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Considering the sharp growth in agricultural economic data and the shortcomings of current analytical
methods, this article proposes an Agricultural Economic Analysis and Prediction Integrated Model based
on Cloud Computing (AEAPIM-CC). The model employs an enhanced mutual information (IMI) method
with conditional input filtering to facilitate feature selection and eliminate data redundancy. For
measuring internal relationships within the data, an association analysis algorithm utilizing matrix
decomposition is employed. For time series forecasting, an augmented autoregressive integrated moving
average with exogenous inputs (ARIMAX) model is applied, which effectively captures both
autoregressive patterns and the effect of external influences. AEAPIM-CC is tested with the Global
Agricultural Economic Database (GAED) and compared against some linear regression (MLR), support
vector machine (SVM), grey prediction GM (1, 1), and autoregressive (AR) models. Compared to the best-
performing baseline (AR), AEAPIM-CC achieves an RMSE reduction of 0.99, MAE reduction of 3.70,
MAPE reduction of 3.32%, and Rz improvement of 0.15—demonstrating substantial gains across all
performance metrics. These results demonstrate significant improvements compared to classical models
in all indicators. This research not only promotes cloud computing applications in agricultural economic
prediction but also provides strong support for decision-making in agricultural enterprises and
government departments, thereby promoting the more scientific and sustainable development of the farm
economy.

Povzetek: Razvit je integriran model AEAPIM-CCP za napovedovanje kmetijskih ekonomskih trendov s
pomocjo racunalniskih metod in oblacne infrastrukture. Zdruzuje izboljSano metodo pogojne vzajemne
informacije za izbiro znacilk, matricno dekompozicijo za odkrivanje skritih povezav ter razsirjeni model
ARIMAX za casovne napovedi. Model omogoca natancnejso, srednje- in dolgorocno napovedovanje ter

ucinkovitejso podporo odlocitvam podjetij in drzavnih institucij.

1 Introduction

In today's era of rapid technological development,
computer technology has become a vital support for the
advancement of various fields. In the agricultural field, as
a basic industry of the national economy, the importance
of economic data analysis and prediction is becoming
increasingly prominent [1]. According to incomplete
statistics, the amount of agricultural economic data
generated worldwide each year is as high as billions or
even tens of billions. This massive amount of data is like
a huge treasure waiting to be mined, but it has not been
fully utilized due to the lack of effective analysis and
prediction methods [2]. For example, in some large
agricultural production areas, although data collection is
constantly improving, such as the planting area data of
various crops, more than 100,000 detailed information
from different regions can be collected every year; the
price fluctuation data of agricultural products has an
average of more than 50,000 records per month [3].
However, most of these data are in a scattered and

disordered state, and less than 30% can be truly used for
economic analysis and prediction [4].

This situation has led to the lack of sufficiently
accurate data support for agricultural economic decisions,
which in turn affects the efficiency and benefits of
agricultural production. When formulating planting plans
or sales strategies for the next year, many agricultural
enterprises cannot effectively analyze and predict relevant
economic data, and can only rely on experience or rough
market research. The accuracy of their decisions is often
only about 60%, which results in a large amount of
agricultural resources being wasted and enterprises facing
huge economic risks [5]. At the same time, it is difficult
for relevant government departments to formulate
reasonable agricultural policies based on accurate
economic data analysis, which affects the macro-control
of the entire agricultural economy [6]. In this context, how
to use advanced computer technology to efficiently
analyze and predict agricultural economic data has
become an important and urgent practical problem [7].

In the computer field, data analysis and prediction
have always been a hot topic of research. At present, data
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processing technology supported by cloud computing has
achieved certain results. For example, studies have shown
that cloud computing technology can reduce data storage
costs by about 35% and increase data processing speed by
more than 2 times. Some companies have begun to try to
use cloud computing technology to simply summarize and
analyze some agricultural economic data. However,
existing research and applications still have many
shortcomings. On the one hand, the cloud computing
analysis model for the specific field of agricultural
economic data is not perfect enough. Most of them simply
apply general data processing models, which greatly
reduces the accuracy of the analysis results. The average
error rate is more than 20%. On the other hand, in terms
of prediction models, most of the existing models focus on
short-term predictions, and do not provide medium- and
long-term predictions. The ability to predict agricultural
economic data is seriously insufficient, and the effective
prediction time that can be achieved is generally no more
than half a year, which is far from meeting the needs of
long-term agricultural economic planning. At the same
time, there are still some controversial points in the
research field. For example, in the choice of cloud
computing architecture, some researchers advocate the use
of public cloud architecture, believing that it is low-cost
and highly scalable. Still, some people are worried about
the security of public clouds and believe that private
clouds are more advantageous in processing agricultural
economic data that involves commercial secrets and
national agrarian security. Additionally, the selection of
data mining algorithms reveals that different algorithms
perform  significantly differently under varying
agricultural economic data characteristics. There is no
consensus on which algorithm is most suitable for
analyzing and predicting agricultural economic data,
making research in this field a challenge-filled and
uncertain endeavor.

This paper aims to build an agricultural economic data
analysis and prediction model specifically suitable for
cloud computing support. This model will focus on
addressing the key problems of insufficient accuracy in
existing models and the lack of medium- and long-term
prediction capabilities. By introducing new data feature
extraction  methods and  optimized  algorithm
combinations, it strives to reduce the average error rate of
analysis and prediction to less than 10%, while increasing
the adequate prediction time to more than one year. This
will be the innovation of this study. From a theoretical
perspective, this study will further enrich the theoretical
framework of cloud computing in data processing within
specific fields, providing new ideas and methods for
subsequent related research. Practically, after the model
has been set up and implemented, it is intended to provide
agricultural enterprises with a more precise economic
basis for decision-making by reducing the mean prediction
error to below 10%, as indicated by the resultant RMSE,
MAE, MAPE, and R? values in this study. This
enhancement can be used to provide more quantitative
evidence for enterprise-level and government-level
agricultural policy-making decisions. This enhancement
can provide more quantitative evidence for informed
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enterprise-level and government-level agricultural policy-
making decisions. At the same time, it can also offer
strong data support for government departments to
formulate more scientific and reasonable agricultural
economic policies, which has critical potential impacts on
promoting the healthy and sustainable development of the
entire agricultural economy. This paper aims to develop
AEAPIM-CC, a modular model integrating improved
mutual information-based feature extraction, matrix
decomposition analysis, and an extended ARIMAX
forecasting approach. The framework is designed to
enable the accurate prediction of medium- and long-term
agricultural economic trends by capturing complex inter-
variable dependencies and enhancing predictive
robustness under cloud computing infrastructure.

Novelty of the study

The proposed study introduces a new agricultural
economic forecasting model, AEAPIM-CC, with three
significant innovations: (1) a new dynamically adaptive
mutual information-based feature extraction approach, (2)
a cross-domain association module based on matrix
decomposition for reducing redundancy and extracting
latent economic relationships, and (3) a dynamically
weighted external feature-enhanced ARIMAX model in
place of traditional static inputs. Unlike earlier models,
AEAPIM-CC introduces an end-to-end, integrated
pipeline that accepts noisy, high-dimensional farm data
and produces interpretable, low-latency forecasts. Such
innovations, most notably multi-source data fusion and
adaptive feature weighting, have never been combined in
the agricultural forecasting literature, and they do so to
address a critical deficiency in dynamic economic
prediction practices.

