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Aiming at the problem of low accuracy and poor adaptability of current crowd counting methods in sports
venue management, an innovative crowd counting model based on weakly supervised learning (WSLCC)
is proposed and a corresponding management platform is designed. In terms of model construction, this
work combines weakly supervised learning ideas to deeply integrate traditional Convolutional Neural
Networks (CNN) with Transformers. Firstly, advanced Convolutional Feature Module (CFM) is utilized
to accurately capture and extract high-level semantic information of the crowd in video frames.
Subsequently, this information is fed into an efficient Transformer Feature Module (TFM), which utilizes
its powerful modeling capabilities to comprehensively construct global contextual information and long-
range dependencies. Weakly supervised learning is reflected in using a small amount of labeled data to
guide model learning and reduce dependence on a large amount of accurately labeled data. To validate
the performance of the model, experiments are conducted on multiple datasets. The model ablation
experiment shows that on the UCF_CC_50 dataset, the mean absolute error (MAE) of the WSLCC model
is 62.8, and the root mean square error (RMSE) is 95.4, which is 2.5% and 0.2% lower than that of the
LSC-CNN model, respectively. With the gradual addition of CFM and TFM modules, the model
performance significantly improves, and the combined MAE and RMSE index values are the lowest. In
practical applications, the sports venue management platform based on the WSLCC model achieves
significant results, with an accuracy rate of 95.1% in crowd statistics, a venue utilization rate of 85.4%,
a satisfaction score of 4.5 for resource allocation, and a management response time shortened to 5.3
minutes. This study effectively improves the adaptability and accuracy of crowd counting methods in
complex environments, promoting the improvement of sports venue management efficiency.

Povzetek: Za podrocje upravijanja Sportnih prizorisé in mnoZic je predstavijen model WSLCC, ki v Sibko
nadzorovanem okviru zdruzi konvolucijsko semantiko (CFM) z izboljsanim transformerjem (TFM, na
osnovi Swin z zamaknjenimi okni) za hkratno zajemanje lokalnih znacilk in globalnega konteksta iz video
slik. Jedro novosti je v rabi tockovnih, delnih anotacij za ucenje gostot brez natancnih tabel oznacb ter v
pretocnem kodirniku, kjer vektorsko sploscanje, lahka hierarhicna pozornost in rezidualno zlivanje
omogocijo robustno Stetje glav v heterogenih, okludiranih prizorih.

Introduction

labels for model training [4]. By decreasing reliance on

As large-scale sports events and mass-participation sports
activities gain increasing popularity, the management of
crowd safety at sports venues and public spaces is facing
substantial challenges. Traditional crowdcounting (CC)
methods typically rely on either manual inspections or
fully supervised deep learning models that necessitate
extensive data labeling. Manual inspections, however, are
not only time-consuming but also susceptible to subjective
biases. On the other hand, fully supervised deep learning
models fall short in practical applications because of the
exorbitant costs involved in data labeling and their limited
ability to generalize across diverse scenarios [1-3]. In this
context, weakly supervised learning has gradually
emerged as a focal point of research within the domain of
CC due to its ability to utilize partial or coarse-grained

pixel-level annotation, weakly supervised methods can
markedly cut the costs associated with data collection and
annotation, and simultaneously enhance the algorithm's
adaptability to complex sports scenes. Presently, the
application of CC technology in sports management
primarily concentrates on scenarios such as passenger
flow statistics, safety alerts, and resource allocation.
Nonetheless, the unique challenges posed by dynamic
lighting changes, dense occlusion issues, and the spatial
heterogeneity of audience distribution within sports
venues—such as the varying densities between grandstand
areas and evacuation routes—impose greater demands on
traditional regression or detection-based counting
methods [5-6]. In addition, the spatiotemporal
characteristics of crowd flow during sports events, such as
pre match gathering, mid match retention, and post match
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evacuation, further require algorithms to have dynamic
adaptability, which poses a dual challenge of multi-modal
fusion and temporal modeling for the design of CC
algorithms [7-8]. Many scholars have conducted research
on this issue.

