to 2.6 

times/vehicle. These results demonstrate that weight 

settings for the MSF-PSO algorithm require trade-offs 

based on actual management needs. Increasing the lane-

changing frequency weight is appropriate for safety-

priority scenarios, while enhancing the travel time weight 

is suitable for efficiency-priority scenarios. Among all 

tested combinations, the baseline weights demonstrate 

optimal comprehensive performance, validating the 

rationality of the original weight design. 

4.4 Discussion 

Through analysis of the above model performance results, 

the proposed MSF-PSO algorithm can optimize the traffic 

flow of small passenger vehicles on highways. 

Particularly, it remarkably improves key indicators such 

as average travel time, lane utilization, lane-changing 

frequency, and speed fluctuation variance. Specifically, 

MSF-PSO optimizes the average travel time to 243.7±5.2 

seconds, representing a 5.3% improvement over the model 

proposed by Haris & Nam and an 18.5%-19.8% 

improvement over traditional PSO and GA. Regarding 

lane utilization, it reaches 88.8±1.5%, a 3.0% 

improvement over APSO. Meanwhile, it achieves the 

lowest lane-changing frequency (2.3±0.4 times/vehicle) 

and speed fluctuation variance (7.9±0.9 km²/h²), which are 

11.5% and 14.1% lower than those of the algorithm 

proposed by Haris & Nam, respectively. Therefore, 

compared with existing research, the proposed MSF-PSO 

algorithm outperforms traditional PSO, APSO, and GA in 

optimization performance. Also, it remarkably enhances 

the algorithm’s global search capability and convergence 

speed through multi-strategy integration (such as adaptive 

inertia weight adjustment, dynamic learning factor 

optimization, K-means clustering, and Cauchy 

perturbation mechanism). 

The MSF-PSO algorithm demonstrates remarkable 

advantages in optimizing traffic flow for small passenger 

vehicles on highways, particularly in convergence speed 

and global search capability. Compared with traditional 

GA, PSO, and APSO, MSF-PSO avoids local optima more 

effectively by introducing mechanisms such as Cauchy 

noise, thus achieving more efficient global search. 

Compared with the deep learning-based traffic flow 

monitoring method by Almukhalfi et al. [23], the MSF-

PSO algorithm exhibits stronger adaptability in handling 

dynamic traffic flows, especially in optimizing lane 

utilization and reducing lane-changing frequency. 

Additionally, compared with Yazdani et al.’s [24] DRL-

based signal optimization method, MSF-PSO 

demonstrates more balanced MOO performance, capable 

of optimizing multiple key indicators simultaneously 

rather than focusing solely on single signal control. 

Furthermore, compared with Haris et al.’s [25] fast-

converging PSO algorithm, MSF-PSO possesses 

significant advantages in global search capability and 

optimization stability. When dealing with complex traffic 

flows, it effectively avoids local optimal solutions to 

achieve superior global optimization results. 

However, these improvements are not without costs. The 

K-means clustering introduced in the proposed MSF-PSO 

algorithm, while helping maintain population diversity, 

increases computational complexity. In practical 

applications, this additional computational burden may 

affect the algorithm’s real-time performance to some 

extent, particularly when processing large-scale traffic 

flow data. Nevertheless, MSF-PSO still maintains sub-

second response times under different traffic flow 

conditions, meeting the real-time requirements of ITS. 

Regarding generalizability and real-time implementation 

feasibility, the proposed MSF-PSO algorithm has 

demonstrated good performance in optimizing traffic flow 

for small passenger vehicles. However, further research is 

needed to determine whether it can be generalized to other 

traffic types (such as trucks or mixed traffic). Due to 

differences in driving characteristics and traffic demands 

among vehicle types, the algorithm may require 

corresponding adjustments and optimizations. For 

example, trucks have relatively poor acceleration and 

deceleration performance, resulting in different behavioral 

patterns in traffic flow compared to small passenger 

vehicles. Additionally, the real-time implementation 

feasibility of the MSF-PSO algorithm is a critical 

consideration. Experimental results show the algorithm 

maintains stable computational efficiency under various 

traffic flow conditions. However, real-time acquisition 

and processing of traffic flow data in actual highway 

environments may be affected by multiple factors, such as 

sensor accuracy and reliability, and communication 

network delays. These factors may interfere with the 

algorithm’s real-time performance, thus impacting its 

optimization effects 

Regarding practical significance, although experimental 

results indicate that the MSF-PSO algorithm achieves 

substantial improvements in optimizing traffic flow, its 

practical implications still need to be analyzed in 

combination with real-world conditions. In real highway 

environments, traffic flow is influenced by multiple 

factors, such as weather conditions, traffic accidents, and 

road construction. These factors may interfere with the 

optimization effects of traffic flow, thereby reducing the 

algorithm’s practical application value. For example, 

under adverse weather conditions, even with the 

application of optimization algorithms, vehicle speeds 

may be restricted, leading to increased travel times. 