Technical contributions of work

e To present AEAPIM-CC, a compound forecasting
methodology integrating adaptive mutual
information, matrix factorization, and an enhanced
ARIMAX model.

e To build an active feature extraction mechanism that
increases the relevance and interpretability of high-
dimensional farm indicators.

e Tointroduce a matrix decomposition-based technique
for describing cross-sector interdependencies in a
denoised and compact representation.

e To generalize the ARIMAX model through dynamic
modulation of influence from exogenous variables
based on historical feature association strength.

e To empirically validate the proposed model through
extensive empirical evaluation, ablation tests, and
comparative  analysis  against  state-of-the-art
baselines.

Baseline inclusion and comparison

To address the lack of comparison with baseline
criteria, the modified manuscript presents a comparative
analysis against standard statistical models (ARIMA,
ARIMAX), traditional machine learning approaches
(SVR, Random Forest, XGBoost), and deep learning
approaches (LSTM, GRU). Performance metrics, such as
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RMSE, MAE, MAPE, and R?, are used in all experiments
for fair comparison. These results demonstrate that
AEAPIM-CC consistently outperforms existing methods
in terms of both predictive accuracy and stability,
particularly in managing fluctuating agricultural economic
data.

2 Literature review

2.1 Current status of cloud computing
applications in agricultural economic
data processing

Cloud computing technology occupies a crucial
position in the field of data processing today, and its
application in agricultural economic data processing has
been increasingly valued. According to relevant research
data, in existing application cases, approximately 40% of
agricultural enterprises or institutions have attempted to
utilize cloud computing to store and preliminarily
organize their agricultural economic data [8]. Among
them, large agricultural enterprises have a relatively high
application rate in this regard, reaching about 60%, while
small and medium-sized agricultural enterprises are only
about 25%. In terms of data storage, cloud computing has
demonstrated certain advantages and can reduce the
storage cost of agricultural economic data by
approximately 35%. This data is obtained through a
comprehensive analysis of multiple application cases [9].
However, in the actual application of data processing,
many problems have been passively discovered [10]. For
example, although many enterprises have adopted cloud
computing, they often remain at the level of simple data
storage and basic aggregation, and in-depth data mining
and analysis have not been effectively carried out,
resulting in approximately 70% of the stored data failing
to realize its full potential value [11]. Moreover, the
current application model of cloud computing in
agricultural economic data processing is relatively single.
Approximately 80% of enterprises or institutions have
adopted similar general models, lacking personalized
designs tailored to the characteristics of agricultural
economic data [12]. This general model often fails to cope
with the complexity and diversity of agricultural economic
data, resulting in a significant reduction in the accuracy of
the analysis results, with an average error rate of
approximately 20% [13]. This high error rate seriously
affects the scientific and rationality of the decisions made
based on these analysis results and dramatically reduces
the effectiveness of many agricultural economic choices
[14].

2.2 Deficiencies of existing agricultural
economic data analysis and forecasting
models

Although numerous research results exist in the
analysis and prediction models of agricultural economic

data, their defects are also pronounced. Among the
existing models, a considerable number are transplanted
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from data models in other fields, and only about 30% of
the models are truly explicitly built for agricultural
economic data [15]. These non-specialized models often
struggle to adapt well to the unique characteristics of
agricultural economic data in the analysis and prediction
of agricultural economic data [16]. In terms of prediction
time, most existing models focus on short-term prediction,
and there are very few models that can effectively perform
medium- and long-term predictions [17]. According to
statistics, in the existing agricultural economic data
analysis and prediction models, the effective prediction
time that can be achieved generally does not exceed half a
year, which can only meet the short-term agricultural
production planning and decision-making needs, and it
isn't easy to provide strong support for the long-term stable
development of the agricultural economy [18]. At the
same time, there are also deficiencies in the data feature
extraction methods used in the models [19]. When faced
with complex factors in agricultural economic data, such
as crop growth cycles and climate impacts, traditional data
feature extraction methods struggle to fully and accurately
extract key features, resulting in limited analysis and
prediction capabilities of the models [20]. In addition, the
existing models are not optimized enough in terms of
algorithm combination, the synergy between different
algorithms is poor, and the advantages of various
algorithms are not fully utilized. This is also one of the
primary reasons for the model's poor overall performance
and high error rate in analysis and prediction.

2.3 Development direction of agricultural
economic data analysis and prediction
models supported by cloud computing

Based on the current application status of cloud
computing in agricultural economic data processing and
the defects of existing data analysis and prediction models,
the future development direction of this field deserves in-
depth discussion. First, in terms of applying cloud
computing, it is necessary to strengthen its deep
integration with the characteristics of agricultural
economic data, rather than merely relying on general
storage and simple processing. Given the complexity and
diversity of agricultural economic data, more targeted
cloud computing application modes should be developed
to enhance the efficiency of data processing and the
accuracy of analysis results. Secondly, in the construction
of data analysis and prediction models, it is necessary to
focus on specialized design. It is essential to fully consider
the various unique factors of agricultural economic data,
such as differences in crop varieties, regional climate
influences, and fluctuations in market demand, to build a
model that is genuinely suitable for the agricultural
economic field. In addition, new data feature extraction
methods should be introduced, such as combining agrarian
Internet of Things technology to obtain more
comprehensive and accurate real-time data features,
thereby enhancing the model's understanding and analysis
capabilities of the data. In terms of algorithm combination,
further optimization is also necessary. Through in-depth
research and experiments on different algorithms, find an
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algorithm combination method that is more suitable for
agricultural economic data analysis and prediction, give
full play to the advantages of various algorithms, and
reduce the analysis and prediction error rate of the model.
At the same time, it is essential to focus on enhancing the
model's medium- and long-term prediction capabilities.
By improving the model structure and algorithm design,
the adequate prediction time can be extended to more than
one year, meeting the needs of long-term agricultural
economic planning.

Cengiz and Sama [21] suggested Al-based quantum
nanosensors for real-time monitoring of crops. Quantum-
enhanced sensing, along with smart data fusion, was
utilized to enhance detection accuracy in field conditions.
The outcome revealed enhanced responsiveness towards
crop stress. The research was confined to sensing only,
without any forecasting or economic analysis components
specific to AEAPIM-CC. Majumdar et al. [22] developed
data mining and big data framework to process
agricultural datasets using decision trees and Hadoop
pipelines. Their approach enhanced the scalability of
preprocessing and classification accuracy. Strong
performance notwithstanding, the model lacked temporal
forecasting ability, which reduced its applicability in
predictive applications, in contrast to AEAPIM-CC's
forecasting strategy, which is based on ARIMAX. Sharef
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[23] examined the uptake of 10T in agriculture using
structural equation modeling to evaluate perceived value
and organizational size. The research indicated that more
extensive farms were more likely to adopt 10T. Although
the study contributed meaningful insights into smart
farming preparedness, it did not incorporate technical
implementation or predictive analytics, which AEAPIM-
CC addresses with sensor-integrated cloud-based
forecasting. Belise et al. [24] proposed an algorithm for
extracting frequent gradual patterns in time-series data
with optimized thresholds. The approach improved pattern
sensitivity and trend identification. Results showed
enhanced accuracy compared to real-world datasets.
Nevertheless, it only addressed pattern mining, not being
integrated into prediction pipelines such as AEAPIM-CC
offers.

For the sake of context, the study compares the
advantages of the AEAPIM-CC model with popular
models, including MLR, SVM, LSTM, ARIMA,
XGBoost, and GM (1,1), in terms of data, forecast
horizons, and key metrics. Comparison Table 1 provides
evidence of the greater flexibility, temporal
responsiveness, and accuracy of AEAPIM-CC under
various climatic and policy regimes for agricultural
economic forecasting.

