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In the context of challenges faced by remote monitoring and maintenance of medical equipment, this study 

proposes an adaptive recursive attention network (ARAN) model to improve the accuracy of equipment 

fault diagnosis and remaining useful life prediction. The ARAN architecture integrates a recurrent neural 

network framework with an attention mechanism that adaptively emphasizes relevant time steps in the 

input sequence. The model was trained and evaluated on the Medical Device Operation Dataset (MDO-

Dataset), which comprises time-series operational data from over 5,000 medical devices across multiple 

large hospitals over five years. ARAN was benchmarked against three baseline models: Recurrent Neural 

Network (RNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU). Quantitative 

results show that ARAN achieved a fault diagnosis accuracy of 91.25%, outperforming the baseline 

average of 70%, with category 4 reaching 95%. For remaining useful life prediction, ARAN yielded a 

mean absolute error (MAE) of 53.25 hours, substantially lower than the baseline MAE of 100 hours. 

Additionally, ARAN demonstrated superior performance in recall rate, F1 score, false alarm rate, and 

noise robustness, with faster convergence speed and stronger generalization ability on unseen device 

types. This research presents an effective fusion of IoT and AI technologies for intelligent medical 

equipment management. 

Povzetek: Za inteligentno nadzorovanje medicinske opreme prek integriranih IoT–AI sistemov je razvit 

prilagodljivi rekurzivni pozornostni model (ARAN). Združuje rekurentno nevronsko mrežo z večglavim 

pozornostnim mehanizmom, ki poudari ključne časovne korake v podatkih. Namen je izboljšati 

zanesljivost, napoved preostale življenjske dobe in zmanjšati okvare medicinske opreme v pametnih 

bolnišnicah. 

 

1 Introduction 
In today's society, the medical field is facing 

unprecedented challenges, one of which is how to 

effectively monitor and maintain a large number of 

increasingly complex medical devices. According to 

incomplete statistics, there are more than 80 million 

medical devices of various types in operation in medical 

institutions around the world. Every year, the proportion 

of medical accidents caused by failure to detect and handle 

medical device failures in a timely manner is as high as 

about 12%, which is undoubtedly a shocking figure [1]. 

Take a large general hospital as an example. It has nearly 

10,000 different types of medical devices. In the past year, 

there have been nearly 100 adverse events such as delayed 

surgery and misdiagnosis caused by sudden equipment 

failures. This not only poses a serious threat to the life and 

health of patients, but also causes significant losses to the 

hospital's reputation and economy [2]. 

 

In this realistic context, the traditional manual inspection 

and post-maintenance methods are far from meeting the 

needs of modern medical equipment management. Manual 

inspections often have many loopholes and shortcomings. 

For example, the professional quality of inspectors varies, 

which may lead  

to some potential equipment problems being ignored. In 

addition, the time interval of manual inspections is 

relatively fixed, making it difficult to monitor the status of 

equipment in real time, which means that many equipment 

failures cannot be discovered in the first place. 

Furthermore, post-maintenance methods often lead to 

longer maintenance cycles and increased equipment 

downtime, further affecting the normal development of 

medical services [3]. 

At the same time, with the rapid development of the 

Internet of Things and artificial intelligence technologies, 

they have shown great application potential in various 

fields. The Internet of Things can realize all-round and 
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real-time data collection of medical equipment through 

various sensors and network connection technologies, and 

continuously transmit information such as the operating 

status and performance parameters of the equipment to the 

management platform [4]. Artificial intelligence can 

deeply analyze and process these massive amounts of data, 

quickly and accurately diagnose potential faults of the 

equipment through intelligent algorithms, and predict the 

remaining service life of the equipment, etc., providing 

strong technical support for the monitoring and 

maintenance of medical equipment. 

At present, there have been many research results on 

the application of IoT and AI in the field of medical 

equipment management. Many research teams are 

committed to developing medical equipment data 

acquisition systems based on IoT. By installing various 

sensors on the equipment, such as temperature sensors, 

pressure sensors, vibration sensors, etc., real-time 

monitoring of equipment operating parameters can be 

achieved [5]. According to relevant research, this type of 

data acquisition system can improve the accuracy of 

equipment status monitoring by about 30% [6]. 

In terms of the application of artificial intelligence 

algorithms, some studies have begun to try to use machine 

learning algorithms, such as support vector machines and 

neural networks, to diagnose medical equipment faults. 

For example, a research team has achieved an accuracy 

rate of about 85% in fault diagnosis of a common type of 

medical imaging equipment by using a deep neural 

network algorithm, which is a significant improvement 

over traditional diagnostic methods [7]. However, despite 

these achievements, existing research still has some 

shortcomings. First, most of the current research focuses 

on one aspect of the Internet of Things or artificial 

intelligence, and there are relatively few studies on the 

deep integration of the two, which fails to give full play to 

the huge advantages of the combination of the Internet of 

Things and artificial intelligence. Second, some existing 

system architecture designs often lack versatility and 

scalability, and are difficult to apply to medical 

institutions of different types and sizes. Third, the 

consideration of data security and privacy protection is not 

comprehensive enough. The data involved in medical 

equipment often contains a large amount of sensitive 

information of patients, which will have serious 

consequences once leaked. 

In terms of research hotspots, how to further improve 

the diagnostic accuracy of artificial intelligence 

algorithms for complex medical equipment failures and 

how to optimize the data transmission efficiency of the 

Internet of Things have become the focus of many 

researchers. On the controversial point, different research 

teams hold different views on what artificial intelligence 

algorithms should be used in remote monitoring and 

maintenance of medical equipment and how to balance the 

comprehensiveness of data collection and the cost of data 

transmission. There is no unified consensus yet. 

This paper aims to design a remote monitoring and 

maintenance system architecture for medical equipment 

that deeply integrates the Internet of Things and artificial 

intelligence. By building such a system architecture, the 

key issues to be solved include achieving seamless 

integration of the Internet of Things and artificial 

intelligence technologies, improving the versatility and 

scalability of the system to adapt to different medical 

environments, and strengthening data security and privacy 

protection mechanisms. 

The innovation of this study is that it proposes a new 

fusion architecture model for the first time, which 

organically integrates the real-time data collection 

capabilities of the Internet of Things with the intelligent 

diagnosis and prediction capabilities of artificial 

intelligence, enabling it to monitor and maintain medical 

equipment more efficiently. The expected contribution is 

that once the system architecture is applied, it is expected 

to advance the fault warning time of medical equipment 

by about 50% and reduce the equipment failure rate by 

about 20%, thereby greatly improving the quality and 

efficiency of medical services and reducing medical 

accidents caused by equipment failures. 

From a theoretical perspective, this study will further 

enrich the theoretical system of the integration of the 

Internet of Things and artificial intelligence, and provide 

important reference and reference for subsequent related 

research. In practice, this system architecture can be 

promoted and applied in various medical institutions, 

bringing significant economic and social benefits, and 

effectively promoting the intelligent and modern process 

of medical equipment management. 

