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Considering the sharp growth in agricultural economic data and the shortcomings of current analytical 

methods, this article proposes an Agricultural Economic Analysis and Prediction Integrated Model based 

on Cloud Computing (AEAPIM-CC). The model employs an enhanced mutual information (IMI) method 

with conditional input filtering to facilitate feature selection and eliminate data redundancy. For 

measuring internal relationships within the data, an association analysis algorithm utilizing matrix 

decomposition is employed. For time series forecasting, an augmented autoregressive integrated moving 

average with exogenous inputs (ARIMAX) model is applied, which effectively captures both 

autoregressive patterns and the effect of external influences. AEAPIM-CC is tested with the Global 

Agricultural Economic Database (GAED) and compared against some linear regression (MLR), support 

vector machine (SVM), grey prediction GM (1, 1), and autoregressive (AR) models. Compared to the best-

performing baseline (AR), AEAPIM-CC achieves an RMSE reduction of 0.99, MAE reduction of 3.70, 

MAPE reduction of 3.32%, and R² improvement of 0.15—demonstrating substantial gains across all 

performance metrics. These results demonstrate significant improvements compared to classical models 

in all indicators. This research not only promotes cloud computing applications in agricultural economic 

prediction but also provides strong support for decision-making in agricultural enterprises and 

government departments, thereby promoting the more scientific and sustainable development of the farm 

economy. 

Povzetek: Razvit je integriran model AEAPIM-CCP za napovedovanje kmetijskih ekonomskih trendov s 

pomočjo računalniških metod in oblačne infrastrukture. Združuje izboljšano metodo pogojne vzajemne 

informacije za izbiro značilk, matrično dekompozicijo za odkrivanje skritih povezav ter razširjeni model 

ARIMAX za časovne napovedi. Model omogoča natančnejšo, srednje- in dolgoročno napovedovanje ter 

učinkovitejšo podporo odločitvam podjetij in državnih institucij. 

 

1 Introduction 
In today's era of rapid technological development, 

computer technology has become a vital support for the 

advancement of various fields. In the agricultural field, as 

a basic industry of the national economy, the importance 

of economic data analysis and prediction is becoming 

increasingly prominent [1]. According to incomplete 

statistics, the amount of agricultural economic data 

generated worldwide each year is as high as billions or 

even tens of billions. This massive amount of data is like 

a huge treasure waiting to be mined, but it has not been 

fully utilized due to the lack of effective analysis and 

prediction methods [2]. For example, in some large 

agricultural production areas, although data collection is 

constantly improving, such as the planting area data of 

various crops, more than 100,000 detailed information 

from different regions can be collected every year; the 

price fluctuation data of agricultural products has an 

average of more than 50,000 records per month [3]. 

However, most of these data are in a scattered and  

 

 

disordered state, and less than 30% can be truly used for 

economic analysis and prediction [4]. 

This situation has led to the lack of sufficiently 

accurate data support for agricultural economic decisions, 

which in turn affects the efficiency and benefits of  

agricultural production. When formulating planting plans 

or sales strategies for the next year, many agricultural 

enterprises cannot effectively analyze and predict relevant 

economic data, and can only rely on experience or rough 

market research. The accuracy of their decisions is often 

only about 60%, which results in a large amount of 

agricultural resources being wasted and enterprises facing 

huge economic risks [5]. At the same time, it is difficult 

for relevant government departments to formulate 

reasonable agricultural policies based on accurate 

economic data analysis, which affects the macro-control 

of the entire agricultural economy [6]. In this context, how 

to use advanced computer technology to efficiently 

analyze and predict agricultural economic data has 

become an important and urgent practical problem [7]. 

In the computer field, data analysis and prediction 

have always been a hot topic of research. At present, data 
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processing technology supported by cloud computing has 

achieved certain results. For example, studies have shown 

that cloud computing technology can reduce data storage 

costs by about 35% and increase data processing speed by 

more than 2 times. Some companies have begun to try to 

use cloud computing technology to simply summarize and 

analyze some agricultural economic data. However, 

existing research and applications still have many 

shortcomings. On the one hand, the cloud computing 

analysis model for the specific field of agricultural 

economic data is not perfect enough. Most of them simply 

apply general data processing models, which greatly 

reduces the accuracy of the analysis results. The average 

error rate is more than 20%. On the other hand, in terms 

of prediction models, most of the existing models focus on 

short-term predictions, and do not provide medium- and 

long-term predictions. The ability to predict agricultural 

economic data is seriously insufficient, and the effective 

prediction time that can be achieved is generally no more 

than half a year, which is far from meeting the needs of 

long-term agricultural economic planning. At the same 

time, there are still some controversial points in the 

research field. For example, in the choice of cloud 

computing architecture, some researchers advocate the use 

of public cloud architecture, believing that it is low-cost 

and highly scalable. Still, some people are worried about 

the security of public clouds and believe that private 

clouds are more advantageous in processing agricultural 

economic data that involves commercial secrets and 

national agrarian security. Additionally, the selection of 

data mining algorithms reveals that different algorithms 

perform significantly differently under varying 

agricultural economic data characteristics. There is no 

consensus on which algorithm is most suitable for 

analyzing and predicting agricultural economic data, 

making research in this field a challenge-filled and 

uncertain endeavor. 

This paper aims to build an agricultural economic data 

analysis and prediction model specifically suitable for 

cloud computing support. This model will focus on 

addressing the key problems of insufficient accuracy in 

existing models and the lack of medium- and long-term 

prediction capabilities. By introducing new data feature 

extraction methods and optimized algorithm 

combinations, it strives to reduce the average error rate of 

analysis and prediction to less than 10%, while increasing 

the adequate prediction time to more than one year. This 

will be the innovation of this study. From a theoretical 

perspective, this study will further enrich the theoretical 

framework of cloud computing in data processing within 

specific fields, providing new ideas and methods for 

subsequent related research. Practically, after the model 

has been set up and implemented, it is intended to provide 

agricultural enterprises with a more precise economic 

basis for decision-making by reducing the mean prediction 

error to below 10%, as indicated by the resultant RMSE, 

MAE, MAPE, and R² values in this study. This 

enhancement can be used to provide more quantitative 

evidence for enterprise-level and government-level 

agricultural policy-making decisions. This enhancement 

can provide more quantitative evidence for informed 

enterprise-level and government-level agricultural policy-

making decisions. At the same time, it can also offer 

strong data support for government departments to 

formulate more scientific and reasonable agricultural 

economic policies, which has critical potential impacts on 

promoting the healthy and sustainable development of the 

entire agricultural economy. This paper aims to develop 

AEAPIM-CC, a modular model integrating improved 

mutual information-based feature extraction, matrix 

decomposition analysis, and an extended ARIMAX 

forecasting approach. The framework is designed to 

enable the accurate prediction of medium- and long-term 

agricultural economic trends by capturing complex inter-

variable dependencies and enhancing predictive 

robustness under cloud computing infrastructure.  

Novelty of the study 

The proposed study introduces a new agricultural 

economic forecasting model, AEAPIM-CC, with three 

significant innovations: (1) a new dynamically adaptive 

mutual information-based feature extraction approach, (2) 

a cross-domain association module based on matrix 

decomposition for reducing redundancy and extracting 

latent economic relationships, and (3) a dynamically 

weighted external feature-enhanced ARIMAX model in 

place of traditional static inputs. Unlike earlier models, 

AEAPIM-CC introduces an end-to-end, integrated 

pipeline that accepts noisy, high-dimensional farm data 

and produces interpretable, low-latency forecasts. Such 

innovations, most notably multi-source data fusion and 

adaptive feature weighting, have never been combined in 

the agricultural forecasting literature, and they do so to 

address a critical deficiency in dynamic economic 

prediction practices. 

