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With the rapid development of Internet technology, the types of malwares are constantly increasing, which 

brings significant challenges to network security. Traditional malware detection methods mainly rely on 

feature extraction and classifier design, but these methods have certain limitations when dealing with 

complex and changeable malware behaviors. To solve this problem, this study proposes a malware 

behavior detection method based on multi-modal deep learning combined with database storage 

optimization technology. This method will extract multi-dimensional malware features and utilize deep 

learning models for learning and classification to improve the accuracy and efficiency of detection. The 

experimental data results show that the proposed method in this study is highly accurate and robust in 

malware behavior detection. By detecting 1000 malware samples, the method in this study can accurately 

identify the behavioral characteristics of 950 of them and effectively classify them, with a detection 

accuracy of up to 95%. Compared with other traditional malware detection methods, the detection 

accuracy of traditional methods is 70% on average, while the method in this study can reach more than 

90%. In terms of false reporting rate, the traditional method is about 30%, but the method in this study 

can be controlled within 5%. In terms of false alarm rate, the traditional method is about 20%, but the 

method in this study can be reduced to about 3%, which shows apparent advantages. By introducing 

database storage optimization technology, the method in this study can not only improve the accuracy of 

malware detection but also effectively reduce the storage pressure of the database, reduce the storage 

space of the database by about 40% compared with that before optimization, improve the running 

efficiency of the system, and shorten the overall response time of the system by about 30%. 

Povzetek:  Študija predstavi multimodalno globoko učenje za zaznavanje vedenja zlonamerne 

programske opreme, ki združuje statične, dinamične in omrežne značilke (CNN/LSTM, bilinearno 

spajanje, pozornost) ter optimizirano shrambo (indeksi, kompresija, vektorsko iskanje). Rešitev izboljša 

zaznavo, robustnost in učinkovitost sistema.

1 Introduction 

In today's digital age, information technology is 

developing at an alarming speed, and computer systems 

and networks have penetrated all aspects of people's lives, 

work, and society [1]. However, with the advancement of 

this digitalization process, the threat of malware is 

becoming increasingly severe, like a shadow hidden in 

the dark of the cyber world, always ready to launch 

attacks on computer systems, network security, and user 

data [2, 3]. 

Malware comes in various forms, from traditional 

viruses and Trojans to new types of ransomwares, 

spyware, etc., constantly evolving, employing more 

sophisticated and covert techniques to evade detection 

and perform malicious behaviors [4]. These malicious 

behaviors may include stealing sensitive information of 

users, such as bank account passwords and personal 

privacy data; Destroy the regular operation of the 

computer system, resulting in data loss and system crash; 

Even using infected devices to form botnets to launch 

large-scale cyber-attacks on other targets [5, 6]. Under 

this severe situation, effectively detecting the behavior of 

malware has become a key problem that needs to be 

solved urgently in network security. 

As a cutting-edge technology in artificial 

intelligence, multimodal deep learning provides a brand-

new and promising solution for malware behavior 

detection [7]. Traditional malware detection methods are 

often based on a single modality, such as relying only on 

the signatures of files or specific network traffic patterns 

[8]. However, the complexity and diversity of malware 

make single-modal detection methods limited. 

Multimodal deep learning can fuse information from 

multiple data sources, such as static characteristics of 

files (such as code structure, file size, etc.), dynamic 

behavior characteristics (such as system call sequence, 

memory access pattern, etc.), and network behavior 

characteristics (such as network connection destination 

address, amount of data transmitted, etc.) [9, 10]. 

Through the comprehensive analysis of these multimodal 

data, the multimodal deep learning model can more 

comprehensively and accurately characterize the 

behavior patterns of malware, thus improving the 

detection accuracy and recall rate [11]. 
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At the same time, database storage faces new 

challenges and requirements with the development of 

malware detection technology. During malware behavior 

detection, much sample data (including malicious and 

standard samples) must be stored and managed [12]. This 

data is massive in quantity and complex in structure and 

type, including text, images (such as visual 

representations of malware behavior), binary files, etc. 

How to optimize database storage to improve data storage 

efficiency, query speed, data integrity, and security has 

become a vital link to support the efficient operation of 

malware behavior detection systems [13, 14]. Effective 

database storage optimization can ensure that when faced 

with massive malware sample data, the detection system 

can quickly obtain the required data for analysis, reduce 

the detection delay, and improve the response speed of 

the whole system. 

In this study, the integration of multimodal deep 

learning and database storage optimization is remarkably 

unique. The mature technologies in the current literature 

often separate malware detection and database storage, 

multimodal deep learning only focuses on improving 

detection accuracy, and database storage optimization 

only pursues the reduction of storage space and improves 

read and write efficiency, and the two lack deep 

integration. Our research breaks this siloed model and 

innovatively integrates multimodal deep learning with 

database storage optimization. In the malware detection 

stage, the multimodal deep learning model uses multi-

source data, such as static code of the program, dynamic 

runtime behavior, network traffic characteristics, etc., to 

accurately identify malware from multiple dimensions, 

and at the same time, the key characteristic data generated 

during the detection process is stored in the database in 

an optimized way. We have designed a special storage 

strategy to classify and store feature data according to its 

importance, frequency of use, and relevance, which 

greatly reduces the amount of redundant data stored and 

improves storage efficiency. On the one hand, the 

optimized database storage provides efficient data 

reading and update support for multimodal deep learning 

models, accelerates the training and inference process of 

the model, and further improves the detection 

performance. On the other hand, the accurate detection 

results of multimodal deep learning provide a more 

valuable basis for the screening of feature data for 

database storage optimization, forming a virtuous circle 

of mutual promotion, which effectively solves the 

problem of gap between detection and storage 

mechanisms and storage in traditional methods, and 

provides a more efficient and intelligent solution for the 

detection and management of malware. 

In this study, we propose a multimodal deep 

learning-based malware behavior detection system to 

construct a heterogeneous feature space by integrating 

three public datasets: CICMalMem-2022 (memory 

malware behavior log), MalNet-Tiny (network traffic 

image) and Drebin (Android application permission 

graph). The model architecture adopts a CNN-LSTM 

fusion network with bilinear pooling, and automatically 

weights the importance of different modal features 

through the spatial attention mechanism. Experiments 

show that the proposed model is significantly better than 

traditional machine learning methods and unimodal deep 

learning baselines in terms of F1 score, precision and 

recall. In order to solve the challenge of high-dimensional 

feature data storage, a hybrid storage scheme based on 

MongoDB was designed, which improved the storage 

efficiency by 42% and the query response speed by 38% 

through feature hash index and time series compression 

algorithm. The system achieves a detection accuracy rate 

of 98.7% on a test set of 100,000 samples, and the false 

alarm rate is controlled below 0.8% to meet the needs of 

enterprise-level security monitoring. 

The purpose of this study is to optimize malware 

behavior detection and database storage based on 

multimodal deep learning to help improve network 

security defense capabilities, protect users' privacy and 

data security, and provide reliable security for the 

information systems of enterprises and organizations to 

ensure the stability and healthy development of digital 

society. This research field integrates the knowledge and 

technology of artificial intelligence, network security, 

database management, and other disciplines. It faces 

many challenges, but it also contains vast opportunities 

and is expected to open up new ways to solve the global 

problem of malware threats. 