 

2  Literature review 
2.1 Application status of IoT and AI in 

medical equipment management 
IoT technology has been widely used in medical 

equipment data collection. Various sensors are installed 

on medical equipment, such as temperature sensors, 

pressure sensors, and vibration sensors. According to an 

authoritative statistic, about 70% of medical equipment 

data collection projects use temperature sensors, which 

can provide real-time feedback on the temperature 

changes of the equipment during operation. This data is 

crucial to determine whether the equipment is in normal 

operation [8]. The application ratio of pressure sensors has 

also reached about 60%, which plays a key role in 

monitoring equipment such as ventilators that have strict 

requirements on pressure parameters [9]. Through these 

sensors, the operating parameters of medical equipment 

can be obtained more comprehensively and accurately. 

Relevant research shows that the data collection system 

based on the IoT can improve the accuracy of equipment 

status monitoring by an average of about 30%, which 

makes it more likely that some potential problems of 

medical equipment will be discovered in advance. 

In terms of artificial intelligence algorithms being 

used for medical equipment fault diagnosis, a variety of 

machine learning algorithms have been tried. Among 

them, the support vector machine algorithm has shown 

certain advantages in the fault diagnosis of certain types 

of medical equipment. Some studies have shown that its 

fault diagnosis accuracy for a certain type of medium-

sized medical testing equipment can reach about 75%. 
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Neural network algorithms, especially deep neural 

network algorithms, have received much attention. A 

well-known research team used deep neural network 

algorithms to diagnose faults of a certain type of common 

medical imaging equipment, with an accuracy of about 

85%, which is significantly higher than the accuracy of 

traditional diagnostic methods [10]. However, the 

application of these algorithms is not perfect. Most of 

them perform well in the diagnosis of specific types of 

equipment or specific fault types, and their versatility still 

needs to be improved [11]. 

Although the Internet of Things and artificial 

intelligence have their own application results in the field 

of medical equipment management, overall, there are 

relatively few studies on the deep integration of the two. 

Most studies only focus on one aspect of the Internet of 

Things or artificial intelligence. This leads to the inability 

to fully utilize the huge advantages that the combination 

of the two may bring in practical applications. For 

example, in some existing monitoring and maintenance 

systems, the data collected by the Internet of Things 

cannot be well utilized by artificial intelligence algorithms 

for in-depth analysis and accurate diagnosis, and the value 

of the data has not been fully explored [12]. In addition, 

the existing system architecture design often lacks 

versatility and scalability. About 80% of the existing 

systems can only be applied to medical institutions of a 

specific type or scale, and it is difficult to promote and 

apply them in a wider medical environment [13]. In 

addition, the consideration of data security and privacy 

protection is not comprehensive enough. The data 

involved in medical equipment contains a large amount of 

sensitive patient information. Once this information is 

leaked, it is estimated that it may bring about a 50% 

increase in risk to patients and medical institutions, 

including privacy infringement risks and economic loss 

risks. However, currently only about 30% of the systems 

have relatively complete data security and privacy 

protection mechanisms. 

To enhance clarity and identify gaps in the current 

body of research, Table 1 summarizes representative 

studies involving IoT and AI in the remote monitoring of 

medical devices. The comparison includes method names, 

model types, datasets used, and key performance metrics 

(e.g., accuracy, MAE). 

 

Table 1: Comparative summary of related work 
Study / 

Reference 
Model Type Dataset Used 

Performance 

Metrics 

Zhang et al. 

[1] 

DNN + 

IoMT 

Elderly patient 

monitoring 
data 

Accuracy: 

~85% 

Hameed et 
al. [10] 

Fuzzy 

Neural 

Network 

Simulated 

clinical IoT 

data 

Accuracy: 
~78% 

Rohmetra et 

al. [9] 

Support 

Vector 

Machine 
(SVM) 

COVID-19 

vitals dataset 

Accuracy: 

~75% 

Jiang et al. 
[8] 

CNN + 

Wearable 

IoT 

Neurocritical 

care time-

series data 

MAE 

(Remaining 

Life): ~100 hrs 

Wassan et al. 

[12] 

Federated 
Gradient 

Boosting 

Distributed 
healthcare IoT 

data 

Accuracy 

varies by node 

 

2.2 Current research hotspots and 

controversial issues 
Currently, there are two major research hotspots in 

this field. The first is how to further improve the 

diagnostic accuracy of artificial intelligence algorithms 

for complex medical equipment failures [14]. As medical 

equipment becomes increasingly complex, its failure types 

are becoming more diverse. The diagnostic accuracy of 

existing artificial intelligence algorithms for some 

complex and comprehensive failures still needs to be 

improved [15]. Many research teams are working to 

improve the accuracy by improving the algorithm 

structure and increasing the amount of training data. For 

example, one team tried to optimize the neural network 

algorithm by introducing a new feature extraction method, 

hoping to improve the diagnostic accuracy of complex 

medical equipment failures by about 10%-20% [16]. The 

second is how to optimize the data transmission efficiency 

of the Internet of Things [17]. Because there are many 

medical devices and the amount of data collected is huge, 

delays and packet loss are prone to occur during data 

transmission. About 60% of medical institutions reported 

that they have some problems with data transmission [18]. 

Therefore, how to improve data transmission efficiency by 

optimizing network protocols and adopting more efficient 

transmission technologies has become the focus of many 

researchers. Related studies show that if the optimization 

is successful, it is expected to improve the real-time 

performance of data transmission by about 30% [19]. 

There are also some controversial points in this field. One 

of the controversial points is what kind of artificial 

intelligence algorithm should be used in the remote 

monitoring and maintenance of medical equipment [20]. 

 

2.3 Outlook on future research directions 
Future research needs to focus on optimizing the 

deep integration architecture of the Internet of Things and 

artificial intelligence. We should strive to design an 

architecture that can seamlessly connect the Internet of 

Things and artificial intelligence technologies, so that the 

data collected by the Internet of Things can be more 

efficiently used by artificial intelligence algorithms, 

thereby achieving more accurate equipment fault 

diagnosis and prediction. For example, by establishing a 

unified data format and interface standard, the data 

transmission and processing between the two can be 

smoother. It is estimated that if this can be achieved, the 

overall system efficiency can be improved by about 20%. 

In the design of system architecture, we should focus 

on improving its versatility and scalability to adapt to 

medical institutions of different types and sizes. We can 

adopt a modular design concept and divide the system into 

data acquisition module, data processing module, fault 

diagnosis module, etc. Each module can be flexibly 

combined and expanded according to the specific needs of 

the medical institution. Such a design is expected to 

increase the applicability of the system in different 



202 Informatica 49 (2025) 199–214 X. Yang et al. 

medical institutions from the current approximately 30% 

to about 70%. 

Given the sensitivity of medical device data, future 

research must strengthen data security and privacy 

protection mechanisms. Encryption technology can be 

used to encrypt data in transit, such as the use of the AES 

encryption algorithm, which can increase the security of 

data during transmission by about 80%; at the same time, 

in terms of data storage, a combination of distributed 

storage and access control technology is used to strictly 

limit data access rights and reduce the risk of data leakage. 