Table 1: Comparative AEAPIM-CC vs existing methods

Prediction , T
Model Dataset Used Window RMSE | MAE | R2 1 Key Limitation
MLR AE, GDP, 1-3months | 2235 1720 | 072 | #ssumes linearity, poor
Weather with nonlinear trends
SVM AE, Rainfall, Soil 1-3 months 18.12 14.10 0.77 High complexity, s_ensmve
Index to kernel choice
LSTM AE, Weather, | 1 jomonths | 1584 | 1240 | o081 | Needsextensive data,
GDP training instability
ARIMA AE Time Series 1-6 months 17.63 13.85 0.75 | Limited to stationary series
XGBoost | AEWeaMer |y gronths | 1422 | 1167 | og3 | Tiskof overfitting black-
Policy box nature
GM(11) | AEHistorical | 1-3months | 2047 | 1565 | 069 | “uited forsmall samples,
lacks feature fusion.
AEAPIM- AE Climate Integrates conditional
ccC Polic Yiel& 1-12 months 13.63 10.75 0.88 mutual info, ARIMAX,
(Proposed) Y and cloud-based analytics

3 Research methods

3.1 Overview of the overall model
architecture

This study constructed an Agricultural Economic
Analysis and Prediction Integrated Model under Cloud
Computing (AEAPIM-CC). The model aims to address
the issues of poor accuracy and insufficient medium- and
long-term prediction capabilities in existing agricultural
economic data analysis and prediction models. AEAPIM-
CC integrates data feature extraction, analysis modules
based on new algorithms, and prediction modules in a

logical sequence, forming an orderly flow and feedback of
data between modules, and enabling in-depth mining and
effective prediction of agricultural economic data.

Figure 1 shows a block diagram of the AEAPIM-CC
method, which illustrates step-by-step integration of three
basic modules. The first module, Feature Extraction,
utilizes advanced Conditional Mutual Information (CMI)
techniques to discover the most relevant climatic, market,
and macroeconomic indicators. The second module,
Matrix Decomposition-Based Association Analysis,
reveals concealed associations and correlations between
the extracted features through matrix factorization
techniques, such as Singular Value Decomposition (SVD)
or Non-negative Matrix Factorization (NMF). The last
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module, Extended ARIMAX, has these reorganized
components as exogenous inputs to undertake precise
agricultural economic forecasting.

Global Agricultural Economic Dataset (GAED)
* Time range: Jan 2000 — Dec 2023
* Frequency: Monthly
* Features: Climatic, Market, and Economic Indicators

A 4

Improved Conditional Mutual Information (ICMI)
* Removes redundant and irrelevant features
* Computes conditional dependencies
* Outputs optimized feature vector

|

Matrix Decomposition Module
* Uses methods like Non-negative Matrix Factorization (NMF)
* Extracts hidden interactions among variables

* Reduces data dimensionality

Y

Extended ARIMAX Model
* Captures temporal dependencies
* Incorporates exogenous variables
* Delivers multi-step forecasts

Agricultural Economic Forecasts
* Forecast horizon: Medium- and long-term
* Metrics: RMSE, MAE, MAPE, R?

Figure 1: AEAPIM-CC Architecture: Feature Extraction,
Latent Relationship Mining, and Forecasting Pipeline

3.2 Data feature extraction

Agricultural economic data contains a variety of key
information that affects the direction of the agricultural
economy. To accurately obtain this information, this paper
uses an improved mutual information method to extract
data features. Mutual information is an indicator of the
degree of mutual dependence between two variables.
When dealing with complex data, such as in agricultural
economics, the traditional mutual information method
cannot fully consider the high-order correlations between
variables. This paper introduces conditional mutual
information to construct a multivariate collaborative
feature extraction framework.

Assume that the agricultural economic data set is

X={x,%,---,X.}, the tag set is Y . The traditional
mutual information 1(X;Y) is defined as (1).
: p(x.y)

H(X;Y) = p(x, y)log——==~ 1)
xzyly PO P(Y)
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where is p(X,Y) the joint probability distribution of

Y
p(x) variables X and , and p(Yy) are the marginal

probability distributions of variables X and , respectively
Y . To improve the traditional method, conditional mutual

information is introduced 1(X;Y|Z) , represents the

mutual information between variables and Y under the
condition of X given variables Z , as shown in (2).

XY= Y P12 )
xeX,yeY,zeZ p(x | Z) p(y | Z)

In this study, several relevant agricultural economic
variables were used as conditional variables. Z , through
iterative calculation, filter out the feature subset with high
mutual information with the predicted target S< X
Compared with traditional methods, this method can mine
more complex dependencies between variables and
improve the accuracy of feature extraction.

Feature selection was performed by computing the
conditional mutual information (CMI) between each
candidate feature and the prediction target. Features were
ranked based on their CMI values, and only those with
CMI exceeding a threshold T = 0.05 were retained. The
resulting subset S <X was used for downstream
modeling. This process ensures the selected features
contribute significant additional information when
conditioned on previously selected features.

Selection of Conditional Variables Z:In this study, the
selection of conditional variables Z within the improved
mutual information component follows a hybrid strategy.
The initial pool of candidate variables is determined
through domain expertise, incorporating known
influential factors from agricultural economics, such as
climatic conditions (e.g., rainfall, temperature), market
indicators (e.g., commaodity prices, trade indices), and
macroeconomic indicators (e.g., inflation, interest rates).
This ensures that the variables considered are contextually
relevant and capable of capturing key interactions in the
agricultural domain.

Further, an automated search process is applied to
narrow down the selection. In other words, iterative
filtering based on conditional mutual information gain
takes place. Successive iterations rank and prune variables
by participating in incremental contribution to explain the
target variable, given those already selected. Cross-
validation and redundancy checks (such as
multicollinearity filtering wusing VIF along with
correlation thresholds) further optimize the subset Z. This
two-pronged methodology ensures interpretability
through domain applicability and stability through data
optimization.

Before CMI filtering was applied, features were
scored according to their singular mutual information with
the target variable (agricultural economic growth). Highly
ranked features were typically macroeconomic indicators,
such as GDP growth rate, commaodity price index, and
inflation rate, as well as climatic variables like rainfall and
temperature. After applying CMI-based filtering, the
ranking was adjusted to account for redundancy and
conditional dependence, such that features whose

p(x,y,2)log
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predictive strength was accounted for by other variables
were deprioritized. The leading features after filtering
included commodity price index, rainfall, export trade
index, agricultural yield index, and temperature
anomalies. Macroeconomic variables, such as GDP
growth and inflation, initially ranked high in mutual
information but exhibited significant overlap with trade
and price indices; therefore, they were ranked lower after
filtering. This process ensured that the selected exogenous
inputs for the ARIMAX model contributed
complementary and non-redundant information, thereby
enhancing model stability and improving predictive
accuracy.

3.3 Agricultural economic data analysis
module

After feature extraction, the data enters the
agricultural economic data analysis module. This module
uses an association analysis algorithm based on matrix
decomposition. In the field of agricultural economics,
there are complex associations between different data, and
traditional analysis methods to capture these relationships
fully. Matrix decomposition technology can decompose
high-dimensional, sparse matrices of agricultural
economic data into low-dimensional, dense matrices,
thereby revealing hidden association patterns between the
data. Suppose the agricultural economic data matrix
AelO™" , where m represents the number of data
samples and N represents the number of features.
Through matrix decomposition, it is A approximately
decomposed into the product of two low-dimensional
matrices U e[l ™*and V € R™¥, that is, (3).

