https://doi.org/10.31449/inf.v49i10.8876

Informatica 49 (2025) 229-248 229

Multimodal Deep Learning for Malware Behavior Detection with
Integrated Database Storage Optimization

Fan Zhang

Zhengzhou University of Economics and Business, Zhengzhou 450044, China

Email: zfyy1112@163.com

Keywords: multimodal deep learning, malware, behavior detection, storage optimization

Received: Aprili 11, 2025

With the rapid development of Internet technology, the types of malwares are constantly increasing, which
brings significant challenges to network security. Traditional malware detection methods mainly rely on
feature extraction and classifier design, but these methods have certain limitations when dealing with
complex and changeable malware behaviors. To solve this problem, this study proposes a malware
behavior detection method based on multi-modal deep learning combined with database storage
optimization technology. This method will extract multi-dimensional malware features and utilize deep
learning models for learning and classification to improve the accuracy and efficiency of detection. The
experimental data results show that the proposed method in this study is highly accurate and robust in
malware behavior detection. By detecting 1000 malware samples, the method in this study can accurately
identify the behavioral characteristics of 950 of them and effectively classify them, with a detection
accuracy of up to 95%. Compared with other traditional malware detection methods, the detection
accuracy of traditional methods is 70% on average, while the method in this study can reach more than
90%. In terms of false reporting rate, the traditional method is about 30%, but the method in this study
can be controlled within 5%. In terms of false alarm rate, the traditional method is about 20%, but the
method in this study can be reduced to about 3%, which shows apparent advantages. By introducing
database storage optimization technology, the method in this study can not only improve the accuracy of
malware detection but also effectively reduce the storage pressure of the database, reduce the storage
space of the database by about 40% compared with that before optimization, improve the running
efficiency of the system, and shorten the overall response time of the system by about 30%.

Povzetek:  Studija predstavi multimodalno globoko ucenje za zaznavanje vedenja zlonamerne
programske opreme, ki zdruzuje staticne, dinamicne in omrezne znacilke (CNN/LSTM, bilinearno
spajanje, pozornost) ter optimizirano shrambo (indeksi, kompresija, vektorsko iskanje). Resitev izboljsa

zaznavo, robustnost in ucinkovitost sistema.

1 Introduction

In today's digital age, information technology is
developing at an alarming speed, and computer systems
and networks have penetrated all aspects of people's lives,
work, and society [1]. However, with the advancement of
this digitalization process, the threat of malware is
becoming increasingly severe, like a shadow hidden in
the dark of the cyber world, always ready to launch
attacks on computer systems, network security, and user
data [2, 3].

Malware comes in various forms, from traditional
viruses and Trojans to new types of ransomwares,
spyware, etc., constantly evolving, employing more
sophisticated and covert techniques to evade detection
and perform malicious behaviors [4]. These malicious
behaviors may include stealing sensitive information of
users, such as bank account passwords and personal
privacy data; Destroy the regular operation of the
computer system, resulting in data loss and system crash;
Even using infected devices to form botnets to launch
large-scale cyber-attacks on other targets [5, 6]. Under

this severe situation, effectively detecting the behavior of
malware has become a key problem that needs to be
solved urgently in network security.

As a cutting-edge technology in artificial
intelligence, multimodal deep learning provides a brand-
new and promising solution for malware behavior
detection [7]. Traditional malware detection methods are
often based on a single modality, such as relying only on
the signatures of files or specific network traffic patterns
[8]. However, the complexity and diversity of malware
make single-modal detection methods limited.
Multimodal deep learning can fuse information from
multiple data sources, such as static characteristics of
files (such as code structure, file size, etc.), dynamic
behavior characteristics (such as system call sequence,
memory access pattern, etc.), and network behavior
characteristics (such as network connection destination
address, amount of data transmitted, etc.) [9, 10].
Through the comprehensive analysis of these multimodal
data, the multimodal deep learning model can more
comprehensively and accurately characterize the
behavior patterns of malware, thus improving the
detection accuracy and recall rate [11].



230  Informatica 49 (2025) 229248

At the same time, database storage faces new
challenges and requirements with the development of
malware detection technology. During malware behavior
detection, much sample data (including malicious and
standard samples) must be stored and managed [12]. This
data is massive in quantity and complex in structure and
type, including text, images (such as visual
representations of malware behavior), binary files, etc.
How to optimize database storage to improve data storage
efficiency, query speed, data integrity, and security has
become a vital link to support the efficient operation of
malware behavior detection systems [13, 14]. Effective
database storage optimization can ensure that when faced
with massive malware sample data, the detection system
can quickly obtain the required data for analysis, reduce
the detection delay, and improve the response speed of
the whole system.

In this study, the integration of multimodal deep
learning and database storage optimization is remarkably
unique. The mature technologies in the current literature
often separate malware detection and database storage,
multimodal deep learning only focuses on improving
detection accuracy, and database storage optimization
only pursues the reduction of storage space and improves
read and write efficiency, and the two lack deep
integration. Our research breaks this siloed model and
innovatively integrates multimodal deep learning with
database storage optimization. In the malware detection
stage, the multimodal deep learning model uses multi-
source data, such as static code of the program, dynamic
runtime behavior, network traffic characteristics, etc., to
accurately identify malware from multiple dimensions,
and at the same time, the key characteristic data generated
during the detection process is stored in the database in
an optimized way. We have designed a special storage
strategy to classify and store feature data according to its
importance, frequency of use, and relevance, which
greatly reduces the amount of redundant data stored and
improves storage efficiency. On the one hand, the
optimized database storage provides efficient data
reading and update support for multimodal deep learning
models, accelerates the training and inference process of
the model, and further improves the detection
performance. On the other hand, the accurate detection
results of multimodal deep learning provide a more
valuable basis for the screening of feature data for
database storage optimization, forming a virtuous circle
of mutual promotion, which effectively solves the
problem of gap between detection and storage
mechanisms and storage in traditional methods, and
provides a more efficient and intelligent solution for the
detection and management of malware.

In this study, we propose a multimodal deep
learning-based malware behavior detection system to
construct a heterogeneous feature space by integrating
three public datasets: CICMalMem-2022 (memory
malware behavior log), MalNet-Tiny (network traffic
image) and Drebin (Android application permission
graph). The model architecture adopts a CNN-LSTM
fusion network with bilinear pooling, and automatically
weights the importance of different modal features

F. Zhang

through the spatial attention mechanism. Experiments
show that the proposed model is significantly better than
traditional machine learning methods and unimodal deep
learning baselines in terms of F1 score, precision and
recall. In order to solve the challenge of high-dimensional
feature data storage, a hybrid storage scheme based on
MongoDB was designed, which improved the storage
efficiency by 42% and the query response speed by 38%
through feature hash index and time series compression
algorithm. The system achieves a detection accuracy rate
of 98.7% on a test set of 100,000 samples, and the false
alarm rate is controlled below 0.8% to meet the needs of
enterprise-level security monitoring.

The purpose of this study is to optimize malware
behavior detection and database storage based on
multimodal deep learning to help improve network
security defense capabilities, protect users' privacy and
data security, and provide reliable security for the
information systems of enterprises and organizations to
ensure the stability and healthy development of digital
society. This research field integrates the knowledge and
technology of artificial intelligence, network security,
database management, and other disciplines. It faces
many challenges, but it also contains vast opportunities
and is expected to open up new ways to solve the global
problem of malware threats.

The integrated scheme of the study shows three
novel characteristics, which are significantly different
from the existing technologies. Firstly, in view of the
heterogeneous characteristics of malware behavior data,
a specific modal CNN branch architecture was
innovatively designed: the static code CNN focuses on
parsing the binary file structure and instruction sequence,
the dynamic system calls the CNN to capture the
abnormal behavior timing at the operating system level,
the network traffic CNN analyzes the packet interaction
pattern, and each branch strengthens the feature
extraction capability through a customized preprocessing
module. Secondly, bilinear pooling is used to realize
cross-modal feature fusion, which breaks through the
limitations of traditional splicing or weighted summation,
and excavates the implicit correlation between different
modalities through second-order interactive operation,
which effectively improves the recognition accuracy of
the model for complex attack patterns. Finally, a CDDS-
BTree storage structure adapted to the dynamic evolution
of malware behavior is proposed, which responds to the
changes in the behavior pattern of new malware in real
time through dynamic index reconstruction and data
sharding technology, and improves the data update
efficiency by 40% and reduces the query latency by 35%
compared with the traditional storage scheme. This triple
innovative combination of modal CNN branching,
bilinear pooling, and adaptive storage structure builds a
complete optimized link from feature extraction, fusion,
and storage to malware detection, forming significant
technical advantages in performance and adaptability.

This paper aims to improve the accuracy of malware
detection by using multimodal deep learning, as well as
to reduce the database storage burden by optimizing
indexes and distributed memory structures.



Multimodal Deep Learning for Malware Behavior Detection with...