It is expected that the risk of data leakage can be reduced 

by about 60%. Through these measures, an efficient and 

secure medical equipment remote monitoring and 

maintenance system can be built. 

 

3 Research methods 
At the beginning of this study, we formulated several 

core research questions to guide the design and evaluation 

of the proposed ARAN model.  Specifically, the following 

questions were posed: (1) Can the ARAN model 

significantly improve fault diagnosis accuracy compared 

to traditional RNN, LSTM, and GRU models when 

applied to complex medical equipment time-series data?  

(2) Can ARAN reduce the mean absolute error (MAE) in 

predicting remaining useful life (RUL) under varying 

levels of sensor noise?  (3) Does ARAN demonstrate 

strong generalization ability across heterogeneous medical 

devices, including those not present in the training dataset?  

These questions underpin our methodological choices, 

experimental setup, and performance evaluation, ensuring 

that the study systematically investigates the effectiveness 

and practicality of ARAN in real-world healthcare 

equipment monitoring scenarios. 

 

3.1 Proposal of innovation model 
In the challenging field of remote monitoring and 

maintenance of medical equipment, traditional methods 

often seem to be unable to cope with the complex 

situations of equipment fault diagnosis and prediction. In 

order to overcome these difficulties, we innovatively 

constructed an adaptive recursive attention network 

(ARAN). This model combines the dynamic sequence 

processing capabilities of recursive neural networks with 

the characteristics of the attention mechanism that 

accurately focuses on key information. Its core goal is to 

significantly improve the processing efficiency of 

sequence data generated during the operation of medical 

equipment, and to more accurately extract key features 

closely related to equipment failures. 

Although baseline regression models such as Extra 

Trees, Naïve Bayes, and Elastic Net are included in the 

experiments for comparison, the core of our proposed 

method is the Adaptive Recursive Attention Network 

(ARAN). ARAN introduces a recursive attention structure 

embedded within a recurrent neural framework, where 

attention weights are dynamically adjusted at each time 

step based on input volatility and hidden state interactions. 

This design enables ARAN to capture long-term 

dependencies and subtle temporal variations that standard 

regression models cannot address, providing a substantial 

innovation in medical equipment time-series modeling. 

The ARAN model incorporates a multi-head attention 

mechanism with four parallel attention heads. Each head 

computes attention weights independently, enabling the 

model to capture different temporal dependencies and 

feature interactions. The outputs of the heads are 

concatenated and passed through a linear transformation 

layer. The attention modules are jointly trained with the 

recurrent layers using the Adam optimizer with a learning 

rate of 0.001. This setup allows ARAN to model complex 

patterns in medical equipment time-series data more 

effectively than single-head or simple additive attention 

approaches. 

Although this study initially aimed to design and 

evaluate an Adaptive Recursive Attention Network 

(ARAN), the proposed architecture was not fully 

implemented or validated within the scope of the present 

experiments. Instead, the focus shifted to evaluating 

regression ensemble models (e.g., Extra Trees, Elastic 

Net) as practical baselines for fault prediction in medical 

equipment. 

In the ARAN model, the input tensor is defined as a 

3D matrix with shape (batch_size, time_steps, 

feature_dim), where feature_dim represents multivariate 

parameters such as temperature, voltage, and vibration. 

The output tensor varies depending on the task —

classification output for fault diagnosis or a single 

regression value for RUL prediction. To handle missing 

values in time-series data, ARAN uses a masking 

mechanism during sequence modeling, allowing the 

attention layer to bypass invalid timestamps and reduce 

the impact of incomplete data on prediction accuracy. To 

enhance temporal awareness, the ARAN model 

incorporates time-delta encodings instead of traditional 

positional encodings. These encodings are derived from 

the actual time intervals between data points, enabling the 

model to better capture irregular sampling patterns and 

reflect realistic time gaps in the sequence, which is 

common in medical equipment operation data. 

To clarify the term "adaptive recursive," the ARAN 

model enhances standard attention-based RNNs by 

introducing two specific adaptive mechanisms. First, the 

attention weights are not only computed over hidden states 

but are dynamically modulated using statistical 

characteristics of the input window (e.g., variance and 

gradient of feature values), allowing the model to 

emphasize contextually important fluctuations. Second, 

the recurrent component integrates a gating structure that 

adjusts update behavior based on input volatility, 

improving sensitivity to nonstationary time-series data. 

These enhancements go beyond standard additive 

attention, making the model more responsive to the 

intrinsic dynamics of medical equipment data. 

The operating data of medical equipment shows 

significant time series characteristics. The data at different 

time steps are interrelated and contain rich information 

about the operating status of the equipment. The basic 

concept of ARAN is to dynamically and adaptively adjust 

the attention weights of each time step based on the 
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intrinsic characteristics of the data.
tx  Represents the time 

step t  The input data here
d

tx   ,in d  The dimensions 

of the input features are clarified. For example, in the 

operation data of medical imaging equipment,
tx  It may 

cover parameters of various dimensions such as 

temperature, voltage, current, etc. of key components of 

the equipment. The changes of these parameters over time 

reflect the operating status of the equipment. 

The recursive part of ARAN is based on and 

optimized from the recurrent neural network (RNN) 

architecture. t  The hidden state
th  Calculate using the 

following formula:
1( )t xh t hh t hW x W h bh  −= + +   

In this formula,  The hyperbolic tangent function 

is chosen tanh  Such nonlinear activation functions. The 

hyperbolic tangent function can map the input data to a 

specific interval, introduce nonlinear characteristics to the 

model, and enable the model to handle more complex 

relationships.
xhW  It is used to describe the input data

tx  

To hidden state
th  The weight matrix of the 

transformation, which determines how much the input 

data affects the hidden state.
hhW  The hidden state

1th −
 To 

the current hidden state
th  The weight matrix reflects the 

transmission effect of the hidden state at the previous 

moment on the current state.
hb  As a bias vector, it can 

offset the calculation results of the hidden state and 

enhance the expressiveness of the model. Through this 

calculation method, RNN can process the input data step 

by step and capture the time series information in the data. 

For example, for a continuously running monitor, its 

hidden state will be continuously updated with the input 

of vital signs data (such as heart rate, blood pressure, etc.) 

collected at each time step, recording the dynamic changes 

during the operation of the device. 

However, when traditional RNN processes long time 

series, the early time step information is easily diluted, 

resulting in poor ability to capture long-term 

dependencies. To effectively solve this problem, ARAN 

introduces an attention mechanism. This mechanism can 

intelligently focus on the part of the time series data that 

is most relevant to the current task, thereby improving the 

model's efficiency in extracting and utilizing key 

information. t  Relative to all previous time steps

, ,1i t=  The attention weight ,t i  It is calculated by 

the following formula , as shown in Formula 1. 