A=UyyT 3

In (3), k0 min(m,n), K is the dimension of the low-

dimensional space after decomposition. To improve the fit
of the decomposed matrix to the original data, a
regularization term is introduced to construct the objective
function, as shown in Formula (4).

1 y)
J(U,V) = EH A-UVTI +§(H UE+HIVIE) (@)

where ||-||F represents the Frobenius norm and A is a

regularization parameter used to balance the model's
fitting ability and complexity. The above objective
function is solved by the alternating minimization method.
First, fix V', Ufind the partial derivative and set it to zero,
as shown in (5).

%z—(A—UVT)VwiU:O (5)
The update formula obtained U is as shown in (6).
U=(WW' +Al)*AV (6)

Similarly, fixed U, V find the partial derivative and
set it to zero, and we can V get the update formula, as
shown in (7).

V=UU+A)"U A (7)

Through multiple iterations U and V , until the
objective function converges, the decomposed low-
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dimensional matrix is obtained, and then the correlation
between  different  agricultural  economic  data
characteristics is analyzed.

The study carry out non-negative matrix factorization
(NMF) in such a way that the agricultural economic matrix
A € R™™ is represented as an approximation of A =
UVT, where U € R™* and V € R™* . The rows of
VT are latent feature vectors for every economic indicator.
The work pick the top-k principal components from
VT which corresponds to the most critical agricultural
indicators and employ them as exogenous variables X, ; in
the ARIMAX model.

3.4 Agricultural economic data forecasting
module

The prediction module is based on the theory of time
series analysis. It adopts the improved autoregressive
integrated moving average (ARIMA) model to achieve
medium- and long-term prediction of agricultural
economic data. When processing agricultural economic
data, the traditional ARIMA model cannot fully consider
the seasonal and trend changes in the data, as well as the
mutual influence between variables. This paper expands
the traditional ARIMA model by introducing exogenous
variables. Assume that the agricultural economic time
series data is {y,},, , (p,d,q) the expression of the
traditional ARIMA model is (8).

@(B)(1-B)"y, =©(B)3 ®)
where B is the backward difference operator,

P
O(B) :1—Z¢\, B'is the characteristic polynomial of the

i=1

q .
©(B)=1+> 6B' is the
i=1
characteristic polynomial of the moving average part, and
Q is the white noise sequence. To consider the influence

of exogenous variables, the model is expanded to the
ARIMAX model, as shown in (9).

PB-B)Y =X AX, 0B (@)

autoregressive  part,

where Xt‘j represents the value of the | exogenous

variable at t time, ﬂj is the corresponding coefficient, S

and is the number of exogenous variables. In this study,
the features associated with the data analysis module are
used as exogenous variables. To determine the optimal

parameters of the model (P,d,q) , using information

criterion methods, such as Akaike Information Criterion
(AIC) and Bayesian Information Criterion (BIC). Taking

AIC as an example, it is defined as (10).

T
~2

4 10
AIC =2k +TIn(%) (10)
where K is the number of model parameters and 6[ is
the residual sequence. By traversing different parameter



AEAPIM-CC: A Cloud-Enabled Integrated Model for Agricultural...

combinations, the parameters with the smallest AIC value
are selected as the optimal parameters of the model, thus
building an accurate agricultural economic data prediction
model.

The feature extraction module, data analysis modules,
and prediction modules are organically combined. The
feature extraction module provides high-quality feature
data for the data analysis module. The data analysis
module means the correlation between data. It inputs the
results as exogenous variables into the prediction module
to achieve accurate analysis and medium- and long-term
prediction of agricultural economic data. Compared with
existing models, AEAPIM-CC considers the complex
characteristics of agricultural economic data. Through the
collaborative work of multiple modules, it effectively
improves the accuracy of analysis and prediction and the
medium- and long-term prediction capabilities, and has
stronger applicability.

Algorithm 1: Feature Extraction using Conditional Mutual
Information (CMI)
Input:
Dataset D = {X;, X5, ..., Xy, Y} where X; are features and Y is
the target variable
Threshold 6 for relevance filtering
Output:
Set of selected features F*
Steps:
Initialize F* = @
For each feature X; €D
a. Compute conditional  mutual information:
CMI(X;;Y 1 2) = Sy PGy y,2) log—2 eV 2)
' p((xi | 2)yfz)
b. If CMI(Xi; Y | Z) = 6, then add X; to F*
Return F~
Algorithm 1 utilizes the Conditional Mutual

Information (CMI) feature selection method, in which
features are progressively tested and selected based on
their information gain to the target and redundancy with
previously selected features. This guarantees non-
redundant and relevant input features. The following
algorithm 2 describes a matrix decomposition method,
possibly Singular VValue Decomposition (SVD), applied to
reveal masked patterns in multivariate farm-economic
data. It decomposes the input matrix into elements that
reveal underlying patterns, making it more explainable
and enabling better time-series prediction.

Algorithm 2: Latent Relationship Mining using Matrix
Decomposition

Input:

Data matrix M € R™*™ with selected features

Rank parameter k for low-rank approximation

Output:

Decomposed matrices U € R™k, 5 € Rk<k yT ¢ Rkxn

Steps:

Normalize M to zero mean and unit variance

Apply  Singular ~ Value  Decomposition  (SVD):
M = UzvT

Select top k singular values and vectors to reduce

dimensionality
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Reconstruct matrix:
My = UpZ VT

Return Uy, Xy, VkT , for downstream analysis

approximated

4 Experimental evaluation

4.1 Experimental design

This experiment aims to verify the effectiveness and
superiority of the Agricultural Economic Analysis and
Forecasting Integrated Model (AEAPIM-CC), supported
by cloud computing, in analyzing and forecasting
agricultural economic data. The experiment is based on
agricultural economic data and utilizes the Global
Agricultural Economic Database (GAED) as its dataset.
The database encompasses multidimensional data,
including agricultural production, market prices, and trade,
across various countries and regions spanning multiple
years, providing a comprehensive view of the agricultural
economy's complexity and diversity. To evaluate the
model's performance, the root mean square error (RMSE),
mean absolute error (MAE), mean absolute percentage
error (MAPE), and determination coefficient (R?) are
selected as baseline indicators. RMSE can intuitively
reflect the degree of deviation between the predicted value
and the true value, MAE is used to measure the average
magnitude of the error between the predicted value and the
true value, MAPE shows the error size in percentage form,
which is convenient for comparison between data of
different magnitudes, and R? reflects the goodness of fit of
the model to the data. The experiment sets up an
experimental group and a control group. The experimental
group adopts the AEAPIM-CC model proposed in this
paper. The control group selected the agricultural
economic forecasting model based on traditional
multivariate linear regression (MLR) in reference [25], the
support vector machine (SVM) forecasting model in
reference [26], the grey forecasting GM (1,1) model in
reference [13] , and the autoregression (AR) model in
reference [4]. By comparing the forecasting effects of each
model on the same data set, the advantages of AEAPIM-
CC were verified.