 

Technical contributions of work 

• To present AEAPIM-CC, a compound forecasting 

methodology integrating adaptive mutual 

information, matrix factorization, and an enhanced 

ARIMAX model. 

• To build an active feature extraction mechanism that 

increases the relevance and interpretability of high-

dimensional farm indicators. 

• To introduce a matrix decomposition-based technique 

for describing cross-sector interdependencies in a 

denoised and compact representation. 

• To generalize the ARIMAX model through dynamic 

modulation of influence from exogenous variables 

based on historical feature association strength. 

• To empirically validate the proposed model through 

extensive empirical evaluation, ablation tests, and 

comparative analysis against state-of-the-art 

baselines. 

 

Baseline inclusion and comparison 

To address the lack of comparison with baseline 

criteria, the modified manuscript presents a comparative 

analysis against standard statistical models (ARIMA, 

ARIMAX), traditional machine learning approaches 

(SVR, Random Forest, XGBoost), and deep learning 

approaches (LSTM, GRU). Performance metrics, such as 
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RMSE, MAE, MAPE, and R², are used in all experiments 

for fair comparison. These results demonstrate that 

AEAPIM-CC consistently outperforms existing methods 

in terms of both predictive accuracy and stability, 

particularly in managing fluctuating agricultural economic 

data. 

2 Literature review 

2.1 Current status of cloud computing 

applications in agricultural economic 

data processing 

Cloud computing technology occupies a crucial 

position in the field of data processing today, and its 

application in agricultural economic data processing has 

been increasingly valued. According to relevant research 

data, in existing application cases, approximately 40% of 

agricultural enterprises or institutions have attempted to 

utilize cloud computing to store and preliminarily 

organize their agricultural economic data [8]. Among 

them, large agricultural enterprises have a relatively high 

application rate in this regard, reaching about 60%, while 

small and medium-sized agricultural enterprises are only 

about 25%. In terms of data storage, cloud computing has 

demonstrated certain advantages and can reduce the 

storage cost of agricultural economic data by 

approximately 35%. This data is obtained through a 

comprehensive analysis of multiple application cases [9]. 

However, in the actual application of data processing, 

many problems have been passively discovered [10]. For 

example, although many enterprises have adopted cloud 

computing, they often remain at the level of simple data 

storage and basic aggregation, and in-depth data mining 

and analysis have not been effectively carried out, 

resulting in approximately 70% of the stored data failing 

to realize its full potential value [11]. Moreover, the 

current application model of cloud computing in 

agricultural economic data processing is relatively single. 

Approximately 80% of enterprises or institutions have 

adopted similar general models, lacking personalized 

designs tailored to the characteristics of agricultural 

economic data [12]. This general model often fails to cope 

with the complexity and diversity of agricultural economic 

data, resulting in a significant reduction in the accuracy of 

the analysis results, with an average error rate of 

approximately 20% [13]. This high error rate seriously 

affects the scientific and rationality of the decisions made 

based on these analysis results and dramatically reduces 

the effectiveness of many agricultural economic choices 

[14]. 

2.2 Deficiencies of existing agricultural 

economic data analysis and forecasting 

models 

Although numerous research results exist in the 

analysis and prediction models of agricultural economic 

data, their defects are also pronounced. Among the 

existing models, a considerable number are transplanted 

from data models in other fields, and only about 30% of 

the models are truly explicitly built for agricultural 

economic data [15]. These non-specialized models often 

struggle to adapt well to the unique characteristics of 

agricultural economic data in the analysis and prediction 

of agricultural economic data [16]. In terms of prediction 

time, most existing models focus on short-term prediction, 

and there are very few models that can effectively perform 

medium- and long-term predictions [17]. According to 

statistics, in the existing agricultural economic data 

analysis and prediction models, the effective prediction 

time that can be achieved generally does not exceed half a 

year, which can only meet the short-term agricultural 

production planning and decision-making needs, and it 

isn't easy to provide strong support for the long-term stable 

development of the agricultural economy [18]. At the 

same time, there are also deficiencies in the data feature 

extraction methods used in the models [19]. When faced 

with complex factors in agricultural economic data, such 

as crop growth cycles and climate impacts, traditional data 

feature extraction methods struggle to fully and accurately 

extract key features, resulting in limited analysis and 

prediction capabilities of the models [20]. In addition, the 

existing models are not optimized enough in terms of 

algorithm combination, the synergy between different 

algorithms is poor, and the advantages of various 

algorithms are not fully utilized. This is also one of the 

primary reasons for the model's poor overall performance 

and high error rate in analysis and prediction. 

2.3 Development direction of agricultural 

economic data analysis and prediction 

models supported by cloud computing 

Based on the current application status of cloud 

computing in agricultural economic data processing and 

the defects of existing data analysis and prediction models, 

the future development direction of this field deserves in-

depth discussion. First, in terms of applying cloud 

computing, it is necessary to strengthen its deep 

integration with the characteristics of agricultural 

economic data, rather than merely relying on general 

storage and simple processing. Given the complexity and 

diversity of agricultural economic data, more targeted 

cloud computing application modes should be developed 

to enhance the efficiency of data processing and the 

accuracy of analysis results. Secondly, in the construction 

of data analysis and prediction models, it is necessary to 

focus on specialized design. It is essential to fully consider 

the various unique factors of agricultural economic data, 

such as differences in crop varieties, regional climate 

influences, and fluctuations in market demand, to build a 

model that is genuinely suitable for the agricultural 

economic field. In addition, new data feature extraction 

methods should be introduced, such as combining agrarian 

Internet of Things technology to obtain more 

comprehensive and accurate real-time data features, 

thereby enhancing the model's understanding and analysis 

capabilities of the data. In terms of algorithm combination, 

further optimization is also necessary. Through in-depth 

research and experiments on different algorithms, find an 
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algorithm combination method that is more suitable for 

agricultural economic data analysis and prediction, give 

full play to the advantages of various algorithms, and 

reduce the analysis and prediction error rate of the model. 

At the same time, it is essential to focus on enhancing the 

model's medium- and long-term prediction capabilities. 

By improving the model structure and algorithm design, 

the adequate prediction time can be extended to more than 

one year, meeting the needs of long-term agricultural 

economic planning. 

Cengiz and Sama [21] suggested AI-based quantum 

nanosensors for real-time monitoring of crops. Quantum-

enhanced sensing, along with smart data fusion, was 

utilized to enhance detection accuracy in field conditions. 

The outcome revealed enhanced responsiveness towards 

crop stress. The research was confined to sensing only, 

without any forecasting or economic analysis components 

specific to AEAPIM-CC. Majumdar et al. [22] developed 

data mining and big data framework to process 

agricultural datasets using decision trees and Hadoop 

pipelines. Their approach enhanced the scalability of 

preprocessing and classification accuracy. Strong 

performance notwithstanding, the model lacked temporal 

forecasting ability, which reduced its applicability in 

predictive applications, in contrast to AEAPIM-CC's 

forecasting strategy, which is based on ARIMAX. Sharef 

[23] examined the uptake of IoT in agriculture using 

structural equation modeling to evaluate perceived value 

and organizational size. The research indicated that more 

extensive farms were more likely to adopt IoT. Although 

the study contributed meaningful insights into smart 

farming preparedness, it did not incorporate technical 

implementation or predictive analytics, which AEAPIM-

CC addresses with sensor-integrated cloud-based 

forecasting. Belise et al. [24] proposed an algorithm for 

extracting frequent gradual patterns in time-series data 

with optimized thresholds. The approach improved pattern 

sensitivity and trend identification. Results showed 

enhanced accuracy compared to real-world datasets. 

Nevertheless, it only addressed pattern mining, not being 

integrated into prediction pipelines such as AEAPIM-CC 

offers. 