The dataset currently released is relatively small in
scale and cannot fulfill the requirements of supervised
learning-based CNN algorithms. To overcome the
shortcomings of traditional manual counting methods, He
X et al. proposed a method that combined CNN and
Transformer networks for object counting in complex
scenes. The results showed that this method reduced the
error rate by 13.4%, indicating that the fusion of CNN and
Transformer networks was effective in object counting in
computer vision tasks [9]. To promote the application of
CC methods in disaster management systems, public
activities, safety monitoring, and other fields, Khan et al.
proposed an end-to-end semantic segmentation
framework for CC in dense and crowded images. As a
result, it was found that the multi-scale features extracted
by the algorithm from the image overcame the scale
variation of crowded images [10]. In an effort to boost the
accuracy of CC, Sindagi et al. introduced a novel CC
network. This network progressively generated a crowd
density map by means of residual error estimation. The
proposed approach employed VGG16 as its backbone
network. It took the density map produced by the final
layer as an initial, rough prediction. Leveraging residual
learning, the network then iteratively refined this
prediction, ultimately generating increasingly detailed and
accurate density maps. The results demonstrated that this
method brought about a substantial reduction in counting
errors, marking a significant improvement over previous
techniques. [11]. To improve the accuracy of intelligent
monitoring for crowd monitoring, Pang et al. developed a
horizontal federated learning framework to train CC
models while protecting privacy. This framework enabled
intelligent monitoring systems to acquire knowledge
through model integration while keeping the private data
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on local devices inaccessible [12]. To address the
uncertainty issues in CC methods, Oh et al. proposed an
extensible neural network framework that used bootstrap
ensembles to quantify the decomposed uncertainty. The
results showed that the suggested uncertainty
quantification approach provided additional insights for
CC problems and was easy to implement [13]. To improve
the application effect of CC calculation method in
image/video analysis, Vivekanandam et al. proposed a fast
image CC method utilizing lightweight Convolutional
Neural Network (CNN). The results showed that this
method could easily classify head counts in some fields of
view and is more accurate than other pre trained neural
network models [14]. Oh M focused on the uncertainty of
side weighting, while Vivekanandam [14] emphasized
lightweight and rapid counting. The CC model based on
weakly supervised learning (WSLCC), leveraging a CNN-
Transformer architecture, accurately captures high-level
semantic information under weak supervision, constructs
a global context, and significantly enhances CC
performance. Its advantage lies in its adaptability to
weakly supervised scenarios and its more precise and
reliable counting. Deep learning techniques are employed
to establish a correlation between the visual content of
images and the corresponding distribution of crowd
density. Despite the notable advancements achieved thus
far, accurately identifying pedestrians who are positioned
at a considerable distance from the camera still poses a
formidable challenge. Moreover, these challenging cases
frequently account for a significant proportion of the
dataset. Therefore, Chen et al. proposed a difficult sample
focusing algorithm for CC regression tasks. This
algorithm reduced the contribution of easy samples,
enabling the model to promptly direct its attention towards
challenging instances. Then, higher importance was given
to difficult samples with erroneous estimations, and it was
found that the introduced approach surpassed the leading-
edge techniques [15]. Related research work is shown in
Table 1.

Table 1: Related research worksheets

Author Types of models Types of models M?/IESIE Superiority Limit
CNN and Transformer fusion UCF-QNRF data |MAE:8 Increase complexity scenarios Poor versatility and lack of multi-data set
HeX et al. [9] . e
target counting model set 0.0 Target count accuracy verification
Extract multi-scale features to
KhanK et al. End-to-end semantic . RMSE: overcome the scale of crowded The computational complexity is high and
[10] segmentation framework ShanghaiTech 110.0 images the real-time performance may be limited
PartA data set '
change
Depending on the VGG16 backbone
SindagiVA et A C_C network ba§ed on UCF_CC_50 |MAE:7 Significantly improve the error and network, there may be parameters
residual error estimation . . .
al. [11] data set 5.0 improve the counting accuracy More problems with large amount of
(VGG16 backbone) .
computation

