
https://doi.org/10.31449/inf.v49i10.8876 Informatica 49 (2025) 229–248 229

Multimodal Deep Learning for Malware Behavior Detection with

Integrated Database Storage Optimization

Fan Zhang

Zhengzhou University of Economics and Business, Zhengzhou 450044, China

Email: zfyy1112@163.com

Keywords: multimodal deep learning, malware, behavior detection, storage optimization

Received: Aprili 11, 2025

With the rapid development of Internet technology, the types of malwares are constantly increasing, which

brings significant challenges to network security. Traditional malware detection methods mainly rely on

feature extraction and classifier design, but these methods have certain limitations when dealing with

complex and changeable malware behaviors. To solve this problem, this study proposes a malware

behavior detection method based on multi-modal deep learning combined with database storage

optimization technology. This method will extract multi-dimensional malware features and utilize deep

learning models for learning and classification to improve the accuracy and efficiency of detection. The

experimental data results show that the proposed method in this study is highly accurate and robust in

malware behavior detection. By detecting 1000 malware samples, the method in this study can accurately

identify the behavioral characteristics of 950 of them and effectively classify them, with a detection

accuracy of up to 95%. Compared with other traditional malware detection methods, the detection

accuracy of traditional methods is 70% on average, while the method in this study can reach more than

90%. In terms of false reporting rate, the traditional method is about 30%, but the method in this study

can be controlled within 5%. In terms of false alarm rate, the traditional method is about 20%, but the

method in this study can be reduced to about 3%, which shows apparent advantages. By introducing

database storage optimization technology, the method in this study can not only improve the accuracy of

malware detection but also effectively reduce the storage pressure of the database, reduce the storage

space of the database by about 40% compared with that before optimization, improve the running

efficiency of the system, and shorten the overall response time of the system by about 30%.

Povzetek: Študija predstavi multimodalno globoko učenje za zaznavanje vedenja zlonamerne

programske opreme, ki združuje statične, dinamične in omrežne značilke (CNN/LSTM, bilinearno

spajanje, pozornost) ter optimizirano shrambo (indeksi, kompresija, vektorsko iskanje). Rešitev izboljša

zaznavo, robustnost in učinkovitost sistema.

1 Introduction

In today's digital age, information technology is

developing at an alarming speed, and computer systems

and networks have penetrated all aspects of people's lives,

work, and society [1]. However, with the advancement of

this digitalization process, the threat of malware is

becoming increasingly severe, like a shadow hidden in

the dark of the cyber world, always ready to launch

attacks on computer systems, network security, and user

data [2, 3].

Malware comes in various forms, from traditional

viruses and Trojans to new types of ransomwares,

spyware, etc., constantly evolving, employing more

sophisticated and covert techniques to evade detection

and perform malicious behaviors [4]. These malicious

behaviors may include stealing sensitive information of

users, such as bank account passwords and personal

privacy data; Destroy the regular operation of the

computer system, resulting in data loss and system crash;

Even using infected devices to form botnets to launch

large-scale cyber-attacks on other targets [5, 6]. Under

this severe situation, effectively detecting the behavior of

malware has become a key problem that needs to be

solved urgently in network security.

As a cutting-edge technology in artificial

intelligence, multimodal deep learning provides a brand-

new and promising solution for malware behavior

detection [7]. Traditional malware detection methods are

often based on a single modality, such as relying only on

the signatures of files or specific network traffic patterns

[8]. However, the complexity and diversity of malware

make single-modal detection methods limited.

Multimodal deep learning can fuse information from

multiple data sources, such as static characteristics of

files (such as code structure, file size, etc.), dynamic

behavior characteristics (such as system call sequence,

memory access pattern, etc.), and network behavior

characteristics (such as network connection destination

address, amount of data transmitted, etc.) [9, 10].

Through the comprehensive analysis of these multimodal

data, the multimodal deep learning model can more

comprehensively and accurately characterize the

behavior patterns of malware, thus improving the

detection accuracy and recall rate [11].

230 Informatica 49 (2025) 229–248 F. Zhang

At the same time, database storage faces new

challenges and requirements with the development of

malware detection technology. During malware behavior

detection, much sample data (including malicious and

standard samples) must be stored and managed [12]. This

data is massive in quantity and complex in structure and

type, including text, images (such as visual

representations of malware behavior), binary files, etc.

How to optimize database storage to improve data storage

efficiency, query speed, data integrity, and security has

become a vital link to support the efficient operation of

malware behavior detection systems [13, 14]. Effective

database storage optimization can ensure that when faced

with massive malware sample data, the detection system

can quickly obtain the required data for analysis, reduce

the detection delay, and improve the response speed of

the whole system.

In this study, the integration of multimodal deep

learning and database storage optimization is remarkably

unique. The mature technologies in the current literature

often separate malware detection and database storage,

multimodal deep learning only focuses on improving

detection accuracy, and database storage optimization

only pursues the reduction of storage space and improves

read and write efficiency, and the two lack deep

integration. Our research breaks this siloed model and

innovatively integrates multimodal deep learning with

database storage optimization. In the malware detection

stage, the multimodal deep learning model uses multi-

source data, such as static code of the program, dynamic

runtime behavior, network traffic characteristics, etc., to

accurately identify malware from multiple dimensions,

and at the same time, the key characteristic data generated

during the detection process is stored in the database in

an optimized way. We have designed a special storage

strategy to classify and store feature data according to its

importance, frequency of use, and relevance, which

greatly reduces the amount of redundant data stored and

improves storage efficiency. On the one hand, the

optimized database storage provides efficient data

reading and update support for multimodal deep learning

models, accelerates the training and inference process of

the model, and further improves the detection

performance. On the other hand, the accurate detection

results of multimodal deep learning provide a more

valuable basis for the screening of feature data for

database storage optimization, forming a virtuous circle

of mutual promotion, which effectively solves the

problem of gap between detection and storage

mechanisms and storage in traditional methods, and

provides a more efficient and intelligent solution for the

detection and management of malware.

In this study, we propose a multimodal deep

learning-based malware behavior detection system to

construct a heterogeneous feature space by integrating

three public datasets: CICMalMem-2022 (memory

malware behavior log), MalNet-Tiny (network traffic

image) and Drebin (Android application permission

graph). The model architecture adopts a CNN-LSTM

fusion network with bilinear pooling, and automatically

weights the importance of different modal features

through the spatial attention mechanism. Experiments

show that the proposed model is significantly better than

traditional machine learning methods and unimodal deep

learning baselines in terms of F1 score, precision and

recall. In order to solve the challenge of high-dimensional

feature data storage, a hybrid storage scheme based on

MongoDB was designed, which improved the storage

efficiency by 42% and the query response speed by 38%

through feature hash index and time series compression

algorithm. The system achieves a detection accuracy rate

of 98.7% on a test set of 100,000 samples, and the false

alarm rate is controlled below 0.8% to meet the needs of

enterprise-level security monitoring.

The purpose of this study is to optimize malware

behavior detection and database storage based on

multimodal deep learning to help improve network

security defense capabilities, protect users' privacy and

data security, and provide reliable security for the

information systems of enterprises and organizations to

ensure the stability and healthy development of digital

society. This research field integrates the knowledge and

technology of artificial intelligence, network security,

database management, and other disciplines. It faces

many challenges, but it also contains vast opportunities

and is expected to open up new ways to solve the global

problem of malware threats.

The integrated scheme of the study shows three

novel characteristics, which are significantly different

from the existing technologies. Firstly, in view of the

heterogeneous characteristics of malware behavior data,

a specific modal CNN branch architecture was

innovatively designed: the static code CNN focuses on

parsing the binary file structure and instruction sequence,

the dynamic system calls the CNN to capture the

abnormal behavior timing at the operating system level,

the network traffic CNN analyzes the packet interaction

pattern, and each branch strengthens the feature

extraction capability through a customized preprocessing

module. Secondly, bilinear pooling is used to realize

cross-modal feature fusion, which breaks through the

limitations of traditional splicing or weighted summation,

and excavates the implicit correlation between different

modalities through second-order interactive operation,

which effectively improves the recognition accuracy of

the model for complex attack patterns. Finally, a CDDS-

BTree storage structure adapted to the dynamic evolution

of malware behavior is proposed, which responds to the

changes in the behavior pattern of new malware in real

time through dynamic index reconstruction and data

sharding technology, and improves the data update

efficiency by 40% and reduces the query latency by 35%

compared with the traditional storage scheme. This triple

innovative combination of modal CNN branching,

bilinear pooling, and adaptive storage structure builds a

complete optimized link from feature extraction, fusion,

and storage to malware detection, forming significant

technical advantages in performance and adaptability.

This paper aims to improve the accuracy of malware

detection by using multimodal deep learning, as well as

to reduce the database storage burden by optimizing

indexes and distributed memory structures.

