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In the context of challenges faced by remote monitoring and maintenance of medical equipment, this study
proposes an adaptive recursive attention network (ARAN) model to improve the accuracy of equipment
fault diagnosis and remaining useful life prediction. The ARAN architecture integrates a recurrent neural
network framework with an attention mechanism that adaptively emphasizes relevant time steps in the
input sequence. The model was trained and evaluated on the Medical Device Operation Dataset (MDO-
Dataset), which comprises time-series operational data from over 5,000 medical devices across multiple
large hospitals over five years. ARAN was benchmarked against three baseline models: Recurrent Neural
Network (RNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU). Quantitative
results show that ARAN achieved a fault diagnosis accuracy of 91.25%, outperforming the baseline
average of 70%, with category 4 reaching 95%. For remaining useful life prediction, ARAN yielded a
mean absolute error (MAE) of 53.25 hours, substantially lower than the baseline MAE of 100 hours.
Additionally, ARAN demonstrated superior performance in recall rate, F1 score, false alarm rate, and
noise robustness, with faster convergence speed and stronger generalization ability on unseen device
types. This research presents an effective fusion of loT and Al technologies for intelligent medical
equipment management.

Povzetek: Za inteligentno nadzorovanje medicinske opreme prek integriranih 10T—Al sistemov je razvit
prilagodljivi rekurzivni pozornostni model (ARAN). Zdruzuje rekurentno nevronsko mrezo z vecglavim
pozornostnim mehanizmom, ki poudari kljucne casovne korake v podatkih. Namen je izboljsati
zanesljivost, napoved preostale Zivljenjske dobe in zmanjsati okvare medicinske opreme v pametnih

bolnisnicah.

1 Introduction

In today's society, the medical field is facing
unprecedented challenges, one of which is how to
effectively monitor and maintain a large number of
increasingly complex medical devices. According to
incomplete statistics, there are more than 80 million
medical devices of various types in operation in medical
institutions around the world. Every year, the proportion
of medical accidents caused by failure to detect and handle
medical device failures in a timely manner is as high as
about 12%, which is undoubtedly a shocking figure [1].
Take a large general hospital as an example. It has nearly
10,000 different types of medical devices. In the past year,
there have been nearly 100 adverse events such as delayed
surgery and misdiagnosis caused by sudden equipment
failures. This not only poses a serious threat to the life and
health of patients, but also causes significant losses to the
hospital's reputation and economy [2].

In this realistic context, the traditional manual inspection
and post-maintenance methods are far from meeting the
needs of modern medical equipment management. Manual
inspections often have many loopholes and shortcomings.
For example, the professional quality of inspectors varies,
which may lead

to some potential equipment problems being ignored. In
addition, the time interval of manual inspections is
relatively fixed, making it difficult to monitor the status of
equipment in real time, which means that many equipment
failures cannot be discovered in the first place.
Furthermore, post-maintenance methods often lead to
longer maintenance cycles and increased equipment
downtime, further affecting the normal development of
medical services [3].

At the same time, with the rapid development of the
Internet of Things and artificial intelligence technologies,
they have shown great application potential in various
fields. The Internet of Things can realize all-round and
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real-time data collection of medical equipment through
various sensors and network connection technologies, and
continuously transmit information such as the operating
status and performance parameters of the equipment to the
management platform [4]. Artificial intelligence can
deeply analyze and process these massive amounts of data,
quickly and accurately diagnose potential faults of the
equipment through intelligent algorithms, and predict the
remaining service life of the equipment, etc., providing
strong technical support for the monitoring and
maintenance of medical equipment.

At present, there have been many research results on
the application of IoT and Al in the field of medical
equipment management. Many research teams are
committed to developing medical equipment data
acquisition systems based on loT. By installing various
sensors on the equipment, such as temperature sensors,
pressure sensors, Vvibration sensors, etc., real-time
monitoring of equipment operating parameters can be
achieved [5]. According to relevant research, this type of
data acquisition system can improve the accuracy of
equipment status monitoring by about 30% [6].

In terms of the application of artificial intelligence
algorithms, some studies have begun to try to use machine
learning algorithms, such as support vector machines and
neural networks, to diagnose medical equipment faults.
For example, a research team has achieved an accuracy
rate of about 85% in fault diagnosis of a common type of
medical imaging equipment by using a deep neural
network algorithm, which is a significant improvement
over traditional diagnostic methods [7]. However, despite
these achievements, existing research still has some
shortcomings. First, most of the current research focuses
on one aspect of the Internet of Things or artificial
intelligence, and there are relatively few studies on the
deep integration of the two, which fails to give full play to
the huge advantages of the combination of the Internet of
Things and artificial intelligence. Second, some existing
system architecture designs often lack versatility and
scalability, and are difficult to apply to medical
institutions of different types and sizes. Third, the
consideration of data security and privacy protection is not
comprehensive enough. The data involved in medical
equipment often contains a large amount of sensitive
information of patients, which will have serious
consequences once leaked.

In terms of research hotspots, how to further improve
the diagnostic accuracy of artificial intelligence
algorithms for complex medical equipment failures and
how to optimize the data transmission efficiency of the
Internet of Things have become the focus of many
researchers. On the controversial point, different research
teams hold different views on what artificial intelligence
algorithms should be used in remote monitoring and
maintenance of medical equipment and how to balance the
comprehensiveness of data collection and the cost of data
transmission. There is no unified consensus yet.

This paper aims to design a remote monitoring and
maintenance system architecture for medical equipment
that deeply integrates the Internet of Things and artificial
intelligence. By building such a system architecture, the
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key issues to be solved include achieving seamless
integration of the Internet of Things and artificial
intelligence technologies, improving the versatility and
scalability of the system to adapt to different medical
environments, and strengthening data security and privacy
protection mechanisms.

The innovation of this study is that it proposes a new
fusion architecture model for the first time, which
organically integrates the real-time data collection
capabilities of the Internet of Things with the intelligent
diagnosis and prediction capabilities of artificial
intelligence, enabling it to monitor and maintain medical
equipment more efficiently. The expected contribution is
that once the system architecture is applied, it is expected
to advance the fault warning time of medical equipment
by about 50% and reduce the equipment failure rate by
about 20%, thereby greatly improving the quality and
efficiency of medical services and reducing medical
accidents caused by equipment failures.

From a theoretical perspective, this study will further
enrich the theoretical system of the integration of the
Internet of Things and artificial intelligence, and provide
important reference and reference for subsequent related
research. In practice, this system architecture can be
promoted and applied in various medical institutions,
bringing significant economic and social benefits, and
effectively promoting the intelligent and modern process
of medical equipment management.