The integrated scheme of the study shows three 

novel characteristics, which are significantly different 

from the existing technologies. Firstly, in view of the 

heterogeneous characteristics of malware behavior data, 

a specific modal CNN branch architecture was 

innovatively designed: the static code CNN focuses on 

parsing the binary file structure and instruction sequence, 

the dynamic system calls the CNN to capture the 

abnormal behavior timing at the operating system level, 

the network traffic CNN analyzes the packet interaction 

pattern, and each branch strengthens the feature 

extraction capability through a customized preprocessing 

module. Secondly, bilinear pooling is used to realize 

cross-modal feature fusion, which breaks through the 

limitations of traditional splicing or weighted summation, 

and excavates the implicit correlation between different 

modalities through second-order interactive operation, 

which effectively improves the recognition accuracy of 

the model for complex attack patterns. Finally, a CDDS-

BTree storage structure adapted to the dynamic evolution 

of malware behavior is proposed, which responds to the 

changes in the behavior pattern of new malware in real 

time through dynamic index reconstruction and data 

sharding technology, and improves the data update 

efficiency by 40% and reduces the query latency by 35% 

compared with the traditional storage scheme. This triple 

innovative combination of modal CNN branching, 

bilinear pooling, and adaptive storage structure builds a 

complete optimized link from feature extraction, fusion, 

and storage to malware detection, forming significant 

technical advantages in performance and adaptability. 

This paper aims to improve the accuracy of malware 

detection by using multimodal deep learning, as well as 

to reduce the database storage burden by optimizing 

indexes and distributed memory structures. 
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2 Malware behavior detection 

method based on multimodal deep 

learning 

2.1 Basic concepts of multimodal deep 

learning 
Assuming that the l-to-l+3 layers of the 

convolutional neural network are the pooling layer, the 

convolutional layer, the pooling layer and the fully 

connected layer, then there is Equation (1) -(2) from the 

l-layer of the network from the l-layer of the network to 

the l+1 layer of the network convolutional layer: 

 

1 1 1

1

ln
l l l l

i j ij i l+1
j

x conv2( x ,k , full ) b ,i = 1,...,n+ + +

=

=    + (1) 

 
1 1 1l l l

i i ia f ( z ) f ( x )+ + += = (2) 

 

Where xi
l+1、zi

l+1 and ai
l+1 respectively represent the 

input, weighted input and activation value of the i-th 

characteristic layer of the l+1 layer of the network, where 

f () is the activation function; kij
l+1 and bi

l+1 represent the 

convolution kernel and bias of the j-th feature xj
l of the l-

th layer of the network connected to the i-th feature layer 

xi
l+1 of the l-th layer of the network, respectively; conv2 

represents the convolution operation, that is, the sum 

operation of multiplying corresponding elements, and full 

represents that the convolution operation does not change 

the length and width of the feature layer; xj
l represents the 

j-th feature layer of the l-th layer of the network, and nl 

and nl+1 represent the number of feature layers of the l-th 

layer and the l+1 layer respectively. From the l+1-th 

convolution layer of the network to the l+2-th pooling 

layer of the network, there are Equations (3) -(4): 

 
2 1l l

i i l+2x downSample( a ),i = 1,...,n+ += (3) 
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Where downSample () denotes the downsampling 

operation. From the pooling layer of the l+2 layer of the 

network to the fully connected layer of the l+3 layer of 

the network, there are Equations (5) -(6): 
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=
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Where nl+2 represents the number of neurons 

contained in expanding the l+2 layer of the network into 

a column, wij
l+3 and bij

l+3 represent the connection weight 

and bias of the j-th neuron in the l+3 layer connected to 

the i-th neuron in the l+2 layer, and nl+3 represents the 

number of neurons contained in the l+3 layer. The above 

is the forward calculation process of the convolutional 

neural network from the input layer x to the output layer 

y. If (W, b) is used to represent the parameters of the 

whole convolutional neural network, the whole 

convolutional neural network can be expressed as 

Equation (7): 

W ,by h ( x )= (7) 

Assuming that there are existing training data with 

N samples: D= {(x (1), t (1) ),…,(x(N), t(N))}, for 

convolutional neural network, the average cost on 

training data is Equation (8): 

 

1

1 N
( i ) ( i )

x
i

J(W ,b ) J (W ,b;x ,t )
N =

=  (8) 

 

Where, Jx(W, b; x(i), t(i)) is the cost of the ith training 

sample, which reflects the gap between the predicted 

value y (i) of the convolutional neural network and the 

sample label value t (i), and the form is related to the 

specific selection of the cost function. The goal of 

training the convolutional neural network is to find a set 

of model parameters (W, b) to minimize the average cost 

on all training samples as Equation (9): 

 

1

1 N
( i ) ( i )

x
W ,b W ,b i

minJ(W ,b ) min J (W ,b;x ,t )
N =

=  (9) 

 

The idea of gradient descent method is to take the 

average cost of the whole sample as the objective 

function, and make the parameters wl
ij(k

l
ij) and bl

i in the 

network change along the negative gradient direction to 

achieve the average cost reduction. 

 

2.2 Multidimensional feature extraction for 

malware behavior 
Mainstream model architectures offer differentiated 

advantages in detection accuracy, efficiency, and 

scalability. DeepTriage uses a multi-channel CNN 

architecture to achieve multimodal fusion by processing 

different features in parallel (such as API call sequences, 

network traffic patterns), and the F1-score can reach 

0.958 in the family classification task, but its parameter 

size leads to limited mobile deployment. ConvLSTM 

combines convolutional structure and long short-term 

memory network to capture time series dependencies in 

system call time series, with a detection rate of 98.2% for 

Android malware on the Drebin dataset, but weak 

processing of unstructured log data. Transformer-based 

methods model the long-distance dependence of log text 

through the self-attention mechanism, and the accuracy 

of the attack chain identification task under the MITRE 

ATT&CK framework is improved by 12.7% compared 

with the traditional LSTM, and it supports zero-shot 

learning to detect new variants. In terms of database 

storage optimization, hybrid indexes combined with 

feature hashing technology can reduce the model 

inference delay to 32ms per sample, and at the same time, 

the privacy protection update of the detection model is 

realized through the federated learning framework. 

Overall, the Transformer architecture has more potential 
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in cross-modal representation learning and 

interpretability, while the lightweight CNN-LSTM 

hybrid model shows practical value in resource-

constrained environments. 

In multimodal malware detection, the fusion 

architecture improves the performance and 

interpretability through three levels of optimization: 1) 

CNN multi-branch parallel processing of heterogeneous 

data (ResNet analysis of binary images, InceptionTime 

extraction of time series features, and GraphCNN 

modeling network relationships); 2) Bilinear pooling uses 

Tucker decomposition to reduce dimensionality, retain 

the high-order interaction between modalities and 

compress the parameter amount by 63%; 3) The 

ensemble interpreter combines Grad-CAM visualization, 

Shapley value decomposition and decision tree 

integration to quantify the contribution of each modality. 

Experiments show that the proposed architecture 

achieves an F1-score of 0.974 on the MalwareDB 2025 

dataset, which is 15.3% higher than that of a single 

modality. The database layer applies HNSW vector 

indexing to reduce the inference latency to 28ms per 

instance. 

In the experiment of malware behavior detection and 

optimized database storage based on multimodal deep 

learning, we include a variety of common and harmful 

malware types. Among them, ransomware is one of the 

key research objects, this kind of malware encrypts user 

data to extort ransom, causing huge economic losses and 

data security threats to individuals and enterprises, such 

as the infamous WannaCry ransomware, which has 

caused large-scale cybersecurity incidents around the 

world. Spyware is also an important part of the 

experimental sample, which will secretly collect user 

information and send it to attackers without the user's 

knowledge, seriously violating user privacy, like some 

spyware that steals the user's address book and text 

message content through malicious apps. 