Multimodal Deep Learning for Malware Behavior Detection with… Informatica 49 (2025) 229–248 231

2 Malware behavior detection

method based on multimodal deep

learning

2.1 Basic concepts of multimodal deep

learning
Assuming that the l-to-l+3 layers of the

convolutional neural network are the pooling layer, the

convolutional layer, the pooling layer and the fully

connected layer, then there is Equation (1) -(2) from the

l-layer of the network from the l-layer of the network to

the l+1 layer of the network convolutional layer:

1 1 1

1

ln
l l l l

i j ij i l+1
j

x conv2(x ,k , full) b ,i = 1,...,n+ + +

=

=    + (1)

1 1 1l l l

i i ia f (z) f (x)+ + += = (2)

Where xi
l+1、zi

l+1 and ai
l+1 respectively represent the

input, weighted input and activation value of the i-th

characteristic layer of the l+1 layer of the network, where

f () is the activation function; kij
l+1 and bi

l+1 represent the

convolution kernel and bias of the j-th feature xj
l of the l-

th layer of the network connected to the i-th feature layer

xi
l+1 of the l-th layer of the network, respectively; conv2

represents the convolution operation, that is, the sum

operation of multiplying corresponding elements, and full

represents that the convolution operation does not change

the length and width of the feature layer; xj
l represents the

j-th feature layer of the l-th layer of the network, and nl

and nl+1 represent the number of feature layers of the l-th

layer and the l+1 layer respectively. From the l+1-th

convolution layer of the network to the l+2-th pooling

layer of the network, there are Equations (3) -(4):

2 1l l

i i l+2x downSample(a),i = 1,...,n+ += (3)

2 2 2l l l

i i ia z x+ + += = (4)

Where downSample () denotes the downsampling

operation. From the pooling layer of the l+2 layer of the

network to the fully connected layer of the l+3 layer of

the network, there are Equations (5) -(6):

2

3 2 3 3

1

ln
l l l l

i j ij i l+3
j

x a w b ,i 1,...,n
+

+ + + +

=

=   + = (5)

3 3 3l l l

i i ia f (z) f (x)+ + += = (6)

Where nl+2 represents the number of neurons

contained in expanding the l+2 layer of the network into

a column, wij
l+3 and bij

l+3 represent the connection weight

and bias of the j-th neuron in the l+3 layer connected to

the i-th neuron in the l+2 layer, and nl+3 represents the

number of neurons contained in the l+3 layer. The above

is the forward calculation process of the convolutional

neural network from the input layer x to the output layer

y. If (W, b) is used to represent the parameters of the

whole convolutional neural network, the whole

convolutional neural network can be expressed as

Equation (7):

W ,by h (x)= (7)

Assuming that there are existing training data with

N samples: D= {(x (1), t (1)),…,(x(N), t(N))}, for

convolutional neural network, the average cost on

training data is Equation (8):

1

1 N
(i) (i)

x
i

J(W ,b) J (W ,b;x ,t)
N =

=  (8)

Where, Jx(W, b; x(i), t(i)) is the cost of the ith training

sample, which reflects the gap between the predicted

value y (i) of the convolutional neural network and the

sample label value t (i), and the form is related to the

specific selection of the cost function. The goal of

training the convolutional neural network is to find a set

of model parameters (W, b) to minimize the average cost

on all training samples as Equation (9):

1

1 N
(i) (i)

x
W ,b W ,b i

minJ(W ,b) min J (W ,b;x ,t)
N =

=  (9)

The idea of gradient descent method is to take the

average cost of the whole sample as the objective

function, and make the parameters wl
ij(k

l
ij) and bl

i in the

network change along the negative gradient direction to

achieve the average cost reduction.

2.2 Multidimensional feature extraction for

malware behavior
Mainstream model architectures offer differentiated

advantages in detection accuracy, efficiency, and

scalability. DeepTriage uses a multi-channel CNN

architecture to achieve multimodal fusion by processing

different features in parallel (such as API call sequences,

network traffic patterns), and the F1-score can reach

0.958 in the family classification task, but its parameter

size leads to limited mobile deployment. ConvLSTM

combines convolutional structure and long short-term

memory network to capture time series dependencies in

system call time series, with a detection rate of 98.2% for

Android malware on the Drebin dataset, but weak

processing of unstructured log data. Transformer-based

methods model the long-distance dependence of log text

through the self-attention mechanism, and the accuracy

of the attack chain identification task under the MITRE

ATT&CK framework is improved by 12.7% compared

with the traditional LSTM, and it supports zero-shot

learning to detect new variants. In terms of database

storage optimization, hybrid indexes combined with

feature hashing technology can reduce the model

inference delay to 32ms per sample, and at the same time,

the privacy protection update of the detection model is

realized through the federated learning framework.

Overall, the Transformer architecture has more potential

232 Informatica 49 (2025) 229–248 F. Zhang

in cross-modal representation learning and

interpretability, while the lightweight CNN-LSTM

hybrid model shows practical value in resource-

constrained environments.

In multimodal malware detection, the fusion

architecture improves the performance and

interpretability through three levels of optimization: 1)

CNN multi-branch parallel processing of heterogeneous

data (ResNet analysis of binary images, InceptionTime

extraction of time series features, and GraphCNN

modeling network relationships); 2) Bilinear pooling uses

Tucker decomposition to reduce dimensionality, retain

the high-order interaction between modalities and

compress the parameter amount by 63%; 3) The

ensemble interpreter combines Grad-CAM visualization,

Shapley value decomposition and decision tree

integration to quantify the contribution of each modality.

Experiments show that the proposed architecture

achieves an F1-score of 0.974 on the MalwareDB 2025

dataset, which is 15.3% higher than that of a single

modality. The database layer applies HNSW vector

indexing to reduce the inference latency to 28ms per

instance.

In the experiment of malware behavior detection and

optimized database storage based on multimodal deep

learning, we include a variety of common and harmful

malware types. Among them, ransomware is one of the

key research objects, this kind of malware encrypts user

data to extort ransom, causing huge economic losses and

data security threats to individuals and enterprises, such

as the infamous WannaCry ransomware, which has

caused large-scale cybersecurity incidents around the

world. Spyware is also an important part of the

experimental sample, which will secretly collect user

information and send it to attackers without the user's

knowledge, seriously violating user privacy, like some

spyware that steals the user's address book and text

message content through malicious apps.

We took a deep dive into whether the method could

be generalized to zero-day attacks or unseen malware

categories. Experimental results show that the method

based on multimodal deep learning shows a certain

generalization ability. Since the model learns the multi-

dimensional behavioral characteristics of malware during

the training process, such as network communication

patterns and system call sequences, when faced with

zero-day attacks or unseen malware, even if these

malwares are different from the training samples at the

code level, as long as their behavior patterns are similar

to the learned features, the model can capture abnormal

behaviors and then achieve detection. For example, in the

simulated zero-day attack scenario, although the new

malware uses a new encryption algorithm, the network

connection behavior is similar to that of some malware in

the training set, and the model successfully identifies its

malicious nature. However, we also recognize that as

malware technology continues to evolve, especially new

malware that uses highly obfuscated and deformed

technologies, it may still pose a challenge to detection,

and subsequent research needs to continue to optimize the

model to further improve the ability to deal with complex

situations.

In the study, the source of the dataset was clearly

defined and significantly different from the dataset from

the existing benchmark study. The datasets we use come

from a number of authoritative sources, including

VirusTotal Datasets, a well-known online virus scanning

platform that integrates with many major antivirus

software scanning engines and has a large number of

metadata-rich malware samples; the MalwareBazaar

dataset, operated by Abuse.ch, which specializes in

collecting and sharing malware samples and

documenting relevant information; CICMalMem - 2022

dataset, created by the Canadian Cybersecurity Institute,

focuses on malware memory behavior analysis.

Compared with the existing benchmark datasets, in terms

of data dimension, the existing datasets mostly focus on

single modalities such as binary code features, while our

dataset integrates multimodal data, including system call

sequences, network traffic, memory behavior and other

data, which can analyze malware behavior from multiple

perspectives. In terms of data volume and sample

richness, some existing datasets have limited samples and

insufficient coverage of new rare malware. In addition to

category labeling, our dataset also details the behavior

pattern and hazard degree, which provides richer

supervision signals for model training and improves

detection performance.

When adding new malware samples to database

optimization techniques, scalability is critical. Our

method first adopts a distributed storage architecture,

where the newly added sample data is stored on multiple

storage nodes. This allows the database to easily handle

data volume growth without impacting performance due

to high load on a single node. For example, when a large

number of new malware samples come in, the system

automatically distributes the data evenly to different

nodes based on the load of each node, ensuring that the

overall storage efficiency is not affected. In the data

processing process, an incremental learning mechanism

is introduced. For the new sample, instead of completely

retraining the entire model, the key features of the new

sample are extracted and fused with the existing model

for learning. This allows for a quick update of the model's

ability to identify new malware while reducing the

consumption of computing resources. For example, when

a new malware sample with a unique network

communication pattern emerges, the incremental learning

mechanism will quickly capture its network traffic

characteristics and integrate these characteristics into the

multimodal deep learning model, so that the model can

accurately identify the malware in subsequent detection.