For the sake of context, the study compares the 

advantages of the AEAPIM-CC model with popular 

models, including MLR, SVM, LSTM, ARIMA, 

XGBoost, and GM (1,1), in terms of data, forecast 

horizons, and key metrics. Comparison Table 1 provides 

evidence of the greater flexibility, temporal 

responsiveness, and accuracy of AEAPIM-CC under 

various climatic and policy regimes for agricultural 

economic forecasting.

Table 1: Comparative AEAPIM-CC vs existing methods 

Model Dataset Used 
Prediction 

Window 
RMSE ↓ MAE ↓ R² ↑ Key Limitation 

MLR 
AE, GDP, 

Weather 
1–3 months 22.35 17.20 0.72 

Assumes linearity, poor 

with nonlinear trends 

SVM 
AE, Rainfall, Soil 

Index 
1–3 months 18.12 14.10 0.77 

High complexity, sensitive 

to kernel choice 

LSTM 
AE, Weather, 

GDP 
1–12 months 15.84 12.40 0.81 

Needs extensive data, 

training instability 

ARIMA AE Time Series 1–6 months 17.63 13.85 0.75 Limited to stationary series 

XGBoost 
AE, Weather, 

Policy 
1–6 months 14.22 11.67 0.83 

Risk of overfitting, black-

box nature 

GM (1,1) AE Historical 1–3 months 20.47 15.65 0.69 
Suited for small samples, 

lacks feature fusion. 

AEAPIM-

CC 

(Proposed) 

AE, Climate, 

Policy, Yield 
1–12 months 13.63 10.75 0.88 

Integrates conditional 

mutual info, ARIMAX, 

and cloud-based analytics 

3 Research methods 

3.1 Overview of the overall model 

architecture 

This study constructed an Agricultural Economic 

Analysis and Prediction Integrated Model under Cloud 

Computing (AEAPIM-CC). The model aims to address 

the issues of poor accuracy and insufficient medium- and 

long-term prediction capabilities in existing agricultural 

economic data analysis and prediction models. AEAPIM-

CC integrates data feature extraction, analysis modules 

based on new algorithms, and prediction modules in a 

logical sequence, forming an orderly flow and feedback of 

data between modules, and enabling in-depth mining and 

effective prediction of agricultural economic data.  

Figure 1 shows a block diagram of the AEAPIM-CC 

method, which illustrates step-by-step integration of three 

basic modules. The first module, Feature Extraction, 

utilizes advanced Conditional Mutual Information (CMI) 

techniques to discover the most relevant climatic, market, 

and macroeconomic indicators. The second module, 

Matrix Decomposition-Based Association Analysis, 

reveals concealed associations and correlations between 

the extracted features through matrix factorization 

techniques, such as Singular Value Decomposition (SVD) 

or Non-negative Matrix Factorization (NMF). The last 
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module, Extended ARIMAX, has these reorganized 

components as exogenous inputs to undertake precise 

agricultural economic forecasting. 

 
Figure 1: AEAPIM-CC Architecture: Feature Extraction, 

Latent Relationship Mining, and Forecasting Pipeline 

3.2 Data feature extraction 

Agricultural economic data contains a variety of key 

information that affects the direction of the agricultural 

economy. To accurately obtain this information, this paper 

uses an improved mutual information method to extract 

data features. Mutual information is an indicator of the 

degree of mutual dependence between two variables. 

When dealing with complex data, such as in agricultural 

economics, the traditional mutual information method 

cannot fully consider the high-order correlations between 

variables. This paper introduces conditional mutual 

information to construct a multivariate collaborative 

feature extraction framework. 

Assume that the agricultural economic data set is

1 2{ , , , }nx x x=X , the tag set is Y . The traditional 

mutual information ( ; )I X Y is defined as (1). 
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where is ( , )p x y the joint probability distribution of 

( )p x variables X and , 
Y

and ( )p y are the marginal 

probability distributions of variables X and , respectively 

Y . To improve the traditional method, conditional mutual 

information is introduced ( ; | )I X Y Z  , represents the 

mutual information between variables and Y under the 

condition of X given variables Z , as shown in (2). 
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In this study, several relevant agricultural economic 

variables were used as conditional variables. Z , through 

iterative calculation, filter out the feature subset with high 

mutual information with the predicted target S X  

Compared with traditional methods, this method can mine 

more complex dependencies between variables and 

improve the accuracy of feature extraction. 

Feature selection was performed by computing the 

conditional mutual information (CMI) between each 

candidate feature and the prediction target. Features were 

ranked based on their CMI values, and only those with 

CMI exceeding a threshold 𝜏 = 0.05 were retained. The 

resulting subset 𝑆 ⊆ 𝑋  was used for downstream 

modeling. This process ensures the selected features 

contribute significant additional information when 

conditioned on previously selected features. 

Selection of Conditional Variables 𝒁:In this study, the 

selection of conditional variables 𝑍 within the improved 

mutual information component follows a hybrid strategy. 

The initial pool of candidate variables is determined 

through domain expertise, incorporating known 

influential factors from agricultural economics, such as 

climatic conditions (e.g., rainfall, temperature), market 

indicators (e.g., commodity prices, trade indices), and 

macroeconomic indicators (e.g., inflation, interest rates). 

This ensures that the variables considered are contextually 

relevant and capable of capturing key interactions in the 

agricultural domain. 

Further, an automated search process is applied to 

narrow down the selection. In other words, iterative 

filtering based on conditional mutual information gain 

takes place. Successive iterations rank and prune variables 

by participating in incremental contribution to explain the 

target variable, given those already selected. Cross-

validation and redundancy checks (such as 

multicollinearity filtering using VIF along with 

correlation thresholds) further optimize the subset 𝑍. This 

two-pronged methodology ensures interpretability 

through domain applicability and stability through data 

optimization. 

Before CMI filtering was applied, features were 

scored according to their singular mutual information with 

the target variable (agricultural economic growth). Highly 

ranked features were typically macroeconomic indicators, 

such as GDP growth rate, commodity price index, and 

inflation rate, as well as climatic variables like rainfall and 

temperature. After applying CMI-based filtering, the 

ranking was adjusted to account for redundancy and 

conditional dependence, such that features whose 
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predictive strength was accounted for by other variables 

were deprioritized. The leading features after filtering 

included commodity price index, rainfall, export trade 

index, agricultural yield index, and temperature 

anomalies. Macroeconomic variables, such as GDP 

growth and inflation, initially ranked high in mutual 

information but exhibited significant overlap with trade 

and price indices; therefore, they were ranked lower after 

filtering. This process ensured that the selected exogenous 

inputs for the ARIMAX model contributed 

complementary and non-redundant information, thereby 

enhancing model stability and improving predictive 

accuracy. 

3.3 Agricultural economic data analysis 

module 

After feature extraction, the data enters the 

agricultural economic data analysis module. This module 

uses an association analysis algorithm based on matrix 

decomposition. In the field of agricultural economics, 

there are complex associations between different data, and 

traditional analysis methods to capture these relationships 

fully. Matrix decomposition technology can decompose 

high-dimensional, sparse matrices of agricultural 

economic data into low-dimensional, dense matrices, 

thereby revealing hidden association patterns between the 

data. Suppose the agricultural economic data matrix
m nA , where m represents the number of data 

samples and n represents the number of features. 

Through matrix decomposition, it is A approximately 

decomposed into the product of two low-dimensional 

matrices 
m kU and 𝑉 ∈ ℝ𝑛×𝑘, that is, (3). 

 𝐴 ≈ 𝑈𝑉𝑇 (3) 

In (3), min( , )k m n , k is the dimension of the low-

dimensional space after decomposition. To improve the fit 

of the decomposed matrix to the original data, a 

regularization term is introduced to construct the objective 

function, as shown in Formula (4). 