Protect privacy and improve the Model aggregation process may increase

Pangy et al. Level federal learning WorldExpo'10 / accuracy of intelligent crowd comm%gnic%tion oF\)/erhead an%j/ trainin
[12] framework data set monitoring - 4

Efficiency may be affected
nature
Scalable neural network Quantify the problem of counting
OhM et al. [13] framework (bootstrap set Mall data set / people Specific quantitative indicators are indicated
Quantitative uncertainty) Uncertainty, easy to achieve
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. . . . Accuracy can be counted in complex
Vivekananda Lightweight CNN model UCSD data set MAE:9 Lightweight, can qm_ckly count the backgrounds or occlusions
0.0 number of images
mB. et al [14] It can go down
Difficult sample focusing Fudan- . Improve the detection of difficult Itis not mentioned whether the processing of
Chen et al. [15] algorithm (CC regression ShanghaiTech MAE:7 samples casy samplgs may af‘f?(_:t it
’ 0.0 o The overall generalization ability of the
task) data set ability model

In summary, research on intelligent algorithms for
CC has yielded certain results and holds considerable
importance in various aspects of daily life. Nonetheless,
challenges such as occlusion in complex scenes, variations
in target size due to perspective effects, and the difficulty
in accurately identifying individuals within dense crowds
persist. These problems complicate the accurate
segmentation and counting tasks, particularly in crowded
environments where the error rate tends to rise
substantially. Moreover, the algorithms lack robustness
against interference factors like lighting variations and
background clutter, which can also impair counting
accuracy. Based on this, the study innovatively proposes
the WSLCC. The model first utilizes an advanced CNN
Feature Extraction Module (CFM) to accurately capture
and extract high-level semantic information of the crowd
in video frames. Subsequently, this information is fed into
an efficient Transformer Feature Module (TFM), which
can fully utilize its powerful modeling capabilities to
comprehensively construct global contextual information
and long-range dependencies. Through this process, the
model can significantly improve its CC performance
under weakly supervised conditions, achieving more
accurate and reliable headcount statistics. Then, based on
the WSLCC model, a sports venue resource information
management platform is designed to improve the
adaptability and accuracy of CC methods in sports venue
management, and promote the improvement of sports
venue management efficiency. To address the challenges
of difficult detection of pedestrians far from the camera
and the abundance of challenging samples in current
research, the proposed WSLCC method uses a CNN
feature extraction module to accurately capture high-level
semantic information about people. It then employs a
Transformer feature extraction module to construct global
context and long-distance dependencies, which helps to
more comprehensively identify targets, focus on
challenging samples, enhance the detection capability for

complex crowd scenarios, and ultimately improve the
accuracy of CC.

2 Methods and materials
2.1 Design of CC model based on weakly

supervised learning

In sports venue management, CC is a crucial task.
With the increase in sports activities and the expansion of
audience size, accurately counting the number of
attendees is of great significance for ensuring safety,
optimizing resource allocation, and improving venue
management efficiency [16]. However, traditional CC
methods based on fully supervised learning heavily
depend on a substantial quantity of accurately labeled data
for model training, and obtaining such high-quality data is
extremely difficult in complex and ever-changing
scenarios such as sports venues. In addition, changes in
crowd density, lighting conditions, occlusion, and other
factors may have a significant impact on the counting
results, leading to limited generalization ability of the
model. Meanwhile, fully supervised learning methods
have poor adaptability to new scenarios or abnormal
situations, making it difficult to adjust and optimize in real
time, thus failing to meet the high-precision and real-time
requirements for CC in sports venue management [17-19].
A WSLCC model is proposed to address the above issues.
In this study, weakly supervised learning employs point
annotations. Specifically, for each image containing a
group of people, the annotators only mark the positions of
some members, rather than precisely counting or
annotating the positions of all individuals in the image.
The annotation strategy involves randomly selecting a
certain percentage of the group members for position
marking in each image, which serves as weakly supervised
information to guide the model training. Figure 1
illustrates the architecture of the WSLCC model.
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Figure 1: Illustrative representation of WSLCC model structure