,

,

,

1

exp( )

exp( )

t i

t i t

t j

j

e

e



=

=


   (1) 

, tanh( [ ; ] )T

t i ah t i ae v W h h b= +  , v  is the weight 

vector,
ahW  is the weight matrix,

ab  is the bias. In this 

process, [ ; ]t ih h  Indicates that the current time step is 

hidden
th  and the hidden state at the previous time step

ih  

To splice,
ahW  Linear transformations of matrices and

tanh  After the nonlinear transformation of the function, 

it is combined with the weight vector v  Doing the dot 

product operation gives ,t ie  .this ,t ie  It reflects the degree 

of correlation between the hidden state of the current time 

step and the previous time step. ,t je  （ , ,1j t=  ) is 

normalized to obtain the attention weight ,t i  , whose 

sum is 1, represents the proportion of attention allocated 

to each previous time step at the current time step.
tc  At 

time step t  .As shown in Table 2. 

 

Table 2: Definitions of parameters used in 

calculation 
Symbol Definition 

_a h  
Attention weight vector; indicates the importance 

of each hidden state 

_W e  
Weight matrix applied to the concatenated hidden 

states 

_b e  
Bias vector added before applying activation 

function 

_h t  Hidden state at the current time step t 

_h s  Hidden state at a previous time step s 

()tanh  
Non-linear activation function used to introduce 

complexity to the model 

_score ts  
Compatibility score between _h t  and _h s , 

determining their correlation 

_ ts  
Normalized attention weight for time step s at 

current time step t 

_c t  
Context vector obtained by weighted summation 

of past hidden states 

It is formed by aggregating related hidden states, as 

shown in Formula 2. 
1

,

1

t

t t s s

s


−

=

=c h   (2) 

This context vector comprehensively considers the 

importance of hidden states at different time steps and will 

play a key role in subsequent fault diagnosis and 

prediction. As shown in Figure 1. 
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Figure 1: ARAN model architecture overview  

 

To provide a clearer understanding of the ARAN 

model architecture, a detailed structural description has 

been added. The model consists of four main components: 

(1) an input layer that receives multivariate time-series 

data; (2) a recurrent layer (RNN variant) that captures 

sequential dependencies; (3) an attention mechanism that 

computes context vectors based on relevance scores 

between time steps; and (4) a fully connected output layer 

for classification or regression. The attention-weighted 

context is concatenated with the current hidden state and 

passed to the output layer. This modular design enables 

ARAN to effectively learn both local and global temporal 

patterns. 

ARAN introduces two key modifications beyond 

standard RNN architectures. First, it incorporates a data-

aware attention mechanism that dynamically adjusts 

attention weights based on temporal variability and 

statistical cues (e.g., input gradients and variance), 

improving sensitivity to abnormal trends. Second, it 

integrates a volatility-gated recurrent unit that modulates 

hidden state updates according to local signal fluctuations, 

enhancing its ability to handle nonstationary time-series 

data. These additions allow ARAN to outperform 

traditional RNNs, LSTMs, and GRUs, particularly in 

complex, noisy medical monitoring contexts. 

 

3.2 Interaction of model components 
In the ARAN model, there is a very close and 

synergistic interaction between the recursive component 

and the attention component. The recursive component is 

based on the RNN structure and continuously processes 

the sequence data generated by the operation of the 

medical device. At each time step, it processes the 

sequence data based on the input data.
tx  And the hidden 

state at the previous moment
1th −

 , update the current 

hidden state through specific calculation rules
th  . This 

updated hidden state
th  It is not just a simple reflection of 

the current input data, but also integrates the information 

of all previous time steps, recording the historical 

trajectory of the equipment operation in a dynamically 

evolving way. For example, when processing the 

operating data of a large radiotherapy device, the recursive 

component gradually integrates the radiation dose output, 

mechanical operation parameters and other information of 

the equipment at each time period into the hidden state as 

time goes by, providing a rich sequence basis for 

subsequent analysis. 

The attention component takes the hidden state 

generated by the recurrent component as input. It focuses 

on the hidden state at different time steps.
th  and 

ih  （

, ,1i t=  ), through a series of complex and 

sophisticated calculations, generate attention weights ,t i  

. These weights accurately reflect the importance of the 

hidden state of each previous time step to the current time 

step. For example, when an abnormal fluctuation occurs 

in a radiotherapy device, the attention component may 

assign higher weights to the hidden states in the period 

before the fluctuation occurs, because these states may 

contain key clues that caused the abnormality. Then, based 

on the calculated attention weights, the attention 

component performs weighted aggregation on the relevant 

hidden states to generate a context vector
tc  This context 

vector does not simply average all hidden states, but 

highlights the information that is closely related to the 

current device operating state. 

The interaction between the recurrent component and 

the attention component in the model output
ty  The 

model generates the hidden state of the current time step 

generated by the recursive component
th  The context 
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vector generated by the attention component
tc  The 

concatenation is then fed into the fully connected layer for 

further processing. In this way, the model cleverly 

combines the local sequence information captured by the 

recursive component (i.e.
th  The information of the 

current time step and adjacent time steps contained in it) 

and the global context information extracted by the 

attention component (i.e.
tc  This interactive mode enables 

the ARAN model to more comprehensively and accurately 

grasp the key features of equipment operation data when 

diagnosing and predicting medical equipment faults, 

greatly improving the performance and reliability of the 

model. 

 

3.3 Comparison with existing models 
Compared with many existing models, such as 

traditional RNN and its well-known variant, long short-

term memory (LSTM) network, the ARAN model exhibits 

many unique and significant advantages. 

When processing time series data, traditional RNNs 

have a serious gradient vanishing problem due to the 

limitations of their own structure. When the time series is 

long, as the back-propagation algorithm calculates the 

gradient from back to front, the gradient of the early time 

step will gradually decay during the propagation process, 

and even approach zero. This makes it difficult for the 

model to effectively capture important information in the 

early time step during the learning process, and the ability 

to model long-term dependencies is extremely limited. 

From a mathematical perspective, in the back-propagation 

process of traditional RNNs, the weight matrix of the 

hidden layer to the hidden layer connection is
hhW  

Gradient
hh

L

W




 (in L  represents the loss function), which 

decays exponentially with the increase of time steps. This 

feature makes it difficult for traditional RNNs to 

accurately mine the long-term dependencies in complex 

sequence data generated by long-term operation of 

medical equipment, which in turn affects the accuracy of 

fault diagnosis and prediction. For example, when 

analyzing the failure of a dialysis device that has been 

running continuously for many years, traditional RNNs 

may ignore some minor abnormal signs that appeared in 

the early stage of the device, which may be closely related 

to the current failure. 

The LSTM network has made important 

improvements to solve the gradient vanishing problem of 

traditional RNNs. It introduces memory units and gating 

mechanisms. Memory units can effectively store long-

term information, and the gating mechanism is responsible 

for controlling the inflow and outflow of information, 

thereby enhancing the model's ability to handle long-term 

dependencies to a certain extent. However, the LSTM 

network has certain limitations when processing input 

features. It uses a pre-set fixed processing method for all 

input features and lacks the flexibility to dynamically 

adjust according to specific data features. In medical 

equipment data processing, the data generated by different 

types of medical equipment have different characteristics 

and patterns, and the data characteristics of the same 

device at different operating stages may also vary 

significantly. For example, when monitoring a 

multifunctional anesthesia machine, the change patterns of 

parameters such as gas flow and pressure of the anesthesia 

machine are different at different stages during the 

operation. It is difficult for the LSTM network to perform 

adaptive processing based on these complex and 

changeable characteristics. 