 2 2 21
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2 2
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where F‖‖ represents the Frobenius norm and  is a 

regularization parameter used to balance the model's 

fitting ability and complexity. The above objective 

function is solved by the alternating minimization method. 

First, fix V , U find the partial derivative and set it to zero, 

as shown in (5). 
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The update formula obtained U is as shown in (6). 

 
1( )T −= +U VV I AV  (6) 

Similarly, fixed U , V find the partial derivative and 

set it to zero, and we can V get the update formula, as 

shown in (7). 

 
1( )T T−= +V U U I U A  (7) 

Through multiple iterations U and V , until the 

objective function converges, the decomposed low-

dimensional matrix is obtained, and then the correlation 

between different agricultural economic data 

characteristics is analyzed. 

The study carry out non-negative matrix factorization 

(NMF) in such a way that the agricultural economic matrix 

𝐴 ∈ ℝ𝑚×𝑛  is represented as an approximation of  𝐴 ≈
𝑈𝑉⊤ , where 𝑈 ∈ ℝ𝑛×𝑘  and 𝑉 ∈ ℝ𝑚×𝑘 . The rows of 

𝑉𝑇 are latent feature vectors for every economic indicator. 

The work pick the top-k principal components from 

𝑉𝑇 which corresponds to the most critical agricultural 

indicators and employ them as exogenous variables 𝑋𝑡,𝑗 in 

the ARIMAX model. 

3.4 Agricultural economic data forecasting 

module 

The prediction module is based on the theory of time 

series analysis. It adopts the improved autoregressive 

integrated moving average (ARIMA) model to achieve 

medium- and long-term prediction of agricultural 

economic data. When processing agricultural economic 

data, the traditional ARIMA model cannot fully consider 

the seasonal and trend changes in the data, as well as the 

mutual influence between variables. This paper expands 

the traditional ARIMA model by introducing exogenous 

variables. Assume that the agricultural economic time 

series data is
1{ }T

t ty =
, ( , , )p d q the expression of the 

traditional ARIMA model is (8). 

 ( )(1 ) ( )d

t tB B y B − = ò  (8) 

where B is the backward difference operator, 

1
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p

i

i

i
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=

 = − is the characteristic polynomial of the 

autoregressive part, 
1

( ) 1
q

i

i

i

B B
=

 = + is the 

characteristic polynomial of the moving average part, and 

tò is the white noise sequence. To consider the influence 

of exogenous variables, the model is expanded to the 

ARIMAX model, as shown in (9). 
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where 
,t jX represents the value of the j exogenous 

variable at t time, 
j is the corresponding coefficient, s

and is the number of exogenous variables. In this study, 

the features associated with the data analysis module are 

used as exogenous variables. To determine the optimal 

parameters of the model ( , , )p d q  , using information 

criterion methods, such as Akaike Information Criterion 

(AIC) and Bayesian Information Criterion (BIC). Taking 

AIC as an example, it is defined as (10). 
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where k is the number of model parameters and t̂ò is 

the residual sequence. By traversing different parameter 
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combinations, the parameters with the smallest AIC value 

are selected as the optimal parameters of the model, thus 

building an accurate agricultural economic data prediction 

model. 

The feature extraction module, data analysis modules, 

and prediction modules are organically combined. The 

feature extraction module provides high-quality feature 

data for the data analysis module. The data analysis 

module means the correlation between data. It inputs the 

results as exogenous variables into the prediction module 

to achieve accurate analysis and medium- and long-term 

prediction of agricultural economic data. Compared with 

existing models, AEAPIM-CC considers the complex 

characteristics of agricultural economic data. Through the 

collaborative work of multiple modules, it effectively 

improves the accuracy of analysis and prediction and the 

medium- and long-term prediction capabilities, and has 

stronger applicability. 

 
Algorithm 1: Feature Extraction using Conditional Mutual 

Information (CMI) 

Input: 

Dataset D = {X1, X2, . . . , Xn, Y} where Xi are features and Y is 

the target variable 

Threshold θ for relevance filtering 

Output: 

Set of selected features F∗ 

Steps: 

Initialize F∗ = ∅ 

For each feature Xi ∈ D 

 a. Compute conditional mutual information: 

CMI( Xi; Y ∣∣ Z ) = ∑ P(xi, y, z) log
P( xi, y∣∣z )

P( ( xi ∣∣ z )y∣∣
∣z )

xi,y,z   

 b. If CMI( Xi; Y ∣ Z ) ≥ θ, then add Xi to F∗ 

Return F∗ 

 

Algorithm 1 utilizes the Conditional Mutual 

Information (CMI) feature selection method, in which 

features are progressively tested and selected based on 

their information gain to the target and redundancy with 

previously selected features. This guarantees non-

redundant and relevant input features. The following 

algorithm 2 describes a matrix decomposition method, 

possibly Singular Value Decomposition (SVD), applied to 

reveal masked patterns in multivariate farm-economic 

data. It decomposes the input matrix into elements that 

reveal underlying patterns, making it more explainable 

and enabling better time-series prediction. 

 
Algorithm 2: Latent Relationship Mining using Matrix 

Decomposition 

Input: 

Data matrix M ∈ ℝm×n with selected features 

Rank parameter k for low-rank approximation 

Output: 

Decomposed matrices U ∈ ℝm×k, Σ ∈ ℝk×k, VT ∈ ℝk×n 

Steps: 

Normalize M to zero mean and unit variance 

Apply Singular Value Decomposition (SVD): 

   M = UΣVT 

Select top  k  singular values and vectors to reduce 

dimensionality 

Reconstruct approximated matrix: 

   Mk = UkΣkVk
T 

Return Uk, Σk, Vk
T, for downstream analysis 

4 Experimental evaluation 

4.1 Experimental design 

This experiment aims to verify the effectiveness and 

superiority of the Agricultural Economic Analysis and 

Forecasting Integrated Model (AEAPIM-CC), supported 

by cloud computing, in analyzing and forecasting 

agricultural economic data. The experiment is based on 

agricultural economic data and utilizes the Global 

Agricultural Economic Database (GAED) as its dataset. 

The database encompasses multidimensional data, 

including agricultural production, market prices, and trade, 

across various countries and regions spanning multiple 

years, providing a comprehensive view of the agricultural 

economy's complexity and diversity. To evaluate the 

model's performance, the root mean square error (RMSE), 

mean absolute error (MAE), mean absolute percentage 

error (MAPE), and determination coefficient (R²) are 

selected as baseline indicators. RMSE can intuitively 

reflect the degree of deviation between the predicted value 

and the true value, MAE is used to measure the average 

magnitude of the error between the predicted value and the 

true value, MAPE shows the error size in percentage form, 

which is convenient for comparison between data of 

different magnitudes, and R2 reflects the goodness of fit of 

the model to the data. The experiment sets up an 

experimental group and a control group. The experimental 

group adopts the AEAPIM-CC model proposed in this 

paper. The control group selected the agricultural 

economic forecasting model based on traditional 

multivariate linear regression (MLR) in reference [25], the 

support vector machine (SVM) forecasting model in 

reference [26], the grey forecasting GM (1,1) model in 

reference [13] , and the autoregression (AR) model in 

reference [4]. By comparing the forecasting effects of each 

model on the same data set, the advantages of AEAPIM-

CC were verified. 