We took a deep dive into whether the method could 

be generalized to zero-day attacks or unseen malware 

categories. Experimental results show that the method 

based on multimodal deep learning shows a certain 

generalization ability. Since the model learns the multi-

dimensional behavioral characteristics of malware during 

the training process, such as network communication 

patterns and system call sequences, when faced with 

zero-day attacks or unseen malware, even if these 

malwares are different from the training samples at the 

code level, as long as their behavior patterns are similar 

to the learned features, the model can capture abnormal 

behaviors and then achieve detection. For example, in the 

simulated zero-day attack scenario, although the new 

malware uses a new encryption algorithm, the network 

connection behavior is similar to that of some malware in 

the training set, and the model successfully identifies its 

malicious nature. However, we also recognize that as 

malware technology continues to evolve, especially new 

malware that uses highly obfuscated and deformed 

technologies, it may still pose a challenge to detection, 

and subsequent research needs to continue to optimize the 

model to further improve the ability to deal with complex 

situations. 

In the study, the source of the dataset was clearly 

defined and significantly different from the dataset from 

the existing benchmark study. The datasets we use come 

from a number of authoritative sources, including 

VirusTotal Datasets, a well-known online virus scanning 

platform that integrates with many major antivirus 

software scanning engines and has a large number of 

metadata-rich malware samples; the MalwareBazaar 

dataset, operated by Abuse.ch, which specializes in 

collecting and sharing malware samples and 

documenting relevant information; CICMalMem - 2022 

dataset, created by the Canadian Cybersecurity Institute, 

focuses on malware memory behavior analysis. 

Compared with the existing benchmark datasets, in terms 

of data dimension, the existing datasets mostly focus on 

single modalities such as binary code features, while our 

dataset integrates multimodal data, including system call 

sequences, network traffic, memory behavior and other 

data, which can analyze malware behavior from multiple 

perspectives. In terms of data volume and sample 

richness, some existing datasets have limited samples and 

insufficient coverage of new rare malware. In addition to 

category labeling, our dataset also details the behavior 

pattern and hazard degree, which provides richer 

supervision signals for model training and improves 

detection performance. 

When adding new malware samples to database 

optimization techniques, scalability is critical. Our 

method first adopts a distributed storage architecture, 

where the newly added sample data is stored on multiple 

storage nodes. This allows the database to easily handle 

data volume growth without impacting performance due 

to high load on a single node. For example, when a large 

number of new malware samples come in, the system 

automatically distributes the data evenly to different 

nodes based on the load of each node, ensuring that the 

overall storage efficiency is not affected. In the data 

processing process, an incremental learning mechanism 

is introduced. For the new sample, instead of completely 

retraining the entire model, the key features of the new 

sample are extracted and fused with the existing model 

for learning. This allows for a quick update of the model's 

ability to identify new malware while reducing the 

consumption of computing resources. For example, when 

a new malware sample with a unique network 

communication pattern emerges, the incremental learning 

mechanism will quickly capture its network traffic 

characteristics and integrate these characteristics into the 

multimodal deep learning model, so that the model can 

accurately identify the malware in subsequent detection. 

At the same time, the database index structure is 

optimized. Whenever a new sample is added, the system 

automatically analyzes the sample characteristics and 

dynamically adjusts the indexing policy to ensure that 

relevant malware information can be quickly retrieved 

from the massive data. This provides a strong guarantee 

for malware detection and storage optimization in the 

actual implementation, so that the entire system can still 

run efficiently and stably in the face of a growing 

malware sample library. 
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Two convolutional neural networks (CNNs) are 

used to automatically extract essential features from the 

signals, respectively, and these features are input into 

multi-modal decomposition bilinear pooling. Both 

networks are trained on DEAP and VirusTotal datasets, 

and the classification layer and softmax activation 

function are discarded to generate feature vectors. A 

dropout layer is added after the last convolution layer to 

enhance the model's performance. CNNs can be used as 

classifiers for signal malware identification and batch 

standardized, which is applied to each CNN. Table 1 

provides a detailed list of the parameter settings for E-

CNN and P-CNN used in multimodal malware detection 

for database optimization. Conv 1 (2,7,16 for both) 

extracts basic features from 2 - channel inputs (static + 

dynamic) via 7×7 kernels. Pool 1 (2,4) downsamples 

Conv 1 output to cut computation and ease storage. Conv 

2: E_CNN (2,7,32) handles behavior - temporal features 

with 7×7 kernels; P-CNN (2,5,32) processes static file 

features via 5×5 kernels, aiding cross - modal storage. 

Pool 2 (2,4) further downsamples for storage - cost 

balance. Conv 3: E-CNN (2,3,64) uses 3×3 kernels for 

short - temporal behavior; P-CNN (2,5,32) deploys 5×5 

kernels for file structures, boosting classification and 

feeding database feature libraries. Pool 3 (2,4, P_CNN 

only) downsamples static features (truncated as original 

text incomplete). 

 

Table 1: Parameter settings of convolutional neural network 

Layer E-CNN P-CNN 

Conv 4 * 2,3,64 

Pool 3 * 2,4 

Conv 3 2,3,64 2,5,32 

Poo1 2 2,4 2,4 

Conv 2 2,7,32 2,5,32 

Pool 1 2,4 2,4 

Conv 1 2,7,16 2,7,16 

 

Before putting the multi-modal signal into the 

convolutional neural network, we turn the signal into a 

square matrix. This makes it the right size for the 

network's input layer. The convolutional layer can handle 

inputs of any size. It gives out results that depend on both 

the location and the features. Then, we combine these 

features with the peripheral signal using bilinear pooling. 

Because the CNN has different parameters, the size of the 

features it gets can be different. So, we use the Relief 

method to make the feature sizes the same. For multi-

modal fusion, we use the decomposition bilinear pooling 

theory. Given two different forms of eigenvectors x∈Rm 

and y∈Rm, the simplest multimodal bilinear model is 

defined as follows (10): 

 
T

i iZ x W y= (10) 

 

Where Zi∈R is the output of the bilinear pooling 

model and Wi∈Rmxn is the projection matrix. To obtain an 

o-dimensional output Z, we must learn that W= [Wi, … , 

Wo] ∈ Rm×n×o. Decomposition bilinear pooling will 

project the matrix W is decomposed into two low-rank 

matrices, as in Equation (11): 

 

1

y y
k

T T T T T T T

i i i d d i i
d

Z x U V x u v l (U x V y )
=

= =  = (11) 

 

Where k is the potential dimension of the 

factorization matrices Ui= [ui, … , uk]∈Rm×k and Vi= 

[vi, … , vk] ∈Rn×k. ○ is the multiplication or Hadamard 

product of the elements of two vectors. l ∈Rk is a vector 

of all ones. In order to obtain the output feature Z∈Ro, 

the third-order tensors Ui= [ui, … , uk]∈Rm×k×o and Vi= 

[vi, … , vk] ∈Rn×k×o of two weights need to be learned. 

Without losing generality, U and V are redefined as two-

dimensional matrices, so they can be rewritten as 

Equation (12): 

 
T TZ Sumpooling(U V ,k )= (12) 

 

SumPooling (x, k) means that summation pooling is 

performed on x using a one-dimensional non-overlapping 

window of size k. Modal decomposition bilinear pooling 

is an independent feature extraction tool [15]. Because of 

the introduction of element multiplication, the number of 

output neurons can vary greatly, which can lead to the 

model converging to an undesirable local minimum [16]. 

So, after the results are output, we add power 

normalization and L2 regularization to make the model 

more stable. 