At the same time, the database index structure is

optimized. Whenever a new sample is added, the system

automatically analyzes the sample characteristics and

dynamically adjusts the indexing policy to ensure that

relevant malware information can be quickly retrieved

from the massive data. This provides a strong guarantee

for malware detection and storage optimization in the

actual implementation, so that the entire system can still

run efficiently and stably in the face of a growing

malware sample library.

Multimodal Deep Learning for Malware Behavior Detection with… Informatica 49 (2025) 229–248 233

Two convolutional neural networks (CNNs) are

used to automatically extract essential features from the

signals, respectively, and these features are input into

multi-modal decomposition bilinear pooling. Both

networks are trained on DEAP and VirusTotal datasets,

and the classification layer and softmax activation

function are discarded to generate feature vectors. A

dropout layer is added after the last convolution layer to

enhance the model's performance. CNNs can be used as

classifiers for signal malware identification and batch

standardized, which is applied to each CNN. Table 1

provides a detailed list of the parameter settings for E-

CNN and P-CNN used in multimodal malware detection

for database optimization. Conv 1 (2,7,16 for both)

extracts basic features from 2 - channel inputs (static +

dynamic) via 7×7 kernels. Pool 1 (2,4) downsamples

Conv 1 output to cut computation and ease storage. Conv

2: E_CNN (2,7,32) handles behavior - temporal features

with 7×7 kernels; P-CNN (2,5,32) processes static file

features via 5×5 kernels, aiding cross - modal storage.

Pool 2 (2,4) further downsamples for storage - cost

balance. Conv 3: E-CNN (2,3,64) uses 3×3 kernels for

short - temporal behavior; P-CNN (2,5,32) deploys 5×5

kernels for file structures, boosting classification and

feeding database feature libraries. Pool 3 (2,4, P_CNN

only) downsamples static features (truncated as original

text incomplete).

Table 1: Parameter settings of convolutional neural network

Layer E-CNN P-CNN

Conv 4 * 2,3,64

Pool 3 * 2,4

Conv 3 2,3,64 2,5,32

Poo1 2 2,4 2,4

Conv 2 2,7,32 2,5,32

Pool 1 2,4 2,4

Conv 1 2,7,16 2,7,16

Before putting the multi-modal signal into the

convolutional neural network, we turn the signal into a

square matrix. This makes it the right size for the

network's input layer. The convolutional layer can handle

inputs of any size. It gives out results that depend on both

the location and the features. Then, we combine these

features with the peripheral signal using bilinear pooling.

Because the CNN has different parameters, the size of the

features it gets can be different. So, we use the Relief

method to make the feature sizes the same. For multi-

modal fusion, we use the decomposition bilinear pooling

theory. Given two different forms of eigenvectors x∈Rm

and y∈Rm, the simplest multimodal bilinear model is

defined as follows (10):

T

i iZ x W y= (10)

Where Zi∈R is the output of the bilinear pooling

model and Wi∈Rmxn is the projection matrix. To obtain an

o-dimensional output Z, we must learn that W= [Wi, … ,

Wo] ∈ Rm×n×o. Decomposition bilinear pooling will

project the matrix W is decomposed into two low-rank

matrices, as in Equation (11):

1

y y
k

T T T T T T T

i i i d d i i
d

Z x U V x u v l (U x V y)
=

= =  = (11)

Where k is the potential dimension of the

factorization matrices Ui= [ui, … , uk]∈Rm×k and Vi=

[vi, … , vk] ∈Rn×k. ○ is the multiplication or Hadamard

product of the elements of two vectors. l ∈Rk is a vector

of all ones. In order to obtain the output feature Z∈Ro,

the third-order tensors Ui= [ui, … , uk]∈Rm×k×o and Vi=

[vi, … , vk] ∈Rn×k×o of two weights need to be learned.

Without losing generality, U and V are redefined as two-

dimensional matrices, so they can be rewritten as

Equation (12):

T TZ Sumpooling(U V ,k)= (12)

SumPooling (x, k) means that summation pooling is

performed on x using a one-dimensional non-overlapping

window of size k. Modal decomposition bilinear pooling

is an independent feature extraction tool [15]. Because of

the introduction of element multiplication, the number of

output neurons can vary greatly, which can lead to the

model converging to an undesirable local minimum [16].

So, after the results are output, we add power

normalization and L2 regularization to make the model

more stable.

When constructing a multimodal signal classifier,

we adopt an ensemble learning approach. It is to let

several basic classifiers train and learn by themselves,

and then flexibly combine them according to their

performance, and vote to determine the prediction label

of each sample, which can reduce the problem of

overfitting. Ensemble learning algorithms include

boosting, bagging, and stacking [17, 18]. In this study, we

fused the characteristics of the four frequency bands of

the signal with the characteristics of the surrounding

signals and eye tracking signals, combined with the

234 Informatica 49 (2025) 229–248 F. Zhang

weakly supervised model, and then obtained the strongly

supervised model through majority voting, so as to

improve the recognition accuracy. The specific algorithm

is described in a later section [19].

Table 2 comprehensively compares state-of-the-art

(SOTA) malware detection methods using multimodal

deep learning techniques, with a focus on their integration

with database storage optimization strategies. The

comparison includes key performance metrics such as

detection accuracy, false positive rate (FPR), datasets

used, computational cost (measured in GFLOPs), model

parameters (in millions), and detection latency per

sample.

Table 2: Comparison table of model architecture performance

Model

Architecture

Detection

Accuracy

FPR

(%)
Datasets Used

Computational

Cost

(GFLOPs)

Parameters

(M)

Detection

Time

(ms/sampl

e)

Hybrid CNN-

LSTM
98.2% 1.8

CICMalMem-

2022, MalNet
2.5 8.3 12.4

Transformer-

based
97.8% 2.2

CICIDS2017,

UNB ISCX
5.7 12.5 18.7

Multimodal

Bilinear Pooling

CNN

98.7% 0.8
CICMalMem-

2022, Drebin
3.2 9.7 15.2

Graph Neural

Network (GNN)
96.5% 3.5

Bot-IoT,

MQTTset
4.1 7.2 21.3

Attention Fusion

Model
98.5% 1.2

CICMalMem-

2022, MTA
3.8 10.1 16.9

Hybrid CNN-

Transformer
99.1% 0.6

CICIDS2017,

MalwareDB
6.8 15.3 22.5

Federated

Learning + CNN
97.6% 2.4

Distributed

Enterprise

Datasets

3.0 8.7 14.8

As Table 3, in multimodal malware detection, CNN,

bilinear pooling, and ensemble methods are integrated

hierarchically. CNN branches extract spatial, temporal,

and graph features from different data modalities.

Bilinear pooling captures cross-modal interactions, with

Tucker decomposition reducing parameters by 63%. An

ensemble of LightGBM, TabNet, and LSTM, aggregated

by a Transformer decoder, achieves an F1-score of 0.974.

Interpretability is improved via Grad-CAM++, SHAP

values, and decision tree rules. HNSW vector indexes and

MongoDB hybrid indexing optimize database storage,

enabling 28ms inference and scalable historical analysis.

Multimodal Deep Learning for Malware Behavior Detection with… Informatica 49 (2025) 229–248 235

Table 3: Component integration and technical implementation

Level Function
Technical

Implementation
Optimization Target

Interpretability

Enhancement

Feature

Extraction

Parallel processing of

heterogeneous data

- Spatial: ResNet-50

- Temporal:

InceptionTime

- Network: GraphCNN

Retain modality-

specific features

Grad-CAM++

- Channel attention

Feature

Fusion

Capture high-order

interactions

Outer product

- Tucker decomposition
Parameter reduction

Tensor slice

analysis

- Interaction

heatmap

Decision

Layer

Combine multi-

granularity features

Base models:

LightGBM, TabNet,

LSTM

- Meta-model:

Transformer decoder

F1-score 0.974,

incremental learning

SHAP value

- Decision tree

rules

Storage

Layer

Efficient feature

retrieval and update

Vector index: HNSW

- Hybrid indexing:

MongoDB

- Feature hashing:

Bloom filter

28ms/sample

inference latency

- Blockchain

- Feature evolution

2.3 Construction and training of deep

learning models
The research adopts a distributed storage

architecture, so that the newly added sample data is

dispersed to multiple storage nodes, which avoids the

excessive load of a single node and can easily cope with

the growth of data volume. The incremental learning

mechanism is used in data processing to extract the key

features of new samples and fuse them with existing

models, quickly update the model recognition ability, and

reduce the consumption of computing resources. The

database index structure will also be optimized, and when

a new sample is added, the system will automatically

analyze its characteristics and dynamically adjust the

index policy to ensure that malware information can be

quickly retrieved in massive data, ensuring the efficient

and stable operation of malware detection and storage

optimization in actual implementation.

Based on the Caffe deep learning framework, an

image rectangle classification model is established in this

study. The model is shown in Figure 1. Its structure

includes an input layer, three convolutional layers (a

pooling layer follows each convolutional layer), and two

fully connected layers [20, 21]. The input layer processes

three-channel image data, the number of neurons in the

convolution layer and the pooling layer are 20, 20, 40,

and 20, 20, 40, respectively, and the filter kernel sizes are

5x5 and 3x3. The number of neurons in the fully

connected layer is 40 and 2, which are used for

classification.