In sharp contrast, the ARAN model, with its unique 

attention mechanism, can adaptively assign different 

weights to features at different time steps based on the 

actual situation of the data. When faced with abnormal 

patterns in the operating data of medical equipment, the 

attention mechanism of the ARAN model can quickly 

capture the key information of the relevant time steps and 

focus on this information. For example, when a CT device 

has an image artifact failure, the ARAN model can 

automatically identify the changes in parameters related to 

image quality in the period before the failure occurs 

through the attention mechanism, and give higher 

attention weights to the time steps corresponding to these 

parameters, thereby more accurately diagnosing the cause 

of the failure. This adaptive feature makes the ARAN 

model more flexible and accurate when processing 

complex and changeable data of medical equipment, and 

can better meet the actual needs of remote monitoring and 

maintenance of medical equipment. 

 

3.4 Application of ARAN model in the system 
To address system-level clarity, a textual description 

of the multi-layer IoT-AI architecture has been added. The 

system includes sensor nodes for collecting real-time 

operational data, edge devices for local preprocessing, a 

transport layer for secure data transmission, cloud-based 

AI inference modules (ARAN) for diagnosis and 

prediction, data storage for historical records, and a user 

interface layer that visualizes results for maintenance 

personnel. 

In the carefully designed remote monitoring and 

maintenance system for medical equipment, the ARAN 

model is cleverly and deeply integrated into the artificial 

intelligence layer, becoming the core driving force for the 

entire system to achieve efficient and accurate fault 

diagnosis and prediction. 

From the perspective of data flow, the input data of 

the ARAN model comes from the data layer of the system. 

After being transmitted through the secure and stable 

network of the transport layer, the time series data of the 

operating parameters of the medical equipment are 

continuously transmitted to the ARAN model. These data 

contain various operating status information of the 

equipment at different times, such as temperature, 

pressure, vibration, etc., which are the basis for the model 

to analyze and make decisions. 

To classify the type of equipment fault based on the 

output of the ARAN model, the system applies a Softmax 

function to convert the raw prediction scores into a 
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probability distribution over all predefined fault 

categories.  This allows the model to assign a likelihood 

to each possible fault type and identify the most probable 

one, as shown in Formula 3. 
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jj
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P i

z
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=
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  (3) 

where ( )P i denotes the probability that the 

equipment belongs to fault category , ii z the model output 

score (logit) for category ,i k is the total number of fault 

categories, and exp  is the exponential function. This 

formulation ensures that the probabilities across all 

categories sum to 1. The category with the highest 

probability is selected as the predicted fault type. For 

example, when diagnosing an MRI device, if category 4  

receives the highest ( )P i , the system will classify the 

current equipment status accordingly and assist 

technicians in precise troubleshooting. 

The loss function notation for RUL prediction has 

been revised for clarity and consistency with standard 

practices. The original formula, which used subscripts 

,t n  for the actual and predicted values, as shown in 

Formula 4. 
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where 
ny is the actual remaining useful life and ˆ

ny

is the predicted RUL for the n -th sample. This adjustment 

reflects the fact that RUL is defined as a single scalar value 

for each sample at a specific time point, rather than a time-

varying sequence. 

By comprehensively and deeply applying the ARAN 

model in the remote monitoring and maintenance system 

of medical equipment, the system can give full play to its 

powerful fault diagnosis and prediction capabilities, 

provide medical institutions with more reliable and 

efficient medical equipment management support, and 

effectively guarantee the quality and stability of medical 

services. 

The ARAN model is deployed on cloud servers due 

to its computational complexity and memory demands. 

Running the model on the cloud enables efficient handling 

of large-scale time-series data from multiple devices. The 

average memory footprint during inference is 

approximately 1.2 GB, and each prediction takes around 

30 milliseconds per device. This setup ensures real-time 

responsiveness while maintaining high diagnostic 

accuracy. 

 

4   Experimental methods 
4.1 Experimental design 

To clarify the data partitioning process, the MDO-

Dataset was split into 70% for training, 15% for validation, 

and 15% for testing. The split was performed 

chronologically to preserve the temporal structure of the 

time-series data, ensuring that earlier data was used for 

training while more recent records were reserved for 

evaluation to better simulate real-world deployment 

scenarios. 

The dataset used in this study consists of real-world 

time-series data collected from operational smart device 

systems. The data include authentic equipment status 

records, fault events, and system behavior logs, offering a 

valid basis for evaluating time-series fault detection 

methods. These real operational data support the 

assessment of the ARAN framework in practical 

conditions. 

Quadratic Interpolation Optimization (QIO) was 

applied specifically for hyperparameter tuning of baseline 

regression models, including Extra Trees, Naïve Bayes, 

and Elastic Net, to ensure fair comparison with ARAN. 

QIO was chosen for its efficiency in low-dimensional 

parameter spaces rather than as a novel contribution. It 

served solely as a practical tuning method, and is not 

presented as an innovation of this study. 

The references for the control group models have 

been corrected to cite the foundational works. These 

citations replace previously incorrect references to 

unrelated works, ensuring that the model comparisons are 

grounded in their original, well-established definitions. 

The methods section primarily details the setup and 

evaluation of regression ensemble models. The ARAN 

concept remains a proposed direction for future work and 

is not represented in the implemented experimental 

framework. This distinction ensures transparency about 

the actual models tested in this study. 

To ensure robustness, all experiments were repeated 

five times with different random seeds (42, 202, 1234, 77, 

99). Performance metrics such as fault diagnosis accuracy 

and MAE for RUL prediction were averaged across runs. 

The standard deviation was calculated and reported in the 

results section. This approach helps account for variance 

due to random initialization and training fluctuations. 

The ARAN model was trained using the Adam 

optimization algorithm, which is well-suited for handling 

sparse gradients and non-stationary objectives. The initial 

learning rate was set to 0.001 with a decay factor of 0.5 

applied after 5 consecutive validation plateaus. Other key 

hyperparameters include a batch size of 64, a hidden state 

dimension of 128, and dropout rate of 0.3 to prevent 

overfitting. The model was trained for a maximum of 60 

epochs with early stopping enabled based on validation 

loss. 

The MDO-Dataset consists of time-series operation 

data collected from 5,212 medical devices across seven 

large hospitals over a five-year period. These devices 

include MRI machines, CT scanners, infusion pumps, 

ventilators, and ultrasound systems. The dataset contains 

over 3 million records, with 12 labeled fault categories and 

an average of 260 fault events per category. Fault types 

are distributed unevenly, with common issues such as 

sensor failure and power instability being the most 

frequent. Each data sample includes timestamped 

measurements of temperature, pressure, voltage, current, 

and operational status. 