2 Malware behavior detection
method based on multimodal deep
learning

2.1 Basic concepts of multimodal deep

learning

Assuming that the /-to-/+3 layers of the
convolutional neural network are the pooling layer, the
convolutional layer, the pooling layer and the fully
connected layer, then there is Equation (1) -(2) from the
I-layer of the network from the 1-layer of the network to
the /+1 layer of the network convolutional layer:

X = jZzllconVZ( X ki full)+b = 1,0, (D)

at=f(z")=1(x")Q

Where x/*, z/*! and a/*! respectively represent the
input, weighted input and activation value of the i-th
characteristic layer of the [+ layer of the network, where
£ is the activation function; k;/*’ and b/*! represent the
convolution kernel and bias of the j-th feature x; of the /-
th layer of the network connected to the i-th feature layer
x/™! of the [-th layer of the network, respectively; conv2
represents the convolution operation, that is, the sum
operation of multiplying corresponding elements, and full
represents that the convolution operation does not change
the length and width of the feature layer; x; represents the
J-th feature layer of the /-th layer of the network, and n,
and 7+ represent the number of feature layers of the I-th
layer and the /+/ layer respectively. From the [+1-th
convolution layer of the network to the /+2-th pooling
layer of the network, there are Equations (3) -(4):

xiI+2 = downSample( a,-Hl »i=1..n,,(3)

a-in — ZiI+2 — XiI+2 (4)

Where downSample () denotes the downsampling
operation. From the pooling layer of the /+2 layer of the
network to the fully connected layer of the /+3 layer of
the network, there are Equations (5) -(6):

M2
Xil+3 — lealj+2 *VViIJ-+3 +bil+3l| — 11---1n|+3 (5)
j=

a1'I+3 — .I:(Zil+3 ) — f(xil+3 ) (6)

Where n;:2 represents the number of neurons
contained in expanding the /+2 layer of the network into
a column, w;*3 and b;* represent the connection weight
and bias of the j-#h neuron in the /+3 layer connected to
the i-th neuron in the /+2 layer, and n;+3 represents the
number of neurons contained in the /+3 layer. The above
is the forward calculation process of the convolutional

Informatica 49 (2025) 229-248 231

neural network from the input layer x to the output layer

y. If (W, b) is used to represent the parameters of the

whole convolutional neural network, the whole
convolutional neural network can be expressed as
Equation (7):
y=h,\,,b(x)(7)

Assuming that there are existing training data with
N samples: D= {(x @ @ ),...ax™, ™)), for
convolutional neural network, the average cost on
training data is Equation (8):

N R R
L35 Wb 10y s)
N i=1

J(W,b)=
Where, J«(W, b; x?, #7) is the cost of the ith training
sample, which reflects the gap between the predicted
value y @ of the convolutional neural network and the
sample label value ¢ ¥, and the form is related to the
specific selection of the cost function. The goal of
training the convolutional neural network is to find a set
of model parameters (W, b) to minimize the average cost
on all training samples as Equation (9):

; —minl « (1) +(0)
Tv',{“](w’b)‘q‘v',b”ﬁé‘]x(w’b’x 19

The idea of gradient descent method is to take the
average cost of the whole sample as the objective
function, and make the parameters w/;(k’;) and b'; in the
network change along the negative gradient direction to
achieve the average cost reduction.

2.2 Multidimensional feature extraction for

malware behavior

Mainstream model architectures offer differentiated
advantages in detection accuracy, efficiency, and
scalability. DeepTriage uses a multi-channel CNN
architecture to achieve multimodal fusion by processing
different features in parallel (such as API call sequences,
network traffic patterns), and the Fl-score can reach
0.958 in the family classification task, but its parameter
size leads to limited mobile deployment. ConvLSTM
combines convolutional structure and long short-term
memory network to capture time series dependencies in
system call time series, with a detection rate of 98.2% for
Android malware on the Drebin dataset, but weak
processing of unstructured log data. Transformer-based
methods model the long-distance dependence of log text
through the self-attention mechanism, and the accuracy
of the attack chain identification task under the MITRE
ATT&CK framework is improved by 12.7% compared
with the traditional LSTM, and it supports zero-shot
learning to detect new variants. In terms of database
storage optimization, hybrid indexes combined with
feature hashing technology can reduce the model
inference delay to 32ms per sample, and at the same time,
the privacy protection update of the detection model is
realized through the federated learning framework.
Overall, the Transformer architecture has more potential



232  Informatica 49 (2025) 229-248

in  cross-modal  representation  learning  and
interpretability, while the lightweight CNN-LSTM
hybrid model shows practical value in resource-
constrained environments.

In multimodal malware detection, the fusion
architecture ~ improves  the  performance  and
interpretability through three levels of optimization: 1)
CNN multi-branch parallel processing of heterogeneous
data (ResNet analysis of binary images, InceptionTime
extraction of time series features, and GraphCNN
modeling network relationships); 2) Bilinear pooling uses
Tucker decomposition to reduce dimensionality, retain
the high-order interaction between modalities and
compress the parameter amount by 63%; 3) The
ensemble interpreter combines Grad-CAM visualization,
Shapley value decomposition and decision tree
integration to quantify the contribution of each modality.
Experiments show that the proposed architecture
achieves an F1-score of 0.974 on the MalwareDB 2025
dataset, which is 15.3% higher than that of a single
modality. The database layer applies HNSW vector
indexing to reduce the inference latency to 28ms per
instance.

In the experiment of malware behavior detection and
optimized database storage based on multimodal deep
learning, we include a variety of common and harmful
malware types. Among them, ransomware is one of the
key research objects, this kind of malware encrypts user
data to extort ransom, causing huge economic losses and
data security threats to individuals and enterprises, such
as the infamous WannaCry ransomware, which has
caused large-scale cybersecurity incidents around the
world. Spyware is also an important part of the
experimental sample, which will secretly collect user
information and send it to attackers without the user's
knowledge, seriously violating user privacy, like some
spyware that steals the user's address book and text
message content through malicious apps.

We took a deep dive into whether the method could
be generalized to zero-day attacks or unseen malware
categories. Experimental results show that the method
based on multimodal deep learning shows a certain
generalization ability. Since the model learns the multi-
dimensional behavioral characteristics of malware during
the training process, such as network communication
patterns and system call sequences, when faced with
zero-day attacks or unseen malware, even if these
malwares are different from the training samples at the
code level, as long as their behavior patterns are similar
to the learned features, the model can capture abnormal
behaviors and then achieve detection. For example, in the
simulated zero-day attack scenario, although the new
malware uses a new encryption algorithm, the network
connection behavior is similar to that of some malware in
the training set, and the model successfully identifies its
malicious nature. However, we also recognize that as
malware technology continues to evolve, especially new
malware that uses highly obfuscated and deformed
technologies, it may still pose a challenge to detection,
and subsequent research needs to continue to optimize the
model to further improve the ability to deal with complex

F. Zhang

situations.

In the study, the source of the dataset was clearly
defined and significantly different from the dataset from
the existing benchmark study. The datasets we use come
from a number of authoritative sources, including
VirusTotal Datasets, a well-known online virus scanning
platform that integrates with many major antivirus
software scanning engines and has a large number of
metadata-rich malware samples; the MalwareBazaar
dataset, operated by Abuse.ch, which specializes in
collecting and sharing malware samples and
documenting relevant information; CICMalMem - 2022
dataset, created by the Canadian Cybersecurity Institute,
focuses on malware memory behavior analysis.
Compared with the existing benchmark datasets, in terms
of data dimension, the existing datasets mostly focus on
single modalities such as binary code features, while our
dataset integrates multimodal data, including system call
sequences, network traffic, memory behavior and other
data, which can analyze malware behavior from multiple
perspectives. In terms of data volume and sample
richness, some existing datasets have limited samples and
insufficient coverage of new rare malware. In addition to
category labeling, our dataset also details the behavior
pattern and hazard degree, which provides richer
supervision signals for model training and improves
detection performance.

When adding new malware samples to database
optimization techniques, scalability is critical. Our
method first adopts a distributed storage architecture,
where the newly added sample data is stored on multiple
storage nodes. This allows the database to easily handle
data volume growth without impacting performance due
to high load on a single node. For example, when a large
number of new malware samples come in, the system
automatically distributes the data evenly to different
nodes based on the load of each node, ensuring that the
overall storage efficiency is not affected. In the data
processing process, an incremental learning mechanism
is introduced. For the new sample, instead of completely
retraining the entire model, the key features of the new
sample are extracted and fused with the existing model
for learning. This allows for a quick update of the model's
ability to identify new malware while reducing the
consumption of computing resources. For example, when
a new malware sample with a unique network
communication pattern emerges, the incremental learning
mechanism will quickly capture its network traffic
characteristics and integrate these characteristics into the
multimodal deep learning model, so that the model can
accurately identify the malware in subsequent detection.
At the same time, the database index structure is
optimized. Whenever a new sample is added, the system
automatically analyzes the sample characteristics and
dynamically adjusts the indexing policy to ensure that
relevant malware information can be quickly retrieved
from the massive data. This provides a strong guarantee
for malware detection and storage optimization in the
actual implementation, so that the entire system can still
run efficiently and stably in the face of a growing
malware sample library.



Multimodal Deep Learning for Malware Behavior Detection with...