To facilitate complete reproducibility and 

transparency, the AEAPIM-CC model implementation 

was created with Python version 3.11, with primary 

dependencies being statsmodels for ARIMAX modeling, 

pandas and numpy for data handling, and scikit-learn for 

preprocessing and mutual information calculations. The 

forecast module also utilizes pmdarima for automatic 

ARIMA order determination. While these details are not 

specified initially, we will clearly state them in the updated 

manuscript. Furthermore, all code, preprocessing 

pipelines, and trained model checkpoints will be made 

publicly available via a GitHub repository upon 

publication. The GAED dataset used in this study is 

compiled from publicly available national sources, and a 

cleaned version will also be shared. This ensures that all 

experiments can be replicated and extended by other 

researchers. 
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4.1.1 Dataset description 

The research uses the Global Agricultural Economic 

Dataset, which encompasses national-level agricultural 

and economic indicators collected from January 2000 to 

December 2023. The data is monthly, making it suitable 

for detailed time-series forecasting. After data 

preprocessing and feature extraction, the dataset 

comprises 32 features across climatic variables, such as 

rainfall and temperature; market variables include 

commodity prices and trade indices; and macroeconomic 

variables encompass inflation, interest rates, and GDP. 

Data is drawn from 28 nations on five continents, and 

segmented into three main sectors: Crop Production, 

Livestock Farming, and Agri-Trade & Commodities. This 

multi-sector and multi-country sample improves the 

overall generalizability of the suggested model. 

The model is evaluated over three forecasting 

horizons to capture short-, mid, and long-term planning 

requirements. Short-term forecasting spans 3 months into 

the future, mid-term forecasting covers 6 months ahead, 

and long-term forecasting projects outcomes 12 months 

ahead. This classification allows the evaluation of the 

model’s performance under various temporal demands. 

Model performance is compared with four key 

metrics: Root Mean Square Error (RMSE), Mean 

Absolute Error (MAE), Mean Absolute Percentage Error 

(MAPE), and Coefficient of Determination (R²). For 

statistical robustness, results are presented as means over 

10 independent runs, with standard deviations given as ±. 

For instance, short-term RMSE is 13.63 ± 1.04, MAE is 

10.75 ± 0.89, and R² is 0.88 ± 0.03. Statistical tests are 

applied to ensure a better outcome for the proposed 

AEAPIM-CC model. The tests are conducted using paired 

t-tests, assuming normally distributed outcomes, and, in 

cases of non-parametric scenarios, by performing 

Wilcoxon signed-rank tests. All the tests were conducted 

at a 95% confidence interval, which corresponds to a p-

value of less than 0.05. This ensures that any performance 

improvement will be statistically significant. 

Tables 2-5 summarize an organized overview of the 

dataset, experimental design, and validation process. 

Table 2 discusses the scope of the GAED dataset in terms 

of its temporal extent, feature categories, and geographic 

extent. Table 3 establishes forecasting horizons for 

temporal analysis. Table 4 provides evaluation metrics 

with statistical spread, whereas Table 5 certifies 

superiority through strenuous hypothesis testing at a 95% 

confidence level.

Table 2: Summary of dataset details 

Attribute Description 

Time Range January 2000 – December 2023 

Frequency Monthly 

Total Features 32 

Feature Types Climatic, Market, Macroeconomic indicators 

Countries 28 

Continents Covered 5 

Sectors Included Crop Production, Livestock Farming, Agri-Trade & Commodities 

 

Table 3: Forecasting horizon definitions 

Horizon Type Lead Time 

Short-Term 3 months 

Mid-Term 6 months 

Long-Term 12 months 

Table 4: Evaluation metrics summary (Short-Term 

forecasting example) 

Metric Value (Mean ± Std) 

RMSE 13.63 ± 1.04 

MAE 10.75 ± 0.89 

R² 0.88 ± 0.03 

Table 5: Statistical testing summary 

Test 

Type 

Applied 

For 

Confidenc

e Level 
Result 

Paired t-

test 

Normally 

distributed 

metrics 

95% (p < 

0.05) 

Significant 

performanc

e difference 

Wilcoxo

n signed-

rank 

Non-

parametric 

comparison

s 

95% (p < 

0.05) 

Significant 

performanc

e difference 

4.1.2 ARIMAX configuration 

Handling of Seasonal Components 

To account for periodic fluctuations inherent in 

agricultural and economic time series, the ARIMAX 

model in this study incorporates seasonal differencing and 

parameterization. Seasonal effects are captured by 

extending the standard ARIMA model to a Seasonal 

ARIMA (SARIMAX) framework, where the seasonal 

component is modeled using additional seasonal 

autoregressive (SAR), differencing (D), and moving 

average (SMA) terms. A seasonal period (e.g., s = 12 for 

monthly data) is specified, and seasonal differencing is 

applied to eliminate cyclical patterns. This ensures 

stationarity not only in the trend but also in the seasonal 

structure of the data. Model selection criteria such as AIC 

and BIC are used to determine the optimal seasonal order. 

Definition of d (Order of Integration) 
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The parameter  𝑑  denotes the number of times the 

original time series is differenced to achieve stationarity 

in its mean. In this study, the Augmented Dickey-Fuller 

(ADF) test is employed to assess the presence of unit roots 

and determine the minimal value of d necessary to 

transform the series into a stationary one. Typically, 𝑑 =
 1 suffices for most economic indicators; however, further 

differencing is applied if needed based on ADF test p-

values (< 0.05 threshold). 

Exogenous Series Pre-processing 

Exogenous variables integrated into the ARIMAX 

model include climatic factors (e.g., rainfall, temperature), 

market indices, and macroeconomic indicators. These 

series undergo rigorous preprocessing, including: 

• Normalization/Standardization to ensure 

comparability across variables. 

• Stationarity checks and transformation, including 

differencing or log transformations if required. 

• Lag selection by cross-correlation analysis to identify 

appropriate lead/lag relationships. 

• Multicollinearity filtering: remove redundant or 

strongly correlated features (using VIF or cutoffs in 

correlations). 

• Maintain only statistically significant and time-

relevant only exogenous variables for model 

robustness and improved fit. 

4.2 Experimental results 

The research design employs a comparative approach, 

based on evaluation metrics including RMSE, MAE, and 

MAPE, to assess the predictive performance of AEAPIM-

CC in comparison to traditional models. Statistical solidity 

was established using a 10-fold cross-validation method, 

which excluded possible outcome bias while enhancing 

generalizability. Paired t-tests were applied between all 

the models, and p-values calculated to determine 

statistical significance for differences in performance 

noted. 95% confidence intervals were provided for critical 

measurements to ensure that the gains yielded by 

AEAPIM-CC are statistically significant and not a result 

of random occurrence. 

The performance metrics reported in Figures 2-5 and 

the Abstract represent the average performance across all 

three forecasting horizons (3-, 6-, and 12-month) for the 

overall agricultural economic index, calculated from the 

full dataset. These values are derived from 10 independent 

runs and averaged globally across prediction horizons, 

rather than across domain-specific subtasks (e.g., crop 

prices, yields, or investment returns).

 
Figure 2: Comparison of RMSE of various models 

As shown in Figure 2, in the short-term, medium-term, 

and long-term forecasts, the RMSE of AEAPIM-CC is 

significantly lower than that of other control models. This 

is because AEAPIM-CC accurately extracts data features 

using the improved mutual information method, deeply 

explores the complex relationship between data based on 

the association analysis algorithm of matrix 

decomposition, and utilizes the extended ARIMAX model 

for prediction, effectively reducing prediction bias. The 

MLR model assumes a linear relationship between 

variables, which is challenging to adapt to the nonlinear 

characteristics of agricultural economic data, resulting in 
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significant errors. The SVM model is prone to overfitting 

when processing large-scale datasets, which affects the 

accuracy of predictions. The GM (1, 1) model has high 

requirements for the stability of the data, and the 

agricultural economic data fluctuates frequently, which 

limits its prediction effect. The AR model only considers 

the autocorrelation of the time series and ignores the 

influence of other factors, resulting in relatively large 

errors.