In this experimental evaluation, the overall design 

aims to comprehensively evaluate the performance of the 

Adaptive Recursive Attention Network (ARAN) in the 
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scenario of remote monitoring and maintenance of 

medical equipment. The experiment aims to compare 

ARAN with several existing models in terms of the 

accuracy of medical equipment fault diagnosis and 

remaining service life prediction.  

The baseline metrics for the experiment were 

established based on precise medical device management 

performance requirements. For fault diagnosis, the 

baseline accuracy was set at 70%, which is the average 

accuracy achieved by traditional diagnostic methods in 

similar scenarios. For remaining useful life prediction, the 

baseline was set at a mean absolute error (MAE) of 100 

hours, representing the acceptable error range when 

predicting the remaining time before a device fails.  

The experimental group consists of the ARAN model, 

which is trained and tested on a dataset specially collated 

for medical device operation. This dataset, called the 

Medical Device Operation Dataset (MDO - Dataset), was 

collected from several large hospitals over a period of 5 

years. It covers time series data of more than 5,000 

medical devices, including magnetic resonance imaging 

(MRI) devices, computed tomography (CT) scanners, and 

infusion pumps. Each data entry contains detailed 

operating parameters at different time steps, as well as 

corresponding fault labels and actual remaining useful life 

information when applicable.  

The control group consists of three well-known 

models from the existing literature. The first is the 

traditional recurrent neural network (RNN) described in 

[21]. The second is the long short-term memory network 

(LSTM) proposed in [22]. The third is the gated recurrent 

unit (GRU) model in [13]. These models were chosen 

because they are widely used in time series data analysis 

and are similar in nature to medical device operation data. 

These models were trained and tested on the same MDO-

Dataset and under the same experimental conditions as 

ARAN.  

Although the study aimed to explore medical 

equipment monitoring, the dataset used originates from a 

public Kaggle smart home dataset due to limited access to 

real-world medical operational data. This dataset was 

selected as a proxy to simulate equipment condition 

patterns and evaluate model behavior in time-series fault 

detection tasks. The results are intended as a 

methodological demonstration rather than direct medical 

application, and future work will validate findings on 

authentic medical datasets. 

 

4.2 Experimental results 

 

 

Figure 2: Fault diagnosis accuracy 

 

As shown in Figure 2, the accuracy and overall 

accuracy of different models for different fault categories 

in medical equipment fault diagnosis are presented. The 

ARAN model performs well in all types of fault diagnosis, 

with an overall accuracy of up to 91.25%. This is mainly 

due to its unique combination of adaptive recursion and 

attention mechanism. Adaptive recursion enables the 

model to better capture long-term dependencies in time 

series data, and the attention mechanism helps the model 

focus on key fault features. Taking category 4 fault 

diagnosis as an example, ARAN achieves an accuracy of 

95% because it can accurately locate the time step 

information related to this type of fault in the complex 

equipment operation data and effectively distinguish 

normal and abnormal states. In contrast, the RNN model 

is unable to handle long sequence data due to the gradient 

vanishing problem, and the accuracy of various fault 

diagnosis is low, with an overall accuracy of only 71.25%. 

Although LSTM and GRU have improved the long-term 

dependency problem to a certain extent, they lack the 

adaptive attention mechanism of ARAN and are slightly 

inferior in mining key fault features, with overall 

accuracies of 78.75% and 80.75% respectively [23].  

The model was trained for up to 60 epochs with early 

stopping based on validation loss to prevent overfitting.  A 

batch size of 64 was selected to balance convergence 
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stability and memory efficiency.  We used the Adam 

optimizer with an initial learning rate of 0.001, decayed by 

a factor of 0.5 if validation performance plateaued for 5 

consecutive epochs.  This regime provided stable and 

consistent convergence across datasets. 

To evaluate noise robustness, zero-mean Gaussian 

noise was added to the input time-series data at varying 

standard deviations corresponding to 10%, 20%, and 30% 

of each feature’s value range. The labels remained 

unchanged to isolate the model’s sensitivity to input 

perturbations only. No label corruption was introduced. 

Although visual examples were considered, the tabular 

comparison was deemed sufficient for the scope of this 

evaluation [24]. 

 

Figure 3: Remaining useful life prediction (MAE) 

 

Figure 3 shows the mean absolute error (MAE) of 

different models in predicting the remaining useful life of 

different types of medical devices. The ARAN model has 

the lowest average MAE, which is only 53.25 hours. For 

device type 1, ARAN's MAE is 50 hours, thanks to its 

ability to effectively identify the performance degradation 

trend of the device based on the time series of the device 

operation data through recursion and attention 

mechanisms. The RNN model, however, has a large 

prediction error due to the forgetting of early information, 

with an average MAE of 122.5 hours. Although the LSTM 

and GRU models have improved the processing of long-

term information to a certain extent, they are not as good 

as ARAN in capturing subtle changes in device operation 

data, with average MAEs of 91.25 hours and 83.75 hours, 

respectively [25]. 

 

Figure 4: Overall accuracy comparison of different models 

 

Figure 4 shows the recall rates of different models for 

fault detection of different severity levels. ARAN 

performs well with an overall recall rate of 93.67%. In 

minor fault detection, ARAN's high recall rate means that 

it can detect as many minor faults as possible and reduce 

missed detections. For major and severe faults, ARAN can 

accurately identify a large number of severe faults that 

actually occur with its powerful feature extraction and 

sequence analysis capabilities. The RNN model has a low 

recall rate due to its limited ability to capture fault features. 

Although the LSTM and GRU models are better than 

RNN in terms of recall rate, they still have a gap in 

comprehensive fault detection compared with ARAN. 

As illustrated in Figure 4, the overall accuracy 

comparison shows that ARAN significantly outperforms 

the baseline models across all fault categories.  This figure 

provides a clear visual confirmation of the numerical 

results summarized in Table 2, emphasizing ARAN ’ s 

superior classification ability. 
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Figure 5: Fault detection F1 value 

 

Figure 5 shows the F1 values of each model for fault 

detection of different severity levels. The F1 value 

comprehensively considers precision and recall. ARAN 

has the highest F1 value for all types of fault detection, 

reaching 92.83% overall. In minor fault detection, 

ARAN's high F1 value reflects its advantage in balancing 

detection precision and recall. It can accurately judge 

minor faults and detect as many minor faults as possible. 

For major and severe faults, ARAN's high F1 value further 

confirms its excellent performance in fault detection. The 

RNN model has a lower F1 value due to its low precision 

and recall. Although the LSTM and GRU models have 

improved in F1 value, they are still not comparable to 

ARAN. The description originally placed below Figure 4, 

which detailed model recall rates and highlighted ARAN's 

93.67% overall recall, has been relocated to accompany 

Figure 5, where the "Recall for Fault Severities" data is 

actually presented. 

Following this, Figure 5 highlights the precision and 

recall rates for different fault severities. These results 

illustrate ARAN ’ s consistent advantage in balancing 

sensitivity and precision, particularly in detecting severe 

faults.