2 Literature review
2.1 Application status of loT and Al in

medical equipment management

10T technology has been widely used in medical
equipment data collection. Various sensors are installed
on medical equipment, such as temperature sensors,
pressure sensors, and vibration sensors. According to an
authoritative statistic, about 70% of medical equipment
data collection projects use temperature sensors, which
can provide real-time feedback on the temperature
changes of the equipment during operation. This data is
crucial to determine whether the equipment is in normal
operation [8]. The application ratio of pressure sensors has
also reached about 60%, which plays a key role in
monitoring equipment such as ventilators that have strict
requirements on pressure parameters [9]. Through these
sensors, the operating parameters of medical equipment
can be obtained more comprehensively and accurately.
Relevant research shows that the data collection system
based on the 10T can improve the accuracy of equipment
status monitoring by an average of about 30%, which
makes it more likely that some potential problems of
medical equipment will be discovered in advance.

In terms of artificial intelligence algorithms being
used for medical equipment fault diagnosis, a variety of
machine learning algorithms have been tried. Among
them, the support vector machine algorithm has shown
certain advantages in the fault diagnosis of certain types
of medical equipment. Some studies have shown that its
fault diagnosis accuracy for a certain type of medium-
sized medical testing equipment can reach about 75%.
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Neural network algorithms, especially deep neural
network algorithms, have received much attention. A
well-known research team used deep neural network
algorithms to diagnose faults of a certain type of common
medical imaging equipment, with an accuracy of about
85%, which is significantly higher than the accuracy of
traditional diagnostic methods [10]. However, the
application of these algorithms is not perfect. Most of
them perform well in the diagnosis of specific types of
equipment or specific fault types, and their versatility still
needs to be improved [11].

Although the Internet of Things and artificial
intelligence have their own application results in the field
of medical equipment management, overall, there are
relatively few studies on the deep integration of the two.
Most studies only focus on one aspect of the Internet of
Things or artificial intelligence. This leads to the inability
to fully utilize the huge advantages that the combination
of the two may bring in practical applications. For
example, in some existing monitoring and maintenance
systems, the data collected by the Internet of Things
cannot be well utilized by artificial intelligence algorithms
for in-depth analysis and accurate diagnosis, and the value
of the data has not been fully explored [12]. In addition,
the existing system architecture design often lacks
versatility and scalability. About 80% of the existing
systems can only be applied to medical institutions of a
specific type or scale, and it is difficult to promote and
apply them in a wider medical environment [13]. In
addition, the consideration of data security and privacy
protection is not comprehensive enough. The data
involved in medical equipment contains a large amount of
sensitive patient information. Once this information is
leaked, it is estimated that it may bring about a 50%
increase in risk to patients and medical institutions,
including privacy infringement risks and economic loss
risks. However, currently only about 30% of the systems
have relatively complete data security and privacy
protection mechanisms.

To enhance clarity and identify gaps in the current
body of research, Table 1 summarizes representative
studies involving 10T and Al in the remote monitoring of
medical devices. The comparison includes method names,
model types, datasets used, and key performance metrics
(e.g., accuracy, MAE).

Table 1: Comparative summary of related work

Rsegggnf:e Model Type | Dataset Used PeT\;c;rtrrr:g?ce
Zhang et al. DNN + Elr?]?)rr:)i/tgre}tr:ent Accuracy:
[ loMT p Y ~85%
ata
Hameed et Fuzzy S.m?UIatEd Accuracy:
al. [10] Neural clinical loT ~78%
Network data
Support
Rohmetra et Vector COVID-19 Accuracy:
al. [9] Machine vitals dataset ~75%
(SVM)
Jiang et al. CNN + Neuroc_ritical MA_E_
8] Wearable care time- (Remammg
loT series data Life): ~100 hrs
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Wassan et al Federated Distributed Accurac
' Gradient healthcare loT . Y
[12] Boosting data varies by node
2.2 Current research hotspots and

controversial issues

Currently, there are two major research hotspots in
this field. The first is how to further improve the
diagnostic accuracy of artificial intelligence algorithms
for complex medical equipment failures [14]. As medical
equipment becomes increasingly complex, its failure types
are becoming more diverse. The diagnostic accuracy of
existing artificial intelligence algorithms for some
complex and comprehensive failures still needs to be
improved [15]. Many research teams are working to
improve the accuracy by improving the algorithm
structure and increasing the amount of training data. For
example, one team tried to optimize the neural network
algorithm by introducing a new feature extraction method,
hoping to improve the diagnostic accuracy of complex
medical equipment failures by about 10%-20% [16]. The
second is how to optimize the data transmission efficiency
of the Internet of Things [17]. Because there are many
medical devices and the amount of data collected is huge,
delays and packet loss are prone to occur during data
transmission. About 60% of medical institutions reported
that they have some problems with data transmission [18].
Therefore, how to improve data transmission efficiency by
optimizing network protocols and adopting more efficient
transmission technologies has become the focus of many
researchers. Related studies show that if the optimization
is successful, it is expected to improve the real-time
performance of data transmission by about 30% [19].
There are also some controversial points in this field. One
of the controversial points is what kind of artificial
intelligence algorithm should be used in the remote
monitoring and maintenance of medical equipment [20].

2.3 Outlook on future research directions
Future research needs to focus on optimizing the
deep integration architecture of the Internet of Things and
artificial intelligence. We should strive to design an
architecture that can seamlessly connect the Internet of
Things and artificial intelligence technologies, so that the
data collected by the Internet of Things can be more
efficiently used by artificial intelligence algorithms,
thereby achieving more accurate equipment fault
diagnosis and prediction. For example, by establishing a
unified data format and interface standard, the data
transmission and processing between the two can be
smoother. It is estimated that if this can be achieved, the
overall system efficiency can be improved by about 20%.
In the design of system architecture, we should focus
on improving its versatility and scalability to adapt to
medical institutions of different types and sizes. We can
adopt a modular design concept and divide the system into
data acquisition module, data processing module, fault
diagnosis module, etc. Each module can be flexibly
combined and expanded according to the specific needs of
the medical institution. Such a design is expected to
increase the applicability of the system in different
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medical institutions from the current approximately 30%
to about 70%.

Given the sensitivity of medical device data, future
research must strengthen data security and privacy
protection mechanisms. Encryption technology can be
used to encrypt data in transit, such as the use of the AES
encryption algorithm, which can increase the security of
data during transmission by about 80%; at the same time,
in terms of data storage, a combination of distributed
storage and access control technology is used to strictly
limit data access rights and reduce the risk of data leakage.
It is expected that the risk of data leakage can be reduced
by about 60%. Through these measures, an efficient and
secure medical equipment remote monitoring and
maintenance system can be built.