In Figure 1, the WSLCC model is a highly integrated
system consisting of three core components. The first is
the vector flattening module. The primary function of this
module is to divide the input image into multiple smaller
segments and then transform these image segments into
vector-based representations that can be subsequently
processed by the model. This step serves as the initial
phase of the model's processing pipeline and lays the
groundwork for guaranteeing the precision of subsequent
analyses. Following this is the encoder module, which
holds a pivotal position in conducting in-depth analysis
and processing of the vectors. The encoder module is
further divided into two sub modules: CFM and TFM.
These two sub modules work together to fully utilize their
respective advantages and conduct in-depth vector mining,
aiming to extract key information and features from
images and provide strong support for subsequent CC
predictions. Finally, there is the Regression Counting
Module (CRM), which is the stage where the model
outputs the predicted results. It is based on the features
extracted by the encoder module and uses advanced
algorithms and techniques to generate corresponding CC
predictions. The task of CRM is to ensure the accuracy and
reliability of prediction outcomes, thereby providing
valuable reference information to users.

The model consists of two primary steps: training
and inference. During the training phase, input images are
first preprocessed by a vector flattening module, which
divides the image into smaller modules and converts them
into vector form. These vectors then pass through the CFM
and TFM to extract key information and features from the
image. The regression counting module, combined with
weakly supervised point annotations, calculates the loss
between the model's predictions and the actual labels. By
continuously optimizing the loss function and adjusting
the model parameters, the model gradually learns to
accurately count people.

This study employed the Smooth L1 loss function.

Compared to the traditional L1 loss function, the Smooth
L1 loss function exhibits better differentiability near zero
points, allowing the model to adjust parameters more
smoothly during training. Additionally, it demonstrates
greater robustness against outliers, thereby significantly
enhancing the model's prediction accuracy and stability in
complex scenarios. The loss function is described by
equation (1).

1 |0s*(CE-cET) if e | <1
NG

L (1)

|CiES -Cc | —0.5, otherwise
In formula (1), N represents the number of training

pictures, CiES represents the predicted number of people

by the model, and CiGT represents the real number of

people by the model. In the reasoning step: In the
reasoning stage, the input image is also processed by
vector flattening module, CFM and TFM, and finally the
CC prediction result is generated by regression counting
module.

In the front-end architecture of the research, in the
vector flattening module of the WSLCC model, the input
image will first undergo a preprocessing step of flattening,
in which the input image blocks are converted into one-
dimensional vector sequences. This conversion step is
crucial as it not only efficiently retains the spatial details
of the image, but also establishes a robust groundwork for
the ensuing encoding procedure. The result obtained
during the block embedding stage is shown in equation (2).

i K2x3| = _
{xpeR | |_1,2,3...,N} )
In equation (2), P denotes positional embedding, N

means the number of image blocks, and Xip is the

segmented image block. Subsequently, each segmented
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image block undergoes a specific mapping process to be
accurately transformed into a latent embedding vector
with D -dimensional features for subsequent processing
and analysis. The mapping process is achieved by
applying a specially designed and trainable linear
projection layer, which can transform data from the
original space to a new feature space, as shown in equation
3.
EeRMP 3)

In equation (3), E represents the mapping matrix. To
ensure that each segmentation block in the image can fully
preserve its original spatial position information, a
learnable position embedding mechanism is proposed.
The core of this mechanism is to dynamically inject spatial
position encoding into the feature vectors of each image
sub block. This encoding is not a static parameter
generated by traditional fixed equations, but a dynamic
vector learned autonomously by neural networks. During
the model training process, the position embedding layer
will automatically generate embedding values with spatial
representation capabilities based on the 2D coordinates of
the image blocks. This design allows the model to grasp
the relative positional relationships between blocks and
recognize their absolute positional information when
analyzing the global context through self attention
mechanism, as presented in equation (4).