Additionally, the optimization of traffic flow needs to 

consider the traffic efficiency of vehicles and other factors 

(e.g., traffic safety and environmental impact). While the 

MSF-PSO algorithm performs excellently in reducing 

lane-changing frequency and speed fluctuations, its 

practical application necessitates further evaluation of 

how these optimization measures affect traffic safety and 

the environment. For instance, reducing lane-changing 

frequency may decrease interference between vehicles 

and thereby enhance traffic safety. However, it may also 

result in less flexible travel routes for some vehicles, 

affecting their traffic efficiency. 



156 Informatica 49 (2025) 141–158 Z. Zhou et al. 

 

 

 

Regarding the algorithm’s scalability and limitations, this 

work briefly identifies dynamic signal inputs and extreme 

events, further analyzing their impacts on actual traffic 

flow optimization. Dynamic signal inputs can real-time 

reflect changes in traffic flow, thereby providing more 

accurate input data for optimization algorithms. Extreme 

events (such as severe traffic accidents or adverse weather 

conditions) can cause sudden disruptions to traffic flow, 

affecting the performance of optimization algorithms. 

Meanwhile, the influence of mixed traffic (trucks, buses) 

is another critical factor to consider. Different vehicle 

types exhibit varying driving characteristics and traffic 

demands. Thus, in mixed traffic environments, further 

research is needed on optimizing traffic flows for diverse 

vehicle categories. For example, setting different lane 

priorities can provide more reasonable route and speed 

guidance for various vehicle types. Moreover, delays in 

the PSO update cycle represent an issue to be addressed. 

In practical applications, data processing, communication, 

and other factors may introduce delays in the PSO update 

cycle. Finally, robustness under changing 

weather/visibility conditions is also a key consideration. 

Adverse weather may impair the optimization effects of 

traffic flow, necessitating further research on enhancing 

the MSF-PSO algorithm’s robustness across different 

weather conditions to ensure its effective operation in 

complex traffic environments. 

Furthermore, the proposed highway lane allocation 

optimization model based on the MSF-PSO algorithm 

prompts further discussion on the broader impacts of such 

algorithms. For example, prioritizing certain vehicle 

categories over others may involve policy and equity 

considerations. In practical applications, multiple factors 

must be comprehensively evaluated to ensure the fairness 

and rationality of lane allocation algorithms. For instance, 

setting different priority levels can provide more 

reasonable route and speed guidance for various vehicle 

types. Meanwhile, policy factors such as environmental 

protection policies and traffic management regulations 

must be considered to ensure that the implementation of 

lane allocation algorithms complies with relevant policy 

requirements. In addition, the implementation of lane 

allocation algorithms may affect the overall performance 

of the traffic system. For example, prioritizing certain 

vehicle categories could reduce the travel efficiency of 

other categories, thereby impacting the system’s overall 

performance. 

5 Conclusion 
This work proposes an MSF-PSO algorithm to optimize 

the traffic efficiency of small passenger vehicles in 

highway environments and conducts experimental 

validation on the SUMO traffic simulation platform. The 

results demonstrate that the proposed MSF-PSO exhibits 

exceptional optimization capabilities. It reduces average 

travel time (a 12.5% reduction), increases lane utilization 

(an 8.8% improvement), reduces lane change frequency (a 

33.9% decrease), and enhances driving stability (a 43.7% 

reduction in speed fluctuation variance). However, this 

work has several limitations. For example, the current 

algorithm does not fully account for dynamic changes in 

real-time traffic signals, and its adaptability to extreme 

traffic events (such as severe accidents or inclement 

weather) requires further optimization. Additionally, the 

computational complexity of the algorithm when 

processing large-scale traffic flow data may compromise 

real-time performance. Future research focuses on 

integrating real-time data streams, such as those from 

connected vehicles or edge devices, to enable dynamic re-

optimization. Meanwhile, exploring hybrid reinforcement 

learning frameworks (such as DDPG+PSO) for policy 

learning in dynamic environments enhances the 

algorithm’s adaptability and optimization capabilities, 

offering more efficient and flexible solutions for 

intelligent traffic management systems. 
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