3 Research methods

At the beginning of this study, we formulated several
core research questions to guide the design and evaluation
of the proposed ARAN model. Specifically, the following
questions were posed: (1) Can the ARAN model
significantly improve fault diagnosis accuracy compared
to traditional RNN, LSTM, and GRU models when
applied to complex medical equipment time-series data?
(2) Can ARAN reduce the mean absolute error (MAE) in
predicting remaining useful life (RUL) under varying
levels of sensor noise? (3) Does ARAN demonstrate
strong generalization ability across heterogeneous medical
devices, including those not present in the training dataset?
These questions underpin our methodological choices,
experimental setup, and performance evaluation, ensuring
that the study systematically investigates the effectiveness
and practicality of ARAN in real-world healthcare
equipment monitoring scenarios.

3.1 Proposal of innovation model

In the challenging field of remote monitoring and
maintenance of medical equipment, traditional methods
often seem to be unable to cope with the complex
situations of equipment fault diagnosis and prediction. In
order to overcome these difficulties, we innovatively
constructed an adaptive recursive attention network
(ARAN). This model combines the dynamic sequence
processing capabilities of recursive neural networks with
the characteristics of the attention mechanism that
accurately focuses on key information. Its core goal is to
significantly improve the processing efficiency of
sequence data generated during the operation of medical
equipment, and to more accurately extract key features
closely related to equipment failures.

Although baseline regression models such as Extra
Trees, Naive Bayes, and Elastic Net are included in the
experiments for comparison, the core of our proposed
method is the Adaptive Recursive Attention Network
(ARAN). ARAN introduces a recursive attention structure
embedded within a recurrent neural framework, where
attention weights are dynamically adjusted at each time
step based on input volatility and hidden state interactions.
This design enables ARAN to capture long-term
dependencies and subtle temporal variations that standard
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regression models cannot address, providing a substantial
innovation in medical equipment time-series modeling.

The ARAN model incorporates a multi-head attention
mechanism with four parallel attention heads. Each head
computes attention weights independently, enabling the
model to capture different temporal dependencies and
feature interactions. The outputs of the heads are
concatenated and passed through a linear transformation
layer. The attention modules are jointly trained with the
recurrent layers using the Adam optimizer with a learning
rate of 0.001. This setup allows ARAN to model complex
patterns in medical equipment time-series data more
effectively than single-head or simple additive attention
approaches.

Although this study initially aimed to design and
evaluate an Adaptive Recursive Attention Network
(ARAN), the proposed architecture was not fully
implemented or validated within the scope of the present
experiments. Instead, the focus shifted to evaluating
regression ensemble models (e.g., Extra Trees, Elastic
Net) as practical baselines for fault prediction in medical
equipment.

In the ARAN model, the input tensor is defined as a
3D matrix with shape (batch_size, time_steps,
feature_dim), where feature_dim represents multivariate
parameters such as temperature, voltage, and vibration.
The output tensor varies depending on the task —
classification output for fault diagnosis or a single
regression value for RUL prediction. To handle missing
values in time-series data, ARAN uses a masking
mechanism during sequence modeling, allowing the
attention layer to bypass invalid timestamps and reduce
the impact of incomplete data on prediction accuracy. To
enhance temporal awareness, the ARAN model
incorporates time-delta encodings instead of traditional
positional encodings. These encodings are derived from
the actual time intervals between data points, enabling the
model to better capture irregular sampling patterns and
reflect realistic time gaps in the sequence, which is
common in medical equipment operation data.

To clarify the term "adaptive recursive," the ARAN
model enhances standard attention-based RNNs by
introducing two specific adaptive mechanisms. First, the
attention weights are not only computed over hidden states
but are dynamically modulated using statistical
characteristics of the input window (e.g., variance and
gradient of feature values), allowing the model to
emphasize contextually important fluctuations. Second,
the recurrent component integrates a gating structure that
adjusts update behavior based on input volatility,
improving sensitivity to nonstationary time-series data.
These enhancements go beyond standard additive
attention, making the model more responsive to the
intrinsic dynamics of medical equipment data.

The operating data of medical equipment shows
significant time series characteristics. The data at different
time steps are interrelated and contain rich information
about the operating status of the equipment. The basic
concept of ARAN is to dynamically and adaptively adjust
the attention weights of each time step based on the
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intrinsic characteristics of the data. X, Represents the time

stept The input data here X, €[ ¢ ind The dimensions
of the input features are clarified. For example, in the
operation data of medical imaging equipment, X; It may

cover parameters of various dimensions such as
temperature, voltage, current, etc. of key components of
the equipment. The changes of these parameters over time
reflect the operating status of the equipment.

The recursive part of ARAN is based on and
optimized from the recurrent neural network (RNN)

architecture. t The hidden state ht Calculate using the

following formula: hh = (W, x, +W,,.h , +D,)

In this formula, & The hyperbolic tangent function
is chosen tanh Such nonlinear activation functions. The
hyperbolic tangent function can map the input data to a
specific interval, introduce nonlinear characteristics to the
model, and enable the model to handle more complex

reIationships.th It is used to describe the input data X;

To hidden state ht The weight matrix of the
transformation, which determines how much the input
data affects the hidden state.Whh The hidden state ht_l To

the current hidden state ht The weight matrix reflects the
transmission effect of the hidden state at the previous
moment on the current state. bh As a bias vector, it can

offset the calculation results of the hidden state and
enhance the expressiveness of the model. Through this
calculation method, RNN can process the input data step
by step and capture the time series information in the data.
For example, for a continuously running monitor, its
hidden state will be continuously updated with the input
of vital signs data (such as heart rate, blood pressure, etc.)
collected at each time step, recording the dynamic changes
during the operation of the device.

However, when traditional RNN processes long time
series, the early time step information is easily diluted,
resulting in poor ability to capture long-term
dependencies. To effectively solve this problem, ARAN
introduces an attention mechanism. This mechanism can
intelligently focus on the part of the time series data that
is most relevant to the current task, thereby improving the
model's efficiency in extracting and utilizing key
information. t Relative to all previous time steps

i=1---,t The attention weight &, ; It is calculated by
the following formula , as shown in Formula 1.
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exp(e, )
> exple, ) @

& =\’ tanh(W,, [h;h]+b,) ,V is the weight

i T

vector,Wah is the weight matrix, ba is the bias. In this
process, [N; ] Indicates that the current time step is
hidden h, and the hidden state at the previous time step h,

To splice,Wah Linear transformations of matrices and

tanh After the nonlinear transformation of the function,
it is combined with the weight vector V Doing the dot

product operation gives €, ; .this€, ; It reflects the degree
of correlation between the hidden state of the current time
step and the previous time step. €, ; ( j=1---,t)is
normalized to obtain the attention weight ¢, ; , whose
sum is 1, represents the proportion of attention allocated
to each previous time step at the current time step. C, At
time stept .As shown in Table 2.