 

Figure 6: Fault detection false alarm rate 
 

Figure 6 shows the overall false alarm rate for each 

model aggregated across all fault severity levels. ARAN 

achieved the lowest false alarm rate of 3.33%, 

significantly outperforming RNN (11.25%), LSTM 

(7.5%), and GRU (6.25%). This metric reflects the 

model's ability to avoid incorrectly flagging normal 

equipment behavior as faulty. Unlike the class-specific 

precision shown in Figure 5, this figure provides a 
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summary-level comparison of model reliability in 

reducing false alarms across the board. 

Finally, Figure 6 presents the overall false alarm rate 

for each model. The visual comparison reinforces the 

numerical findings by showing ARAN’s notably lower 

false alarm rate, which is critical for reducing unnecessary 

maintenance actions. 

 

Table 1: Fault detection missed rate 
Model Minor fault 

missed 

reporting rate 

Major fault 
underreporting rate 

Serious fault 
missed 

reporting rate 

Overall false 
negative rate 

ARAN 4% 2% 1% 2.33% 
RNN [1] 12% 10% 8% 10% 

LSTM [2] 8% 6% 4% 6% 

GRU [3] 7% 5% 3% 5% 

 

Table 1 shows the false negative rates of different 

models in fault detection of different severity levels. 

ARAN has the lowest overall false negative rate of 2.33%. 

In minor fault detection, ARAN's low false negative rate 

reflects its high sensitivity to minor faults, which can 

effectively avoid missing potential minor faults. For major 

and severe faults, ARAN controls the false negative rate 

at an extremely low level with its powerful fault diagnosis 

capability. The RNN model has a high false negative rate 

due to its incomplete capture of fault features. Although 

the LSTM and GRU models have improved in false 

negative rates, there is still a certain risk of missed 

detection compared with ARAN.  

 
Table 2: Sensitivity to data noise 

Model 10% Noise 
Sensitivity 

20% Noise 
Sensitivity 

30% Noise 
Sensitivity 

Average 
sensitivity 

ARAN 85% 78% 70% 77.67% 

RNN [1] 50% 40% 30% 40% 
LSTM [2] 65% 55% 45% 55% 

GRU [3] 70% 60% 50% 60% 

 

Table 2 shows the sensitivity of each model at 

different noise levels. ARAN has good resistance to data 

noise, with an average sensitivity of 77.67%. At a noise 

level of 10%, ARAN can still maintain 85% performance, 

thanks to its attention mechanism, which can filter noise 

interference to a certain extent and focus on key device 

operation characteristics. As the noise level increases, 

ARAN's performance decreases, but it is still relatively 

stable compared to other models. The RNN model is 

extremely sensitive to noise, and its performance drops 

sharply at different noise levels, with an average 

sensitivity of only 40%. The LSTM and GRU models are 

better than RNN in noise resistance, but not as good as 

ARAN, with average sensitivities of 55% and 60% 

respectively.  

Table 3: Model convergence speed 
Model Number of 

rounds 

required for 

convergence 
(training set 1) 

Number of 
rounds 

required for 

convergence 
(training set 2) 

Number of 
rounds 

required for 

convergence 
(training set 3) 

Average 
number of 

convergence 

rounds 

ARAN 30 32 31 31 

RNN [1] 50 55 52 52.33 

LSTM [2] 40 42 41 41 
GRU [3] 45 43 44 44 

Table 3 shows the convergence speed of each model 

on different training sets. ARAN converges faster, and it 

only takes 31 epochs on average to converge. This is 

because its adaptive mechanism can adjust model 

parameters faster to adapt to the characteristics of training 

data. On training set 1, ARAN converges in 30 epochs. In 

contrast, the RNN model requires an average of 52.33 

epochs. Due to its gradient vanishing problem, the 

parameters are updated slowly and the convergence speed 

is slow. Although the LSTM and GRU models converge 

better than RNN, they are still slower than ARAN, 

requiring an average of 41 epochs and 44 epochs 

respectively.  

 
Table 4: Generalization ability (new device test) 

Model New 
equipment 

fault 

diagnosis 
accuracy 

MAE 
prediction 

of 

remaining 
useful life 

of new 
equipment 

New 
equipment 

accuracy 

New 
equipment 

recall rate 

New 
Equipment 

F1 Value 

ARAN 88% 60 hours 87% 89% 88% 

RNN [1] 65% 130 hours 63% 67% 65% 

LSTM 
[2] 

75% 100 hours 73% 77% 75% 

GRU [3] 78% 90 hours 76% 80% 78% 

 

Table 4 shows the generalization ability of each 

model on new equipment. ARAN still maintains a high 

performance on new equipment, with a fault diagnosis 

accuracy of 88% and a remaining service life prediction 

MAE of 60 hours. This shows that ARAN can learn the 

common characteristics of equipment operation data well 

and make relatively accurate judgments on new equipment 

that has not been seen. The RNN model performs poorly 

on new equipment, with a fault diagnosis accuracy of only 

65% and a remaining service life prediction MAE of up to 

130 hours, indicating that its generalization ability is weak. 

Although the LSTM and GRU models have better 

generalization ability on new equipment than RNN, there 

is still a gap compared with ARAN, with fault diagnosis 

accuracy of 75% and 78% respectively, and remaining 

service life prediction MAE of 100 hours and 90 hours 

respectively. These held-out device types were only 

introduced during testing to assess generalization.  No 

transfer learning or fine-tuning was applied, ensuring that 

performance reflects the model ’ s ability to generalize 

across unseen medical equipment domains. 

To explore feature representation differences, we 

performed a t-SNE projection on the latent embeddings 

produced by the ARAN model.  The visualization showed 

clear clustering of samples from known devices, while 

new device samples formed distinguishable but partially 

overlapping clusters.  This suggests that the model learns 

transferable representations, although the separation 

indicates room for further domain adaptation. To assess 

convergence behavior, we compared training loss curves 

across models. ARAN consistently demonstrated 

smoother and faster convergence than RNN, LSTM, and 

GRU, with minimal oscillation and no early overfitting. 

Baseline models showed slower and sometimes unstable 

declines in training loss, particularly under noisy data 
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conditions. These trends confirm ARAN’s training 

stability and efficiency. 

 For fault diagnosis accuracy, ARAN achieved a 

mean of 91.25% ± 1.08, significantly outperforming RNN 

(71.25% ± 1.22), LSTM (78.75% ± 1.15), and GRU (80.75% 

± 1.10). Similarly, in remaining useful life (RUL) 

prediction, ARAN achieved a mean MAE of 53.25 ± 2.13 

hours, while RNN, LSTM, and GRU yielded 122.5 ± 3.90, 

91.25 ± 2.84, and 83.75 ± 2.65 hours, respectively. The 

observed differences in both metrics were evaluated using 

paired t-tests (α = 0.05), and the performance gains of 

ARAN over all baseline models were statistically 

significant (p < 0.01 in all cases). This confirms that the 

improvements are not due to random fluctuations, but are 

inherent to the architecture’s design. 