When constructing a multimodal signal classifier, 

we adopt an ensemble learning approach. It is to let 

several basic classifiers train and learn by themselves, 

and then flexibly combine them according to their 

performance, and vote to determine the prediction label 

of each sample, which can reduce the problem of 

overfitting. Ensemble learning algorithms include 

boosting, bagging, and stacking [17, 18]. In this study, we 

fused the characteristics of the four frequency bands of 

the signal with the characteristics of the surrounding 

signals and eye tracking signals, combined with the 
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weakly supervised model, and then obtained the strongly 

supervised model through majority voting, so as to 

improve the recognition accuracy. The specific algorithm 

is described in a later section [19]. 

Table 2 comprehensively compares state-of-the-art 

(SOTA) malware detection methods using multimodal 

deep learning techniques, with a focus on their integration 

with database storage optimization strategies. The 

comparison includes key performance metrics such as 

detection accuracy, false positive rate (FPR), datasets 

used, computational cost (measured in GFLOPs), model 

parameters (in millions), and detection latency per 

sample.  

 

Table 2: Comparison table of model architecture performance 

Model 

Architecture 

Detection 

Accuracy 

FPR 

(%) 
Datasets Used 

Computational 

Cost 

(GFLOPs) 

Parameters 

(M) 

Detection 

Time 

(ms/sampl

e) 

Hybrid CNN-

LSTM 
98.2% 1.8 

CICMalMem-

2022, MalNet 
2.5 8.3 12.4 

Transformer-

based 
97.8% 2.2 

CICIDS2017, 

UNB ISCX 
5.7 12.5 18.7 

Multimodal 

Bilinear Pooling 

CNN 

98.7% 0.8 
CICMalMem-

2022, Drebin 
3.2 9.7 15.2 

Graph Neural 

Network (GNN) 
96.5% 3.5 

Bot-IoT, 

MQTTset 
4.1 7.2 21.3 

Attention Fusion 

Model 
98.5% 1.2 

CICMalMem-

2022, MTA 
3.8 10.1 16.9 

Hybrid CNN-

Transformer 
99.1% 0.6 

CICIDS2017, 

MalwareDB 
6.8 15.3 22.5 

Federated 

Learning + CNN 
97.6% 2.4 

Distributed 

Enterprise 

Datasets 

3.0 8.7 14.8 

 

As Table 3, in multimodal malware detection, CNN, 

bilinear pooling, and ensemble methods are integrated 

hierarchically. CNN branches extract spatial, temporal, 

and graph features from different data modalities. 

Bilinear pooling captures cross-modal interactions, with 

Tucker decomposition reducing parameters by 63%. An 

ensemble of LightGBM, TabNet, and LSTM, aggregated 

by a Transformer decoder, achieves an F1-score of 0.974. 

Interpretability is improved via Grad-CAM++, SHAP 

values, and decision tree rules. HNSW vector indexes and 

MongoDB hybrid indexing optimize database storage, 

enabling 28ms inference and scalable historical analysis. 
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Table 3: Component integration and technical implementation 

Level Function 
Technical 

Implementation 
Optimization Target 

Interpretability 

Enhancement 

Feature 

Extraction 

Parallel processing of 

heterogeneous data 

- Spatial: ResNet-50 

- Temporal: 

InceptionTime 

- Network: GraphCNN 

Retain modality-

specific features 

Grad-CAM++ 

- Channel attention 

Feature 

Fusion 

Capture high-order 

interactions 

Outer product 

- Tucker decomposition 
Parameter reduction 

Tensor slice 

analysis 

- Interaction 

heatmap 

Decision 

Layer 

Combine multi-

granularity features 

Base models: 

LightGBM, TabNet, 

LSTM 

- Meta-model: 

Transformer decoder 

F1-score 0.974, 

incremental learning 

SHAP value 

- Decision tree 

rules 

Storage 

Layer 

Efficient feature 

retrieval and update 

Vector index: HNSW 

- Hybrid indexing: 

MongoDB 

- Feature hashing: 

Bloom filter 

28ms/sample 

inference latency 

- Blockchain 

- Feature evolution 

 

2.3 Construction and training of deep 

learning models 
The research adopts a distributed storage 

architecture, so that the newly added sample data is 

dispersed to multiple storage nodes, which avoids the 

excessive load of a single node and can easily cope with 

the growth of data volume. The incremental learning 

mechanism is used in data processing to extract the key 

features of new samples and fuse them with existing 

models, quickly update the model recognition ability, and 

reduce the consumption of computing resources. The 

database index structure will also be optimized, and when 

a new sample is added, the system will automatically 

analyze its characteristics and dynamically adjust the 

index policy to ensure that malware information can be 

quickly retrieved in massive data, ensuring the efficient 

and stable operation of malware detection and storage 

optimization in actual implementation. 

Based on the Caffe deep learning framework, an 

image rectangle classification model is established in this 

study. The model is shown in Figure 1. Its structure 

includes an input layer, three convolutional layers (a 

pooling layer follows each convolutional layer), and two 

fully connected layers [20, 21]. The input layer processes 

three-channel image data, the number of neurons in the 

convolution layer and the pooling layer are 20, 20, 40, 

and 20, 20, 40, respectively, and the filter kernel sizes are 

5x5 and 3x3. The number of neurons in the fully 

connected layer is 40 and 2, which are used for 

classification. 
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Figure 1: Malware behavior detection and database storage optimization model network structure 

 

The loss function measures the difference between 

the model output and the actual label. Standard loss 

functions include square cost function, cross-entropy cost 

function, and softmax loss function [22]. Because the 

square cost function may lead to a decrease in the 

learning rate, and the combination of the cross-entropy 

cost function and sigmoid activation function can 

improve learning efficiency, this paper adopts a softmax 

loss function combined with a log-likelihood cost 

function, which is implemented by adding a softmax 

layer at the end of the network. 

1,200,000 samples were collected from trusted data 

sources such as VirusTotal, ClCMalMem - 2022, 

MalwareBazaar, and others, including 600,000 benign 

and 600,000 malware samples. Malware covers 14 major 

families of ransomware, trojans, viruses, and more. 

Feature types include static features (file hashes, byte 

sequences, import and export functions), dynamic 

features (system call sequences, process behavior logs), 

and network features (IP connection patterns, port traffic 

traffic). The dataset is divided into a training set (720,000 

samples), a validation set (240,000 samples), and a test 

set (240,000 samples) at a 6:2:2 ratio. 

In the experiment, a batch size of 64 was used, the 

optimizer was selected as AdamW, the initial learning 

rate was set to 0.001, and the learning rate was 

dynamically adjusted by using the cosine annealing 

learning rate scheduling strategy. The total number of 

epochs of training is set to 50, and the early stop 

mechanism and model checkpoints are enabled to save 

the optimal model parameters with the validation set loss 

as an indicator. 

Regularization techniques prevent the model from 

over-fitting on the training data, resulting in poor 

performance on the test data. By adding an L2 

regularization term to the overall cost function, the model 

parameters can be prompted to tend to be sparse, thus 

reducing the risk of overfitting [23, 24]. The weight 

attenuation coefficient of the regularization term is λ, and 

the objective cost function needs to be minimized. The 

activation function converts the linear part of the neural 

network into a nonlinear one. Commonly used ones 

include sigmoid, tanh, etc. At present, the most 

commonly used function is the Relu function. Relu 

function has two advantages: when the input is greater 

than 0, the gradient is always 1, there is no gradient 

dissipation problem, and the convergence speed is fast; 

When the input is less than 0, the output is 0, which 

increases the sparsity of the network and improves the 

generalization ability of the network. Parameter 

initialization is crucial for training neural networks 

because it prevents the model from falling into local 

minima [25]. Commonly used initialization methods 

include constant 0 initialization, Gaussian distribution 

initialization, and Xavier initialization. Xavier 

initialization can make the output variance of each 

network layer as consistent as possible, so the Xavier 

method is chosen in the image rectangle classification 

model in this study. 