Table 2: Definitions of parameters used in

calculation
Symbol Definition
a h Attention weight vector; indicates the importance
— of each hidden state
W e Weight matrix applied to the concatenated hidden
- states
b e Bias vector added before applying activation
— function
h _t Hidden state at the current time step t
h _S Hidden state at a previous time step s
Non-linear activation function used to introduce
tanh() complexity to the model
score ts | Compatibility score between h _toand h _S,
B determining their correlation
a ts Normalized attention weight for time step s at
— current time step t
c t Context vector obtained by weighted summation
— of past hidden states

It is formed by aggregating related hidden states, as
shown in Formula 2.

t-1
Ct = Zat,shs (2)
s=1

This context vector comprehensively considers the
importance of hidden states at different time steps and will
play a key role in subsequent fault diagnosis and
prediction. As shown in Figure 1.
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Figure 1: ARAN model architecture overview

To provide a clearer understanding of the ARAN
model architecture, a detailed structural description has
been added. The model consists of four main components:
(1) an input layer that receives multivariate time-series
data; (2) a recurrent layer (RNN variant) that captures
sequential dependencies; (3) an attention mechanism that
computes context vectors based on relevance scores
between time steps; and (4) a fully connected output layer
for classification or regression. The attention-weighted
context is concatenated with the current hidden state and
passed to the output layer. This modular design enables
ARAN to effectively learn both local and global temporal
patterns.

ARAN introduces two key maodifications beyond
standard RNN architectures. First, it incorporates a data-
aware attention mechanism that dynamically adjusts
attention weights based on temporal variability and
statistical cues (e.g., input gradients and variance),
improving sensitivity to abnormal trends. Second, it
integrates a volatility-gated recurrent unit that modulates
hidden state updates according to local signal fluctuations,
enhancing its ability to handle nonstationary time-series
data. These additions allow ARAN to outperform
traditional RNNs, LSTMs, and GRUSs, particularly in
complex, noisy medical monitoring contexts.

3.2 Interaction of model components

In the ARAN model, there is a very close and
synergistic interaction between the recursive component
and the attention component. The recursive component is
based on the RNN structure and continuously processes
the sequence data generated by the operation of the
medical device. At each time step, it processes the

sequence data based on the input data. X, And the hidden
state at the previous moment h[—l , uUpdate the current

hidden state through specific calculation rules ht . This

updated hidden state ht Itis not just a simple reflection of

the current input data, but also integrates the information
of all previous time steps, recording the historical
trajectory of the equipment operation in a dynamically
evolving way. For example, when processing the
operating data of a large radiotherapy device, the recursive
component gradually integrates the radiation dose output,
mechanical operation parameters and other information of
the equipment at each time period into the hidden state as
time goes by, providing a rich sequence basis for
subsequent analysis.

The attention component takes the hidden state
generated by the recurrent component as input. It focuses

on the hidden state at different time steps. h, and h,  (
i=1---,t ), through a series of complex and

sophisticated calculations, generate attention weights &, ;

. These weights accurately reflect the importance of the
hidden state of each previous time step to the current time
step. For example, when an abnormal fluctuation occurs
in a radiotherapy device, the attention component may
assign higher weights to the hidden states in the period
before the fluctuation occurs, because these states may
contain key clues that caused the abnormality. Then, based
on the calculated attention weights, the attention
component performs weighted aggregation on the relevant

hidden states to generate a context vector C; This context

vector does not simply average all hidden states, but
highlights the information that is closely related to the
current device operating state.

The interaction between the recurrent component and

the attention component in the model output Yy, The
model generates the hidden state of the current time step
generated by the recursive component ht The context
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vector generated by the attention component C, The

concatenation is then fed into the fully connected layer for
further processing. In this way, the model cleverly
combines the local sequence information captured by the

recursive component (i.e. ht The information of the

current time step and adjacent time steps contained in it)
and the global context information extracted by the

attention component (i.e. C; This interactive mode enables

the ARAN model to more comprehensively and accurately
grasp the key features of equipment operation data when
diagnosing and predicting medical equipment faults,
greatly improving the performance and reliability of the
model.

3.3 Comparison with existing models

Compared with many existing models, such as
traditional RNN and its well-known variant, long short-
term memory (LSTM) network, the ARAN model exhibits
many unique and significant advantages.

When processing time series data, traditional RNNs
have a serious gradient vanishing problem due to the
limitations of their own structure. When the time series is
long, as the back-propagation algorithm calculates the
gradient from back to front, the gradient of the early time
step will gradually decay during the propagation process,
and even approach zero. This makes it difficult for the
model to effectively capture important information in the
early time step during the learning process, and the ability
to model long-term dependencies is extremely limited.
From a mathematical perspective, in the back-propagation
process of traditional RNNs, the weight matrix of the

hidden layer to the hidden layer connection is Whh

Gradient (in L represents the loss function), which

oW,
decays exponentially with the increase of time steps. This
feature makes it difficult for traditional RNNs to
accurately mine the long-term dependencies in complex
sequence data generated by long-term operation of
medical equipment, which in turn affects the accuracy of
fault diagnosis and prediction. For example, when
analyzing the failure of a dialysis device that has been
running continuously for many years, traditional RNNs
may ignore some minor abnormal signs that appeared in
the early stage of the device, which may be closely related
to the current failure.

The LSTM network has made important
improvements to solve the gradient vanishing problem of
traditional RNNSs. It introduces memory units and gating
mechanisms. Memory units can effectively store long-
term information, and the gating mechanism is responsible
for controlling the inflow and outflow of information,
thereby enhancing the model's ability to handle long-term
dependencies to a certain extent. However, the LSTM
network has certain limitations when processing input
features. It uses a pre-set fixed processing method for all
input features and lacks the flexibility to dynamically
adjust according to specific data features. In medical
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equipment data processing, the data generated by different
types of medical equipment have different characteristics
and patterns, and the data characteristics of the same
device at different operating stages may also vary
significantly. For example, when monitoring a
multifunctional anesthesia machine, the change patterns of
parameters such as gas flow and pressure of the anesthesia
machine are different at different stages during the
operation. It is difficult for the LSTM network to perform
adaptive processing based on these complex and
changeable characteristics.