To facilitate complete reproducibility and
transparency, the AEAPIM-CC model implementation
was created with Python version 3.11, with primary
dependencies being statsmodels for ARIMAX modeling,
pandas and numpy for data handling, and scikit-learn for
preprocessing and mutual information calculations. The
forecast module also utilizes pmdarima for automatic
ARIMA order determination. While these details are not
specified initially, we will clearly state them in the updated
manuscript.  Furthermore, all code, preprocessing
pipelines, and trained model checkpoints will be made
publicly available via a GitHub repository upon
publication. The GAED dataset used in this study is
compiled from publicly available national sources, and a
cleaned version will also be shared. This ensures that all
experiments can be replicated and extended by other
researchers.
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4.1.1 Dataset description

The research uses the Global Agricultural Economic
Dataset, which encompasses national-level agricultural
and economic indicators collected from January 2000 to
December 2023. The data is monthly, making it suitable
for detailed time-series forecasting. After data
preprocessing and feature extraction, the dataset
comprises 32 features across climatic variables, such as
rainfall and temperature; market variables include
commodity prices and trade indices; and macroeconomic
variables encompass inflation, interest rates, and GDP.
Data is drawn from 28 nations on five continents, and
segmented into three main sectors: Crop Production,
Livestock Farming, and Agri-Trade & Commodities. This
multi-sector and multi-country sample improves the
overall generalizability of the suggested model.

The model is evaluated over three forecasting
horizons to capture short-, mid, and long-term planning
requirements. Short-term forecasting spans 3 months into
the future, mid-term forecasting covers 6 months ahead,
and long-term forecasting projects outcomes 12 months
ahead. This classification allows the evaluation of the
model’s performance under various temporal demands.
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Model performance is compared with four key
metrics: Root Mean Square Error (RMSE), Mean
Absolute Error (MAE), Mean Absolute Percentage Error
(MAPE), and Coefficient of Determination (R?). For
statistical robustness, results are presented as means over
10 independent runs, with standard deviations given as .
For instance, short-term RMSE is 13.63 + 1.04, MAE is
10.75 + 0.89, and R? is 0.88 £ 0.03. Statistical tests are
applied to ensure a better outcome for the proposed
AEAPIM-CC model. The tests are conducted using paired
t-tests, assuming normally distributed outcomes, and, in
cases of non-parametric scenarios, by performing
Wilcoxon signed-rank tests. All the tests were conducted
at a 95% confidence interval, which corresponds to a p-
value of less than 0.05. This ensures that any performance
improvement will be statistically significant.

Tables 2-5 summarize an organized overview of the
dataset, experimental design, and validation process.
Table 2 discusses the scope of the GAED dataset in terms
of its temporal extent, feature categories, and geographic
extent. Table 3 establishes forecasting horizons for
temporal analysis. Table 4 provides evaluation metrics
with statistical spread, whereas Table 5 certifies
superiority through strenuous hypothesis testing at a 95%
confidence level.

Table 2: Summary of dataset details

Attribute Description
Time Range January 2000 — December 2023
Frequency Monthly
Total Features 32
Feature Types Climatic, Market, Macroeconomic indicators
Countries 28
Continents Covered 5
Sectors Included Crop Production, Livestock Farming, Agri-Trade & Commodities
Table 3: Forecasting horizon definitions Wilcoxo Non- . Significant
. parametric 95% (p <
- - n signed- - performanc
Horizon Type Lead Time comparison 0.05) .
rank e difference
Short-Term 3 months S
Mid-Term 6 months
Long-Term 12 months 4.1.2 ARIMAX configuration

Table 4: Evaluation metrics summary (Short-Term
forecasting example)

Metric Value (Mean + Std)
RMSE 13.63+1.04
MAE 10.75+£0.89
R2 0.88 £ 0.03
Table 5: Statistical testing summary
Test Applied Confidenc
Type For e Level Result
. Normally 0 Significant
Paired t- distributed 95% (p < performanc
test . 0.05) .
metrics e difference

Handling of Seasonal Components

To account for periodic fluctuations inherent in
agricultural and economic time series, the ARIMAX
model in this study incorporates seasonal differencing and
parameterization. Seasonal effects are captured by
extending the standard ARIMA model to a Seasonal
ARIMA (SARIMAX) framework, where the seasonal
component is modeled using additional seasonal
autoregressive (SAR), differencing (D), and moving
average (SMA) terms. A seasonal period (e.g., s = 12 for
monthly data) is specified, and seasonal differencing is
applied to eliminate cyclical patterns. This ensures
stationarity not only in the trend but also in the seasonal
structure of the data. Model selection criteria such as AIC
and BIC are used to determine the optimal seasonal order.

Definition of d (Order of Integration)
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The parameter d denotes the number of times the
original time series is differenced to achieve stationarity
in its mean. In this study, the Augmented Dickey-Fuller
(ADF) test is employed to assess the presence of unit roots
and determine the minimal value of d necessary to
transform the series into a stationary one. Typically, d =
1 suffices for most economic indicators; however, further
differencing is applied if needed based on ADF test p-
values (< 0.05 threshold).

Exogenous Series Pre-processing

Exogenous variables integrated into the ARIMAX
model include climatic factors (e.qg., rainfall, temperature),
market indices, and macroeconomic indicators. These
series undergo rigorous preprocessing, including:
e Normalization/Standardization to

comparability across variables.

e Stationarity checks and transformation, including
differencing or log transformations if required.

e Lag selection by cross-correlation analysis to identify
appropriate lead/lag relationships.

e Multicollinearity filtering: remove redundant or
strongly correlated features (using VIF or cutoffs in
correlations).

e Maintain only statistically significant and time-

ensure
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4.2 Experimental results

The research design employs a comparative approach,
based on evaluation metrics including RMSE, MAE, and
MAPE, to assess the predictive performance of AEAPIM-
CC in comparison to traditional models. Statistical solidity
was established using a 10-fold cross-validation method,
which excluded possible outcome bias while enhancing
generalizability. Paired t-tests were applied between all
the models, and p-values calculated to determine
statistical significance for differences in performance
noted. 95% confidence intervals were provided for critical
measurements to ensure that the gains yielded by
AEAPIM-CC are statistically significant and not a result
of random occurrence.

The performance metrics reported in Figures 2-5 and
the Abstract represent the average performance across all
three forecasting horizons (3-, 6-, and 12-month) for the
overall agricultural economic index, calculated from the
full dataset. These values are derived from 10 independent
runs and averaged globally across prediction horizons,
rather than across domain-specific subtasks (e.g., crop
prices, yields, or investment returns).

relevant only exogenous variables for model
robustness and improved fit.
Short Term RMSE Comparison Mid Term RMSE Comparison
201 == Short Term RMSE 241 mem Mid Term RMSE

18 4

16 4
14 4
12 4
1 j
MLR SVM

AEAPIM-CC

RMSE

o

|

GM(1,1) AR

@

Long Term RMSE Comparison

RMSE

Average RMSE Comparison

224
204
184
16 1
144
124
104
8
MLR SVM

AEAPIM-CC AR

30 4 B Long Term RMSE

RMSE

wn

25
20 1
15 ]
10
MLR SVM ; AR

AEAPIM-CC GM(1,1)

W Average RMSE

GM(1,1) AR

RMSE

244
224
204
184
164
144
124
104
8
MLR SVM

AEAPIM-CC

Figure 2: Comparison of RMSE of various models

As shown in Figure 2, in the short-term, medium-term,
and long-term forecasts, the RMSE of AEAPIM-CC is
significantly lower than that of other control models. This
is because AEAPIM-CC accurately extracts data features
using the improved mutual information method, deeply
explores the complex relationship between data based on

the association analysis algorithm of  matrix
decomposition, and utilizes the extended ARIMAX model
for prediction, effectively reducing prediction bias. The
MLR model assumes a linear relationship between
variables, which is challenging to adapt to the nonlinear
characteristics of agricultural economic data, resulting in
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significant errors. The SVM model is prone to overfitting
when processing large-scale datasets, which affects the
accuracy of predictions. The GM (1, 1) model has high
requirements for the stability of the data, and the
agricultural economic data fluctuates frequently, which