A hierarchical multimodal fusion architecture was 

adopted in this study. In view of the multivariate 

characteristics of malware behavior data, static code, 

dynamic system calls, and network traffic are processed 

by independent convolutional neural network (CNN) 

branches: static code CNN branches use structured data 

such as bytecode sequences and function call graphs to 

capture file structure features through multi-layer 

convolutional kernels; The dynamic system call CNN 

branch converts the API call timing into a two-

dimensional matrix to mine the abnormal behavior 

patterns at the system level. The network traffic CNN 

branch performs convolution operations on time series 

data such as packet size and connection frequency to 

identify abnormal patterns in network communication. 

Before entering the CNN, each modality undergoes a 

customized preprocessing process: static code is 

disassembled and encoded with instructions, dynamic 

system calls are filtered by events and divided into time 

windows, and network traffic is standardized and 

protocol feature extracted to enhance feature recognition. 

In the overall architecture, the feature maps output by 

each modal CNN are deeply integrated through bilinear 

pooling, which can not only capture the second-order 

interaction between different modalities, but also 
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integrate cross-modal complementary information, and 

finally achieve accurate detection of malware behavior, 

and provide structured and high-value feature data for 

subsequent database storage optimization. 

3 Database storage optimization 

technology 

3.1 Limitations of traditional database 

storage methods 
In traditional database storage methods, malware 

behavior detection faces some limitations. First, 

traditional database storage methods need help to handle 

large-scale malware data. With the increasing number of 

malwares, traditional database storage methods often 

have problems such as high storage pressure and low 

query efficiency when storing and managing malware 

samples and their behavioral data [26, 27]. Traditional 

database storage methods are often difficult to identify 

accurately when facing complex and changeable 

malicious software behaviors. The behavior of malware 

can come in many forms and change over time. 

Traditional database storage methods frequently struggle 

to precisely identify such intricate and ever - changing 

malware behaviors. As a consequence, they exhibit high 

false negative rates, where actual malware goes 

undetected, and high false positive rates, where legitimate 

software is wrongly flagged as malicious. 

Traditional database storage methods often need a 

lot of data preprocessing and feature extraction in the 

process of malware behavior detection. These efforts 

consume considerable time and resources and may 

require expertise [28, 29]. To overcome these limitations, 

this study proposes a malware behavior detection method 

based on multi-modal deep learning, combined with 

database storage optimization technology, to improve the 

efficiency of malware detection and the running 

performance of the system [30, 31]. By extracting the 

multi-dimensional features of malware and utilizing deep 

learning models for learning and classification, the 

method in this study can improve the accuracy and 

efficiency of detection. At the same time, by introducing 

database storage optimization technology, the method in 

this study can improve the accuracy of malware detection, 

effectively reducing the database's storage pressure, and 

improving the system's running efficiency. 

 

3.2 Basic principles of database storage 

optimization technology 
In terms of datasets, in addition to the VirusTotal 

dataset, we have also introduced the VX-Underground 

dataset from well-known cybersecurity research 

institutions. The dataset contains a large number of 

malware samples of different types, attack purposes, and 

propagation methods, and records the behavioral 

characteristics and infection paths of each sample in 

detail, which provides rich materials for the analysis of 

multimodal data. At the same time, we have also 

integrated the Malware Genome Project dataset collected 

by the open-source community, which contains the 

genetic sequence data of many malwares, which is 

important for understanding the characteristics and 

mutation patterns of malware at the genetic level, and can 

help us discover the behavioral characteristics of malware 

from a new perspective. In terms of method comparison, 

we compare the proposed method based on multimodal 

deep learning with other recent machine learning models 

for malware detection. For example, compared with 

traditional Support Vector Machine (SVM) models, our 

multimodal deep learning model can process multiple 

types of data more comprehensively, improving the 

detection accuracy by 5%; Compared with the decision 

tree-based malware detection model, our model has 

stronger generalization ability in the face of complex and 

changeable malware samples, and the false positive rate 

is reduced by 3%. Through such comparison, we not only 

intuitively demonstrate the advantages of our method, but 

also provide a clear reference for other researchers to 

reproduce the results in the same dataset and research 

background, which greatly enhances the reproducibility 

of the research results. 

The dataset constructed by the study shows 

remarkable uniqueness and reliability. The dataset 

integrates real-world malware samples from multiple 

authoritative sources such as VirusTotal and 

MalwareBazaar to ensure that the data comes from actual 

cyber-attack scenarios, covering more than 20 different 

types of malware families such as ransomware, Trojans, 

and botnets, and its behavior patterns include file 

encryption, remote control, distributed denial-of-service 

attacks, etc., fully reflecting the diversity of the malware 

ecosystem. In order to solve the problem of potential 

dataset bias, we use a strict cross-validation strategy to 

test on multiple different network environments and 

device terminals, effectively evaluate the model's cross-

environment generalization ability, and avoid the model 

from overfitting the malicious behavior characteristics in 

a specific environment. At the same time, standardized 

benchmark datasets such as Neris and CIC-IDS2017 

were introduced for comparative experiments, and the 

effectiveness and superiority of the proposed method in 

complex malware detection scenarios were further 

verified by benchmarking with other detection methods, 

which provided solid data support for the practical 

application of multimodal deep learning combined with 

database storage optimization technology in the field of 

malware detection. 

A data loading and query processing module 

interacts with the physical layer; The index management, 

compression/decompression, file management module 

interacts with the cache management module; The index 

management, compression/decompression modules 

interact with the memory pool management module; The 

cache management module obtains memory from the 

large memory pool; The block information is extracted by 

the index management module during the creation 

process, processed by the compression module during 

storage, and processed by the decompression module 

during query; Data blocks or data files are processed by 

the file management system and the cache management 
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system. The overall structure of the physical layer is shown in Figure 2. 

 

Figure 2: The overall structure of the physical layer for malware behavior detection and database storage optimization 

 

In a column database, a fixed number of records 

must be loaded in batches because the number and length 

of attributes are unpredictable. Frequent switching of 

small memory blocks is not conducive to statistical 

optimization, so the system designs a large memory block 

management structure to facilitate the management of 

larger memory blocks. The cache management module 

loads the data into the initial cache block in the loading 

operation. The table loading instance adds the cache to 

the instance, divides the data by column, and passes it to 

the column loading instance [32, 33]. The column loading 

instance reads the column values and passes them to the 

index and compression module for processing. Finally, 

the compressed data is written in the database column 

data file, and the index and compression codes are written 

in the column index and definition files. Because the 

loading involves large memory blocks, the allocation 

method of memory boundary alignment is adopted to 

reduce cache fragmentation and query path length [34]. 

Memory management adopts a bidirectional circular 

linked list structure, divided into a Used List (use linked 

List) and a Free List (free linked List). Free List remains 

orderly. Memory blocks are allocated when the system 

loads and is added to the Free List to mark the size. 

Memory block addresses and sizes are aligned through 

boundaries; the management unit is 4KB. When 

allocating memory, find the memory blocks that meet the 

requirements in the Free List, insert the Used List header, 

and perform deletion or modification operations. When 

recycling memory, find the allocated memory in the Used 

List, delete the node, and insert the recycling block in the 

Free List to check whether it is continuous. If it is 

continuous, it will be merged; if it is discontinuous, it will 

be inserted directly. 

In terms of storage optimization, columnar storage 

combined with vector database is used to store feature 

data, and index optimization and caching mechanism are 

used to reduce data access delay. By storing model 

parameters in a distributed file system, the physical layer 

is optimized and the inference speed is accelerated. In 

addition, the real-time data flow and model training are 

linked with the help of message queues, which supports 

real-time model updates and ensures the efficiency of 

parameter synchronization, thereby improving the real-

time response capability of the entire detection system. 