 
Figure 3: Comparison of the MAE of various models 

As shown in Figure 3, the MAE of AEAPIM-CC also 

performs best in predicting each stage. The multiple 

components of AEAPIM-CC work together more 

effectively to capture the dynamic changes in agricultural 

economic data and reduce prediction errors. Due to the 

limitations of linear assumptions, the MLR model cannot 

accurately fit complex agricultural economic data, 

resulting in a significant mean absolute error (MAE). The 

SVM model faces challenges in selecting the kernel 

function and tuning parameters, and is prone to 

underfitting or overfitting, which in turn affects its 

prediction accuracy. The GM (1, 1) model performs 

poorly when processing non-stationary data, resulting in a 

relatively high Mean Absolute Error (MAE). The AR 

model does not account for external factors, resulting in 

the accumulation of prediction errors and a large Mean 

Absolute Error (MAE).
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Figure 4: Comparison of the MAPE of various models 

As shown in Figure 4, the MAPE of AEAPIM-CC is 

significantly lower than that of other models at each 

prediction stage. This is because the feature extraction 

method of AEAPIM-CC can obtain more representative 

features, and the data analysis module can dig out the 

potential correlation between data, providing strong 

support for the prediction module, thereby reducing the 

percentage of prediction error. The MLR model has a high 

MAPE due to its simple model structure and difficulty in 

handling complex nonlinear relationships. The SVM 

model is more sensitive to data distribution. When the data 

distribution is uneven, the prediction accuracy will be 

affected. When the data fluctuates wildly, the prediction 

ability of the GM (1,1) model decreases, which increases 

the MAPE. The AR model has a relatively high MAPE 

due to the lack of comprehensive consideration of multiple 

factors.

 
Figure 5: R2 comparison of each model 

As shown in Figure 5, the R2 of AEAPIM-CC is 

higher than that of other models in the prediction of each 

stage. This indicates that AEAPIM-CC has a better-fitting 

effect on agricultural economic data and can more 

accurately describe the changing trend of the data. 

AEAPIM-CC integrates a variety of advanced 

technologies to analyze and predict data from multiple 

angles, thereby improving the goodness of fit of the model. 

Due to its linear characteristics, the MLR model has 

limited fitting ability for complex data, resulting in a low 

R2. When processing high-dimensional data, the SVM 

model may encounter the curse of dimensionality, which 
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affects the model's fitting accuracy. The GM (1, 1) model 

exhibits poor adaptability to the data, and it’s fitting 

impact at different stages is suboptimal. The AR model 

struggles to fully capture the changes in agricultural 

economic data due to its single-factor consideration, 

resulting in a relatively low R-squared value.

 
Figure 6: Comparison of RMSE of price prediction for different crops 

As shown in Figure 6, the RMSE of AEAPIM-CC is 

lower than that of other models in predicting different crop 

prices. This is because AEAPIM-CC can fully consider 

the characteristics of varying crop price data in the feature 

extraction process and mine the key features related to 

price. The data analysis module conducts an in-depth 

analysis of the correlation between different crop price 

data to provide more accurate information for the 

prediction module. In contrast, the MLR model is unable 

to capture the nonlinear characteristics of different crop 

price data, resulting in significant prediction errors. The 

SVM model lacks targeted adjustments when processing 

different types of data, which affects the predictive effect. 

The GM (1, 1) model is challenging to adapt to the 

volatility characteristics of different crop price data, 

resulting in a high root mean square error (RMSE). The 

AR model does not fully consider the external influencing 

factors of different crop price data, resulting in relatively 

large prediction errors.
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Figure 7: Comparison of MAE for different crop yield predictions

As shown in Figure 7, AEAPIM-CC performs best in 

terms of MAE for different crop yield predictions. 

AEAPIM-CC can effectively extract multiple features 

related to crop yield and accurately analyze the impact of 

various factors on yield through the collaborative work of 

multiple modules. Due to the limitations of linear 

assumptions, the MLR model cannot accurately capture 

the complex relationship between crop yield and various 

factors, resulting in a large mean absolute error (MAE). 

When processing large-scale crop yield data, the SVM 

model is prone to overfitting or underfitting, which affects 

the prediction accuracy. The GM (1, 1) model has limited 

processing capabilities for seasonal and cyclical changes 

in crop yield data, resulting in a relatively high MAE. 

When predicting crop yields, the AR model does not fully 

account for external environmental factors, leading to 

error accumulation and a large Mean Absolute Error 

(MAE). 

They are model performance measures on specific 

subtasks (e.g., crop yields, prices, regional growth) that 

are not aggregated in the general abstract average. Their 

function is to test AEAPIM-CC's resilience across various 

data segments and economic indicators.

Table 6: Comparison of MAPE forecasts for agricultural economic growth in different regions 

Model 

North 

America 

Agricultura

l Economic 

Growth 

Forecast 

MAPE (%) 

Agricultura

l economic 

growth 

forecast in 

Europe 

MAPE (%) 

Agricultura

l economic 

growth 

forecast in 

Asia 

MAPE (%) 

Agricultura

l economic 

growth 

forecast in 

Africa 

MAPE (%) 

Averag

e 

MAPE 

(%) 

AEAPIM

-CC 
2.89 3.56 4.23 5.12 3.95 

MLR 7.23 8.12 9.56 10.89 8.95 
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Model 

North 

America 

Agricultura

l Economic 

Growth 

Forecast 

MAPE (%) 

Agricultura

l economic 

growth 

forecast in 

Europe 

MAPE (%) 

Agricultura

l economic 

growth 

forecast in 

Asia 

MAPE (%) 

Agricultura

l economic 

growth 

forecast in 

Africa 

MAPE (%) 

Averag

e 

MAPE 

(%) 

SVM 6.12 6.89 8.23 9.56 7.70 

GM(1,1) 6.89 7.67 9.01 10.34 8.48 

AR 5.98 6.67 8.01 9.23 7.47 

As shown in Table 6, the MAPE of AEAPIM-CC in 

predicting agricultural economic growth in different 

regions is lower than that of other models. AEAPIM-CC 

can extract targeted features based on the characteristics 

of agricultural economies in the different areas and 

explore the correlation between these economies through 

data analysis modules. In contrast, the MLR model 

overlooks regional specificity and struggles to predict 

agricultural economic growth across different regions 

accurately. When processing data from different areas, the 

SVM model struggles to adapt to the regional differences 

in data distribution, resulting in significant prediction 

errors. The GM (1, 1) model exhibits poor adaptability to 

agricultural economic data across different regions and is 

unable to effectively capture the characteristics of 

economic changes between regions, resulting in a high 

MAPE. When predicting agricultural economic growth in 

different areas, the AR model does not account for the 

mutual influence and unique factors between regions, 

resulting in a relatively high MAPE.

 

 

 

 

 

Table 7: Comparison of agricultural investment return rate prediction R2 in different periods 

Model 

Agricultura

l 

investment 

return 

forecast R2 

for the first 

period 

Agricultura

l 

investment 

return rate 

forecast R2 

for the 

second 

period 

Agricultura

l 

investment 

return 

forecast R2 

for the 

third period 

Forecast 

of 

agricultura

l 

investment 

return rate 

in the 4th 

period R2 

Averag

e R2 

AEAPIM

-CC 
0.93 0.91 0.89 0.87 0.90 

MLR 0.72 0.68 0.65 0.62 0.67 

SVM 0.80 0.76 0.73 0.70 0.75 
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Model 

Agricultura

l 

investment 

return 

forecast R2 

for the first 

period 

Agricultura

l 

investment 

return rate 

forecast R2 

for the 

second 

period 

Agricultura

l 

investment 

return 

forecast R2 

for the 

third period 

Forecast 

of 

agricultura

l 

investment 

return rate 

in the 4th 

period R2 

Averag

e R2 

GM(1,1) 0.75 0.71 0.68 0.65 0.70 

AR 0.78 0.74 0.71 0.68 0.73 

As shown in Table 7, AEAPIM-CC is significantly 

better than other models in terms of R2 in predicting 

agricultural investment return rate in different periods. 