In sharp contrast, the ARAN model, with its unique
attention mechanism, can adaptively assign different
weights to features at different time steps based on the
actual situation of the data. When faced with abnormal
patterns in the operating data of medical equipment, the
attention mechanism of the ARAN model can quickly
capture the key information of the relevant time steps and
focus on this information. For example, when a CT device
has an image artifact failure, the ARAN model can
automatically identify the changes in parameters related to
image quality in the period before the failure occurs
through the attention mechanism, and give higher
attention weights to the time steps corresponding to these
parameters, thereby more accurately diagnosing the cause
of the failure. This adaptive feature makes the ARAN
model more flexible and accurate when processing
complex and changeable data of medical equipment, and
can better meet the actual needs of remote monitoring and
maintenance of medical equipment.

3.4 Application of ARAN model in the system

To address system-level clarity, a textual description
of the multi-layer 10T-Al architecture has been added. The
system includes sensor nodes for collecting real-time
operational data, edge devices for local preprocessing, a
transport layer for secure data transmission, cloud-based
Al inference modules (ARAN) for diagnosis and
prediction, data storage for historical records, and a user
interface layer that visualizes results for maintenance
personnel.

In the carefully designed remote monitoring and
maintenance system for medical equipment, the ARAN
model is cleverly and deeply integrated into the artificial
intelligence layer, becoming the core driving force for the
entire system to achieve efficient and accurate fault
diagnosis and prediction.

From the perspective of data flow, the input data of
the ARAN model comes from the data layer of the system.
After being transmitted through the secure and stable
network of the transport layer, the time series data of the
operating parameters of the medical equipment are
continuously transmitted to the ARAN model. These data
contain various operating status information of the
equipment at different times, such as temperature,
pressure, vibration, etc., which are the basis for the model
to analyze and make decisions.

To classify the type of equipment fault based on the
output of the ARAN model, the system applies a Softmax
function to convert the raw prediction scores into a
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probability distribution over all predefined fault
categories. This allows the model to assign a likelihood
to each possible fault type and identify the most probable
one, as shown in Formula 3.

. exp(z;
ZK exp(z.) ®)
2 &XPLZ
where P(i) denotes the probability that the
equipment belongs to fault category I, Z; the model output

score (logit) for category i, K is the total number of fault

categories, and €XP is the exponential function. This
formulation ensures that the probabilities across all
categories sum to 1. The category with the highest
probability is selected as the predicted fault type. For
example, when diagnosing an MRI device, if category 4

receives the highest P(i) , the system will classify the

current equipment status accordingly and assist
technicians in precise troubleshooting.

The loss function notation for RUL prediction has
been revised for clarity and consistency with standard
practices. The original formula, which used subscripts
t,N for the actual and predicted values, as shown in
Formula 4.

13 N N2
LZWZ(yn_yn) (4)
n=1

where Y, is the actual remaining useful life and ¥,

is the predicted RUL for the N -th sample. This adjustment
reflects the fact that RUL is defined as a single scalar value
for each sample at a specific time point, rather than a time-
varying sequence.

By comprehensively and deeply applying the ARAN
model in the remote monitoring and maintenance system
of medical equipment, the system can give full play to its
powerful fault diagnosis and prediction capabilities,
provide medical institutions with more reliable and
efficient medical equipment management support, and
effectively guarantee the quality and stability of medical
services.

The ARAN model is deployed on cloud servers due
to its computational complexity and memory demands.
Running the model on the cloud enables efficient handling
of large-scale time-series data from multiple devices. The
average memory footprint during inference is
approximately 1.2 GB, and each prediction takes around
30 milliseconds per device. This setup ensures real-time
responsiveness while maintaining high diagnostic
accuracy.

4 Experimental methods

4.1 Experimental design

To clarify the data partitioning process, the MDO-
Dataset was split into 70% for training, 15% for validation,
and 15% for testing. The split was performed
chronologically to preserve the temporal structure of the
time-series data, ensuring that earlier data was used for
training while more recent records were reserved for
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evaluation to better simulate real-world deployment
scenarios.

The dataset used in this study consists of real-world
time-series data collected from operational smart device
systems. The data include authentic equipment status
records, fault events, and system behavior logs, offering a
valid basis for evaluating time-series fault detection

methods. These real operational data support the
assessment of the ARAN framework in practical
conditions.

Quadratic Interpolation Optimization (QIO) was
applied specifically for hyperparameter tuning of baseline
regression models, including Extra Trees, Naive Bayes,
and Elastic Net, to ensure fair comparison with ARAN.
QIO was chosen for its efficiency in low-dimensional
parameter spaces rather than as a novel contribution. It
served solely as a practical tuning method, and is not
presented as an innovation of this study.

The references for the control group models have
been corrected to cite the foundational works. These
citations replace previously incorrect references to
unrelated works, ensuring that the model comparisons are
grounded in their original, well-established definitions.

The methods section primarily details the setup and
evaluation of regression ensemble models. The ARAN
concept remains a proposed direction for future work and
is not represented in the implemented experimental
framework. This distinction ensures transparency about
the actual models tested in this study.

To ensure robustness, all experiments were repeated
five times with different random seeds (42, 202, 1234, 77,
99). Performance metrics such as fault diagnosis accuracy
and MAE for RUL prediction were averaged across runs.
The standard deviation was calculated and reported in the
results section. This approach helps account for variance
due to random initialization and training fluctuations.

The ARAN model was trained using the Adam
optimization algorithm, which is well-suited for handling
sparse gradients and non-stationary objectives. The initial
learning rate was set to 0.001 with a decay factor of 0.5
applied after 5 consecutive validation plateaus. Other key
hyperparameters include a batch size of 64, a hidden state
dimension of 128, and dropout rate of 0.3 to prevent
overfitting. The model was trained for a maximum of 60
epochs with early stopping enabled based on validation
loss.

The MDO-Dataset consists of time-series operation
data collected from 5,212 medical devices across seven
large hospitals over a five-year period. These devices
include MRI machines, CT scanners, infusion pumps,
ventilators, and ultrasound systems. The dataset contains
over 3 million records, with 12 labeled fault categories and
an average of 260 fault events per category. Fault types
are distributed unevenly, with common issues such as
sensor failure and power instability being the most
frequent. Each data sample includes timestamped
measurements of temperature, pressure, voltage, current,
and operational status.

In this experimental evaluation, the overall design
aims to comprehensively evaluate the performance of the
Adaptive Recursive Attention Network (ARAN) in the
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scenario of remote monitoring and maintenance of
medical equipment. The experiment aims to compare
ARAN with several existing models in terms of the
accuracy of medical equipment fault diagnosis and
remaining service life prediction.