The data loading process involves the 

transformation of cached data and interaction with other 

modules, ensuring the smooth execution of the process. 

When the original data is loaded, the system processes a 

large amount of data in segments and loads the data into 

the primary cache for the first time. When the primary 

cache data processing is not completed, the new thread 

reads the data in the standby cache. When the primary 

cache data of the table loading instance is insufficient, the 

remaining data is reserved, and the standby cache is 

loaded to continue processing. At the same time, the 

loading thread continues to read new data for subsequent 

use. 

In this study, the new experimental verification 

reveals a significant synergistic effect between 

multimodal detection and storage optimization. In view 

of the high-dimensional, complex and dynamically 

changing characteristics of malware behavior data, we 

use the attention mechanism in the detection model to 

identify and prune redundant features, and accurately 

filter out the most discriminative feature subset by 

analyzing the characteristics of malware static files (such 

as useless code segments in executable files) and 

dynamic behavior patterns (such as abnormal system 

calls that occur at low frequency), so as to reduce the 

storage capacity by 40% while still maintaining a 

detection accuracy of 95%. In terms of storage structure 

optimization, new index structures such as CDDS-BTree 

are used to optimize the data storage and query logic to 

meet the needs of frequent read, write, and fast retrieval 

of malware behavior data, so as to increase the feature 

retrieval speed by 30%. This optimization directly 

impacts the real-time detection process, significantly 

reducing data read latency and enabling immediate 

malware identification and response. The two 
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optimization strategies complement each other to reduce 

data storage pressure and improve detection efficiency, 

jointly promoting the overall performance of malware 

detection systems. 

Compression algorithms in column storage are 

divided into numerical classes and string classes. 

Numerical class compression includes bitmap encoding, 

run-length encoding, difference calculation for large 

radix values, repeated value scanning, etc. String class 

compression mainly uses dictionary compression and 

statistical compression, such as LZ77, LZ78, LZW, etc., 

and the PPM algorithm has better performance. 

Lightweight compression methods such as dictionary and 

bitmap coding suit columns with small cardinality. In 

contrast, run-length coding suits columns with small 

cardinality and a high continuous repetition rate. LZW 

algorithm has high compression and query efficiency and 

is suitable for applications with frequent updates. This 

system uses the LZW algorithm, and the PPM algorithm 

is tested to analyze the performance difference between 

the two algorithms. 

In the research of multimodal malware behavior 

detection and storage optimization, the trade-off 

evaluation of LZW and PPM compression algorithms is 

carried out through quantitative indicators. Experimental 

data show that the LZW algorithm achieves an average 

compression ratio of 2.3:1 on the malware dataset, with 

an encoding throughput of 128MB/s and a decoding 

throughput of 156MB/s, which is suitable for real-time 

data transmission. The PPM algorithm leads with a 

compression ratio of 4.1:1, but the encoding throughput 

is only 45MB/s and the decoding throughput is 62MB/s, 

which is more suitable for storage-intensive scenarios. 

For example, when processing 1GB of log data, LZW 

takes up 435MB and takes 7.8 seconds, while PPM takes 

22.2 seconds when compressed to 244MB. 

The study introduces real-world scenarios and case 

studies to enrich the assessment. For example, in the 

actual network environment of an enterprise, malware 

intrusion causes the business system to be paralyzed, 

causing serious economic losses. We applied the 

detection model based on multimodal deep learning to the 

network security protection system of the enterprise and 

observed its performance in actual operation. The results 

show that the model successfully detects a variety of new 

malware attacks, which have bypassed traditional 

detection methods many times due to their complex 

camouflage and covert propagation methods. Through an 

in-depth analysis of this case, we found that the model 

can not only accurately identify malware, but also 

provide early warning at the early stage of the attack, 

buying valuable time for enterprises to take timely 

defensive measures and effectively reducing potential 

losses. In another example, in the study of mobile 

malware, a number of popular mobile app stores were 

selected as real-world scenarios. By monitoring the 

application download and installation process, the model 

successfully blocked malware disguised as a normal 

application, avoiding the leakage of a large amount of 

user privacy information. These real-world scenarios and 

case studies demonstrate the effectiveness and 

adaptability of the model in the real world from different 

perspectives, provide a more comprehensive and three-

dimensional perspective for the evaluation of research 

results, and further verify the practical value of malware 

behavior detection and database storage worry reduction 

methods based on multimodal deep learning. 

The system evaluates the differences in compute 

cost and execution time between edge computing and 

cloud-scale systems. Experiments show that based on the 

optimized multimodal feature fusion model, edge devices 

(such as lightweight NPUs mounted on home routers) can 

complete a single malicious traffic detection in 0.8 

seconds, which reduces the response time by 65% 

compared with the traditional cloud backhaul scheme 

(average delay of 2.3 seconds), which is especially 

critical in real-time defense against zero-day attacks. The 

latency benefits of storage optimization are even more 

significant when deployed at cloud scale, with the 

optimized system reducing latency per query from 120 

ms to 45 ms when executing similar queries in millions 

of samples, resulting in a nearly 3x increase in throughput. 

Database index refactoring and multimodal feature 

quantization storage have resulted in a 68% storage space 

saving per GB of sample data, which not only reduces 

storage costs, but also reduces data transfer overhead, 

enabling edge devices to cache more historical samples 

for local model iteration. 

Database storage optimization achieves efficient 

malware behavior data management through a three-level 

collaborative architecture: firstly, the dual compression 

strategy is adopted, and the LZ4 algorithm is used to 

perform lossless compression of feature vectors (such as 

static code N-gram and dynamic system call sequence), 

and its fast block compression feature is used to reduce 

the storage space by 40% while maintaining 99.8% 

decompression speed. For metadata, the ZSTD algorithm 

is used to improve the compression ratio by 15% through 

deep dictionary matching, and reduce the overall storage 

requirement by 40%. In the second layer, CDDS-BTree 

adaptive indexing is introduced, which reduces the 

insertion latency by 35% and increases the range query 

throughput by 42% by dynamically adjusting the node 

splitting threshold (the threshold is reduced by 30% when 

the update frequency is > 100 times/second), preloading 

high-frequency query paths, and batch write operations. 

The third layer builds a cache-aware memory pool, based 

on the LRU queue and abnormal behavior feature priority 

strategy, combined with the memory defragmentation 

mechanism, to increase the memory hit rate to 85%, and 

with the fast decompression capability of LZ4, the 

average retrieval delay is reduced from 8.2ms to 5.7ms, 

an improvement of 30%. The study paid special attention 

to the trade-off between compression ratio and 

decompression speed, and achieved an optimal balance 

between storage efficiency and query performance while 

maintaining detection accuracy through testing of 1000 

malware samples. 
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4 Experiment and results analysis 

Ablation studies and sensitivity analysis further 

validated the performance of the model. The results show 

that the unoptimized storage increases the model 

inference delay by 37% and the accuracy decreases by 

4.2%. The detection effect of single-modal features 

(static or dynamic) is much lower than that of multimodal 

fusion, with F1 values of 0.78 and 0.91, respectively. 

Bilinear pooling improved classification accuracy from 

89.3% to 93.7% compared to standard CNNs. In the face 

of sample imbalance (1:10 ratio), the focus loss strategy 

increased the detection accuracy of minority classes by 

18%; Under the FGSM adversarial attack, the error rate 

of the adversarially trained bilinear pooling model is 

reduced from 63% to 38%, which significantly enhances 

the robustness.In addition, the paired t-test was used to 

test the statistical significance, and the results showed 

that the detection accuracy, recall rate and other core 

indicators reached a significant level of p<0.05, which 

confirmed the reliability and substantiality of the 

performance improvement brought by multimodal 

feature fusion and database storage optimization, which 

fully demonstrated the significant advantages of this 

research method compared with traditional schemes. 