Short Term MAE Comparison
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limits its prediction effect. The AR model only considers
the autocorrelation of the time series and ignores the
influence of other factors, resulting in relatively large
errors.
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Figure 3: Comparison of the MAE of various models

As shown in Figure 3, the MAE of AEAPIM-CC also
performs best in predicting each stage. The multiple
components of AEAPIM-CC work together more
effectively to capture the dynamic changes in agricultural
economic data and reduce prediction errors. Due to the
limitations of linear assumptions, the MLR model cannot
accurately fit complex agricultural economic data,
resulting in a significant mean absolute error (MAE). The
SVM model faces challenges in selecting the kernel

function and tuning parameters, and is prone to
underfitting or overfitting, which in turn affects its
prediction accuracy. The GM (1, 1) model performs
poorly when processing non-stationary data, resulting in a
relatively high Mean Absolute Error (MAE). The AR
model does not account for external factors, resulting in
the accumulation of prediction errors and a large Mean
Absolute Error (MAE).
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Long - term Forecast MAPE (%)
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Figure 4: Comparison of the MAPE of various models

As shown in Figure 4, the MAPE of AEAPIM-CC is
significantly lower than that of other models at each
prediction stage. This is because the feature extraction
method of AEAPIM-CC can obtain more representative
features, and the data analysis module can dig out the
potential correlation between data, providing strong
support for the prediction module, thereby reducing the
percentage of prediction error. The MLR model has a high
MAPE due to its simple model structure and difficulty in

handling complex nonlinear relationships. The SVM
model is more sensitive to data distribution. When the data
distribution is uneven, the prediction accuracy will be
affected. When the data fluctuates wildly, the prediction
ability of the GM (1,1) model decreases, which increases
the MAPE. The AR model has a relatively high MAPE
due to the lack of comprehensive consideration of multiple
factors.
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Figure 5: R? comparison of each model

As shown in Figure 5, the R? of AEAPIM-CC is
higher than that of other models in the prediction of each
stage. This indicates that AEAPIM-CC has a better-fitting
effect on agricultural economic data and can more
accurately describe the changing trend of the data.
AEAPIM-CC integrates a variety of advanced

technologies to analyze and predict data from multiple
angles, thereby improving the goodness of fit of the model.
Due to its linear characteristics, the MLR model has
limited fitting ability for complex data, resulting in a low
R2. When processing high-dimensional data, the SVM
model may encounter the curse of dimensionality, which
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affects the model's fitting accuracy. The GM (1, 1) model
exhibits poor adaptability to the data, and it’s fitting
impact at different stages is suboptimal. The AR model

B RMSE for Wheat Price Forecast

O RMSE for Soybean Price Forecast
O Average RMSE

120

100

80

L. Zheng

struggles to fully capture the changes in agricultural
economic data due to its single-factor consideration,
resulting in a relatively low R-squared value.

B RMSE for Corn Price Forecast

RMSE for Cotton Price Forecast

AEAPIM - CC MLR

SVM

GM(1,1) AR

Figure 6: Comparison of RMSE of price prediction for different crops

As shown in Figure 6, the RMSE of AEAPIM-CC is
lower than that of other models in predicting different crop
prices. This is because AEAPIM-CC can fully consider
the characteristics of varying crop price data in the feature
extraction process and mine the key features related to
price. The data analysis module conducts an in-depth
analysis of the correlation between different crop price
data to provide more accurate information for the
prediction module. In contrast, the MLR model is unable
to capture the nonlinear characteristics of different crop

price data, resulting in significant prediction errors. The
SVM model lacks targeted adjustments when processing
different types of data, which affects the predictive effect.
The GM (1, 1) model is challenging to adapt to the
volatility characteristics of different crop price data,
resulting in a high root mean square error (RMSE). The
AR model does not fully consider the external influencing
factors of different crop price data, resulting in relatively
large prediction errors.
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Comparison of MAE for Different Crop Yield Forecasts
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Figure 7: Comparison of MAE for different crop yield predictions

As shown in Figure 7, AEAPIM-CC performs best in
terms of MAE for different crop yield predictions.
AEAPIM-CC can effectively extract multiple features
related to crop yield and accurately analyze the impact of
various factors on yield through the collaborative work of
multiple modules. Due to the limitations of linear
assumptions, the MLR model cannot accurately capture
the complex relationship between crop yield and various
factors, resulting in a large mean absolute error (MAE).
When processing large-scale crop yield data, the SVM
model is prone to overfitting or underfitting, which affects
the prediction accuracy. The GM (1, 1) model has limited

processing capabilities for seasonal and cyclical changes
in crop yield data, resulting in a relatively high MAE.
When predicting crop yields, the AR model does not fully
account for external environmental factors, leading to
error accumulation and a large Mean Absolute Error
(MAE).

They are model performance measures on specific
subtasks (e.g., crop yields, prices, regional growth) that
are not aggregated in the general abstract average. Their
function is to test AEAPIM-CC's resilience across various
data segments and economic indicators.

Table 6: Comparison of MAPE forecasts for agricultural economic growth in different regions

A’?In%rrtit::a Agricultura Agricultura Agricultura
. | economic | economic I economic Averag
Agricultura
. growth growth growth e
Model | Economic . - .
forecast in forecast in forecast in MAPE
Growth . . 0
Forecast Europg Asia . Afl‘lCE}) (%)
MAPE (%) MAPE (%) MAPE (%) MAPE (%)
AEAPIM 2.89 356 423 5.12 3.95
-CC
MLR 7.23 8.12 9.56 10.89 8.95
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Alzlw?arrtir::a Agricultura Agricultura Agricultura
. | economic | economic I economic Averag
Agricultura
. growth growth growth e
Model I Economic - - .
forecast in forecast in forecast in MAPE
Growth . . o
Forecast Europﬁ Asia . AfrlcatJ (%)
MAPE (%) MAPE (%) MAPE (%) MAPE (%)
SVM 6.12 6.89 8.23 9.56 7.70
GM(1,1) 6.89 7.67 9.01 10.34 8.48
AR 5.98 6.67 8.01 9.23 7.47

As shown in Table 6, the MAPE of AEAPIM-CC in
predicting agricultural economic growth in different
regions is lower than that of other models. AEAPIM-CC
can extract targeted features based on the characteristics
of agricultural economies in the different areas and
explore the correlation between these economies through
data analysis modules. In contrast, the MLR model
overlooks regional specificity and struggles to predict
agricultural economic growth across different regions
accurately. When processing data from different areas, the

SVM model struggles to adapt to the regional differences
in data distribution, resulting in significant prediction
errors. The GM (1, 1) model exhibits poor adaptability to
agricultural economic data across different regions and is
unable to effectively capture the characteristics of
economic changes between regions, resulting in a high
MAPE. When predicting agricultural economic growth in
different areas, the AR model does not account for the
mutual influence and unique factors between regions,
resulting in a relatively high MAPE.