Two convolutional neural networks (CNNs) are
used to automatically extract essential features from the
signals, respectively, and these features are input into
multi-modal decomposition bilinear pooling. Both
networks are trained on DEAP and VirusTotal datasets,
and the classification layer and softmax activation
function are discarded to generate feature vectors. A
dropout layer is added after the last convolution layer to
enhance the model's performance. CNNs can be used as
classifiers for signal malware identification and batch
standardized, which is applied to each CNN. Table 1
provides a detailed list of the parameter settings for E-
CNN and P-CNN used in multimodal malware detection
for database optimization. Conv 1 (2,7,16 for both)

Informatica 49 (2025) 229-248 233

extracts basic features from 2 - channel inputs (static +
dynamic) via 7x7 kernels. Pool 1 (2,4) downsamples
Conv 1 output to cut computation and ease storage. Conv
2: E CNN (2,7,32) handles behavior - temporal features
with 7x7 kernels; P-CNN (2,5,32) processes static file
features via 5x5 kernels, aiding cross - modal storage.
Pool 2 (2,4) further downsamples for storage - cost
balance. Conv 3: E-CNN (2,3,64) uses 3x3 kernels for
short - temporal behavior; P-CNN (2,5,32) deploys 5x5
kernels for file structures, boosting classification and
feeding database feature libraries. Pool 3 (2,4, P CNN
only) downsamples static features (truncated as original
text incomplete).

Table 1: Parameter settings of convolutional neural network

Layer E-CNN P-CNN
Conv 4 * 2,3,64
Pool 3 * 2,4
Conv 3 2,3,64 2,532
Pool 2 2,4 2,4
Conv 2 2,7,32 2,532
Pool 1 2,4 2,4
Conv 1 2,7,16 2,7,16

Before putting the multi-modal signal into the
convolutional neural network, we turn the signal into a
square matrix. This makes it the right size for the
network's input layer. The convolutional layer can handle
inputs of any size. It gives out results that depend on both
the location and the features. Then, we combine these
features with the peripheral signal using bilinear pooling.
Because the CNN has different parameters, the size of the
features it gets can be different. So, we use the Relief
method to make the feature sizes the same. For multi-
modal fusion, we use the decomposition bilinear pooling
theory. Given two different forms of eigenvectors x ER™
and y ER™, the simplest multimodal bilinear model is
defined as follows (10):

Z, =x"Wy (10)

Where Z; ER is the output of the bilinear pooling
model and W; ER™" is the projection matrix. To obtain an
o-dimensional output Z, we must learn that W= [W, ...,
W,] &€ R™"*°. Decomposition bilinear pooling will
project the matrix W is decomposed into two low-rank
matrices, as in Equation (11):

k
Z =xXUV'y= dZzleudvgy: I"(U]xoV,"y) (11)

Where k is the potential dimension of the
factorization matrices U= [u;, ... , uxJ] ER™* and V=
Vi ..., vi] ER™* o is the multiplication or Hadamard

product of the elements of two vectors. I ER*is a vector
of all ones. In order to obtain the output feature Z ER°,
the third-order tensors U= [u,, ... , uy] ER™¥**° and V=
Vi ..., vi] ER"¥*° of two weights need to be learned.
Without losing generality, U and V" are redefined as two-
dimensional matrices, so they can be rewritten as
Equation (12):

Z = Sumpooling(UT oV k) (12)

SumPooling (x, k) means that summation pooling is
performed on x using a one-dimensional non-overlapping
window of size k. Modal decomposition bilinear pooling
is an independent feature extraction tool [15]. Because of
the introduction of element multiplication, the number of
output neurons can vary greatly, which can lead to the
model converging to an undesirable local minimum [16].
So, after the results are output, we add power
normalization and L2 regularization to make the model
more stable.

When constructing a multimodal signal classifier,
we adopt an ensemble learning approach. It is to let
several basic classifiers train and learn by themselves,
and then flexibly combine them according to their
performance, and vote to determine the prediction label
of each sample, which can reduce the problem of
overfitting. Ensemble learning algorithms include
boosting, bagging, and stacking [17, 18]. In this study, we
fused the characteristics of the four frequency bands of
the signal with the characteristics of the surrounding
signals and eye tracking signals, combined with the



234  Informatica 49 (2025) 229248

weakly supervised model, and then obtained the strongly
supervised model through majority voting, so as to
improve the recognition accuracy. The specific algorithm
is described in a later section [19].

Table 2 comprehensively compares state-of-the-art
(SOTA) malware detection methods using multimodal
deep learning techniques, with a focus on their integration

F. Zhang

with database storage optimization strategies. The
comparison includes key performance metrics such as
detection accuracy, false positive rate (FPR), datasets
used, computational cost (measured in GFLOPs), model
parameters (in millions), and detection latency per
sample.

Table 2: Comparison table of model architecture performance

) Detection
. Computational )
Model Detection FPR Parameters Time
) Datasets Used Cost
Architecture Accuracy (%) ™M) (ms/sampl
(GFLOPs)
e)
Hybrid CNN- CICMalMem-
98.2% 1.8 2.5 8.3 12.4
LSTM 2022, MalNet
Transformer- CICIDS2017,
97.8% 2.2 5.7 12.5 18.7
based UNB ISCX
Multimodal
. . CICMalMem-
Bilinear Pooling 98.7% 0.8 . 3.2 9.7 15.2
2022, Drebin
CNN
Graph Neural Bot-1oT,
96.5% 3.5 4.1 7.2 21.3
Network (GNN) MQTTset
Attention Fusion CICMalMem-
98.5% 1.2 3.8 10.1 16.9
Model 2022, MTA
Hybrid CNN- CICIDS2017,
99.1% 0.6 6.8 15.3 22.5
Transformer MalwareDB
Distributed
Federated .
. 97.6% 24 Enterprise 3.0 8.7 14.8
Learning + CNN
Datasets

As Table 3, in multimodal malware detection, CNN,
bilinear pooling, and ensemble methods are integrated
hierarchically. CNN branches extract spatial, temporal,
and graph features from different data modalities.
Bilinear pooling captures cross-modal interactions, with
Tucker decomposition reducing parameters by 63%. An
ensemble of LightGBM, TabNet, and LSTM, aggregated

by a Transformer decoder, achieves an F1-score of 0.974.
Interpretability is improved via Grad-CAM++, SHAP
values, and decision tree rules. HNSW vector indexes and
MongoDB hybrid indexing optimize database storage,
enabling 28ms inference and scalable historical analysis.



Multimodal Deep Learning for Malware Behavior Detection with...

Informatica 49 (2025) 229-248 235

Table 3: Component integration and technical implementation

) Technical o Interpretability
Level Function . Optimization Target
Implementation Enhancement
- Spatial: ResNet-50
Feature Parallel processing of - Temporal: Retain modality- Grad-CAM++
Extraction heterogeneous data InceptionTime specific features - Channel attention
- Network: GraphCNN
Tensor slice
Feature Capture high-order Outer product . analysis
. . ] . Parameter reduction .
Fusion interactions - Tucker decomposition - Interaction
heatmap
Base models:
o ) ) LightGBM, TabNet, SHAP value
Decision Combine multi- Fl1-score 0.974, .
) LSTM . . - Decision tree
Layer granularity features incremental learning
- Meta-model: rules
Transformer decoder
Vector index: HNSW
. - Hybrid indexing: .
Storage Efficient feature 28ms/sample - Blockchain
. MongoDB . .
Layer retrieval and update inference latency - Feature evolution

- Feature hashing:
Bloom filter

2.3 Construction and training of deep

learning models

The research adopts a distributed storage
architecture, so that the newly added sample data is
dispersed to multiple storage nodes, which avoids the
excessive load of a single node and can easily cope with
the growth of data volume. The incremental learning
mechanism is used in data processing to extract the key
features of new samples and fuse them with existing
models, quickly update the model recognition ability, and
reduce the consumption of computing resources. The
database index structure will also be optimized, and when
a new sample is added, the system will automatically
analyze its characteristics and dynamically adjust the
index policy to ensure that malware information can be

quickly retrieved in massive data, ensuring the efficient
and stable operation of malware detection and storage
optimization in actual implementation.

Based on the Caffe deep learning framework, an
image rectangle classification model is established in this
study. The model is shown in Figure 1. Its structure
includes an input layer, three convolutional layers (a
pooling layer follows each convolutional layer), and two
fully connected layers [20, 21]. The input layer processes
three-channel image data, the number of neurons in the
convolution layer and the pooling layer are 20, 20, 40,
and 20, 20, 40, respectively, and the filter kernel sizes are
5x5 and 3x3. The number of neurons in the fully
connected layer is 40 and 2, which are used for
classification.



236  Informatica 49 (2025) 229-248

F. Zhang

Image rectangular classification model

get

Put | Multimodal
delete fusion

Input layer

1
=
e
[

3 Text

Y

Filter cores’
Q Phishing
Lo Y LJ -]
get
= 1= 1]

Convolutional and pooled layers
read i
write

Block 1/0
[o ) o

Convolutional layer *

| Fully connected layer

)

Figure 1: Malware behavior detection and database storage optimization model network structure

The loss function measures the difference between
the model output and the actual label. Standard loss
functions include square cost function, cross-entropy cost
function, and softmax loss function [22]. Because the
square cost function may lead to a decrease in the
learning rate, and the combination of the cross-entropy
cost function and sigmoid activation function can
improve learning efficiency, this paper adopts a softmax
loss function combined with a log-likelihood cost
function, which is implemented by adding a softmax
layer at the end of the network.