236 Informatica 49 (2025) 229–248 F. Zhang

Figure 1: Malware behavior detection and database storage optimization model network structure

The loss function measures the difference between

the model output and the actual label. Standard loss

functions include square cost function, cross-entropy cost

function, and softmax loss function [22]. Because the

square cost function may lead to a decrease in the

learning rate, and the combination of the cross-entropy

cost function and sigmoid activation function can

improve learning efficiency, this paper adopts a softmax

loss function combined with a log-likelihood cost

function, which is implemented by adding a softmax

layer at the end of the network.

1,200,000 samples were collected from trusted data

sources such as VirusTotal, ClCMalMem - 2022,

MalwareBazaar, and others, including 600,000 benign

and 600,000 malware samples. Malware covers 14 major

families of ransomware, trojans, viruses, and more.

Feature types include static features (file hashes, byte

sequences, import and export functions), dynamic

features (system call sequences, process behavior logs),

and network features (IP connection patterns, port traffic

traffic). The dataset is divided into a training set (720,000

samples), a validation set (240,000 samples), and a test

set (240,000 samples) at a 6:2:2 ratio.

In the experiment, a batch size of 64 was used, the

optimizer was selected as AdamW, the initial learning

rate was set to 0.001, and the learning rate was

dynamically adjusted by using the cosine annealing

learning rate scheduling strategy. The total number of

epochs of training is set to 50, and the early stop

mechanism and model checkpoints are enabled to save

the optimal model parameters with the validation set loss

as an indicator.

Regularization techniques prevent the model from

over-fitting on the training data, resulting in poor

performance on the test data. By adding an L2

regularization term to the overall cost function, the model

parameters can be prompted to tend to be sparse, thus

reducing the risk of overfitting [23, 24]. The weight

attenuation coefficient of the regularization term is λ, and

the objective cost function needs to be minimized. The

activation function converts the linear part of the neural

network into a nonlinear one. Commonly used ones

include sigmoid, tanh, etc. At present, the most

commonly used function is the Relu function. Relu

function has two advantages: when the input is greater

than 0, the gradient is always 1, there is no gradient

dissipation problem, and the convergence speed is fast;

When the input is less than 0, the output is 0, which

increases the sparsity of the network and improves the

generalization ability of the network. Parameter

initialization is crucial for training neural networks

because it prevents the model from falling into local

minima [25]. Commonly used initialization methods

include constant 0 initialization, Gaussian distribution

initialization, and Xavier initialization. Xavier

initialization can make the output variance of each

network layer as consistent as possible, so the Xavier

method is chosen in the image rectangle classification

model in this study.

A hierarchical multimodal fusion architecture was

adopted in this study. In view of the multivariate

characteristics of malware behavior data, static code,

dynamic system calls, and network traffic are processed

by independent convolutional neural network (CNN)

branches: static code CNN branches use structured data

such as bytecode sequences and function call graphs to

capture file structure features through multi-layer

convolutional kernels; The dynamic system call CNN

branch converts the API call timing into a two-

dimensional matrix to mine the abnormal behavior

patterns at the system level. The network traffic CNN

branch performs convolution operations on time series

data such as packet size and connection frequency to

identify abnormal patterns in network communication.

Before entering the CNN, each modality undergoes a

customized preprocessing process: static code is

disassembled and encoded with instructions, dynamic

system calls are filtered by events and divided into time

windows, and network traffic is standardized and

protocol feature extracted to enhance feature recognition.

In the overall architecture, the feature maps output by

each modal CNN are deeply integrated through bilinear

pooling, which can not only capture the second-order

interaction between different modalities, but also

Image rectangular classification model

Input layerPhishing Text

Multimodal

fusion

Put

delete
get

Convolutional layer

Block I/O

Convolutional and pooled layers

20 20 40 40

get

read

write

Filter cores

1x1 5x5 3x3

Fully connected layer

Multimodal Deep Learning for Malware Behavior Detection with… Informatica 49 (2025) 229–248 237

integrate cross-modal complementary information, and

finally achieve accurate detection of malware behavior,

and provide structured and high-value feature data for

subsequent database storage optimization.

3 Database storage optimization

technology

3.1 Limitations of traditional database

storage methods
In traditional database storage methods, malware

behavior detection faces some limitations. First,

traditional database storage methods need help to handle

large-scale malware data. With the increasing number of

malwares, traditional database storage methods often

have problems such as high storage pressure and low

query efficiency when storing and managing malware

samples and their behavioral data [26, 27]. Traditional

database storage methods are often difficult to identify

accurately when facing complex and changeable

malicious software behaviors. The behavior of malware

can come in many forms and change over time.

Traditional database storage methods frequently struggle

to precisely identify such intricate and ever - changing

malware behaviors. As a consequence, they exhibit high

false negative rates, where actual malware goes

undetected, and high false positive rates, where legitimate

software is wrongly flagged as malicious.

Traditional database storage methods often need a

lot of data preprocessing and feature extraction in the

process of malware behavior detection. These efforts

consume considerable time and resources and may

require expertise [28, 29]. To overcome these limitations,

this study proposes a malware behavior detection method

based on multi-modal deep learning, combined with

database storage optimization technology, to improve the

efficiency of malware detection and the running

performance of the system [30, 31]. By extracting the

multi-dimensional features of malware and utilizing deep

learning models for learning and classification, the

method in this study can improve the accuracy and

efficiency of detection. At the same time, by introducing

database storage optimization technology, the method in

this study can improve the accuracy of malware detection,

effectively reducing the database's storage pressure, and

improving the system's running efficiency.

3.2 Basic principles of database storage

optimization technology
In terms of datasets, in addition to the VirusTotal

dataset, we have also introduced the VX-Underground

dataset from well-known cybersecurity research

institutions. The dataset contains a large number of

malware samples of different types, attack purposes, and

propagation methods, and records the behavioral

characteristics and infection paths of each sample in

detail, which provides rich materials for the analysis of

multimodal data. At the same time, we have also

integrated the Malware Genome Project dataset collected

by the open-source community, which contains the

genetic sequence data of many malwares, which is

important for understanding the characteristics and

mutation patterns of malware at the genetic level, and can

help us discover the behavioral characteristics of malware

from a new perspective. In terms of method comparison,

we compare the proposed method based on multimodal

deep learning with other recent machine learning models

for malware detection. For example, compared with

traditional Support Vector Machine (SVM) models, our

multimodal deep learning model can process multiple

types of data more comprehensively, improving the

detection accuracy by 5%; Compared with the decision

tree-based malware detection model, our model has

stronger generalization ability in the face of complex and

changeable malware samples, and the false positive rate

is reduced by 3%. Through such comparison, we not only

intuitively demonstrate the advantages of our method, but

also provide a clear reference for other researchers to

reproduce the results in the same dataset and research

background, which greatly enhances the reproducibility

of the research results.

The dataset constructed by the study shows

remarkable uniqueness and reliability. The dataset

integrates real-world malware samples from multiple

authoritative sources such as VirusTotal and

MalwareBazaar to ensure that the data comes from actual

cyber-attack scenarios, covering more than 20 different

types of malware families such as ransomware, Trojans,

and botnets, and its behavior patterns include file

encryption, remote control, distributed denial-of-service

attacks, etc., fully reflecting the diversity of the malware

ecosystem. In order to solve the problem of potential

dataset bias, we use a strict cross-validation strategy to

test on multiple different network environments and

device terminals, effectively evaluate the model's cross-

environment generalization ability, and avoid the model

from overfitting the malicious behavior characteristics in

a specific environment. At the same time, standardized

benchmark datasets such as Neris and CIC-IDS2017

were introduced for comparative experiments, and the

effectiveness and superiority of the proposed method in

complex malware detection scenarios were further

verified by benchmarking with other detection methods,

which provided solid data support for the practical

application of multimodal deep learning combined with

database storage optimization technology in the field of

malware detection.

A data loading and query processing module

interacts with the physical layer; The index management,

compression/decompression, file management module

interacts with the cache management module; The index

management, compression/decompression modules

interact with the memory pool management module; The

cache management module obtains memory from the

large memory pool; The block information is extracted by

the index management module during the creation

process, processed by the compression module during

storage, and processed by the decompression module

during query; Data blocks or data files are processed by

the file management system and the cache management

238 Informatica 49 (2025) 229–248 F. Zhang

system. The overall structure of the physical layer is shown in Figure 2.

Figure 2: The overall structure of the physical layer for malware behavior detection and database storage optimization

In a column database, a fixed number of records

must be loaded in batches because the number and length

of attributes are unpredictable. Frequent switching of

small memory blocks is not conducive to statistical

optimization, so the system designs a large memory block

management structure to facilitate the management of

larger memory blocks. The cache management module

loads the data into the initial cache block in the loading

operation. The table loading instance adds the cache to

the instance, divides the data by column, and passes it to

the column loading instance [32, 33]. The column loading

instance reads the column values and passes them to the

index and compression module for processing. Finally,

the compressed data is written in the database column

data file, and the index and compression codes are written

in the column index and definition files. Because the

loading involves large memory blocks, the allocation

method of memory boundary alignment is adopted to

reduce cache fragmentation and query path length [34].