e{n}=x{n}+P{n} 4)

In equation (4), X{N} represents the original feature

embedding and P{n}represents the positional embedding.

e{n} represents the final block embedding vector, which
is used as input to the encoding layer of the WSLCC
model. The pseudocode of the vector flat module is shown
in Figure 2.
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class VectorFlattenModule:
def __init_ (self, d_model: int, patch_size: int):
# Learnable linear projection layer
self.projection = Linear(in_dim=patch_size"2 * 3, out_dim=d_model) # E_proj matrix in Eq(2)

# Learnable position embeddings (Eql & Eq3)
self.position_emb = nn.Parameter(torch.randn(L, num_patches, d_model)) # E_pos

def forward(self, x: Tensor) -> Tensor:
X: input image tensor [B, C, H, W]
returns: patch embeddings [B, M, d_model]
# Step 1: Image Patching (Eq1)
patches = split_into_patches(x, patch_size) # [B, M, patch_size"2 * C]

# Step 2: Linear Projection (Eq2)
patch_emb = self.projection(patches) # [B, M, d_model]

# Step 3: Add Position Embedding (Eq3)
final_emb = patch_emb + self.position_emb # [B, M, d_model]

return final_emb

# Helper function implementation
def split_into_patches(x, patch_size):
B, C, H, W =x.shape
M= (H* W) /I (patch_size"2) # Number of patches (EqL)
x = x.reshape(B, C, Hilpatch_size, patch_size, Wi/patch_size, patch_size)
X = x.permute(0, 2, 4, 1, 3, 5).contiguous()
X = x.view(B, M, -1)
return x

Figure 2: Pseudo-code diagram of vector flat module

2.2 Encoder module design of WSLCC model

Once the block embedding vectors of the input image
have been successfully acquired, the encoder within the
WSLCC model steps up to the plate, assuming the crucial
task of performing in-depth analysis and processing on
these vectors. Leveraging a neural network architecture, it
meticulously sifts through the image data, extracting
pivotal information and core features. The WSLCC model
encoder designed this time consists of two sub modules,
CFM and TFM. In the entire sports venue CC, the encoder
first uses the CFM to accurately capture and extract high-
level crowd semantic information from video frames.
Subsequently, this information is fed into an efficient TFM,
which can fully utilize its powerful modeling capabilities
to comprehensively construct global contextual
information and long-range dependencies. The encoder
structure is shown in Figure 3.
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Figure 3: Illustrative representation of encoder structure

In Figure 3, the CFM submodule selects the first ten
layers of the VGG16-BN network as feature extractors,
leveraging the network's exceptional performance and
stability in numerous computer vision tasks. To effectively
manage the number of model parameters and extend the
network's receptive field, the last two pooling layers of the
VGG16-BN network were omitted. This alteration allows
the network to capture more detailed image information
while preserving efficiency. Consequently, the output
feature map of the CFM submodule remains at 1/8 the
resolution of the original image, offering more precise and
detailed feature information for subsequent CC tasks.

In the CFM sub-module, the first ten layers of the
VGG16-BN network were selected as the feature extractor.
VGG16-BN is a variant of the VGG16 network that
incorporates a Batch Normalization (BN) layer. The
VGG16 network consists of multiple convolutional layers,
pooling layers, and fully connected layers. The
convolutional layers use small kernels (such as 3x3) to
progressively extract image features. In the CFM, these
first ten layers include multiple convolutional and pooling
layers, which work together to perform the feature
extraction task. The convolutional layers use
convolutional kernels to slide over the image and apply
weighted sums, initially extracting low-level local features
such as edges and textures. As the number of layers
increases, they gradually capture higher-level semantic
features like crowd contours and poses. By selecting the
first ten layers of VGG16-BN, the CFM controls the
number of parameters, expands the receptive field, avoids
overfitting, and enhances generalization capabilities. This

approach also allows for the capture of rich image details,
which is crucial for accurate CC. Ultimately, the CFM
outputs feature maps with a resolution one-eighth of the
original image, providing precise and rich features to the
TFM, which helps it construct global context and long-
distance dependencies. The output of the CFM obtained
from this is shown in equation (5).