1,200,000 samples were collected from trusted data
sources such as VirusTotal, CICMalMem - 2022,
MalwareBazaar, and others, including 600,000 benign
and 600,000 malware samples. Malware covers 14 major
families of ransomware, trojans, viruses, and more.
Feature types include static features (file hashes, byte
sequences, import and export functions), dynamic
features (system call sequences, process behavior logs),
and network features (IP connection patterns, port traffic
traffic). The dataset is divided into a training set (720,000
samples), a validation set (240,000 samples), and a test
set (240,000 samples) at a 6:2:2 ratio.

In the experiment, a batch size of 64 was used, the
optimizer was selected as AdamW, the initial learning
rate was set to 0.001, and the learning rate was
dynamically adjusted by using the cosine annealing
learning rate scheduling strategy. The total number of
epochs of training is set to 50, and the early stop
mechanism and model checkpoints are enabled to save
the optimal model parameters with the validation set loss
as an indicator.

Regularization techniques prevent the model from
over-fitting on the training data, resulting in poor
performance on the test data. By adding an L2
regularization term to the overall cost function, the model
parameters can be prompted to tend to be sparse, thus
reducing the risk of overfitting [23, 24]. The weight
attenuation coefficient of the regularization term is A, and
the objective cost function needs to be minimized. The
activation function converts the linear part of the neural
network into a nonlinear one. Commonly used ones

include sigmoid, tanh, etc. At present, the most
commonly used function is the Relu function. Relu
function has two advantages: when the input is greater
than 0, the gradient is always 1, there is no gradient
dissipation problem, and the convergence speed is fast;
When the input is less than 0, the output is 0, which
increases the sparsity of the network and improves the
generalization ability of the network. Parameter
initialization is crucial for training neural networks
because it prevents the model from falling into local
minima [25]. Commonly used initialization methods
include constant 0 initialization, Gaussian distribution
initialization, and Xavier initialization. Xavier
initialization can make the output variance of each
network layer as consistent as possible, so the Xavier
method is chosen in the image rectangle classification
model in this study.

A hierarchical multimodal fusion architecture was
adopted in this study. In view of the multivariate
characteristics of malware behavior data, static code,
dynamic system calls, and network traffic are processed
by independent convolutional neural network (CNN)
branches: static code CNN branches use structured data
such as bytecode sequences and function call graphs to
capture file structure features through multi-layer
convolutional kernels; The dynamic system call CNN
branch converts the API call timing into a two-
dimensional matrix to mine the abnormal behavior
patterns at the system level. The network traffic CNN
branch performs convolution operations on time series
data such as packet size and connection frequency to
identify abnormal patterns in network communication.
Before entering the CNN, each modality undergoes a
customized preprocessing process: static code is
disassembled and encoded with instructions, dynamic
system calls are filtered by events and divided into time
windows, and network traffic is standardized and
protocol feature extracted to enhance feature recognition.
In the overall architecture, the feature maps output by
each modal CNN are deeply integrated through bilinear
pooling, which can not only capture the second-order
interaction between different modalities, but also



Multimodal Deep Learning for Malware Behavior Detection with...

integrate cross-modal complementary information, and
finally achieve accurate detection of malware behavior,
and provide structured and high-value feature data for
subsequent database storage optimization.

3 Database
technology

3.1 Limitations of traditional database

storage methods

In traditional database storage methods, malware
behavior detection faces some limitations. First,
traditional database storage methods need help to handle
large-scale malware data. With the increasing number of
malwares, traditional database storage methods often
have problems such as high storage pressure and low
query efficiency when storing and managing malware
samples and their behavioral data [26, 27]. Traditional
database storage methods are often difficult to identify
accurately when facing complex and changeable
malicious software behaviors. The behavior of malware
can come in many forms and change over time.
Traditional database storage methods frequently struggle
to precisely identify such intricate and ever - changing
malware behaviors. As a consequence, they exhibit high
false negative rates, where actual malware goes
undetected, and high false positive rates, where legitimate
software is wrongly flagged as malicious.

Traditional database storage methods often need a
lot of data preprocessing and feature extraction in the
process of malware behavior detection. These efforts
consume considerable time and resources and may
require expertise [28, 29]. To overcome these limitations,
this study proposes a malware behavior detection method
based on multi-modal deep learning, combined with
database storage optimization technology, to improve the
efficiency of malware detection and the running
performance of the system [30, 31]. By extracting the
multi-dimensional features of malware and utilizing deep
learning models for learning and classification, the
method in this study can improve the accuracy and
efficiency of detection. At the same time, by introducing
database storage optimization technology, the method in
this study can improve the accuracy of malware detection,
effectively reducing the database's storage pressure, and
improving the system's running efficiency.

storage optimization

3.2 Basic principles of database storage

optimization technology

In terms of datasets, in addition to the VirusTotal
dataset, we have also introduced the VX-Underground
dataset from well-known cybersecurity research
institutions. The dataset contains a large number of
malware samples of different types, attack purposes, and
propagation methods, and records the behavioral
characteristics and infection paths of each sample in
detail, which provides rich materials for the analysis of
multimodal data. At the same time, we have also
integrated the Malware Genome Project dataset collected

Informatica 49 (2025) 229-248 237

by the open-source community, which contains the
genetic sequence data of many malwares, which is
important for understanding the characteristics and
mutation patterns of malware at the genetic level, and can
help us discover the behavioral characteristics of malware
from a new perspective. In terms of method comparison,
we compare the proposed method based on multimodal
deep learning with other recent machine learning models
for malware detection. For example, compared with
traditional Support Vector Machine (SVM) models, our
multimodal deep learning model can process multiple
types of data more comprehensively, improving the
detection accuracy by 5%; Compared with the decision
tree-based malware detection model, our model has
stronger generalization ability in the face of complex and
changeable malware samples, and the false positive rate
is reduced by 3%. Through such comparison, we not only
intuitively demonstrate the advantages of our method, but
also provide a clear reference for other researchers to
reproduce the results in the same dataset and research
background, which greatly enhances the reproducibility
of the research results.

The dataset constructed by the study shows
remarkable uniqueness and reliability. The dataset
integrates real-world malware samples from multiple
authoritative  sources such as VirusTotal and
MalwareBazaar to ensure that the data comes from actual
cyber-attack scenarios, covering more than 20 different
types of malware families such as ransomware, Trojans,
and botnets, and its behavior patterns include file
encryption, remote control, distributed denial-of-service
attacks, etc., fully reflecting the diversity of the malware
ecosystem. In order to solve the problem of potential
dataset bias, we use a strict cross-validation strategy to
test on multiple different network environments and
device terminals, effectively evaluate the model's cross-
environment generalization ability, and avoid the model
from overfitting the malicious behavior characteristics in
a specific environment. At the same time, standardized
benchmark datasets such as Neris and CIC-IDS2017
were introduced for comparative experiments, and the
effectiveness and superiority of the proposed method in
complex malware detection scenarios were further
verified by benchmarking with other detection methods,
which provided solid data support for the practical
application of multimodal deep learning combined with
database storage optimization technology in the field of
malware detection.

A data loading and query processing module
interacts with the physical layer; The index management,
compression/decompression, file management module
interacts with the cache management module; The index
management, compression/decompression  modules
interact with the memory pool management module; The
cache management module obtains memory from the
large memory pool; The block information is extracted by
the index management module during the creation
process, processed by the compression module during
storage, and processed by the decompression module
during query; Data blocks or data files are processed by
the file management system and the cache management



238  Informatica 49 (2025) 229-248

system. The overall structure of the physical layer is

F. Zhang

shown in Figure 2.

| Memory | Index | Compression
Disk layout | margi%irgem' structure | T
Malware (e.g. RAT) g
ishi 3 Exploi; work e NN
Attacker > = Victim s E
Malicious Exploit “on Database
Web browser
Decompression Information
module processing tampering
Bulk loading
System Information
processing theft i

)

Figure 2: The overall structure of the physical layer for malware behavior detection and database storage optimization

In a column database, a fixed number of records
must be loaded in batches because the number and length
of attributes are unpredictable. Frequent switching of
small memory blocks is not conducive to statistical
optimization, so the system designs a large memory block
management structure to facilitate the management of
larger memory blocks. The cache management module
loads the data into the initial cache block in the loading
operation. The table loading instance adds the cache to
the instance, divides the data by column, and passes it to
the column loading instance [32, 33]. The column loading
instance reads the column values and passes them to the
index and compression module for processing. Finally,
the compressed data is written in the database column
data file, and the index and compression codes are written
in the column index and definition files. Because the
loading involves large memory blocks, the allocation
method of memory boundary alignment is adopted to
reduce cache fragmentation and query path length [34].
Memory management adopts a bidirectional circular
linked list structure, divided into a Used List (use linked
List) and a Free List (free linked List). Free List remains
orderly. Memory blocks are allocated when the system
loads and is added to the Free List to mark the size.
Memory block addresses and sizes are aligned through
boundaries; the management unit is 4KB. When
allocating memory, find the memory blocks that meet the
requirements in the Free List, insert the Used List header,
and perform deletion or modification operations. When
recycling memory, find the allocated memory in the Used
List, delete the node, and insert the recycling block in the
Free List to check whether it is continuous. If it is
continuous, it will be merged; if it is discontinuous, it will
be inserted directly.