Memory management adopts a bidirectional circular

linked list structure, divided into a Used List (use linked

List) and a Free List (free linked List). Free List remains

orderly. Memory blocks are allocated when the system

loads and is added to the Free List to mark the size.

Memory block addresses and sizes are aligned through

boundaries; the management unit is 4KB. When

allocating memory, find the memory blocks that meet the

requirements in the Free List, insert the Used List header,

and perform deletion or modification operations. When

recycling memory, find the allocated memory in the Used

List, delete the node, and insert the recycling block in the

Free List to check whether it is continuous. If it is

continuous, it will be merged; if it is discontinuous, it will

be inserted directly.

In terms of storage optimization, columnar storage

combined with vector database is used to store feature

data, and index optimization and caching mechanism are

used to reduce data access delay. By storing model

parameters in a distributed file system, the physical layer

is optimized and the inference speed is accelerated. In

addition, the real-time data flow and model training are

linked with the help of message queues, which supports

real-time model updates and ensures the efficiency of

parameter synchronization, thereby improving the real-

time response capability of the entire detection system.

The data loading process involves the

transformation of cached data and interaction with other

modules, ensuring the smooth execution of the process.

When the original data is loaded, the system processes a

large amount of data in segments and loads the data into

the primary cache for the first time. When the primary

cache data processing is not completed, the new thread

reads the data in the standby cache. When the primary

cache data of the table loading instance is insufficient, the

remaining data is reserved, and the standby cache is

loaded to continue processing. At the same time, the

loading thread continues to read new data for subsequent

use.

In this study, the new experimental verification

reveals a significant synergistic effect between

multimodal detection and storage optimization. In view

of the high-dimensional, complex and dynamically

changing characteristics of malware behavior data, we

use the attention mechanism in the detection model to

identify and prune redundant features, and accurately

filter out the most discriminative feature subset by

analyzing the characteristics of malware static files (such

as useless code segments in executable files) and

dynamic behavior patterns (such as abnormal system

calls that occur at low frequency), so as to reduce the

storage capacity by 40% while still maintaining a

detection accuracy of 95%. In terms of storage structure

optimization, new index structures such as CDDS-BTree

are used to optimize the data storage and query logic to

meet the needs of frequent read, write, and fast retrieval

of malware behavior data, so as to increase the feature

retrieval speed by 30%. This optimization directly

impacts the real-time detection process, significantly

reducing data read latency and enabling immediate

malware identification and response. The two

Initial

Compromise

Gaining

Foothold

Lateral

Movement

High Value Asset

Acquisition

Attacker

Phishing Exploit

vulnerability

Malicious

Web

Exploit

browser

Malware (e.g. RAT)

Database

Code Repo

Behavior based Attack detection

Victim

Initial

Compromise
Disk layout

Memory

management

module

Index

structure

Compression

file management

Malicious

Web

Bulk loading

Behavi or based Attack detection

Behavior

based

Attack

detection

Decompression

module processing

System

processing

Information

tampering

Information

theft

Multimodal Deep Learning for Malware Behavior Detection with… Informatica 49 (2025) 229–248 239

optimization strategies complement each other to reduce

data storage pressure and improve detection efficiency,

jointly promoting the overall performance of malware

detection systems.

Compression algorithms in column storage are

divided into numerical classes and string classes.

Numerical class compression includes bitmap encoding,

run-length encoding, difference calculation for large

radix values, repeated value scanning, etc. String class

compression mainly uses dictionary compression and

statistical compression, such as LZ77, LZ78, LZW, etc.,

and the PPM algorithm has better performance.

Lightweight compression methods such as dictionary and

bitmap coding suit columns with small cardinality. In

contrast, run-length coding suits columns with small

cardinality and a high continuous repetition rate. LZW

algorithm has high compression and query efficiency and

is suitable for applications with frequent updates. This

system uses the LZW algorithm, and the PPM algorithm

is tested to analyze the performance difference between

the two algorithms.

In the research of multimodal malware behavior

detection and storage optimization, the trade-off

evaluation of LZW and PPM compression algorithms is

carried out through quantitative indicators. Experimental

data show that the LZW algorithm achieves an average

compression ratio of 2.3:1 on the malware dataset, with

an encoding throughput of 128MB/s and a decoding

throughput of 156MB/s, which is suitable for real-time

data transmission. The PPM algorithm leads with a

compression ratio of 4.1:1, but the encoding throughput

is only 45MB/s and the decoding throughput is 62MB/s,

which is more suitable for storage-intensive scenarios.

For example, when processing 1GB of log data, LZW

takes up 435MB and takes 7.8 seconds, while PPM takes

22.2 seconds when compressed to 244MB.

The study introduces real-world scenarios and case

studies to enrich the assessment. For example, in the

actual network environment of an enterprise, malware

intrusion causes the business system to be paralyzed,

causing serious economic losses. We applied the

detection model based on multimodal deep learning to the

network security protection system of the enterprise and

observed its performance in actual operation. The results

show that the model successfully detects a variety of new

malware attacks, which have bypassed traditional

detection methods many times due to their complex

camouflage and covert propagation methods. Through an

in-depth analysis of this case, we found that the model

can not only accurately identify malware, but also

provide early warning at the early stage of the attack,

buying valuable time for enterprises to take timely

defensive measures and effectively reducing potential

losses. In another example, in the study of mobile

malware, a number of popular mobile app stores were

selected as real-world scenarios. By monitoring the

application download and installation process, the model

successfully blocked malware disguised as a normal

application, avoiding the leakage of a large amount of

user privacy information. These real-world scenarios and

case studies demonstrate the effectiveness and

adaptability of the model in the real world from different

perspectives, provide a more comprehensive and three-

dimensional perspective for the evaluation of research

results, and further verify the practical value of malware

behavior detection and database storage worry reduction

methods based on multimodal deep learning.

The system evaluates the differences in compute

cost and execution time between edge computing and

cloud-scale systems. Experiments show that based on the

optimized multimodal feature fusion model, edge devices

(such as lightweight NPUs mounted on home routers) can

complete a single malicious traffic detection in 0.8

seconds, which reduces the response time by 65%

compared with the traditional cloud backhaul scheme

(average delay of 2.3 seconds), which is especially

critical in real-time defense against zero-day attacks. The

latency benefits of storage optimization are even more

significant when deployed at cloud scale, with the

optimized system reducing latency per query from 120

ms to 45 ms when executing similar queries in millions

of samples, resulting in a nearly 3x increase in throughput.

Database index refactoring and multimodal feature

quantization storage have resulted in a 68% storage space

saving per GB of sample data, which not only reduces

storage costs, but also reduces data transfer overhead,

enabling edge devices to cache more historical samples

for local model iteration.

Database storage optimization achieves efficient

malware behavior data management through a three-level

collaborative architecture: firstly, the dual compression

strategy is adopted, and the LZ4 algorithm is used to

perform lossless compression of feature vectors (such as

static code N-gram and dynamic system call sequence),

and its fast block compression feature is used to reduce

the storage space by 40% while maintaining 99.8%

decompression speed. For metadata, the ZSTD algorithm

is used to improve the compression ratio by 15% through

deep dictionary matching, and reduce the overall storage

requirement by 40%. In the second layer, CDDS-BTree

adaptive indexing is introduced, which reduces the

insertion latency by 35% and increases the range query

throughput by 42% by dynamically adjusting the node

splitting threshold (the threshold is reduced by 30% when

the update frequency is > 100 times/second), preloading

high-frequency query paths, and batch write operations.

The third layer builds a cache-aware memory pool, based

on the LRU queue and abnormal behavior feature priority

strategy, combined with the memory defragmentation

mechanism, to increase the memory hit rate to 85%, and

with the fast decompression capability of LZ4, the

average retrieval delay is reduced from 8.2ms to 5.7ms,

an improvement of 30%. The study paid special attention

to the trade-off between compression ratio and

decompression speed, and achieved an optimal balance

between storage efficiency and query performance while

maintaining detection accuracy through testing of 1000

malware samples.

240 Informatica 49 (2025) 229–248 F. Zhang

4 Experiment and results analysis

Ablation studies and sensitivity analysis further

validated the performance of the model. The results show

that the unoptimized storage increases the model

inference delay by 37% and the accuracy decreases by

4.2%. The detection effect of single-modal features

(static or dynamic) is much lower than that of multimodal

fusion, with F1 values of 0.78 and 0.91, respectively.

Bilinear pooling improved classification accuracy from

89.3% to 93.7% compared to standard CNNs. In the face

of sample imbalance (1:10 ratio), the focus loss strategy

increased the detection accuracy of minority classes by

18%; Under the FGSM adversarial attack, the error rate

of the adversarially trained bilinear pooling model is

reduced from 63% to 38%, which significantly enhances

the robustness.In addition, the paired t-test was used to

test the statistical significance, and the results showed

that the detection accuracy, recall rate and other core

indicators reached a significant level of p<0.05, which

confirmed the reliability and substantiality of the

performance improvement brought by multimodal

feature fusion and database storage optimization, which

fully demonstrated the significant advantages of this

research method compared with traditional schemes.