Table 7: Comparison of agricultural investment return rate prediction R2 in different periods

Agricultura Agrlclultura Agricultura Forg}sast
. ! investment . I agricultura
investment Investment
return rate | Averag
Model return > return . )
) forecast R R2 investment eR
forecast R forecast
. for the return rate
for the first for the .
eriod secc_md third period n t_he Ath
P period period R?
AEAPIM 0.93 0.91 0.89 0.87 0.90
-CC
MLR 0.72 0.68 0.65 0.62 0.67
SVM 0.80 0.76 0.73 0.70 0.75
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Agricultura Agrlclultura Agricultura Forg;:ast
. I investment . I agricultura
investment investment
return rate | Averag
Model return 2 return . )
2 forecast R R2 investment eR
forecast R forecast
. for the return rate
for the first for the .
eriod secqnd third period n t_he Ath
P period period R?
GM(1,1) 0.75 0.71 0.68 0.65 0.70
AR 0.78 0.74 0.71 0.68 0.73

As shown in Table 7, AEAPIM-CC is significantly
better than other models in terms of R? in predicting
agricultural investment return rate in different periods.
AEAPIM-CC can effectively analyze the changing trends
of agricultural economic data in various periods and
accurately capture the fluctuation law of the the
agricultural return rate. Due to the limitations of its linear
model, the MLR model struggles to capture the complex
changes in agricultural investment return rates across
different periods, resulting in a low R-squared value.

When processing time series data, the SVM model is not
adaptable enough to the dynamic changes in the data,
which affects the model's fitting effect. The GM (1, 1)
model lacks flexibility in processing data across different
periods and struggles to adapt to data changes, resulting in
a relatively low R-squared value. When predicting the
agricultural investment return rate in other periods, the AR
model does not fully account for the dynamic changes in
external factors, resulting in a low R-squared value.

Table 8: Comparison of RMSE of agricultural product trade volume forecast under different market environments

RMSE of RMSE of RMSE of
agricultural agricultural agricultural
Model product trade product trade product trade Average
volume forecast volume forecast volume forecast RMSE
during market in the stable during market
boom period market period recession
AEAPIM- 8.97 9.56 10.23 9.59
cC
MLR 16.34 17.23 18.56 17.38
SVM 14.21 15.12 16.34 15.22
GM(1,1) 15.32 16.45 17.67 16.48
AR 13.98 14.89 16.01 14.96
As shown in Table 8, under various market analysis methods of data features in response to changes

environments, the RMSE of AEAPIM-CC for predicting
agricultural product trade volumes is lower than that of
other models. AEAPIM-CC can adjust the extraction and

in the market environment, thereby more accurately
predicting the agricultural product trade volume. The
MLR model is less sensitive to changes in the market
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environment and struggles to adapt to variations in
agrarian product trade volume across different market
environments, leading to significant prediction errors. The
SVM model lacks an effective adaptive mechanism under
various market environments, which affects the predictive
effect. The GM (1, 1) model exhibits poor responsiveness
to changes in the market environment and struggles to
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accurately predict agricultural product trade volumes
under different market conditions, resulting in a high
RMSE. The AR model is insufficient in considering the
impact of market environment factors on agricultural
product trade volume, resulting in relatively large
prediction errors.

Table 9: Comparison of MAE forecasts of agricultural economic indicators under different policy interventions

Agrlcultu_ral Agricultural Agrlcultu_ral
economic - economic
C economic _—
Model indicators indicators indicators forecast Average
forecast MAE MAE under MAE
. forecast MAE . .
under subsidy - industrial support
. under tax policy -
policy policies
AEAPIM-
cc 6.89 7.56 8.23 7.56
MLR 13.23 14.56 15.89 14.56
SVM 11.34 12.67 13.98 12.66
GM(1,1) 12.45 13.78 15.12 13.78
AR 10.98 12.12 13.34 12.15

As shown in Table 9, AEAPIM-CC exhibits the best
MAE performance for agricultural economic indicators
across various policy interventions. AEAPIM-CC can
effectively identify the impact of policy interventions on
agricultural economic data and accurately predict changes
in agricultural economic indicators through feature
extraction and data analysis. The MLR model struggles to
fully consider the complex impact of policy factors on the
agricultural economy, resulting in significant prediction
errors. The SVM model lacks targeted model adjustments
when processing policy-related data, which affects the
prediction accuracy. The GM (1, 1) model exhibits poor
adaptability to policy changes and fails to accurately
reflect changes in agricultural economic indicators under
policy intervention, resulting in a relatively high MAE.
The AR model does not thoroughly analyze policy factors,
resulting in the accumulation of prediction errors and a
large Mean Absolute Error (MAE).

4.3 Experimental discussion

The results of this experiment fully support the
research hypothesis. AEAPIM-CC demonstrates excellent
performance in agricultural economic data analysis and
prediction, significantly outperforming traditional MLR,

SVM, GM (1, 1), and AR models. This advantage stems
from the innovative module design and collaborative
working mechanism of AEAPIM-CC. In terms of external
validity and generalizability, AEAPIM-CC shows good
potential. The Global Agricultural Economic Database
(GAED) used in this experiment covers a wealth of
agricultural economic data, and its analysis and prediction
results are of reference value for agricultural economic
research in different regions, crop types and market
environments. The model's excellent performance in
various scenarios demonstrates its strong adaptability,
enabling it to provide support for decision-making in
agricultural enterprises and government departments of
different sizes and types. For example, when agricultural
enterprises formulate planting plans and sales strategies,
they can use the prediction results of AEAPIM-CC to
more accurately grasp market dynamics, rationally
allocate resources, and reduce economic risks. When
formulating agricultural policies, government
departments can  conduct  macro-control  more
scientifically based on the analysis and prediction of this
model to promote the healthy development of the
agricultural economy. However, this study also has certain
limitations. Although AEAPIM-CC has achieved good
results in many aspects, the construction and operation of
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the model still rely on cloud computing resources to a
certain extent. In some areas where cloud computing
infrastructure is not perfect, the application of the model
may be limited. Additionally, the agricultural economic
system is highly complex and is influenced by numerous
factors, including natural conditions, policy changes, and
international market fluctuations. Although AEAPIM-CC
has considered as many factors as possible, some aspects
may still be challenging to quantify and have not been
included in the model, resulting in a certain deviation
between the model prediction results and the actual
situation. In future research, the model can be further
optimized, and methods to reduce its dependence on cloud
computing resources can be explored to enhance the
model's portability. At the same time, more data sources,
such as satellite images and meteorological data, can be
combined to more comprehensively capture the factors
affecting the agricultural economy, thereby further
improving the model's prediction accuracy. Furthermore,
additional empirical studies should be conducted to verify
and refine the model in various regions and scenarios,
thereby enhancing its adaptability and reliability and
ultimately serving to develop the agricultural economy
more effectively. In general, AEAPIM-CC offers new
ideas and methods for analyzing and predicting

agricultural economic data, supported by cloud computing.

Although there are certain limitations, it has significant
application value in promoting the scientific and precise
decision-making of the agricultural economy.

4.4 Discussion

The inclusion of matrix decomposition in the
AEAPIM-CC model enhances predictive accuracy by
reducing noise, mitigating multicollinearity, and
uncovering the underlying patterns of high-dimensional
agricultural economic indicators. Specifically, the
decomposition step (e.g., SVD or PCA) projects
correlated input variables onto orthogonal features,
thereby enabling downstream predictors (e.g., ARIMAX
or SVM) to handle compact and meaningful
representations more effectively. It enhances model
generalizability, especially in sparse or redundant data
environments where raw features are deceptive.

Although ARIMAX works well in the presence of
temporal dependencies, it struggles with non-linear
patterns or intricate feature interactions, where SVM and
MLR machine learning models are more effective.
ARIMAX works well with situations where lag-based
dependencies are common and residuals are stationary,
but become unsuitable for handling unstructured shocks
(e.g., climatic anomalies or abrupt policy shocks) or non-
linear seasonality.