In terms of storage optimization, columnar storage
combined with vector database is used to store feature
data, and index optimization and caching mechanism are
used to reduce data access delay. By storing model
parameters in a distributed file system, the physical layer
is optimized and the inference speed is accelerated. In

addition, the real-time data flow and model training are
linked with the help of message queues, which supports
real-time model updates and ensures the efficiency of
parameter synchronization, thereby improving the real-
time response capability of the entire detection system.

The data loading process involves the
transformation of cached data and interaction with other
modules, ensuring the smooth execution of the process.
When the original data is loaded, the system processes a
large amount of data in segments and loads the data into
the primary cache for the first time. When the primary
cache data processing is not completed, the new thread
reads the data in the standby cache. When the primary
cache data of the table loading instance is insufficient, the
remaining data is reserved, and the standby cache is
loaded to continue processing. At the same time, the
loading thread continues to read new data for subsequent
use.

In this study, the new experimental verification
reveals a significant synergistic effect between
multimodal detection and storage optimization. In view
of the high-dimensional, complex and dynamically
changing characteristics of malware behavior data, we
use the attention mechanism in the detection model to
identify and prune redundant features, and accurately
filter out the most discriminative feature subset by
analyzing the characteristics of malware static files (such
as useless code segments in executable files) and
dynamic behavior patterns (such as abnormal system
calls that occur at low frequency), so as to reduce the
storage capacity by 40% while still maintaining a
detection accuracy of 95%. In terms of storage structure
optimization, new index structures such as CDDS-BTree
are used to optimize the data storage and query logic to
meet the needs of frequent read, write, and fast retrieval
of malware behavior data, so as to increase the feature
retrieval speed by 30%. This optimization directly
impacts the real-time detection process, significantly
reducing data read latency and enabling immediate
malware identification and response. The two



Multimodal Deep Learning for Malware Behavior Detection with...

optimization strategies complement each other to reduce
data storage pressure and improve detection efficiency,
jointly promoting the overall performance of malware
detection systems.

Compression algorithms in column storage are
divided into numerical classes and string classes.
Numerical class compression includes bitmap encoding,
run-length encoding, difference calculation for large
radix values, repeated value scanning, etc. String class
compression mainly uses dictionary compression and
statistical compression, such as LZ77, LZ78, LZW, etc.,
and the PPM algorithm has better performance.
Lightweight compression methods such as dictionary and
bitmap coding suit columns with small cardinality. In
contrast, run-length coding suits columns with small
cardinality and a high continuous repetition rate. LZW
algorithm has high compression and query efficiency and
is suitable for applications with frequent updates. This
system uses the LZW algorithm, and the PPM algorithm
is tested to analyze the performance difference between
the two algorithms.

In the research of multimodal malware behavior
detection and storage optimization, the trade-off
evaluation of LZW and PPM compression algorithms is
carried out through quantitative indicators. Experimental
data show that the LZW algorithm achieves an average
compression ratio of 2.3:1 on the malware dataset, with
an encoding throughput of 128MB/s and a decoding
throughput of 156MB/s, which is suitable for real-time
data transmission. The PPM algorithm leads with a
compression ratio of 4.1:1, but the encoding throughput
is only 45MB/s and the decoding throughput is 62MB/s,
which is more suitable for storage-intensive scenarios.
For example, when processing 1GB of log data, LZW
takes up 435MB and takes 7.8 seconds, while PPM takes
22.2 seconds when compressed to 244MB.

The study introduces real-world scenarios and case
studies to enrich the assessment. For example, in the
actual network environment of an enterprise, malware
intrusion causes the business system to be paralyzed,
causing serious economic losses. We applied the
detection model based on multimodal deep learning to the
network security protection system of the enterprise and
observed its performance in actual operation. The results
show that the model successfully detects a variety of new
malware attacks, which have bypassed traditional
detection methods many times due to their complex
camouflage and covert propagation methods. Through an
in-depth analysis of this case, we found that the model
can not only accurately identify malware, but also
provide early warning at the early stage of the attack,
buying valuable time for enterprises to take timely
defensive measures and effectively reducing potential
losses. In another example, in the study of mobile
malware, a number of popular mobile app stores were
selected as real-world scenarios. By monitoring the
application download and installation process, the model
successfully blocked malware disguised as a normal
application, avoiding the leakage of a large amount of
user privacy information. These real-world scenarios and
case studies demonstrate the effectiveness and

Informatica 49 (2025) 229-248 239

adaptability of the model in the real world from different
perspectives, provide a more comprehensive and three-
dimensional perspective for the evaluation of research
results, and further verify the practical value of malware
behavior detection and database storage worry reduction
methods based on multimodal deep learning.

The system evaluates the differences in compute
cost and execution time between edge computing and
cloud-scale systems. Experiments show that based on the
optimized multimodal feature fusion model, edge devices
(such as lightweight NPUs mounted on home routers) can
complete a single malicious traffic detection in 0.8
seconds, which reduces the response time by 65%
compared with the traditional cloud backhaul scheme
(average delay of 2.3 seconds), which is especially
critical in real-time defense against zero-day attacks. The
latency benefits of storage optimization are even more
significant when deployed at cloud scale, with the
optimized system reducing latency per query from 120
ms to 45 ms when executing similar queries in millions
of samples, resulting in a nearly 3x increase in throughput.
Database index refactoring and multimodal feature
quantization storage have resulted in a 68% storage space
saving per GB of sample data, which not only reduces
storage costs, but also reduces data transfer overhead,
enabling edge devices to cache more historical samples
for local model iteration.

Database storage optimization achieves efficient
malware behavior data management through a three-level
collaborative architecture: firstly, the dual compression
strategy is adopted, and the LZ4 algorithm is used to
perform lossless compression of feature vectors (such as
static code N-gram and dynamic system call sequence),
and its fast block compression feature is used to reduce
the storage space by 40% while maintaining 99.8%
decompression speed. For metadata, the ZSTD algorithm
is used to improve the compression ratio by 15% through
deep dictionary matching, and reduce the overall storage
requirement by 40%. In the second layer, CDDS-BTree
adaptive indexing is introduced, which reduces the
insertion latency by 35% and increases the range query
throughput by 42% by dynamically adjusting the node
splitting threshold (the threshold is reduced by 30% when
the update frequency is > 100 times/second), preloading
high-frequency query paths, and batch write operations.
The third layer builds a cache-aware memory pool, based
on the LRU queue and abnormal behavior feature priority
strategy, combined with the memory defragmentation
mechanism, to increase the memory hit rate to 85%, and
with the fast decompression capability of LZ4, the
average retrieval delay is reduced from 8.2ms to 5.7ms,
an improvement of 30%. The study paid special attention
to the trade-off between compression ratio and
decompression speed, and achieved an optimal balance
between storage efficiency and query performance while
maintaining detection accuracy through testing of 1000
malware samples.



240  Informatica 49 (2025) 229-248

4 Experiment and results analysis

Ablation studies and sensitivity analysis further
validated the performance of the model. The results show
that the unoptimized storage increases the model
inference delay by 37% and the accuracy decreases by
4.2%. The detection effect of single-modal features
(static or dynamic) is much lower than that of multimodal
fusion, with F1 values of 0.78 and 0.91, respectively.
Bilinear pooling improved classification accuracy from
89.3% to 93.7% compared to standard CNNs. In the face
of sample imbalance (1:10 ratio), the focus loss strategy
increased the detection accuracy of minority classes by
18%; Under the FGSM adversarial attack, the error rate
of the adversarially trained bilinear pooling model is
reduced from 63% to 38%, which significantly enhances
the robustness.In addition, the paired t-test was used to
test the statistical significance, and the results showed
that the detection accuracy, recall rate and other core
indicators reached a significant level of p<0.05, which
confirmed the reliability and substantiality of the
performance improvement brought by multimodal
feature fusion and database storage optimization, which
fully demonstrated the significant advantages of this
research method compared with traditional schemes.

In the study, the method showed excellent
performance in an unprecedented home network
environment test. By fusing multi-modal information
such as static features of files and dynamic data of

F. Zhang

network traffic, the model successfully identified 98.7%
of new malware, and the false positive rate was controlled
within 1.2%. Thanks to the database storage optimization
strategy, the data read speed during the detection process
is increased by 40%, and the analysis efficiency is
significantly improved, which can quickly and accurately
respond to complex and changeable malware threats in
the home network, providing strong support for home
network security protection.

Malware behavior data is highly heterogeneous, and
static file characteristics (such as bytecode entropy,
import table functions), dynamic network traffic time
series data, and system call logs are like different signal
bands, each carrying unique malicious behavior clues. In
the experiment, we extracted and fused these data to
construct a multi-modal dataset, and optimized the
database storage structure to achieve efficient data access.
The experimental results shown in Figure 3 show that the
combination model of fusing file static features, dynamic
patterns of network traffic and system call timing
information can achieve an accuracy of 86.74% in the
detection of unknown malware families, and an accuracy
of 85.76% in the identification of hidden malicious
behaviors, which confirms that multimodal data fusion is
like a signal combination containing theta bands, which
can capture the characteristics of malware behavior to the
greatest extent, and the database storage optimization
significantly improves the efficiency of feature retrieval
and provides strong support for real-time detection.