Cf :Fvgg(l) (5)
In equation (5), Cf represents the output of the CFM

and Fvgg represents the first ten layers of the VGG16-BN
network. Next, the CC model uses the output of CFM as
the input of the TFM. Specifically, Cf is first

transformed into one-dimensional sequences, and then the
sequence is sent to TFM.

In the TFM, the crowd semantic features obtained
from CFM are first transformed into one-dimensional
sequences. Then, the sequence is sent to TFM for image
segmentation and modeling of global context and long-
range dependencies. However, traditional Transformer
models suffer from problems such as high computational
complexity and lack of hierarchical scale feature modeling
ability due to calculating self attention at the original
image resolution [20-21]. To this end, the study first
introduces Shift Window Multi-Head Self Attention (SW-
MSA) to improve the traditional Transformer and obtain a
Swin Transformer network, whose overall structure is
shown in Figure 4.

é Phase 1 ; ; Phase 1
segrizactgtion .; emeigggirng SW,;TOIEM -‘-'F Patch Merge —» SWI;’I‘OEEM
"""""""""" S .P;];;.'i':.':_‘:_'
Patch Merge |« SWéTO-EEM < Patch Merge | SWBir;O'EEM *

Figure 4: Illustrative representation of Swin Transformer structure
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In Figure 4, Swin Transformer is a hierarchical visual
Transformer architecture that consists of four progressive
stages in its complete structure. At each stage, the image
is divided into local regions through patch partitioning,
and after linear embedding is mapped into feature vectors,
feature extraction is performed by SwinTRM blocks. This
structure has the ability to maintain global context
modeling while improving computational efficiency. Next,
to further enhance the efficiency and performance of the
Transformer in handling image data, an investigation is
conducted into employing a combination of two layers of
Swin Transformer and a convolutional layer to construct
an enhanced Swin Transformer block, which served as the
primary feature extractor for the Transformer within the

Y
LN
W-MSA
+
Y
LN
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TFM.

In the TFM module, the improved SwinTransformer
block uses SW-MSA to compute self-attention in its
SwinTransformer layer. Specifically, each
SwinTransformer layer includes a self-attention module
based on SW-MSA, followed by a Multi-Layer Perceptron
(MLP). Before the self-attention module and the MLP,
there is a LayerNormalization (LN) layer. The structure
follows this sequence: LN — SW-MSA — LN — MLP.
This design enhances the model's ability to extract features
by stabilizing the training process and improving feature
extraction capabilities. The improved Swin Transformer
block structure is presented in Figure 5.

v
MLP
+

Y
LN
v
SW-MSA
+
Y
LN
v
MLP

Figure 5: Illustrative representation of improved Swin Transformer block structure

In Figure 5, the improved Swin Transformer block is
an enhanced deep learning model component, and its
workflow is shown in equation (6).

Te =Fy (Te,)i=1234

TF.‘, = Conv(FST,ﬂ (FSTL“H (TFW2 ))) j=2,4,68,-,L

In equation (6), FMa represents the improved Swin

(6)

Transformer block, and T,:i represents its output features.
FSTLi , represents the Swin Transformer layer at position

(i, j) , and T,:Lj

represents its intermediate features.

From this, the output feature TF of the TFM can be

obtained as shown in equation (7).
Te =Frew (Conv(C/)) 7)

In equation (7), TFM represents the operations of the
Transformer module, and COI’]V(Cf ) is the input to the

TFM after convolution operation on Cf Conv

represents the convolutional layer and FTFM represents the

TFM. In the aggregation of feature maps, a simple
element-wise addition method is employed. For

convolution operations, Cf in COHV(Cf) represents

the number of channels in the input feature map. The size
of the convolution kernel, stride, and padding are
determined based on the specific model design and the
dimensions of the input feature map, ensuring that the size
and number of channels of the feature map after
convolution meet the model's requirements. For example,

in some cases, the convolution kernel might be set to 3x3,
with a stride of 1 and padding of 1, to maintain the spatial
dimensions of the feature map.