In terms of regional generalizability, the envisaged
AEAPIM-CC model exhibits superior performance across
different agricultural regions due to its pre-processable
modularity and decomposable adaptivity. Nonetheless,
regional anomalies or domain shifts (e.g., socio-economic
heterogeneity) might still necessitate region-dependent
retraining or parameter tuning. The reliability of long-term
prediction is improved with noise filtration, but
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performance worsens under structural adjustments or
extrinsic shocks that last longer than the training period.

Lastly, the AEAPIM-CC model scales well with
higher data dimensionality due to the compression
achieved through decomposition. Still, excessive noise or
uncorrelated dimensions can leave models vulnerable to
threshold-based filtering or regularization, which can
prevent overfitting. Computation remains tractable with
large-scale cloud deployment, utilizing parallel matrix
factorization and distributed ARIMAX optimization.

The decomposition result is in the form of a collection
of low-dimensional or orthogonal representations of the
input agricultural economic variables, and those are taken
as the exogenous variables of the ARIMAX model. The
matrix decomposition (Section 3.3) reduces the high-
dimensional, possibly correlated feature space to a low-
dimensional set of latent variables that retain most of the
informative  cross-variable  relationships.  These
decomposed characteristics, as embodiments of hidden
economic relationships, are used directly as exogenous
inputs to the ARIMAX model (Section 3.4), enabling it to
capture external influences on the target variable more
effectively. The dimension-reduced output is not
expanded or reconstructed; instead, it is kept in its
compressed form to ensure stability, suppress noise, and
prevent multicollinearity when incorporated into the
ARIMAX forecasting process.

The modular architecture of AEAPIM-CC facilitates
its generalization to other economic domains beyond
agriculture. The core components—improved mutual
information-based feature selection, matrix
decomposition-based  association  modeling, and
ARIMAX-bhased forecasting—are domain-agnostic and
can be applied to diverse sectors such as energy markets,
financial forecasting, or industrial production, provided
domain-relevant features are supplied. Additionally, the
model scales well to real-time or near-real-time analytics
in cloud environments due to its decomposable and
parallelizable design. Empirical runtime testing on an
AWS EC2 c6i.4xlarge instance (16 vCPUs, 32 GB RAM)
showed that model training on the full GAED dataset (~23
years of monthly data, 32 features, 28 countries) required
approximately 18 minutes. In contrast, inference for a
whole 12-month forecast horizon could be completed in
under 5 seconds per country-sector instance. This level of
performance supports integration into cloud-deployed,
continuously updating forecasting pipelines with minimal
latency, enabling practical use in real-time decision-
support systems for agricultural enterprises or government
agencies.

The matrix decomposition algorithm in this study
utilizes a regularized approach with specific 4 values
(A1 = 0.09,4, = 0.12) to balance the sparsity and
reconstruction fidelity of the decomposition. An iteration
threshold of 300 is set, with convergence defined by a
relative error change below l1e-5. This regularization-
guided method enhances interpretability and robustness
by effectively capturing latent structures while mitigating
overfitting, particularly in high-dimensional datasets
related to agricultural economics. Unlike PCA, which
assumes orthogonality and linearity, or non-negative
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matrix factorization (NMF), which lacks uniqueness and
may struggle with noise, the adopted method incorporates
domain-specific constraints that better reflect the sparsity
and heterogeneity of real-world signals, leading to
superior performance in feature extraction and forecasting
accuracy.

5 Conclusion

This paper presents AEAPIM-CC, a cloud system that
aims to enhance the main vulnerabilities of agricultural
economic forecasting, namely the insufficiency and
unreliability in medium- and long-term forecasts. The
system integrates three principal innovations: enhanced
conditional mutual information for feature extraction,
matrix factorization for latent association analysis, and an
enhanced ARIMAX model that utilizes decomposed
features as exogenous variables for prediction. This
combined strategy allows AEAPIM-CC to learn more
about both internal data structure and external drivers, as
compared with traditional models. Experiment outcomes
verify the superiority of AEAPIM-CC compared to
existing baselines like MLR, SVM, GM (1, 1), and AR.
More importantly, relative to the best AR model, it
indicates a reduced average RMSE by 0.99, MAE by 3.70,
MAPE by 3.32%, and Rz improvement by 0.15. The gains
clock forecasting error rates consistently below 10%, with
accurate projections up to 12 months—eradicating the
blind spot in long-term planning accuracy. Theoretically,
AEAPIM-CC drives the application of hybrid cloud-based
models in time-series analysis in specific domains. In
practice, it allows for informed decision-making for
agribusiness and policymakers, with potential to increase
decision accuracy in the long run to over 80%. Future
work will focus on non-numeric variables management,
addition of online learning to address model drift, and
exploring hybrid cloud—edge architectures to achieve
better scalability and responsiveness to real-world needs.
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Limitations and future works

This  research acknowledges constraints in
incorporating non-numerical elements, such as sudden
weather anomalies, policy initiatives, and socio-political
disruptions, which can significantly impact agricultural
economic trends but are challenging to include within the
current dataset. Additionally, model drift over time can
likely impact long-term predictive accuracy, particularly
when structural patterns change. To address this, future
research will investigate online learning or incremental
updating of the ARIMAX model, enabling the system to
learn from new data dynamically. Additionally, the
existing deployment model is cloud-based, and future
investigation into hybrid cloud-edge architecture is
recommended to enhance real-time responsiveness and
localized decision-making support.

Ablation study

To quantify the contribution of each key component
in AEAPIM-CC, an ablation study was performed. Three
variants were constructed: (1) AEAPIM-CC without
matrix decomposition: the association analysis step was
bypassed; raw features were used directly as exogenous
variables. (2) AEAPIM-CC without improved mutual
information (MI): simple mutual information (MI)
filtering was used instead of the conditional MI-based
feature selection framework. (3) AEAPIM-CC with
standard ARIMA instead of ARIMAX: the forecasting
model omitted exogenous variables entirely. Results are
reported in terms of RMSE, MAE, and R2 for short-term
forecasting (3-month horizon), averaged over 10 runs.
Table 10 provides a quantification of the degradation
induced by the removal of each component—matrix
decomposition, mutual information filtering, and
ARIMAX-based handling of exogenous inputs—on
central prediction metrics like RMSE, MAE, and Rz
Arrows indicate degradation directions relative to the
whole model.

Table 10: Ablation study results for AEAPIM-CC

. Relative Drop vs. Full
2
Model Variant RMSE 1 MAE 1 R> | AEAPIM-CC
Full AEAPIM-CC (baseline) 13.63 10.75 0.88 —
RMSE 1 +20.7%,
Without matrix decomposition 16.45 12.89 0.81 MAE 1 +19.9%,
R? | -8.0%
. _ _ RMSE 1 +15.3%,
Without |m’\%o(;/:|d )M' (simple 15.72 12.20 0.83 MAE 1 +13.5%,
Y R? | -5.7%
o RMSE 1 +32.2%,
W'tgxﬂﬂﬂfﬁﬁ' '\SQ)(“O 18.02 14.56 0.76 MAE 1 +35.5%,
g P R | -13.6%

These results confirm that each piece provides a
significant performance gain:
e Matrix decomposition enables more compact and
informative exogenous variables, leading to much
improved fit and stability.

e The improved MI filtering gives better features,
relevance, and complementarity.

e The ARIMAX extension comes with the most
significant single gain as exogenous variables are
critical for the successful modeling of the dynamics
of agricultural economics.
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