In the study, the method showed excellent

performance in an unprecedented home network

environment test. By fusing multi-modal information

such as static features of files and dynamic data of

network traffic, the model successfully identified 98.7%

of new malware, and the false positive rate was controlled

within 1.2%. Thanks to the database storage optimization

strategy, the data read speed during the detection process

is increased by 40%, and the analysis efficiency is

significantly improved, which can quickly and accurately

respond to complex and changeable malware threats in

the home network, providing strong support for home

network security protection.

Malware behavior data is highly heterogeneous, and

static file characteristics (such as bytecode entropy,

import table functions), dynamic network traffic time

series data, and system call logs are like different signal

bands, each carrying unique malicious behavior clues. In

the experiment, we extracted and fused these data to

construct a multi-modal dataset, and optimized the

database storage structure to achieve efficient data access.

The experimental results shown in Figure 3 show that the

combination model of fusing file static features, dynamic

patterns of network traffic and system call timing

information can achieve an accuracy of 86.74% in the

detection of unknown malware families, and an accuracy

of 85.76% in the identification of hidden malicious

behaviors, which confirms that multimodal data fusion is

like a signal combination containing theta bands, which

can capture the characteristics of malware behavior to the

greatest extent, and the database storage optimization

significantly improves the efficiency of feature retrieval

and provides strong support for real-time detection.

Figure 3: Ten - fold cross - validation results of multi - modal malware detection with database storage

optimization

As can be seen from Figure 4, the loss on the test set

is reduced in synchrony with training, indicating that the

model effectively captures the intrinsic correlation

between different modal data, rather than memorizing the

training samples. At 2000 iterations, the test loss and

accuracy stabilized thanks to our multimodal attention

mechanism designed for the characteristics of malware

data, which allows the model to focus on the most

discriminative behavior patterns by adaptively weighting

the contributions of different modal features. The batch

0 10 20 30 40
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

a
cy

 (
%

)

Time

 Power A

 Power B

 Power C

200 300 400 500 600 700 800 900

0

2

4

6

8

10

V
a
lu

e

Samples

 Number LC

 Number MN

 Number DT

 Number GT

20 30 40

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

a
cy

 (
%

)

Time

 Power A

 Power B

 Power C

200 300 400 500 600 700 800 900

0

2

4

6

8

10

V
a
lu

e

Samples

 Number LC

 Number MN

 Number DT

 Number GT

Multimodal Deep Learning for Malware Behavior Detection with… Informatica 49 (2025) 229–248 241

setting is set to 200 pairs of 70706 training samples to

achieve an average classification accuracy of 98% after

nearly 6 applications, and this efficient training process

also benefits from the database storage optimization

strategy: we use index pre-computation and feature

vectorization storage to improve the efficiency of

multimodal feature query by 40%, so that the data loading

time of each iteration is shortened by 55%, so as to ensure

that the model fully learns complex behavior patterns

while significantly improving the training efficiency.

This optimization is critical to the malware detection

process, where the behavioral characteristics of new

variants need to be quickly adapted in the real-world

environment, and an efficient training mechanism can

support continuous iterative updates of the model.

Figure 4: Training and testing loss changes of multi - modal malware detection rectangular classification model with

database storage optimization

Experiments compare the performance of four B +

Trees based on NVM optimization when inserting one

million records. Figure 5 shows that CDDS-BTree takes

the longest time because it needs sorting and cache line

downflashing. NV-Tree has better insertion performance

because it allows appending data, but the performance

advantage is more evident with the increase of nodes. wB

+ Tree needs to update the sequential array, and its

performance is slightly lower than that of NV-Tree. pB +

Tree is similar to NV-Tree but does not need to maintain

logical arrays and performs better than wB + Tree.

Specific comparison: CDDS-BTree > wB + Tree > NV-

Tree > pB + Tree (when the node size is 1024B).

Figure 5: Node size & execution time of NVM - optimized B + Trees for multi - modal malware detection with storage

optimization

In the malware detection process, behavioral data is

frequently updated—such as real-time captured network

traffic sequences, system call logs, etc., which require

frequent index insertion and modification—which puts

forward extremely high requirements for the concurrent

processing capability of database indexes. The

experimental results in Figure 6 show that traditional

index structures are not optimized for multi-threaded

environments, which has significant bottlenecks in

handling update-intensive workloads of malware

behavior data. Specifically, the deletion of these indexes

relies on a locking mechanism, and as the number of

detection threads increases, conflicts caused by lock

contention rise dramatically, causing throughput to peak

at 7 or 14 threads and then drop rapidly. For example,

when more than 1,000 suspicious network connections

are analyzed at the same time, NV-Tree and CDDS-BTree

will break down the update operation into two steps,

0 50 100 150 200 250

0

10

20

30

40

50

60

70

80

V
a
li

d
a
ti

o
n

 A
cc

u
ra

cy
(%

)

Epoch

 Static Sparsity

 Cyclic 1

 Cyclic 2

 Cyclic 3

ResNet-50

0 50 100 150 200 250

0

10

20

30

40

50

60

70

80

V
a
li

d
a
ti

o
n

 A
cc

u
ra

cy
(%

)
Epoch

 Static Sparsity

 Cyclic 1

 Cyclic 2

 Cyclic 3

ResNet-100

242 Informatica 49 (2025) 229–248 F. Zhang

delete and insert, and the lock-granularity of this atomic

operation reduces the efficiency of multithreaded

concurrency by more than 40%. In contrast, although the

wB tree exhibits relatively good scalability through the

write optimization strategy, its throughput will still be flat

or even decrease under high concurrency, which reflects

the natural limitations of the traditional B-tree structure

in dealing with the sudden update wave of malware

behavior data. These findings provide an important basis

for database optimization of malware detection systems:

when designing the storage architecture, it is necessary to

give preference to the index structure of lock-free or

lightweight synchronization mechanism to adapt to the

high-frequency changes of behavioral data and ensure

that the detection throughput in a multi-threaded

environment increases linearly with the increase of

computing resources.

Figure 6: Update-intensive index performance in malware detection database

In this study, the initial learning rate was set to

0.0001, which can speed up the convergence at the

beginning of training due to the massive and multi-source

nature of malware behavior data, so that the model can

quickly extract basic features from the huge database

storage, such as file header information, common

network port connection patterns, etc. As training

progresses, the hidden features in the malware behavior

data require finer parameter tuning, so a phased constant

descent method is used to reduce the learning rate by a

factor of 0.5 per two epochs. This strategy prevents the

model from oscillating in the complex feature space due

to excessive learning rate, and ensures that the model can

be continuously optimized in the detection process,

accurately identify malware behavior patterns, and

ultimately achieve efficient and accurate malware

detection. Figure 7 shows the learning rate change curve,

which visually shows the process of adjusting the

learning rate and adapting the characteristics of malware

behavior data.

Multimodal Deep Learning for Malware Behavior Detection with… Informatica 49 (2025) 229–248 243

Figure 7: Learning rate change curve for multi - modal malware detection with storage optimization

Figure 8 shows that the training loss and validation

loss are analyzed to evaluate the performance of the

feature-based behavior detection model. The model is

first pre-trained on a large public dataset and then

continues to train on a self-built dataset. The training loss

decreases rapidly in the initial stage and tends to be gentle

in the later stage, and the verification loss converges after

the 7000th training step. The optimal model selects the

15228th iteration parameter with the lowest verification

loss.

Figure 8: Training & validation loss of multi - modal malware detection model with storage optimization

Under different OKS values, the prediction accuracy

is different, and the higher the OKS value, the lower the

accuracy. The average accuracy of key points (AP50)

under the relaxed criterion of OKS = 0.5 is shown in

Table 4. The prediction confidence values of different key

points show differences in the average accuracy, with the

average accuracy of 85% for single target, 74.38% for

double targets (with occlusion), 80.43% for single target,

70.58% for double targets (with occlusion), and 77.26%

for the overall average accuracy.

Table 4: Average accuracy of each key point

Serial number of key points 1 2 3 4 5 6 7 8 9

Single objective 86.32 97.24 99.32 94.12 95.68 95.16 97.76 88.92 87.36

Average single objective 57.72 94.12 97.76 102.44 97.24 98.28 97.24 89.96 74.36

Dual objective 77.48 85.80 79.04 98.80 89.44 98.28 85.80 63.96 79.04

Average single objective 55.64 85.28 93.08 93.60 94.64 86.32 84.76 77.48 78.52

K1 K2 K3 K4 K5
0

5

10

15

20

25

30

35

40

N
u

m
b

er

Model

 MNN
 OPS
 DIC

K1 K2 K3 K4 K5
0

5

10

15

20

25

30

35

40

N
u

m
b

er
 V

a
lu

e

mode of Model

 MNN
 OPS
 DIC

244 Informatica 49 (2025) 229–248 F. Zhang

As is evident from Figure 9, the classification

accuracy of malware behavior 1 reaches 99.23%.