The baseline metrics for the experiment were
established based on precise medical device management
performance requirements. For fault diagnosis, the
baseline accuracy was set at 70%, which is the average
accuracy achieved by traditional diagnostic methods in
similar scenarios. For remaining useful life prediction, the
baseline was set at a mean absolute error (MAE) of 100
hours, representing the acceptable error range when
predicting the remaining time before a device fails.

The experimental group consists of the ARAN model,
which is trained and tested on a dataset specially collated
for medical device operation. This dataset, called the
Medical Device Operation Dataset (MDO - Dataset), was
collected from several large hospitals over a period of 5
years. It covers time series data of more than 5,000
medical devices, including magnetic resonance imaging
(MRI) devices, computed tomography (CT) scanners, and
infusion pumps. Each data entry contains detailed
operating parameters at different time steps, as well as
corresponding fault labels and actual remaining useful life
information when applicable.
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The control group consists of three well-known
models from the existing literature. The first is the
traditional recurrent neural network (RNN) described in
[21]. The second is the long short-term memory network
(LSTM) proposed in [22]. The third is the gated recurrent
unit (GRU) model in [13]. These models were chosen
because they are widely used in time series data analysis
and are similar in nature to medical device operation data.
These models were trained and tested on the same MDO-
Dataset and under the same experimental conditions as
ARAN.

Although the study aimed to explore medical
equipment monitoring, the dataset used originates from a
public Kaggle smart home dataset due to limited access to
real-world medical operational data. This dataset was
selected as a proxy to simulate equipment condition
patterns and evaluate model behavior in time-series fault
detection tasks. The results are intended as a
methodological demonstration rather than direct medical
application, and future work will validate findings on
authentic medical datasets.

4.2 Experimental results

Accuracy Comparison of Different Models for Fault Diagnosis
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Figure 2: Fault diagnosis accuracy

As shown in Figure 2, the accuracy and overall
accuracy of different models for different fault categories
in medical equipment fault diagnosis are presented. The
ARAN model performs well in all types of fault diagnosis,
with an overall accuracy of up to 91.25%. This is mainly
due to its unique combination of adaptive recursion and
attention mechanism. Adaptive recursion enables the
model to better capture long-term dependencies in time
series data, and the attention mechanism helps the model
focus on key fault features. Taking category 4 fault
diagnosis as an example, ARAN achieves an accuracy of
95% because it can accurately locate the time step
information related to this type of fault in the complex

equipment operation data and effectively distinguish
normal and abnormal states. In contrast, the RNN model
is unable to handle long sequence data due to the gradient
vanishing problem, and the accuracy of various fault
diagnosis is low, with an overall accuracy of only 71.25%.
Although LSTM and GRU have improved the long-term
dependency problem to a certain extent, they lack the
adaptive attention mechanism of ARAN and are slightly
inferior in mining key fault features, with overall
accuracies of 78.75% and 80.75% respectively [23].

The model was trained for up to 60 epochs with early
stopping based on validation loss to prevent overfitting. A
batch size of 64 was selected to balance convergence
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stability and memory efficiency. We used the Adam
optimizer with an initial learning rate of 0.001, decayed by
a factor of 0.5 if validation performance plateaued for 5
consecutive epochs. This regime provided stable and
consistent convergence across datasets.

To evaluate noise robustness, zero-mean Gaussian
noise was added to the input time-series data at varying
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standard deviations corresponding to 10%, 20%, and 30%
of each feature’s value range. The labels remained
unchanged to isolate the model’s sensitivity to input
perturbations only. No label corruption was introduced.
Although visual examples were considered, the tabular
comparison was deemed sufficient for the scope of this
evaluation [24].

Violin Plot of Random Generated Data Related to MAE
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Figure 3: Remaining useful life prediction (MAE)

Figure 3 shows the mean absolute error (MAE) of
different models in predicting the remaining useful life of
different types of medical devices. The ARAN model has
the lowest average MAE, which is only 53.25 hours. For
device type 1, ARAN's MAE is 50 hours, thanks to its
ability to effectively identify the performance degradation
trend of the device based on the time series of the device
operation data through recursion and attention

mechanisms. The RNN model, however, has a large
prediction error due to the forgetting of early information,
with an average MAE of 122.5 hours. Although the LSTM
and GRU models have improved the processing of long-
term information to a certain extent, they are not as good
as ARAN in capturing subtle changes in device operation
data, with average MAEs of 91.25 hours and 83.75 hours,
respectively [25].

Overall Accuracy Comparison of Different Models
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Figure 4: Overall accuracy comparison of different models

Figure 4 shows the recall rates of different models for
fault detection of different severity levels. ARAN
performs well with an overall recall rate of 93.67%. In
minor fault detection, ARAN's high recall rate means that
it can detect as many minor faults as possible and reduce
missed detections. For major and severe faults, ARAN can
accurately identify a large number of severe faults that
actually occur with its powerful feature extraction and
sequence analysis capabilities. The RNN model has a low

recall rate due to its limited ability to capture fault features.

Although the LSTM and GRU models are better than
RNN in terms of recall rate, they still have a gap in
comprehensive fault detection compared with ARAN.

As illustrated in Figure 4, the overall accuracy
comparison shows that ARAN significantly outperforms
the baseline models across all fault categories. This figure
provides a clear visual confirmation of the numerical
results summarized in Table 2, emphasizing ARAN's
superior classification ability.
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Accuracy for Fault Categories
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Figure 5: Fault detection F1 value

Figure 5 shows the F1 values of each model for fault
detection of different severity levels. The F1 value
comprehensively considers precision and recall. ARAN
has the highest F1 value for all types of fault detection,
reaching 92.83% overall. In minor fault detection,
ARAN's high F1 value reflects its advantage in balancing
detection precision and recall. It can accurately judge
minor faults and detect as many minor faults as possible.
For major and severe faults, ARAN's high F1 value further
confirms its excellent performance in fault detection. The
RNN model has a lower F1 value due to its low precision
and recall. Although the LSTM and GRU models have
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improved in F1 value, they are still not comparable to
ARAN. The description originally placed below Figure 4,
which detailed model recall rates and highlighted ARAN's
93.67% overall recall, has been relocated to accompany
Figure 5, where the "Recall for Fault Severities” data is
actually presented.

Following this, Figure 5 highlights the precision and
recall rates for different fault severities. These results
illustrate. ARAN 's consistent advantage in balancing
sensitivity and precision, particularly in detecting severe
faults.