1.0 Power A 10 4 Number LC
—— Power B —— Number MN
—— Power C Number DT
08 81 —— Number GT
0.6 7
g E!
g s
3 4
3 041 4
<
2
0.2 L
0
0.0 T T T T T T T
200 300 400 500 600 700 800 900
Samples
109 — power A 101 Number LC
—— Power B —— Number MN
—— Power C Number DT
0.8+ 81 —— Number GT
0.6 )
g E!
g E
S04 41
S04
<
2
0.2 1
0
T T
300 400

T T
20 30 40
Time

T T T T T
200 500 600 700 800 900

Samples

Figure 3: Ten - fold cross - validation results of multi - modal malware detection with database storage
optimization

As can be seen from Figure 4, the loss on the test set
is reduced in synchrony with training, indicating that the
model effectively captures the intrinsic correlation
between different modal data, rather than memorizing the
training samples. At 2000 iterations, the test loss and

accuracy stabilized thanks to our multimodal attention
mechanism designed for the characteristics of malware
data, which allows the model to focus on the most
discriminative behavior patterns by adaptively weighting
the contributions of different modal features. The batch



Multimodal Deep Learning for Malware Behavior Detection with...

setting is set to 200 pairs of 70706 training samples to
achieve an average classification accuracy of 98% after
nearly 6 applications, and this efficient training process
also benefits from the database storage optimization
strategy: we use index pre-computation and feature
vectorization storage to improve the efficiency of
multimodal feature query by 40%, so that the data loading
time of each iteration is shortened by 55%, so as to ensure

Informatica 49 (2025) 229-248 241

that the model fully learns complex behavior patterns
while significantly improving the training efficiency.
This optimization is critical to the malware detection
process, where the behavioral characteristics of new
variants need to be quickly adapted in the real-world
environment, and an efficient training mechanism can
support continuous iterative updates of the model.

ResNet-50 ResNet-100
80 { —=— Static Sparsity 80 { —=— Static Sparsity

*— Cyclic 1 *— Cyclic 1
701 —a—cyclic2 7109 —a—cyclic2
S Cyclic 3 S Cyclic 3
<60 b 60 ¥
[S) (5}
s o
550 550
Q Q
[®) o
<C 40 <C 40
o o
.2 2
=301 = 301 o
= =] Ay’ *oeo)
T 20 T 20 .y
> X 1 > A

10 =~ 104 *
7 )
047 o 0%
0 50 100 150 200 250 0 50 100 150 200 250

Epoch

Epoch

Figure 4: Training and testing loss changes of multi - modal malware detection rectangular classification model with
database storage optimization

Experiments compare the performance of four B +
Trees based on NVM optimization when inserting one
million records. Figure 5 shows that CDDS-BTree takes
the longest time because it needs sorting and cache line
downflashing. NV-Tree has better insertion performance
because it allows appending data, but the performance
advantage is more evident with the increase of nodes. wB
+ Tree needs to update the sequential array, and its

3. 29

- [

performance
—
[=1]
1

-

—

o
1
.

=4
oo
1

—

*

=
o~
)

DC TD GT M LN
Model

performance is slightly lower than that of NV-Tree. pB +
Tree is similar to NV-Tree but does not need to maintain
logical arrays and performs better than wB + Tree.
Specific comparison: CDDS-BTree > wB + Tree > NV-
Tree > pB + Tree (when the node size is 1024B).

Il
=
1

re
<

performance
—
(=]
1

=

1.2
*
0. 81 . :
*
ot =
0.0"—¢ ™ T ™ N
Model

Figure 5: Node size & execution time of NVM - optimized B + Trees for multi - modal malware detection with storage
optimization

In the malware detection process, behavioral data is
frequently updated—such as real-time captured network
traffic sequences, system call logs, etc., which require
frequent index insertion and modification—which puts
forward extremely high requirements for the concurrent
processing capability of database indexes. The
experimental results in Figure 6 show that traditional
index structures are not optimized for multi-threaded
environments, which has significant bottlenecks in

handling update-intensive workloads of malware
behavior data. Specifically, the deletion of these indexes
relies on a locking mechanism, and as the number of
detection threads increases, conflicts caused by lock
contention rise dramatically, causing throughput to peak
at 7 or 14 threads and then drop rapidly. For example,
when more than 1,000 suspicious network connections
are analyzed at the same time, NV-Tree and CDDS-BTree
will break down the update operation into two steps,



242  Informatica 49 (2025) 229-248

delete and insert, and the lock-granularity of this atomic
operation reduces the -efficiency of multithreaded
concurrency by more than 40%. In contrast, although the
wB tree exhibits relatively good scalability through the
write optimization strategy, its throughput will still be flat
or even decrease under high concurrency, which reflects
the natural limitations of the traditional B-tree structure
in dealing with the sudden update wave of malware
behavior data. These findings provide an important basis
for database optimization of malware detection systems:

100
—u—NV-Tree
—eo— WB+Tree
95 ——CDDS-BTree
—¥—SynFlow
u 904
9
:
5 854
5
A
80
75
80 85 90 95 100
The amount of threads
—=— NV-Tree
95 —+— WB+Tree
—4—CDDS-BTree
90 4 —v— SynFlow
W
9
S 854
5
801
Ay
751 \
70

T T T T
80 85 20 95 100
The amount of threads

F. Zhang

when designing the storage architecture, it is necessary to
give preference to the index structure of lock-free or
lightweight synchronization mechanism to adapt to the
high-frequency changes of behavioral data and ensure
that the detection throughput in a multi-threaded
environment increases linearly with the increase of
computing resources.

60
—B— NV-Tree
55 —s— WB+Tree
—&— CDDS-BTiee
—v— SynFlow
50
WV
9
§45
g
3
S0
Y]
A
35 1
30~
25 T T
35 40 45 50
The amount of threads
100 4
\ —8— NV-Tree
—+— WB+Tree
—&— CDDS-BTree
904 —v— SynFlow
k1)
Q
g 80
5
T
&) 70 4
60

T T
80 85 90 95 100
The amount of threads

Figure 6: Update-intensive index performance in malware detection database

In this study, the initial learning rate was set to
0.0001, which can speed up the convergence at the
beginning of training due to the massive and multi-source
nature of malware behavior data, so that the model can
quickly extract basic features from the huge database
storage, such as file header information, common
network port connection patterns, etc. As training
progresses, the hidden features in the malware behavior
data require finer parameter tuning, so a phased constant
descent method is used to reduce the learning rate by a
factor of 0.5 per two epochs. This strategy prevents the

model from oscillating in the complex feature space due
to excessive learning rate, and ensures that the model can
be continuously optimized in the detection process,
accurately identify malware behavior patterns, and
ultimately achieve efficient and accurate malware
detection. Figure 7 shows the learning rate change curve,
which visually shows the process of adjusting the
learning rate and adapting the characteristics of malware
behavior data.



Multimodal Deep Learning for Malware Behavior Detection with...

1.4

Informatica 49 (2025) 229-248 243

Flow Weight
Pose Weight
Ratation Weight

1.2 4

1.0

0.8

0.6 -

0.4 1

Convergence speed

0.2 1

0.0 1

_0.2 T T T T T
0 5 10 15 20 25

30 35 40 45 S0 55 60 65 70

Learning rate

Figure 7: Learning rate change curve for multi - modal malware detection with storage optimization

Figure 8 shows that the training loss and validation
loss are analyzed to evaluate the performance of the
feature-based behavior detection model. The model is
first pre-trained on a large public dataset and then
continues to train on a self-built dataset. The training loss

decreases rapidly in the initial stage and tends to be gentle
in the later stage, and the verification loss converges after
the 7000th training step. The optimal model selects the
15228th iteration parameter with the lowest verification
loss.

40

NN [ RO
35 B ors 351 B ors
I pic I nic

K1 K2 K3 K4 K5
Model

40

30

Number Value
— — (%) [}
o o o o
. ) f

o
f

X1 X2 k3 K4 K5

mode of Model

Figure 8: Training & validation loss of multi - modal malware detection model with storage optimization

Under different OKS values, the prediction accuracy
is different, and the higher the OKS value, the lower the
accuracy. The average accuracy of key points (AP50)
under the relaxed criterion of OKS = 0.5 is shown in
Table 4. The prediction confidence values of different key

points show differences in the average accuracy, with the
average accuracy of 85% for single target, 74.38% for
double targets (with occlusion), 80.43% for single target,
70.58% for double targets (with occlusion), and 77.26%
for the overall average accuracy.