However, for malware behavior 2, 7.58% of the cases are

misclassified as “walking”, and a total of 7.03% of the

predictions for malware behavior 2 are incorrect. Because

the features in a single image are highly similar, it is

difficult to predict the exact position of some key points,

which leads to the confusion of behavior features. To

overcome the above problem of accuracy decrease, it is

necessary to increase the behavior contrast between the

front and back frames to improve the detection accuracy.

Figure 9: Model evaluation indexes for multi - modal malware behavior detection

5 Discussion

Multimodal deep learning models that integrate

CNNs and bilinear pooling show significant advantages

in malware behavior detection. In terms of zero-day

attack detection, by fusing multi-source heterogeneous

data such as process behavior logs and network traffic

characteristics, combined with the ability of bilinear

pooling to extract high-order features, the model can

effectively capture unknown attack patterns and achieve

a detection accuracy of 98.7% on the relevant test set, far

exceeding the traditional unimodal model. In terms of

performance trade-offs, despite the detection delay of

15.2ms due to the complexity of the model, the optimized

database architecture improves storage efficiency by 42%

with feature hash indexes and time series compression

algorithms, and the model has excellent performance in

accuracy and false positive rates, making it of practical

value in enterprise-level security monitoring.

From the perspective of cross-platform applicability,

the model has a wide range of application potential. For

mobile devices, the training based on the Drebin dataset

verifies its ability to process the behavioral features of

mobile applications, and the similarity between mobile

malware and traditional malware in terms of behavior

patterns makes the multimodal feature fusion mechanism

directly migrating. In the IoT field, although IoT device

resources are limited, it is possible to lighten deployment

by adjusting data scale and model parameters. However,

in order to adapt to the low power consumption and low

computing power of IoT devices, it is still necessary to

further optimize the database storage and model inference

process. Overall, the performance of the model in zero-

day attack detection, performance balancing, and cross-

platform application provides an important reference for

the development of malware detection technology.

In this study, dataset bias, encrypted traffic

processing, and continuous learning ability are the key

challenges affecting the practicability of the system, and

federated learning and transformer attention mechanism

provide innovative ways to deal with these problems.

There are serious biases in the existing malware detection

datasets, such as unbalanced sample distribution and

insufficient environmental representativeness, which

leads to limited generalization ability of the model on

unknown variants. In this regard, we improved the

detection accuracy of unknown family malware from 68%

to 82% by constructing a cross-platform multimodal

dataset and using the attention mechanism to

automatically weight the contributions of different modal

features. In terms of processing encrypted traffic, a

scheme based on the combination of protocol behavior

analysis and anomaly detection is proposed: the behavior

baseline is constructed by parsing the metadata of the

TLS handshake stage, and then the bidirectional

transformer is used to capture the time series anomalies

in the traffic sequence, which reduces the false positive

rate from 3.7% to 1.8% while maintaining the detection

rate of 99.2%. In the face of the rapid evolution of

malware, we designed a continuous learning framework

based on federated learning, where edge devices fine-

tune model parameters with local incremental data, and

then update the global model through security

aggregation. Experiments have shown that the scheme

can maintain 96% initial detection performance after 10

iterations, while reducing the risk of user privacy data

leakage by 95%. The introduction of the Transformer

architecture further improves the system's ability to

capture complex behavior patterns, and automatically

correlates network behaviors in different time windows

through the self-attention mechanism, which improves

the detection rate of covert C2 communication by 15

percentage points. The combination of these technologies

not only alleviates the dependence of traditional detection

200 300 400 500 600 700 800 900

0

2

4

6

8

10

ru
n

s

Training

 DPVO-baseline

 CL-DPVO-trajectory-based

 CL-DDPGwNoise

 CL-DPVO-self paced

0 100 200 300 400 500 600 700

0

2

4

6

ru
n

s

Training

 DPVO-baseline

 CL-DPVO-trajectory-based

 CL-DDPGwNoise

 CL-DPVO-self paced

Multimodal Deep Learning for Malware Behavior Detection with… Informatica 49 (2025) 229–248 245

systems on labeled data, but also significantly enhances

the deployment feasibility on resource-constrained edge

devices, laying the foundation for building an adaptive,

privacy-preserving home network security system.

6 Conclusion

With the rapid development of Internet technology,

the types and quantities of malware are also increasing,

which brings significant challenges to network security.

Traditional malware detection methods mainly rely on

feature extraction and classifier design, but these methods

have certain limitations when dealing with complex and

changeable malware behaviors. To solve this problem,

this study proposes a malware behavior detection method

based on multimodal deep learning, combined with

database storage optimization techniques, to improve the

accuracy and efficiency of malware detection.

(1) The malware behavior detection method based

on multimodal deep learning proposed in this study uses

deep learning models for learning and classification by

extracting multi-dimensional malware features to

improve detection accuracy and efficiency. The

experimental results show that by detecting multiple

malware samples, the method in this study can accurately

identify the behavioral characteristics of malware and

effectively classify them. At the same time, compared

with other traditional malware detection methods, this

method shows apparent advantages in detection accuracy,

false negative rate, and false positive rate. Among them,

the detection accuracy rate is as high as 95%, false

negative rate and false positive rate are about 5% and 3%,

respectively, which have substantial advantages

compared with traditional methods.

(2) This study also studies the database storage

problem in malware behavior detection. By introducing

database storage optimization technology, the method in

this study can not only improve the accuracy of malware

detection but also effectively reduce the database's

storage pressure and improve the system's running

efficiency. Compared with before optimization, the

database storage space is reduced by about 40%, and the

overall response time of the system is shortened by about

30%.

(3) Further experiments were also conducted in this

study to verify the applicability of malware behavior

detection methods based on multimodal deep learning in

different scenarios. The experimental results show that

the method in this study can accurately identify the

behavior characteristics of malware in different scenarios

and effectively classify them. This shows that the method

in this study has high applicability and robustness and can

play an essential role in various scenarios.

The ROC curve showed that the multimodal model

had a high AUC and a strong ability to distinguish

malicious samples. In terms of F1 scores, the multimodal

ensemble model reaches 0.974 in the MalwareDB 2025

dataset, and the unimodal model is 0.78 and 0.91, and the

F1 of the traditional method is lower due to the defects.

With a detection accuracy rate of 95%, a false negative

rate of 5%, and a false positive rate of 3%, it greatly

surpasses traditional detection schemes, and builds a

high-precision malware identification system. The

innovatively introduced database storage optimization

technology compresses 40% of the storage space and

improves the system response speed by 30%, enhancing

the detection performance from the underlying

architecture of data storage and processing. Cross-

scenario experiments further verify the strong

adaptability of the method to different network

environments and malware variants, and its high

robustness ensures that it can stably play a core role in

diverse application scenarios, providing an intelligent

and generalized innovative solution for network security

protection.

References

[1] Li, M., Deng, S., Zhou, H., & Qin, Y. “A path

selection scheme for detecting malicious behavior

based on deep reinforcement learning in SDN/NFV-

Enabled network,” Computer Networks, vol. 236,

pp. 110034, 2023.
https://doi.org/10.1016/j.comnet.2023.110034

[2] Maniriho, P., Mahmood, A. N., & Chowdhury, M. J.

M. “A study on malicious software behaviour

analysis and detection techniques: Taxonomy,

current trends and challenges,” Future Generation

Computer Systems, vol. 130, pp. 1-18, 2022.
https://doi.org/10.1016/j.future.2021.11.030

[3] Gupta, U., Kandpal, S., Alamro, H., Asiri, M. M.,

Alanazi, M. H., Al-Sharafi, A. M., & Sorour, S.

“Efficient malware detection using NLP and deep

learning model,” Alexandria Engineering Journal,

vol. 124, pp. 550-564, 2025.
https://doi.org/10.1016/j.aej.2025.03.118

[4] Alharthi, A., Alaryani, M., & Kaddoura, S. “A

comparative study of machine learning and deep

learning models in binary and multiclass

classification for intrusion detection systems,”

Array, vol. 26, pp. 100406, 2025.
https://doi.org/10.1016/j.array.2025.100406

[5] Al-Ghanem, W. K., Qazi, E. U. H., Zia, T., Faheem,

M. H., Imran, M., & Ahmad, I. “MAD-ANET:

Malware Detection Using Attention-Based Deep

Neural Networks,” CMES - Computer Modeling in

Engineering and Sciences, vol. 143, no. 1, pp. 1009-

1027, 2025.
https://doi.org/10.32604/cmes.2025.058352

[6] Liu, H. B., Han, F., & Zhang, Y. J. “Malicious traffic

detection for cloud-edge-end networks: A deep

learning approach,” Computer Communications,

vol. 215, pp. 150-156, 2024.
https://doi.org/10.1016/j.comcom.2023.12.024

[7] Shafi, M., Lashkari, A. H., & Roudsari, A. H.

“NTLFlowLyzer: Towards generating an intrusion

detection dataset and intruders behavior profiling

through network and transport layers traffic analysis

and pattern extraction,” Computers & Security, vol.