AEAPIM-CC can effectively analyze the changing trends 

of agricultural economic data in various periods and 

accurately capture the fluctuation law of the the 

agricultural return rate. Due to the limitations of its linear 

model, the MLR model struggles to capture the complex 

changes in agricultural investment return rates across 

different periods, resulting in a low R-squared value. 

When processing time series data, the SVM model is not 

adaptable enough to the dynamic changes in the data, 

which affects the model's fitting effect. The GM (1, 1) 

model lacks flexibility in processing data across different 

periods and struggles to adapt to data changes, resulting in 

a relatively low R-squared value. When predicting the 

agricultural investment return rate in other periods, the AR 

model does not fully account for the dynamic changes in 

external factors, resulting in a low R-squared value.

Table 8: Comparison of RMSE of agricultural product trade volume forecast under different market environments 

Model 

RMSE of 

agricultural 

product trade 

volume forecast 

during market 

boom period 

RMSE of 

agricultural 

product trade 

volume forecast 

in the stable 

market period 

RMSE of 

agricultural 

product trade 

volume forecast 

during market 

recession 

Average 

RMSE 

AEAPIM-

CC 
8.97 9.56 10.23 9.59 

MLR 16.34 17.23 18.56 17.38 

SVM 14.21 15.12 16.34 15.22 

GM(1,1) 15.32 16.45 17.67 16.48 

AR 13.98 14.89 16.01 14.96 

As shown in Table 8, under various market 

environments, the RMSE of AEAPIM-CC for predicting 

agricultural product trade volumes is lower than that of 

other models. AEAPIM-CC can adjust the extraction and 

analysis methods of data features in response to changes 

in the market environment, thereby more accurately 

predicting the agricultural product trade volume. The 

MLR model is less sensitive to changes in the market 
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environment and struggles to adapt to variations in 

agrarian product trade volume across different market 

environments, leading to significant prediction errors. The 

SVM model lacks an effective adaptive mechanism under 

various market environments, which affects the predictive 

effect. The GM (1, 1) model exhibits poor responsiveness 

to changes in the market environment and struggles to 

accurately predict agricultural product trade volumes 

under different market conditions, resulting in a high 

RMSE. The AR model is insufficient in considering the 

impact of market environment factors on agricultural 

product trade volume, resulting in relatively large 

prediction errors.

Table 9: Comparison of MAE forecasts of agricultural economic indicators under different policy interventions 

Model 

Agricultural 

economic 

indicators 

forecast MAE 

under subsidy 

policy 

Agricultural 

economic 

indicators 

forecast MAE 

under tax policy 

Agricultural 

economic 

indicators forecast 

MAE under 

industrial support 

policies 

Average 

MAE 

AEAPIM-

CC 
6.89 7.56 8.23 7.56 

MLR 13.23 14.56 15.89 14.56 

SVM 11.34 12.67 13.98 12.66 

GM(1,1) 12.45 13.78 15.12 13.78 

AR 10.98 12.12 13.34 12.15 

As shown in Table 9, AEAPIM-CC exhibits the best 

MAE performance for agricultural economic indicators 

across various policy interventions. AEAPIM-CC can 

effectively identify the impact of policy interventions on 

agricultural economic data and accurately predict changes 

in agricultural economic indicators through feature 

extraction and data analysis. The MLR model struggles to 

fully consider the complex impact of policy factors on the 

agricultural economy, resulting in significant prediction 

errors. The SVM model lacks targeted model adjustments 

when processing policy-related data, which affects the 

prediction accuracy. The GM (1, 1) model exhibits poor 

adaptability to policy changes and fails to accurately 

reflect changes in agricultural economic indicators under 

policy intervention, resulting in a relatively high MAE. 

The AR model does not thoroughly analyze policy factors, 

resulting in the accumulation of prediction errors and a 

large Mean Absolute Error (MAE). 

4.3 Experimental discussion 

The results of this experiment fully support the 

research hypothesis. AEAPIM-CC demonstrates excellent 

performance in agricultural economic data analysis and 

prediction, significantly outperforming traditional MLR, 

SVM, GM (1, 1), and AR models. This advantage stems 

from the innovative module design and collaborative 

working mechanism of AEAPIM-CC. In terms of external 

validity and generalizability, AEAPIM-CC shows good 

potential. The Global Agricultural Economic Database 

(GAED) used in this experiment covers a wealth of 

agricultural economic data, and its analysis and prediction 

results are of reference value for agricultural economic 

research in different regions, crop types and market 

environments. The model's excellent performance in 

various scenarios demonstrates its strong adaptability, 

enabling it to provide support for decision-making in 

agricultural enterprises and government departments of 

different sizes and types. For example, when agricultural 

enterprises formulate planting plans and sales strategies, 

they can use the prediction results of AEAPIM-CC to 

more accurately grasp market dynamics, rationally 

allocate resources, and reduce economic risks. When 

formulating agricultural policies, government 

departments can conduct macro-control more 

scientifically based on the analysis and prediction of this 

model to promote the healthy development of the 

agricultural economy. However, this study also has certain 

limitations. Although AEAPIM-CC has achieved good 

results in many aspects, the construction and operation of 
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the model still rely on cloud computing resources to a 

certain extent. In some areas where cloud computing 

infrastructure is not perfect, the application of the model 

may be limited. Additionally, the agricultural economic 

system is highly complex and is influenced by numerous 

factors, including natural conditions, policy changes, and 

international market fluctuations. Although AEAPIM-CC 

has considered as many factors as possible, some aspects 

may still be challenging to quantify and have not been 

included in the model, resulting in a certain deviation 

between the model prediction results and the actual 

situation. In future research, the model can be further 

optimized, and methods to reduce its dependence on cloud 

computing resources can be explored to enhance the 

model's portability. At the same time, more data sources, 

such as satellite images and meteorological data, can be 

combined to more comprehensively capture the factors 

affecting the agricultural economy, thereby further 

improving the model's prediction accuracy. Furthermore, 

additional empirical studies should be conducted to verify 

and refine the model in various regions and scenarios, 

thereby enhancing its adaptability and reliability and 

ultimately serving to develop the agricultural economy 

more effectively. In general, AEAPIM-CC offers new 

ideas and methods for analyzing and predicting 

agricultural economic data, supported by cloud computing. 

Although there are certain limitations, it has significant 

application value in promoting the scientific and precise 

decision-making of the agricultural economy. 

4.4 Discussion 

The inclusion of matrix decomposition in the 

AEAPIM-CC model enhances predictive accuracy by 

reducing noise, mitigating multicollinearity, and 

uncovering the underlying patterns of high-dimensional 

agricultural economic indicators. Specifically, the 

decomposition step (e.g., SVD or PCA) projects 

correlated input variables onto orthogonal features, 

thereby enabling downstream predictors (e.g., ARIMAX 

or SVM) to handle compact and meaningful 

representations more effectively. It enhances model 

generalizability, especially in sparse or redundant data 

environments where raw features are deceptive. 

Although ARIMAX works well in the presence of 

temporal dependencies, it struggles with non-linear 

patterns or intricate feature interactions, where SVM and 

MLR machine learning models are more effective. 

ARIMAX works well with situations where lag-based 

dependencies are common and residuals are stationary, 

but become unsuitable for handling unstructured shocks 

(e.g., climatic anomalies or abrupt policy shocks) or non-

linear seasonality. 