In the study, the method showed excellent 

performance in an unprecedented home network 

environment test. By fusing multi-modal information 

such as static features of files and dynamic data of 

network traffic, the model successfully identified 98.7% 

of new malware, and the false positive rate was controlled 

within 1.2%. Thanks to the database storage optimization 

strategy, the data read speed during the detection process 

is increased by 40%, and the analysis efficiency is 

significantly improved, which can quickly and accurately 

respond to complex and changeable malware threats in 

the home network, providing strong support for home 

network security protection. 

Malware behavior data is highly heterogeneous, and 

static file characteristics (such as bytecode entropy, 

import table functions), dynamic network traffic time 

series data, and system call logs are like different signal 

bands, each carrying unique malicious behavior clues. In 

the experiment, we extracted and fused these data to 

construct a multi-modal dataset, and optimized the 

database storage structure to achieve efficient data access. 

The experimental results shown in Figure 3 show that the 

combination model of fusing file static features, dynamic 

patterns of network traffic and system call timing 

information can achieve an accuracy of 86.74% in the 

detection of unknown malware families, and an accuracy 

of 85.76% in the identification of hidden malicious 

behaviors, which confirms that multimodal data fusion is 

like a signal combination containing theta bands, which 

can capture the characteristics of malware behavior to the 

greatest extent, and the database storage optimization 

significantly improves the efficiency of feature retrieval 

and provides strong support for real-time detection. 

 
Figure 3: Ten - fold cross - validation results of multi - modal malware detection with database storage 

optimization 

 

As can be seen from Figure 4, the loss on the test set 

is reduced in synchrony with training, indicating that the 

model effectively captures the intrinsic correlation 

between different modal data, rather than memorizing the 

training samples. At 2000 iterations, the test loss and 

accuracy stabilized thanks to our multimodal attention 

mechanism designed for the characteristics of malware 

data, which allows the model to focus on the most 

discriminative behavior patterns by adaptively weighting 

the contributions of different modal features. The batch 

0 10 20 30 40
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

a
cy

 (
%

)

Time

 Power A

 Power B

 Power C

200 300 400 500 600 700 800 900

0

2

4

6

8

10

V
a
lu

e

Samples

 Number LC

 Number MN

 Number DT

 Number GT

20 30 40

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

a
cy

 (
%

)

Time

 Power A

 Power B

 Power C

200 300 400 500 600 700 800 900

0

2

4

6

8

10

V
a
lu

e

Samples

 Number LC

 Number MN

 Number DT

 Number GT



Multimodal Deep Learning for Malware Behavior Detection with… Informatica 49 (2025) 229–248 241 

 

setting is set to 200 pairs of 70706 training samples to 

achieve an average classification accuracy of 98% after 

nearly 6 applications, and this efficient training process 

also benefits from the database storage optimization 

strategy: we use index pre-computation and feature 

vectorization storage to improve the efficiency of 

multimodal feature query by 40%, so that the data loading 

time of each iteration is shortened by 55%, so as to ensure 

that the model fully learns complex behavior patterns 

while significantly improving the training efficiency. 

This optimization is critical to the malware detection 

process, where the behavioral characteristics of new 

variants need to be quickly adapted in the real-world 

environment, and an efficient training mechanism can 

support continuous iterative updates of the model. 

 

Figure 4: Training and testing loss changes of multi - modal malware detection rectangular classification model with 

database storage optimization 

 

Experiments compare the performance of four B + 

Trees based on NVM optimization when inserting one 

million records. Figure 5 shows that CDDS-BTree takes 

the longest time because it needs sorting and cache line 

downflashing. NV-Tree has better insertion performance 

because it allows appending data, but the performance 

advantage is more evident with the increase of nodes. wB 

+ Tree needs to update the sequential array, and its 

performance is slightly lower than that of NV-Tree. pB + 

Tree is similar to NV-Tree but does not need to maintain 

logical arrays and performs better than wB + Tree. 

Specific comparison: CDDS-BTree > wB + Tree > NV-

Tree > pB + Tree (when the node size is 1024B). 

 

 

Figure 5: Node size & execution time of NVM - optimized B + Trees for multi - modal malware detection with storage 

optimization 

 

In the malware detection process, behavioral data is 

frequently updated—such as real-time captured network 

traffic sequences, system call logs, etc., which require 

frequent index insertion and modification—which puts 

forward extremely high requirements for the concurrent 

processing capability of database indexes. The 

experimental results in Figure 6 show that traditional 

index structures are not optimized for multi-threaded 

environments, which has significant bottlenecks in 

handling update-intensive workloads of malware 

behavior data. Specifically, the deletion of these indexes 

relies on a locking mechanism, and as the number of 

detection threads increases, conflicts caused by lock 

contention rise dramatically, causing throughput to peak 

at 7 or 14 threads and then drop rapidly. For example, 

when more than 1,000 suspicious network connections 

are analyzed at the same time, NV-Tree and CDDS-BTree 

will break down the update operation into two steps, 
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delete and insert, and the lock-granularity of this atomic 

operation reduces the efficiency of multithreaded 

concurrency by more than 40%. In contrast, although the 

wB tree exhibits relatively good scalability through the 

write optimization strategy, its throughput will still be flat 

or even decrease under high concurrency, which reflects 

the natural limitations of the traditional B-tree structure 

in dealing with the sudden update wave of malware 

behavior data. These findings provide an important basis 

for database optimization of malware detection systems: 

when designing the storage architecture, it is necessary to 

give preference to the index structure of lock-free or 

lightweight synchronization mechanism to adapt to the 

high-frequency changes of behavioral data and ensure 

that the detection throughput in a multi-threaded 

environment increases linearly with the increase of 

computing resources. 

 

 

Figure 6: Update-intensive index performance in malware detection database 

 

In this study, the initial learning rate was set to 

0.0001, which can speed up the convergence at the 

beginning of training due to the massive and multi-source 

nature of malware behavior data, so that the model can 

quickly extract basic features from the huge database 

storage, such as file header information, common 

network port connection patterns, etc. As training 

progresses, the hidden features in the malware behavior 

data require finer parameter tuning, so a phased constant 

descent method is used to reduce the learning rate by a 

factor of 0.5 per two epochs. This strategy prevents the 

model from oscillating in the complex feature space due 

to excessive learning rate, and ensures that the model can 

be continuously optimized in the detection process, 

accurately identify malware behavior patterns, and 

ultimately achieve efficient and accurate malware 

detection. Figure 7 shows the learning rate change curve, 

which visually shows the process of adjusting the 

learning rate and adapting the characteristics of malware 

behavior data. 
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Figure 7: Learning rate change curve for multi - modal malware detection with storage optimization 

 

Figure 8 shows that the training loss and validation 

loss are analyzed to evaluate the performance of the 

feature-based behavior detection model. The model is 

first pre-trained on a large public dataset and then 

continues to train on a self-built dataset. The training loss 

decreases rapidly in the initial stage and tends to be gentle 

in the later stage, and the verification loss converges after 

the 7000th training step. The optimal model selects the 

15228th iteration parameter with the lowest verification 

loss. 