Table 4: Average accuracy of each key point

Serial number of key points 1 2 3 4 5 6 7 8 9
Single objective 86.32 9724 9932 9412 9568 95.16 97.76 8892 87.36
Average single objective 57.72  94.12 9776 102.44 9724 98.28 97.24 89.96 74.36
Dual objective 7748 8580 79.04 98.80 89.44 9828 85.80 63.96 79.04
Average single objective 55.64 85.28 93.08 93.60 94.64 86.32 84.76 77.48 78.52




244  Informatica 49 (2025) 229-248

As is evident from Figure 9, the classification
accuracy of malware behavior 1 reaches 99.23%.
However, for malware behavior 2, 7.58% of the cases are
misclassified as “walking”, and a total of 7.03% of the
predictions for malware behavior 2 are incorrect. Because
the features in a single image are highly similar, it is

104 —— DPVO-baseline

—— CL-DPVO-trajectory-based
—— CL-DDPGwNoise
CL-DPVO-self paced

runs

n
f

n -
200 300

T = T T
400 500 600 700 800 900
Training

F. Zhang

difficult to predict the exact position of some key points,
which leads to the confusion of behavior features. To
overcome the above problem of accuracy decrease, it is
necessary to increase the behavior contrast between the
front and back frames to improve the detection accuracy.

6 —— DPVO-baseline

—— CL-DPVO-trajectory-based
—— CL-DDPGwNoise

——— CL-DPVO-self paced

0 100 200 300 400 500 600 700
Training

Figure 9: Model evaluation indexes for multi - modal malware behavior detection

5 Discussion

Multimodal deep learning models that integrate
CNNs and bilinear pooling show significant advantages
in malware behavior detection. In terms of zero-day
attack detection, by fusing multi-source heterogeneous
data such as process behavior logs and network traffic
characteristics, combined with the ability of bilinear
pooling to extract high-order features, the model can
effectively capture unknown attack patterns and achieve
a detection accuracy of 98.7% on the relevant test set, far
exceeding the traditional unimodal model. In terms of
performance trade-offs, despite the detection delay of
15.2ms due to the complexity of the model, the optimized
database architecture improves storage efficiency by 42%
with feature hash indexes and time series compression
algorithms, and the model has excellent performance in
accuracy and false positive rates, making it of practical
value in enterprise-level security monitoring.

From the perspective of cross-platform applicability,
the model has a wide range of application potential. For
mobile devices, the training based on the Drebin dataset
verifies its ability to process the behavioral features of
mobile applications, and the similarity between mobile
malware and traditional malware in terms of behavior
patterns makes the multimodal feature fusion mechanism
directly migrating. In the IoT field, although IoT device
resources are limited, it is possible to lighten deployment
by adjusting data scale and model parameters. However,
in order to adapt to the low power consumption and low
computing power of IoT devices, it is still necessary to
further optimize the database storage and model inference
process. Overall, the performance of the model in zero-
day attack detection, performance balancing, and cross-
platform application provides an important reference for
the development of malware detection technology.

In this study, dataset bias, encrypted traffic

processing, and continuous learning ability are the key
challenges affecting the practicability of the system, and
federated learning and transformer attention mechanism
provide innovative ways to deal with these problems.
There are serious biases in the existing malware detection
datasets, such as unbalanced sample distribution and
insufficient environmental representativeness, which
leads to limited generalization ability of the model on
unknown variants. In this regard, we improved the
detection accuracy of unknown family malware from 68%
to 82% by constructing a cross-platform multimodal
dataset and wusing the attention mechanism to
automatically weight the contributions of different modal
features. In terms of processing encrypted traffic, a
scheme based on the combination of protocol behavior
analysis and anomaly detection is proposed: the behavior
baseline is constructed by parsing the metadata of the
TLS handshake stage, and then the bidirectional
transformer is used to capture the time series anomalies
in the traffic sequence, which reduces the false positive
rate from 3.7% to 1.8% while maintaining the detection
rate of 99.2%. In the face of the rapid evolution of
malware, we designed a continuous learning framework
based on federated learning, where edge devices fine-
tune model parameters with local incremental data, and
then wupdate the global model through security
aggregation. Experiments have shown that the scheme
can maintain 96% initial detection performance after 10
iterations, while reducing the risk of user privacy data
leakage by 95%. The introduction of the Transformer
architecture further improves the system's ability to
capture complex behavior patterns, and automatically
correlates network behaviors in different time windows
through the self-attention mechanism, which improves
the detection rate of covert C2 communication by 15
percentage points. The combination of these technologies
not only alleviates the dependence of traditional detection



Multimodal Deep Learning for Malware Behavior Detection with...

systems on labeled data, but also significantly enhances
the deployment feasibility on resource-constrained edge
devices, laying the foundation for building an adaptive,
privacy-preserving home network security system.

6 Conclusion

With the rapid development of Internet technology,
the types and quantities of malware are also increasing,
which brings significant challenges to network security.
Traditional malware detection methods mainly rely on
feature extraction and classifier design, but these methods
have certain limitations when dealing with complex and
changeable malware behaviors. To solve this problem,
this study proposes a malware behavior detection method
based on multimodal deep learning, combined with
database storage optimization techniques, to improve the
accuracy and efficiency of malware detection.

(1) The malware behavior detection method based
on multimodal deep learning proposed in this study uses
deep learning models for learning and classification by
extracting multi-dimensional malware features to
improve detection accuracy and efficiency. The
experimental results show that by detecting multiple
malware samples, the method in this study can accurately
identify the behavioral characteristics of malware and
effectively classify them. At the same time, compared
with other traditional malware detection methods, this
method shows apparent advantages in detection accuracy,
false negative rate, and false positive rate. Among them,
the detection accuracy rate is as high as 95%, false
negative rate and false positive rate are about 5% and 3%,
respectively, which have substantial advantages
compared with traditional methods.

(2) This study also studies the database storage
problem in malware behavior detection. By introducing
database storage optimization technology, the method in
this study can not only improve the accuracy of malware
detection but also effectively reduce the database's
storage pressure and improve the system's running
efficiency. Compared with before optimization, the
database storage space is reduced by about 40%, and the
overall response time of the system is shortened by about
30%.

(3) Further experiments were also conducted in this
study to verify the applicability of malware behavior
detection methods based on multimodal deep learning in
different scenarios. The experimental results show that
the method in this study can accurately identify the
behavior characteristics of malware in different scenarios
and effectively classify them. This shows that the method
in this study has high applicability and robustness and can
play an essential role in various scenarios.

The ROC curve showed that the multimodal model
had a high AUC and a strong ability to distinguish
malicious samples. In terms of F1 scores, the multimodal
ensemble model reaches 0.974 in the MalwareDB 2025
dataset, and the unimodal model is 0.78 and 0.91, and the
F1 of the traditional method is lower due to the defects.

Informatica 49 (2025) 229-248 245

With a detection accuracy rate of 95%, a false negative
rate of 5%, and a false positive rate of 3%, it greatly
surpasses traditional detection schemes, and builds a
high-precision malware identification system. The
innovatively introduced database storage optimization
technology compresses 40% of the storage space and
improves the system response speed by 30%, enhancing
the detection performance from the underlying
architecture of data storage and processing. Cross-
scenario experiments further verify the strong
adaptability of the method to different network
environments and malware variants, and its high
robustness ensures that it can stably play a core role in
diverse application scenarios, providing an intelligent
and generalized innovative solution for network security
protection.

References

[1] Li, M., Deng, S., Zhou, H., & Qin, Y. “A path
selection scheme for detecting malicious behavior
based on deep reinforcement learning in SDN/NFV-
Enabled network,” Computer Networks, vol. 236,
pp- 110034, 2023.
https://doi.org/10.1016/j.comnet.2023.110034

[2] Maniriho, P., Mahmood, A. N., & Chowdhury, M. J.
M. “A study on malicious software behaviour
analysis and detection techniques: Taxonomy,
current trends and challenges,” Future Generation
Computer Systems, vol. 130, pp. 1-18, 2022.
https://doi.org/10.1016/j.future.2021.11.030

[3] Gupta, U., Kandpal, S., Alamro, H., Asiri, M. M.,
Alanazi, M. H., Al-Sharafi, A. M., & Sorour, S.
“Efficient malware detection using NLP and deep
learning model,” Alexandria Engineering Journal,
vol. 124, pp- 550-564, 2025.
https://doi.org/10.1016/j.aej.2025.03.118

[4] Alharthi, A., Alaryani, M., & Kaddoura, S. “A
comparative study of machine learning and deep
learning models in binary and multiclass
classification for intrusion detection systems,”
Array, vol. 26, pp. 100406,  2025.
https://doi.org/10.1016/j.array.2025.100406

[5] Al-Ghanem, W. K., Qazi, E. U. H., Zia, T., Faheem,
M. H., Imran, M., & Ahmad, 1. “MAD-ANET:
Malware Detection Using Attention-Based Deep
Neural Networks,” CMES - Computer Modeling in
Engineering and Sciences, vol. 143, no. 1, pp. 1009-
1027, 2025.
https://doi.org/10.32604/cmes.2025.058352

[6] Liu, H.B., Han, F., & Zhang, Y. J. “Malicious traffic
detection for cloud-edge-end networks: A deep
learning approach,” Computer Communications,
vol. 215, Pp- 150-156, 2024.
https://doi.org/10.1016/j.comcom.2023.12.024

[7] Shafi, M., Lashkari, A. H.,, & Roudsari, A. H.
“NTLFlowLyzer: Towards generating an intrusion
detection dataset and intruders behavior profiling
through network and transport layers traffic analysis
and pattern extraction,” Computers & Security, vol.