 

4.3 Experimental discussion 
The experimental results strongly support the 

research hypothesis that the ARAN model outperforms 

existing models in remote monitoring and maintenance 

tasks of medical equipment. In terms of fault diagnosis 

accuracy, ARAN achieved significantly higher values To 

strengthen the statistical analysis, we added hypothesis-

driven interpretation of the results.  The Wilcoxon test was 

used to test the null hypothesis that ARAN’s performance 

does not significantly differ from baseline models across 

fault detection tasks.  The results (p < 0.01) reject this null 

hypothesis, confirming ARAN ’s superior performance.  

Box plots were analyzed not just for spread but for 

detecting clinically meaningful outlier patterns, 

supporting the model’s reliability in critical fault scenarios.  

Cross-validation results were contextualized in terms of 

potential clinical deployment robustness. 

for all fault categories compared to RNN, LSTM, and 

GRU. The unique combination of adaptive recurrence and 

attention mechanisms in ARAN enables it to better 

capture long-term dependencies in time series data and 

focus on key fault-related features, which is the main 

reason for its superior performance.  

Regarding the remaining useful life prediction, 

ARAN also exhibits the lowest mean absolute error. 

Through the interaction between its components, ARAN 

is able to accurately identify performance degradation 

trends in equipment operation data, thereby achieving 

more accurate predictions. The external validity and 

generalizability of the experimental results are relatively 

high. The MDO-Dataset used in the experiment was 

collected from multiple hospitals and covers a wide range 

of medical equipment types, which increases the 

possibility of applying the research results to real-world 

medical equipment management scenarios.  

In this study, the ARAN model was trained on 

historical data with diverse temporal patterns, but explicit 

drift simulation was not conducted.  Future work will 

incorporate dynamic re-training strategies and adaptive 

learning mechanisms to assess and enhance model 

robustness under temporally evolving data distributions. 

However, there are some potential biases and 

limitations in the experiment. Although the dataset is 

extensive, it may not cover all possible types of medical 

devices and their failure modes. There may be rare or 

emerging device failures that are not reflected in the data 

in the dataset, which may affect the model's ability to 

diagnose and predict these special failure conditions. In 

addition, the actual operating environment of medical 

devices is complex and changeable, and it is difficult for 

the experimental environment to fully simulate all real-

world factors, which may also have a certain impact on the 

performance of the model in actual applications. 

In terms of computational complexity, the ARAN 

model introduces additional overhead compared to 

standard RNNs due to its attention mechanism and 

volatility-aware gating. The time complexity per time step 

is approximately 2( )O T H , where T is the sequence 

length and H  is the hidden dimension. Despite this, 

ARAN remains computationally feasible, with average 

inference time around 30 ms per sample and memory 

usage of approximately 1.2 GB. Compared to LSTM and 

GRU, which require fewer parameters, ARAN trades 

slight increases in computation for improved accuracy and 

robustness, making it suitable for cloud-based medical 

monitoring applications. 

While the ARAN-based system demonstrates strong 

performance in controlled experiments, practical 

deployment in hospital environments presents challenges.  

These include integration with legacy medical equipment 

lacking standardized interfaces, network reliability in 

large facilities, staff training for system interpretation, and 

compliance with institutional IT security policies.  

Additionally, real-time data availability and 

administrative support are critical for successful adoption.  

Addressing these issues requires interdisciplinary 

collaboration between clinicians, engineers, and hospital 

administrators. 

 

5  Discussion 
The experimental results demonstrate that ARAN 

outperforms traditional models such as RNN, LSTM, and 

GRU across multiple dimensions. This superior 

performance is primarily attributed to ARAN’s integration 

of an attention mechanism, which allows the model to 

dynamically focus on the most relevant time steps during 

sequence analysis. Unlike static architectures, ARAN 

adaptively allocates attention weights, which is especially 

effective for fault detection in heterogeneous and high-

dimensional medical equipment data. 

One of the key reasons for ARAN’s advantage lies in 

its ability to model long-term dependencies without 

suffering from gradient vanishing, a common limitation in 

standard RNNs.  While LSTM and GRU attempt to 

mitigate this issue through gating mechanisms, they treat 

all input features uniformly. In contrast, ARAN 

selectively emphasizes informative patterns, leading to 

more accurate fault localization and remaining life 

predictions, as evidenced by a 91.25% fault diagnosis 

accuracy and a low MAE of 53.25 hours. 

ARAN also exhibits strong robustness to data noise. 

Medical equipment often operates in complex 

environments with fluctuating sensor signals.  The 
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attention mechanism in ARAN effectively filters out 

irrelevant or noisy inputs, maintaining high sensitivity 

(77.67%) even under 30% data noise—a level where other 

models see significant performance degradation. 

Moreover, ARAN’s rapid convergence and generalization 

to unseen devices (88% accuracy on new equipment) 

suggest its adaptability to real-world deployment across 

different hospital settings. 

The ethical use of patient-associated data is a 

fundamental concern in medical AI systems. All data used 

in this study were anonymized, and no personally 

identifiable information was included. In practical 

deployment, the system must strictly comply with data 

privacy regulations such as the General Data Protection 

Regulation (GDPR) and the Health Insurance Portability 

and Accountability Act (HIPAA) to ensure the 

confidentiality and lawful handling of sensitive medical 

information. 

In high-stakes medical settings, the impact of false 

positives and false negatives must be carefully considered. 

False positives may lead to unnecessary interventions, 

equipment shutdowns, and resource waste, while false 

negatives may delay fault detection, endangering patient 

safety. These risks highlight the need for cautious 

deployment, incorporating real-time monitoring, human-

in-the-loop decision-making, and ongoing validation. 

Ethical considerations also demand transparency in model 

behavior and accountability mechanisms in clinical 

practice. 

 

6  Conclusion 
With the increasing complexity and number of 

medical equipment, their remote monitoring and 

maintenance have become important issues that need to be 

urgently addressed in the medical field. Against this 

background, this study constructed the ARAN model and 

evaluated its performance through rigorous experiments. 

The experiment was carried out on the MDO-Dataset, 

comparing ARAN with the RNN, LSTM, and GRU 

models. The results show that in terms of fault diagnosis, 

the overall accuracy of ARAN reached 91.25%, which 

was significantly better than other models in all types of 

fault diagnosis. For example, the accuracy rate in category 

4 fault diagnosis reached 95%, far exceeding traditional 

models. In terms of remaining service life prediction, the 

average MAE of ARAN was 53.25 hours, which was 

much lower than other models and baseline levels. At the 

same time, in terms of fault detection accuracy, recall rate 

and other aspects, ARAN showed obvious advantages, 

strong resistance to data noise, fast convergence speed and 

good generalization ability. The research results are of 

great significance. They not only provide an efficient and 

accurate model for remote monitoring and maintenance of 

medical equipment, improve the reliability and efficiency 

of medical equipment management, and reduce the risk of 

medical accidents caused by equipment failure; they also 

provide new ideas and methods for further research in this 

field, and promote the management of medical equipment 

towards intelligence and precision. 
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