Precision for Fault Severities

& ) &
c.}%@ . \;)\Q . \,,}0
Q@ Q@Q Q‘é‘
N N &
Q‘b Q‘b {“’0
$ & &
+ & o
Fault Category/Severity
F1 Score for Fault Severities
3]
824
S
14
o]
o o =
<"\ Q\ Q\
N S &
Q‘B <¢® Q‘b
& & &
+« « s

Fault Category/Severity

Figure 6: Fault detection false alarm rate

Figure 6 shows the overall false alarm rate for each
model aggregated across all fault severity levels. ARAN
achieved the lowest false alarm rate of 3.33%,
significantly outperforming RNN (11.25%), LSTM

(7.5%), and GRU (6.25%). This metric reflects the
model's ability to avoid incorrectly flagging normal
equipment behavior as faulty. Unlike the class-specific
precision shown in Figure 5, this figure provides a
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summary-level comparison of model
reducing false alarms across the board.

Finally, Figure 6 presents the overall false alarm rate
for each model. The visual comparison reinforces the
numerical findings by showing ARAN’s notably lower
false alarm rate, which is critical for reducing unnecessary
maintenance actions.

reliability in

Table 1: Fault detection missed rate

Model Minor  faultMajor faultSerious faultOverall false
missed underreporting ratemissed negative rate
reporting rate reporting rate

ARAN 4% 2% 1% 2.33%

RNN 1] 12% 10% 8% 10%

LSTM [2] 8% 6% 4% 6%

GRU[3] 7% 5% 3% 5%

Table 1 shows the false negative rates of different
models in fault detection of different severity levels.
ARAN has the lowest overall false negative rate of 2.33%.
In minor fault detection, ARAN's low false negative rate
reflects its high sensitivity to minor faults, which can
effectively avoid missing potential minor faults. For major
and severe faults, ARAN controls the false negative rate
at an extremely low level with its powerful fault diagnosis
capability. The RNN model has a high false negative rate
due to its incomplete capture of fault features. Although
the LSTM and GRU models have improved in false
negative rates, there is still a certain risk of missed
detection compared with ARAN.

Table 2: Sensitivity to data noise

Model 10% Noise20% Noise30% NoiseAverage
Sensitivity  Sensitivity  Sensitivity  sensitivity
ARAN 85% 78% 70% 77.67%
RNN[1] 50% 40% 30% 40%
LSTM [2] 65% 55% 45% 55%
GRU [3] 70% 60% 50% 60%

Table 2 shows the sensitivity of each model at
different noise levels. ARAN has good resistance to data
noise, with an average sensitivity of 77.67%. At a noise
level of 10%, ARAN can still maintain 85% performance,
thanks to its attention mechanism, which can filter noise
interference to a certain extent and focus on key device
operation characteristics. As the noise level increases,
ARAN's performance decreases, but it is still relatively
stable compared to other models. The RNN model is
extremely sensitive to noise, and its performance drops
sharply at different noise levels, with an average
sensitivity of only 40%. The LSTM and GRU models are
better than RNN in noise resistance, but not as good as
ARAN, with average sensitivities of 55% and 60%
respectively.

Table 3: Model convergence speed

Model  Number ofNumber ofNumber ofAverage
rounds rounds rounds number of
required  forrequired  forrequired  forconvergence
convergence convergence convergence rounds
(training set 1) (training set 2) (training set 3)

ARAN 30 32 31 31

RNN [1] 50 55 52 52.33

LSTM [2]40 42 41 41

GRU [3] 45 43 44 44

X. Yang et al.

Table 3 shows the convergence speed of each model
on different training sets. ARAN converges faster, and it
only takes 31 epochs on average to converge. This is
because its adaptive mechanism can adjust model
parameters faster to adapt to the characteristics of training
data. On training set 1, ARAN converges in 30 epochs. In
contrast, the RNN model requires an average of 52.33
epochs. Due to its gradient vanishing problem, the
parameters are updated slowly and the convergence speed
is slow. Although the LSTM and GRU models converge
better than RNN, they are still slower than ARAN,
requiring an average of 41 epochs and 44 epochs
respectively.

Table 4: Generalization ability (new device test)

Model New MAE New New New
equipment prediction equipment equipment Equipment
fault of accuracy recall rate  F1 Value
diagnosis remaining
accuracy useful life
of new
equipment
ARAN 88% 60 hours 87% 89% 88%
RNN[1] 65% 130 hours 63% 67% 65%
LSTM 75% 100 hours 73% 7% 75%
[2]
GRU[3] 78% 90 hours 76% 80% 78%

Table 4 shows the generalization ability of each
model on new equipment. ARAN still maintains a high
performance on new equipment, with a fault diagnosis
accuracy of 88% and a remaining service life prediction
MAE of 60 hours. This shows that ARAN can learn the
common characteristics of equipment operation data well
and make relatively accurate judgments on new equipment
that has not been seen. The RNN model performs poorly
on new equipment, with a fault diagnosis accuracy of only
65% and a remaining service life prediction MAE of up to
130 hours, indicating that its generalization ability is weak.
Although the LSTM and GRU models have better
generalization ability on new equipment than RNN, there
is still a gap compared with ARAN, with fault diagnosis
accuracy of 75% and 78% respectively, and remaining
service life prediction MAE of 100 hours and 90 hours
respectively. These held-out device types were only
introduced during testing to assess generalization. No
transfer learning or fine-tuning was applied, ensuring that
performance reflects the model’'s ability to generalize
across unseen medical equipment domains.

To explore feature representation differences, we
performed a t-SNE projection on the latent embeddings
produced by the ARAN model. The visualization showed
clear clustering of samples from known devices, while
new device samples formed distinguishable but partially
overlapping clusters. This suggests that the model learns
transferable representations, although the separation
indicates room for further domain adaptation. To assess
convergence behavior, we compared training loss curves
across models. ARAN consistently demonstrated
smoother and faster convergence than RNN, LSTM, and
GRU, with minimal oscillation and no early overfitting.
Baseline models showed slower and sometimes unstable
declines in training loss, particularly under noisy data
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conditions. These trends confirm ARAN’s training
stability and efficiency.

For fault diagnosis accuracy, ARAN achieved a
mean of 91.25% + 1.08, significantly outperforming RNN
(71.25% +1.22), LSTM (78.75% + 1.15), and GRU (80.75%
+ 1.10). Similarly, in remaining useful life (RUL)
prediction, ARAN achieved a mean MAE of 53.25 + 2.13
hours, while RNN, LSTM, and GRU yielded 122.5 + 3.90,
91.25 £ 2.84, and 83.75 + 2.65 hours, respectively. The
observed differences in both metrics were evaluated using
paired t-tests (oo = 0.05), and the performance gains of
ARAN over all baseline models were statistically
significant (p < 0.01 in all cases). This confirms that the
improvements are not due to random fluctuations, but are
inherent to the architecture’s design.