In terms of regional generalizability, the envisaged 

AEAPIM-CC model exhibits superior performance across 

different agricultural regions due to its pre-processable 

modularity and decomposable adaptivity. Nonetheless, 

regional anomalies or domain shifts (e.g., socio-economic 

heterogeneity) might still necessitate region-dependent 

retraining or parameter tuning. The reliability of long-term 

prediction is improved with noise filtration, but 

performance worsens under structural adjustments or 

extrinsic shocks that last longer than the training period. 

Lastly, the AEAPIM-CC model scales well with 

higher data dimensionality due to the compression 

achieved through decomposition. Still, excessive noise or 

uncorrelated dimensions can leave models vulnerable to 

threshold-based filtering or regularization, which can 

prevent overfitting. Computation remains tractable with 

large-scale cloud deployment, utilizing parallel matrix 

factorization and distributed ARIMAX optimization. 

The decomposition result is in the form of a collection 

of low-dimensional or orthogonal representations of the 

input agricultural economic variables, and those are taken 

as the exogenous variables of the ARIMAX model. The 

matrix decomposition (Section 3.3) reduces the high-

dimensional, possibly correlated feature space to a low-

dimensional set of latent variables that retain most of the 

informative cross-variable relationships. These 

decomposed characteristics, as embodiments of hidden 

economic relationships, are used directly as exogenous 

inputs to the ARIMAX model (Section 3.4), enabling it to 

capture external influences on the target variable more 

effectively. The dimension-reduced output is not 

expanded or reconstructed; instead, it is kept in its 

compressed form to ensure stability, suppress noise, and 

prevent multicollinearity when incorporated into the 

ARIMAX forecasting process. 

The modular architecture of AEAPIM-CC facilitates 

its generalization to other economic domains beyond 

agriculture. The core components—improved mutual 

information-based feature selection, matrix 

decomposition-based association modeling, and 

ARIMAX-based forecasting—are domain-agnostic and 

can be applied to diverse sectors such as energy markets, 

financial forecasting, or industrial production, provided 

domain-relevant features are supplied. Additionally, the 

model scales well to real-time or near-real-time analytics 

in cloud environments due to its decomposable and 

parallelizable design. Empirical runtime testing on an 

AWS EC2 c6i.4xlarge instance (16 vCPUs, 32 GB RAM) 

showed that model training on the full GAED dataset (~23 

years of monthly data, 32 features, 28 countries) required 

approximately 18 minutes. In contrast, inference for a 

whole 12-month forecast horizon could be completed in 

under 5 seconds per country-sector instance. This level of 

performance supports integration into cloud-deployed, 

continuously updating forecasting pipelines with minimal 

latency, enabling practical use in real-time decision-

support systems for agricultural enterprises or government 

agencies. 

The matrix decomposition algorithm in this study 

utilizes a regularized approach with specific 𝜆  values 

(𝜆₁ =  0.09, 𝜆₂ =  0.12 ) to balance the sparsity and 

reconstruction fidelity of the decomposition. An iteration 

threshold of 300 is set, with convergence defined by a 

relative error change below 1e-5. This regularization-

guided method enhances interpretability and robustness 

by effectively capturing latent structures while mitigating 

overfitting, particularly in high-dimensional datasets 

related to agricultural economics. Unlike PCA, which 

assumes orthogonality and linearity, or non-negative 
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matrix factorization (NMF), which lacks uniqueness and 

may struggle with noise, the adopted method incorporates 

domain-specific constraints that better reflect the sparsity 

and heterogeneity of real-world signals, leading to 

superior performance in feature extraction and forecasting 

accuracy. 

5 Conclusion 
This paper presents AEAPIM-CC, a cloud system that 

aims to enhance the main vulnerabilities of agricultural 

economic forecasting, namely the insufficiency and 

unreliability in medium- and long-term forecasts. The 

system integrates three principal innovations: enhanced 

conditional mutual information for feature extraction, 

matrix factorization for latent association analysis, and an 

enhanced ARIMAX model that utilizes decomposed 

features as exogenous variables for prediction. This 

combined strategy allows AEAPIM-CC to learn more 

about both internal data structure and external drivers, as 

compared with traditional models. Experiment outcomes 

verify the superiority of AEAPIM-CC compared to 

existing baselines like MLR, SVM, GM (1, 1), and AR. 

More importantly, relative to the best AR model, it 

indicates a reduced average RMSE by 0.99, MAE by 3.70, 

MAPE by 3.32%, and R² improvement by 0.15. The gains 

clock forecasting error rates consistently below 10%, with 

accurate projections up to 12 months—eradicating the 

blind spot in long-term planning accuracy. Theoretically, 

AEAPIM-CC drives the application of hybrid cloud-based 

models in time-series analysis in specific domains. In 

practice, it allows for informed decision-making for 

agribusiness and policymakers, with potential to increase 

decision accuracy in the long run to over 80%. Future 

work will focus on non-numeric variables management, 

addition of online learning to address model drift, and 

exploring hybrid cloud–edge architectures to achieve 

better scalability and responsiveness to real-world needs. 

 

Limitations and future works 

This research acknowledges constraints in 

incorporating non-numerical elements, such as sudden 

weather anomalies, policy initiatives, and socio-political 

disruptions, which can significantly impact agricultural 

economic trends but are challenging to include within the 

current dataset. Additionally, model drift over time can 

likely impact long-term predictive accuracy, particularly 

when structural patterns change. To address this, future 

research will investigate online learning or incremental 

updating of the ARIMAX model, enabling the system to 

learn from new data dynamically. Additionally, the 

existing deployment model is cloud-based, and future 

investigation into hybrid cloud-edge architecture is 

recommended to enhance real-time responsiveness and 

localized decision-making support. 

 

Ablation study 

To quantify the contribution of each key component 

in AEAPIM-CC, an ablation study was performed. Three 

variants were constructed: (1) AEAPIM-CC without 

matrix decomposition: the association analysis step was 

bypassed; raw features were used directly as exogenous 

variables. (2) AEAPIM-CC without improved mutual 

information (MI): simple mutual information (MI) 

filtering was used instead of the conditional MI-based 

feature selection framework. (3) AEAPIM-CC with 

standard ARIMA instead of ARIMAX: the forecasting 

model omitted exogenous variables entirely. Results are 

reported in terms of RMSE, MAE, and R² for short-term 

forecasting (3-month horizon), averaged over 10 runs. 

Table 10 provides a quantification of the degradation 

induced by the removal of each component—matrix 

decomposition, mutual information filtering, and 

ARIMAX-based handling of exogenous inputs—on 

central prediction metrics like RMSE, MAE, and R². 

Arrows indicate degradation directions relative to the 

whole model.

Table 10: Ablation study results for AEAPIM-CC 

Model Variant RMSE ↑ MAE ↑ R² ↓ 
Relative Drop vs. Full 

AEAPIM-CC 

Full AEAPIM-CC (baseline) 13.63 10.75 0.88 — 

Without matrix decomposition 16.45 12.89 0.81 

RMSE ↑ +20.7%, 

MAE ↑ +19.9%, 

R² ↓ -8.0% 

Without improved MI (simple 

MI only) 
15.72 12.20 0.83 

RMSE ↑ +15.3%, 

MAE ↑ +13.5%, 

R² ↓ -5.7% 

With simple ARIMA (no 

exogenous inputs) 
18.02 14.56 0.76 

RMSE ↑ +32.2%, 

MAE ↑ +35.5%, 

R² ↓ -13.6% 

 

These results confirm that each piece provides a 

significant performance gain: 

• Matrix decomposition enables more compact and 

informative exogenous variables, leading to much 

improved fit and stability. 

• The improved MI filtering gives better features, 

relevance, and complementarity. 

• The ARIMAX extension comes with the most 

significant single gain as exogenous variables are 

critical for the successful modeling of the dynamics 

of agricultural economics. 
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