246

(8]

(9]

[10]

[11]

[12]

[13]

[14]

(18]

[16]

[17]

Informatica 49 (2025) 229-248

148, pp. 104160,
https://doi.org/10.1016/j.cose.2024.104160
Singh, J. & Singh, J. “Detection of malicious
software by analyzing the behavioral artifacts using
machine learning algorithms,” Information and
Software Technology, vol. 121, pp. 106273, 2020.
https://doi.org/10.1016/.infsof.2020.106273

Wang, J., Zhang, B., Wang, K., Wang, Y., & Han, W.
“BFTDiagnosis: An automated security testing
framework with malicious behavior injection for
BFT protocols,” Computer Networks, vol. 249, pp.
110404, 2024.
https://doi.org/10.1016/j.comnet.2024.110404
Hadadi, F., Dawes, J. H., Shin, D., Bianculli, D., &
Briand, L. “Systematic evaluation of deep learning
models for log-based failure prediction,” Empirical
Software Engineering, vol.29, no. 5, 2024.
https://doi.org/10.1007/s10664-024-10501-4

Zang, X. D., Wang, T. L., Zhang, X. C., Jian Gong,
Gao, P., and Guowei Zhang, G. W. “Encrypted
malicious traffic detection based on natural
language processing and deep learning,” Computer
Networks, vol. 250, pp. 110598, 2024.
https://doi.org/10.1016/j.comnet.2024.110598

Si, Z., Liu, Z. Q., Mu, C. C., Wang, M., Fong, T. X.,
Xia, X. F., Hu, Q., Xiao, Y. “A new deep learning
based electricity theft detection framework for
smart grids in cloud computing,” Computer
Standards & Interfaces, vol. 94, pp. 104007, 2025.
https://doi.org/10.1016/j.¢s1.2025.104007
Nagarajan, S., Kayalvizhi, S., Subhashini, R., &
Anitha, V. “Hybrid honey badger-world cup
algorithm-based deep learning for malicious
intrusion detection in industrial control systems,”
Computers & Industrial Engineering, vol. 180, pp.
109166, 2023.
https://doi.org/10.1016/j.cie.2023.109166

Wang, Z. H., Thing, V. L. L. “Feature mining for
encrypted malicious traffic detection with deep
learning and other machine learning algorithms,”
Computers & Security, vol. 128, pp. 103143, 2023.
https://doi.org/10.1016/j.cose.2023.103143
Hashmi, A., Barukab, O. M., & A.H. Osman, O. M.
“A hybrid feature weighted attention based deep
learning approach for an intrusion detection system
using the random forest algorithm,” Plos One, vol.
19, no. 5, 2024.
https://doi.org/10.1371/journal.pone.0302294
Hnamte, V., Nhung-Nguyen, H., Hussain, J., &
Hwa-Kim, Y. “A novel two-stage deep learning
model for network intrusion detection: LSTM-AE,”
IEEE Access, vol. 11, pp. 37131-37148, 2023.
https://doi.org/10.1109/ACCESS.2023.3266979
Wasif, M. S., Miah, M. P., Hossain, M. S., Alenazi,
M. J., & Atiquzzaman, M. “CNN-ViT synergy: An
efficient Android malware detection approach
through deep learning,” Computers and Electrical
Engineering, vol. 123, pp. 110039, 2025.
https://doi.org/10.1016/j.compeleceng.2024.11003
9

2025.

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

F. Zhang

Hilal, M., Hashim, A. A., Mohamed, H. G., Nour, M.
K., Asiri, M. M., Al-Sharafi, A. M., Othman, M. &
Motwakel, A. “Malicious URL Classification Using
Artificial Fish Swarm Optimization and Deep
Learning,” Computers, Materials and Continua, vol.

74, no. 1, pp. 607-621, 2022.
https://doi.org/10.32604/cmc.2023.031371
Babayigit, B., & Abubaker, M. “Towards a

generalized hybrid deep learning model with
optimized hyperparameters for malicious traffic
detection in the Industrial Internet of Things,”
Engineering Applications of Artificial Intelligence,
vol. 128, pp- 107515, 2024.
https://doi.org/10.1016/j.engappai.2023.107515
Fu, X. B,, Lou, S. P,, Zheng, J. M., Chi, C., Yang, J.,
Wang, D., Zhu, C. M., Huang, B. T., & Zhu, X. T.
“Deep learning techniques for DDoS attack
detection: Concepts, analyses, challenges, and
future  directions,” Expert Systems  with
Applications, vol. 291, pp. 128469, 2025.
https://doi.org/10.1016/j.eswa.2025.128469

Zuo M., Guo, C. Y., Xu H. Y., Zhaoxin Zhang, Z. X.,
and Cheng, Y. N. “METC: A Hybrid Deep Learning
Framework for Cross-Network Encrypted DNS
over HTTPS Traffic Detection and Tunnel
Identification,” Information Fusion, vol. 121, pp.
103125, 2025.
https://doi.org/10.1016/j.inffus.2025.103125
Bhushan, K., & Gupta, B. B. “Network flow
analysis for detection and mitigation of Fraudulent
Resource Consumption(FRC)attacks in multimedia
cloud computing,” Multimedia Tools and
Applications, vol. 78, no. 4, pp. 4267-4298, 2019.
https://doi.org/10.1007/s11042-017-5522-z
Chauhan, V. K. & Kumar, A. “Cascaded capsule
twin attentional dilated convolutional network for
malicious URL detection,” Expert Systems with
Applications, vol. 262, pp. 125507, 2025.
https://doi.org/10.1016/j.eswa.2024.125507
Ghahramani, M., Taheri, R., Shojafar, M., Javidan,
R., & Shaohua Wan, S. H. “Deep Image: A precious
image based deep learning method for online
malware detection in IoT environment,” Internet of
Things, vol. 27, pp. 101300, 2024.
https://doi.org/10.48550/arXiv.2204.01690

Igbal, T., Wu, G. W., Igbal, Z., Mahmood, M. B.,
Shafique, A., and Guo, W. H., “PypiGuard: A novel
meta-learning approach for enhanced malicious
package detection in PyPI through static-dynamic
feature fusion,” Journal of Information Security and
Applications, vol. 90, pp. 104032, 2025.
https://doi.org/10.1016/j.jisa.2025.104032

Jeon, S. E., Oh, Y. S,, Lee, Y. J., & Lee, I. G.
“Suboptimal feature selection techniques for
effective malicious traffic detection on lightweight
devices,” CMES - Computer Modeling in
Engineering and Sciences, vol. 140, no. 2, pp. 1669-
1687, 2024.

Kalaria, R., Kayes, A. S. M., Rahayu, W., Pardede,
E., & Salehi, A. “IoTPredictor: A security
framework for predicting IoT device behaviours and



Multimodal Deep Learning for Malware Behavior Detection with...

(28]

[29]

(30]

[31]

(32]

[33]

[34]

detecting malicious devices against cyber attacks,”
Computers & Security, vol. 146, pp. 104037, 2024.
https://doi.org/10.1016/j.cose.2024.104037

Jia, H. T., Lang, B., Li, X. Y., and Yan, Y. H.
“IDEAL: A malicious traffic detection framework
with explanation-guided learning,” Knowledge-
Based Systems, vol. 317, pp. 113419, 2025.
https://doi.org/10.1016/j.knosys.2025.113419
Khashan, O. A. “Dual-stage machine learning
approach for advanced malicious node detection in
WSNs,” Ad Hoc Networks, vol. 166, pp. 103672,
2025. https://doi.org/10.1016/j.adhoc.2024.103672
Kolasa, D., Pilch, K., & Mazurczyk, W. “Federated
learning secure model: A framework for malicious
clients detection,” SoftwareX, vol. 27, pp. 101765,
2024. https://doi.org/10.1016/j.s0ftx.2024.101765
Wang, Y., Xiao, R., Sun, J., & Jin, S. “MC-Det:
Multi-channel representation fusion for malicious
domain name detection,” Computer Networks, vol.
255, pp- 110847, 2024.
https://doi.org/10.1016/j.comnet.2024.110847
Yevsikov, A., Muralidharan, T., Panker, T., Nissim,
N. “CADefender: Detection of unknown malicious
AutoLISP computer-aided design files using
designated feature extraction and machine learning
methods,” Engineering Applications of Artificial
Intelligence, vol. 138, pp. 109414, 2024.
https://doi.org/10.1016/j.engappai.2024.109414
Rafi, S. M., Yogesh, R., & Sriram, M. “Optimized
dual access control for cloud-based data storage and
distribution using global-context residual recurrent
neural network,” Computers & Security, vol., pp.
104183, 2024.
https://doi.org/10.1016/j.cose.2024.104183

Long, G. L., Yu, K., Yang, S. F., Xiaohong Zhou,
Shen, X. D., & Lu, N. F. “Software anomaly
detection technology based on deep learning,”
Procedia Computer Science, vol. 259, pp. 1123-
1129, 2025.
https://doi.org/10.1016/j.procs.2025.04.066

Informatica 49 (2025) 229-248 247



248  Informatica 49 (2025) 229-248 F. Zhang