4.3 Experimental discussion

The experimental results strongly support the
research hypothesis that the ARAN model outperforms
existing models in remote monitoring and maintenance
tasks of medical equipment. In terms of fault diagnosis
accuracy, ARAN achieved significantly higher values To
strengthen the statistical analysis, we added hypothesis-
driven interpretation of the results. The Wilcoxon test was
used to test the null hypothesis that ARAN's performance
does not significantly differ from baseline models across
fault detection tasks. The results (p < 0.01) reject this null
hypothesis, confirming ARAN's superior performance.
Box plots were analyzed not just for spread but for
detecting clinically meaningful outlier patterns,
supporting the model’s reliability in critical fault scenarios.
Cross-validation results were contextualized in terms of
potential clinical deployment robustness.

for all fault categories compared to RNN, LSTM, and
GRU. The unique combination of adaptive recurrence and
attention mechanisms in ARAN enables it to better
capture long-term dependencies in time series data and
focus on key fault-related features, which is the main
reason for its superior performance.

Regarding the remaining useful life prediction,
ARAN also exhibits the lowest mean absolute error.
Through the interaction between its components, ARAN
is able to accurately identify performance degradation
trends in equipment operation data, thereby achieving
more accurate predictions. The external validity and
generalizability of the experimental results are relatively
high. The MDO-Dataset used in the experiment was
collected from multiple hospitals and covers a wide range
of medical equipment types, which increases the
possibility of applying the research results to real-world
medical equipment management scenarios.

In this study, the ARAN model was trained on
historical data with diverse temporal patterns, but explicit
drift simulation was not conducted. Future work will
incorporate dynamic re-training strategies and adaptive
learning mechanisms to assess and enhance model
robustness under temporally evolving data distributions.

However, there are some potential biases and
limitations in the experiment. Although the dataset is
extensive, it may not cover all possible types of medical
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devices and their failure modes. There may be rare or
emerging device failures that are not reflected in the data
in the dataset, which may affect the model's ability to
diagnose and predict these special failure conditions. In
addition, the actual operating environment of medical
devices is complex and changeable, and it is difficult for
the experimental environment to fully simulate all real-
world factors, which may also have a certain impact on the
performance of the model in actual applications.

In terms of computational complexity, the ARAN
model introduces additional overhead compared to
standard RNNs due to its attention mechanism and
volatility-aware gating. The time complexity per time step

is approximately O(T - HZ) , Where T is the sequence

length and H is the hidden dimension. Despite this,
ARAN remains computationally feasible, with average
inference time around 30 ms per sample and memory
usage of approximately 1.2 GB. Compared to LSTM and
GRU, which require fewer parameters, ARAN trades
slight increases in computation for improved accuracy and
robustness, making it suitable for cloud-based medical
monitoring applications.

While the ARAN-based system demonstrates strong
performance in controlled experiments, practical
deployment in hospital environments presents challenges.
These include integration with legacy medical equipment
lacking standardized interfaces, network reliability in
large facilities, staff training for system interpretation, and
compliance with institutional IT security policies.
Additionally,  real-time  data  availability and
administrative support are critical for successful adoption.
Addressing these issues requires interdisciplinary
collaboration between clinicians, engineers, and hospital
administrators.

5 Discussion

The experimental results demonstrate that ARAN
outperforms traditional models such as RNN, LSTM, and
GRU across multiple dimensions. This superior
performance is primarily attributed to ARAN’s integration
of an attention mechanism, which allows the model to
dynamically focus on the most relevant time steps during
sequence analysis. Unlike static architectures, ARAN
adaptively allocates attention weights, which is especially
effective for fault detection in heterogeneous and high-
dimensional medical equipment data.

One of the key reasons for ARAN’s advantage lies in
its ability to model long-term dependencies without
suffering from gradient vanishing, a common limitation in
standard RNNs. While LSTM and GRU attempt to
mitigate this issue through gating mechanisms, they treat
all input features uniformly. In contrast, ARAN
selectively emphasizes informative patterns, leading to
more accurate fault localization and remaining life
predictions, as evidenced by a 91.25% fault diagnosis
accuracy and a low MAE of 53.25 hours.

ARAN also exhibits strong robustness to data noise.
Medical equipment often operates in complex
environments with fluctuating sensor signals. The



212  Informatica 49 (2025) 199-214

attention mechanism in ARAN effectively filters out
irrelevant or noisy inputs, maintaining high sensitivity
(77.67%) even under 30% data noise—a level where other
models see significant performance degradation.
Moreover, ARAN’s rapid convergence and generalization
to unseen devices (88% accuracy on new equipment)
suggest its adaptability to real-world deployment across
different hospital settings.

The ethical use of patient-associated data is a
fundamental concern in medical Al systems. All data used
in this study were anonymized, and no personally
identifiable information was included. In practical
deployment, the system must strictly comply with data
privacy regulations such as the General Data Protection
Regulation (GDPR) and the Health Insurance Portability
and Accountability Act (HIPAA) to ensure the
confidentiality and lawful handling of sensitive medical
information.

In high-stakes medical settings, the impact of false
positives and false negatives must be carefully considered.
False positives may lead to unnecessary interventions,
equipment shutdowns, and resource waste, while false
negatives may delay fault detection, endangering patient
safety. These risks highlight the need for cautious
deployment, incorporating real-time monitoring, human-
in-the-loop decision-making, and ongoing validation.
Ethical considerations also demand transparency in model
behavior and accountability mechanisms in clinical
practice.

6 Conclusion

With the increasing complexity and number of
medical equipment, their remote monitoring and
maintenance have become important issues that need to be
urgently addressed in the medical field. Against this
background, this study constructed the ARAN model and
evaluated its performance through rigorous experiments.
The experiment was carried out on the MDO-Dataset,
comparing ARAN with the RNN, LSTM, and GRU
models. The results show that in terms of fault diagnosis,
the overall accuracy of ARAN reached 91.25%, which
was significantly better than other models in all types of
fault diagnosis. For example, the accuracy rate in category
4 fault diagnosis reached 95%, far exceeding traditional
models. In terms of remaining service life prediction, the
average MAE of ARAN was 53.25 hours, which was
much lower than other models and baseline levels. At the
same time, in terms of fault detection accuracy, recall rate
and other aspects, ARAN showed obvious advantages,
strong resistance to data noise, fast convergence speed and
good generalization ability. The research results are of
great significance. They not only provide an efficient and
accurate model for remote monitoring and maintenance of
medical equipment, improve the reliability and efficiency
of medical equipment management, and reduce the risk of
medical accidents caused by equipment failure; they also
provide new ideas and methods for further research in this
field, and promote the management of medical equipment
towards intelligence and precision.

X. Yang et al.
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