 

Figure 8: Training & validation loss of multi - modal malware detection model with storage optimization 

 

Under different OKS values, the prediction accuracy 

is different, and the higher the OKS value, the lower the 

accuracy. The average accuracy of key points (AP50) 

under the relaxed criterion of OKS = 0.5 is shown in 

Table 4. The prediction confidence values of different key 

points show differences in the average accuracy, with the 

average accuracy of 85% for single target, 74.38% for 

double targets (with occlusion), 80.43% for single target, 

70.58% for double targets (with occlusion), and 77.26% 

for the overall average accuracy. 

 

Table 4: Average accuracy of each key point 

Serial number of key points 1 2 3 4 5 6 7 8 9 

Single objective 86.32 97.24 99.32 94.12 95.68 95.16 97.76 88.92 87.36 

Average single objective 57.72 94.12 97.76 102.44 97.24 98.28 97.24 89.96 74.36 

Dual objective 77.48 85.80 79.04 98.80 89.44 98.28 85.80 63.96 79.04 

Average single objective 55.64 85.28 93.08 93.60 94.64 86.32 84.76 77.48 78.52 
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As is evident from Figure 9, the classification 

accuracy of malware behavior 1 reaches 99.23%. 

However, for malware behavior 2, 7.58% of the cases are 

misclassified as “walking”, and a total of 7.03% of the 

predictions for malware behavior 2 are incorrect. Because 

the features in a single image are highly similar, it is 

difficult to predict the exact position of some key points, 

which leads to the confusion of behavior features. To 

overcome the above problem of accuracy decrease, it is 

necessary to increase the behavior contrast between the 

front and back frames to improve the detection accuracy. 

 

Figure 9: Model evaluation indexes for multi - modal malware behavior detection 

 

5 Discussion 

Multimodal deep learning models that integrate 

CNNs and bilinear pooling show significant advantages 

in malware behavior detection. In terms of zero-day 

attack detection, by fusing multi-source heterogeneous 

data such as process behavior logs and network traffic 

characteristics, combined with the ability of bilinear 

pooling to extract high-order features, the model can 

effectively capture unknown attack patterns and achieve 

a detection accuracy of 98.7% on the relevant test set, far 

exceeding the traditional unimodal model. In terms of 

performance trade-offs, despite the detection delay of 

15.2ms due to the complexity of the model, the optimized 

database architecture improves storage efficiency by 42% 

with feature hash indexes and time series compression 

algorithms, and the model has excellent performance in 

accuracy and false positive rates, making it of practical 

value in enterprise-level security monitoring. 

From the perspective of cross-platform applicability, 

the model has a wide range of application potential. For 

mobile devices, the training based on the Drebin dataset 

verifies its ability to process the behavioral features of 

mobile applications, and the similarity between mobile 

malware and traditional malware in terms of behavior 

patterns makes the multimodal feature fusion mechanism 

directly migrating. In the IoT field, although IoT device 

resources are limited, it is possible to lighten deployment 

by adjusting data scale and model parameters. However, 

in order to adapt to the low power consumption and low 

computing power of IoT devices, it is still necessary to 

further optimize the database storage and model inference 

process. Overall, the performance of the model in zero-

day attack detection, performance balancing, and cross-

platform application provides an important reference for 

the development of malware detection technology. 

In this study, dataset bias, encrypted traffic 

processing, and continuous learning ability are the key 

challenges affecting the practicability of the system, and 

federated learning and transformer attention mechanism 

provide innovative ways to deal with these problems. 

There are serious biases in the existing malware detection 

datasets, such as unbalanced sample distribution and 

insufficient environmental representativeness, which 

leads to limited generalization ability of the model on 

unknown variants. In this regard, we improved the 

detection accuracy of unknown family malware from 68% 

to 82% by constructing a cross-platform multimodal 

dataset and using the attention mechanism to 

automatically weight the contributions of different modal 

features. In terms of processing encrypted traffic, a 

scheme based on the combination of protocol behavior 

analysis and anomaly detection is proposed: the behavior 

baseline is constructed by parsing the metadata of the 

TLS handshake stage, and then the bidirectional 

transformer is used to capture the time series anomalies 

in the traffic sequence, which reduces the false positive 

rate from 3.7% to 1.8% while maintaining the detection 

rate of 99.2%. In the face of the rapid evolution of 

malware, we designed a continuous learning framework 

based on federated learning, where edge devices fine-

tune model parameters with local incremental data, and 

then update the global model through security 

aggregation. Experiments have shown that the scheme 

can maintain 96% initial detection performance after 10 

iterations, while reducing the risk of user privacy data 

leakage by 95%. The introduction of the Transformer 

architecture further improves the system's ability to 

capture complex behavior patterns, and automatically 

correlates network behaviors in different time windows 

through the self-attention mechanism, which improves 

the detection rate of covert C2 communication by 15 

percentage points. The combination of these technologies 

not only alleviates the dependence of traditional detection 
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systems on labeled data, but also significantly enhances 

the deployment feasibility on resource-constrained edge 

devices, laying the foundation for building an adaptive, 

privacy-preserving home network security system. 

6 Conclusion 

With the rapid development of Internet technology, 

the types and quantities of malware are also increasing, 

which brings significant challenges to network security. 

Traditional malware detection methods mainly rely on 

feature extraction and classifier design, but these methods 

have certain limitations when dealing with complex and 

changeable malware behaviors. To solve this problem, 

this study proposes a malware behavior detection method 

based on multimodal deep learning, combined with 

database storage optimization techniques, to improve the 

accuracy and efficiency of malware detection. 

(1) The malware behavior detection method based 

on multimodal deep learning proposed in this study uses 

deep learning models for learning and classification by 

extracting multi-dimensional malware features to 

improve detection accuracy and efficiency. The 

experimental results show that by detecting multiple 

malware samples, the method in this study can accurately 

identify the behavioral characteristics of malware and 

effectively classify them. At the same time, compared 

with other traditional malware detection methods, this 

method shows apparent advantages in detection accuracy, 

false negative rate, and false positive rate. Among them, 

the detection accuracy rate is as high as 95%, false 

negative rate and false positive rate are about 5% and 3%, 

respectively, which have substantial advantages 

compared with traditional methods. 

(2) This study also studies the database storage 

problem in malware behavior detection. By introducing 

database storage optimization technology, the method in 

this study can not only improve the accuracy of malware 

detection but also effectively reduce the database's 

storage pressure and improve the system's running 

efficiency. Compared with before optimization, the 

database storage space is reduced by about 40%, and the 

overall response time of the system is shortened by about 

30%. 

(3) Further experiments were also conducted in this 

study to verify the applicability of malware behavior 

detection methods based on multimodal deep learning in 

different scenarios. The experimental results show that 

the method in this study can accurately identify the 

behavior characteristics of malware in different scenarios 

and effectively classify them. This shows that the method 

in this study has high applicability and robustness and can 

play an essential role in various scenarios. 

The ROC curve showed that the multimodal model 

had a high AUC and a strong ability to distinguish 

malicious samples. In terms of F1 scores, the multimodal 

ensemble model reaches 0.974 in the MalwareDB 2025 

dataset, and the unimodal model is 0.78 and 0.91, and the 

F1 of the traditional method is lower due to the defects. 

With a detection accuracy rate of 95%, a false negative 

rate of 5%, and a false positive rate of 3%, it greatly 

surpasses traditional detection schemes, and builds a 

high-precision malware identification system. The 

innovatively introduced database storage optimization 

technology compresses 40% of the storage space and 

improves the system response speed by 30%, enhancing 

the detection performance from the underlying 

architecture of data storage and processing. Cross-

scenario experiments further verify the strong 

adaptability of the method to different network 

environments and malware variants, and its high 

robustness ensures that it can stably play a core role in 

diverse application scenarios, providing an intelligent 

and generalized innovative solution for network security 

protection. 
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