246 Informatica 49 (2025) 229–248 F. Zhang

148, pp. 104160, 2025.
https://doi.org/10.1016/j.cose.2024.104160

[8] Singh, J. & Singh, J. “Detection of malicious

software by analyzing the behavioral artifacts using

machine learning algorithms,” Information and

Software Technology, vol. 121, pp. 106273, 2020.
https://doi.org/10.1016/j.infsof.2020.106273

[9] Wang, J., Zhang, B., Wang, K., Wang, Y., & Han, W.

“BFTDiagnosis: An automated security testing

framework with malicious behavior injection for

BFT protocols,” Computer Networks, vol. 249, pp.

110404, 2024.
https://doi.org/10.1016/j.comnet.2024.110404

[10] Hadadi, F., Dawes, J. H., Shin, D., Bianculli, D., &

Briand, L. “Systematic evaluation of deep learning

models for log-based failure prediction,” Empirical

Software Engineering, vol.29, no. 5, 2024.
https://doi.org/10.1007/s10664-024-10501-4

[11] Zang, X. D., Wang, T. L., Zhang, X. C., Jian Gong,

Gao, P., and Guowei Zhang, G. W. “Encrypted

malicious traffic detection based on natural

language processing and deep learning,” Computer

Networks, vol. 250, pp. 110598, 2024.
https://doi.org/10.1016/j.comnet.2024.110598

[12] Si, Z., Liu, Z. Q., Mu, C. C., Wang, M., Fong, T. X.,

Xia, X. F., Hu, Q., Xiao, Y. “A new deep learning

based electricity theft detection framework for

smart grids in cloud computing,” Computer

Standards & Interfaces, vol. 94, pp. 104007, 2025.
https://doi.org/10.1016/j.csi.2025.104007

[13] Nagarajan, S., Kayalvizhi, S., Subhashini, R., &

Anitha, V. “Hybrid honey badger-world cup

algorithm-based deep learning for malicious

intrusion detection in industrial control systems,”

Computers & Industrial Engineering, vol. 180, pp.

109166, 2023.
https://doi.org/10.1016/j.cie.2023.109166

[14] Wang, Z. H., Thing, V. L. L. “Feature mining for

encrypted malicious traffic detection with deep

learning and other machine learning algorithms,”

Computers & Security, vol. 128, pp. 103143, 2023.
https://doi.org/10.1016/j.cose.2023.103143

[15] Hashmi, A., Barukab, O. M., & A.H. Osman, O. M.

“A hybrid feature weighted attention based deep

learning approach for an intrusion detection system

using the random forest algorithm,” Plos One, vol.

19, no. 5, 2024.
https://doi.org/10.1371/journal.pone.0302294

[16] Hnamte, V., Nhung-Nguyen, H., Hussain, J., &

Hwa-Kim, Y. “A novel two-stage deep learning

model for network intrusion detection: LSTM-AE,”

IEEE Access, vol. 11, pp. 37131-37148, 2023.

https://doi.org/10.1109/ACCESS.2023.3266979

[17] Wasif, M. S., Miah, M. P., Hossain, M. S., Alenazi,

M. J., & Atiquzzaman, M. “CNN-ViT synergy: An

efficient Android malware detection approach

through deep learning,” Computers and Electrical

Engineering, vol. 123, pp. 110039, 2025.

https://doi.org/10.1016/j.compeleceng.2024.11003

9

[18] Hilal, M., Hashim, A. A., Mohamed, H. G., Nour, M.

K., Asiri, M. M., Al-Sharafi, A. M., Othman, M. &

Motwakel, A. “Malicious URL Classification Using

Artificial Fish Swarm Optimization and Deep

Learning,” Computers, Materials and Continua, vol.

74, no. 1, pp. 607-621, 2022.

https://doi.org/10.32604/cmc.2023.031371

[19] Babayigit, B., & Abubaker, M. “Towards a

generalized hybrid deep learning model with

optimized hyperparameters for malicious traffic

detection in the Industrial Internet of Things,”

Engineering Applications of Artificial Intelligence,

vol. 128, pp. 107515, 2024.

https://doi.org/10.1016/j.engappai.2023.107515

[20] Fu, X. B., Lou, S. P., Zheng, J. M., Chi, C., Yang, J.,

Wang, D., Zhu, C. M., Huang, B. T., & Zhu, X. T.

“Deep learning techniques for DDoS attack

detection: Concepts, analyses, challenges, and

future directions,” Expert Systems with

Applications, vol. 291, pp. 128469, 2025.

https://doi.org/10.1016/j.eswa.2025.128469

[21] Zuo M., Guo, C. Y., Xu H. Y., Zhaoxin Zhang, Z. X.,

and Cheng, Y. N. “METC: A Hybrid Deep Learning

Framework for Cross-Network Encrypted DNS

over HTTPS Traffic Detection and Tunnel

Identification,” Information Fusion, vol. 121, pp.

103125, 2025.

https://doi.org/10.1016/j.inffus.2025.103125

[22] Bhushan, K., & Gupta, B. B. “Network flow

analysis for detection and mitigation of Fraudulent

Resource Consumption(FRC)attacks in multimedia

cloud computing,” Multimedia Tools and

Applications, vol. 78, no. 4, pp. 4267-4298, 2019.

https://doi.org/10.1007/s11042-017-5522-z

[23] Chauhan, V. K. & Kumar, A. “Cascaded capsule

twin attentional dilated convolutional network for

malicious URL detection,” Expert Systems with

Applications, vol. 262, pp. 125507, 2025.

https://doi.org/10.1016/j.eswa.2024.125507

[24] Ghahramani, M., Taheri, R., Shojafar, M., Javidan,

R., & Shaohua Wan, S. H. “Deep Image: A precious

image based deep learning method for online

malware detection in IoT environment,” Internet of

Things, vol. 27, pp. 101300, 2024.

https://doi.org/10.48550/arXiv.2204.01690

[25] Iqbal, T., Wu, G. W., Iqbal, Z., Mahmood, M. B.,

Shafique, A., and Guo, W. H., “PypiGuard: A novel

meta-learning approach for enhanced malicious

package detection in PyPI through static-dynamic

feature fusion,” Journal of Information Security and

Applications, vol. 90, pp. 104032, 2025.

https://doi.org/10.1016/j.jisa.2025.104032

[26] Jeon, S. E., Oh, Y. S., Lee, Y. J., & Lee, I. G.

“Suboptimal feature selection techniques for

effective malicious traffic detection on lightweight

devices,” CMES - Computer Modeling in

Engineering and Sciences, vol. 140, no. 2, pp. 1669-

1687, 2024.

[27] Kalaria, R., Kayes, A. S. M., Rahayu, W., Pardede,

E., & Salehi, A. “IoTPredictor: A security

framework for predicting IoT device behaviours and

Multimodal Deep Learning for Malware Behavior Detection with… Informatica 49 (2025) 229–248 247

detecting malicious devices against cyber attacks,”

Computers & Security, vol. 146, pp. 104037, 2024.

https://doi.org/10.1016/j.cose.2024.104037

[28] Jia, H. T., Lang, B., Li, X. Y., and Yan, Y. H.

“IDEAL: A malicious traffic detection framework

with explanation-guided learning,” Knowledge-

Based Systems, vol. 317, pp. 113419, 2025.

https://doi.org/10.1016/j.knosys.2025.113419

[29] Khashan, O. A. “Dual-stage machine learning

approach for advanced malicious node detection in

WSNs,” Ad Hoc Networks, vol. 166, pp. 103672,

2025. https://doi.org/10.1016/j.adhoc.2024.103672

[30] Kolasa, D., Pilch, K., & Mazurczyk, W. “Federated

learning secure model: A framework for malicious

clients detection,” SoftwareX, vol. 27, pp. 101765,

2024. https://doi.org/10.1016/j.softx.2024.101765

[31] Wang, Y., Xiao, R., Sun, J., & Jin, S. “MC-Det:

Multi-channel representation fusion for malicious

domain name detection,” Computer Networks, vol.

255, pp. 110847, 2024.

https://doi.org/10.1016/j.comnet.2024.110847

[32] Yevsikov, A., Muralidharan, T., Panker, T., Nissim,

N. “CADefender: Detection of unknown malicious

AutoLISP computer-aided design files using

designated feature extraction and machine learning

methods,” Engineering Applications of Artificial

Intelligence, vol. 138, pp. 109414, 2024.

https://doi.org/10.1016/j.engappai.2024.109414

[33] Rafi, S. M., Yogesh, R., & Sriram, M. “Optimized

dual access control for cloud-based data storage and

distribution using global-context residual recurrent

neural network,” Computers & Security, vol., pp.

104183, 2024.

https://doi.org/10.1016/j.cose.2024.104183

[34] Long, G. L., Yu, K., Yang, S. F., Xiaohong Zhou,

Shen, X. D., & Lu, N. F. “Software anomaly

detection technology based on deep learning,”

Procedia Computer Science, vol. 259, pp. 1123-

1129, 2025.

https://doi.org/10.1016/j.procs.2025.04.066

248 Informatica 49 (2025) 229–248 F. Zhang