To prevent overfitting, the study introduced Dropout
layers into the model. Specifically, Dropout layers were
added after the convolutional layers in the CNN section
and after the attention mechanism in the Transformer
section. Through experimental optimization, the Dropout
rate after the CNN convolutional layers was set to 0.3, and
after the Transformer attention mechanism, it was set to
0.2. The introduction of Dropout layers enhanced the
model's  generalization  ability, ensuring  better
performance across various scenarios. The pseudocode of
the encoder module is shown in Figure 6.
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class WSLCCEncoder:
def __init__(self):

modified CFM backbone

layer Swin Transformer

def forward(self, x):
# CFM path (Eq4)
¢ = self.drop(self.cfm(x)) # 1/8

# TFM path (Eq5-6)
t = self.conv(c).flatten(2)
t = self.drop(self.tfm(t))

class SwinBlock:
def __init__(self, num_layers=2):
self.layers = nn.ModuleL ist([
nn.Sequential(
LayerNorm(),
ShiftedWindowMSA(8),
LayerNorm(),
MLP(512)
) for _ in range(num_layers)

D

def forward(self, x):
for layer in self.layers:
x = layer(x)
return x

self.cfm = VGG16BN_FirstlOLayers() # Pre-
self.tfm = SwinBlock(num_layers=2) # 2-

self.conv = Conv2d(256, 512, 3, padding=1)
self.drop = [Dropout(0.3), Dropout(0.2)]

return ¢ + t.view_as(c) # Feature fusion

res

L.Puetal.

Figure 6: Pseudo-code diagram of the encoder module

After constructing the WSLCC model, to promote
the efficiency of sports venue management, a sports venue
resource information management platform based on a CC
model is designed based on this model. The platform uses
camera equipment to calculate the crowd density of each
sports event area through a CC model, and uploads it to
the database. Users can obtain the location of the shared
sports equipment cabinet through the client, borrow the
equipment, and return it within the specified time. Figure7
presents the comprehensive structure of the platform.

Number counting system
Video streaming WSLCC model Dataatthe |
processing scheduling beginning of spring |

Shared sports
equipment cabinet

The server

Client

Scheme
customization | Other
Communication | Systems

platform

Figure 7: Illustrative representation of sports venue management platform architecture

In Figure 7, the platform mainly consists of two parts:
a CC system and a shared sports equipment cabinet. The

database architecture of the platform is shown in Table 2.

Table 2: Database architecture of sports venue management platform

Table name Field name Data type
video_id int
video_path varchar
Video_Info
start_time datetime
end_time datetime
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density_id int

video_id int

Crowd_Density_Data L .
- - region_id int
density_value float
timestamp datetime

cabinet_id int
Equipment_Cabinet_Info location varchar
equipment_list text
gr_code varchar

user_id int

User_Info

username varchar

The platform focuses on the management of sports
venues, processing video streams, CC, and equipment
borrowing and returning data. For video streams, cameras
capture venue footage, which is then decoded and frame
extracted by the processing module. The image frames and
video information are stored in the video information table.
For CC, the server receives the image frames and uses the
WSLCC model to calculate the crowd density in each
sports area. The results, along with the video ID, are stored
in the crowd density data table, allowing the client to
request real-time displays. When users borrow or return
equipment, they scan a code, and the server returns the
equipment cabinet information. After the user completes
the operation, the server updates the equipment status and
logs the user's operation history. Among them, the CC
system mainly includes three modules: video stream
processing, counting model scheduling, and data storage.
In this system, video streams are captured by camera
equipment, images are captured and uploaded to the server.
The server calls the WSLCC model for calculation, saves
the crowd density data to the database, and the client is
able to acquire up-to-date data regarding the headcount. In
the shared sports equipment cabinet section, each
equipment cabinet is equipped with a unique QR code.
After users scan the QR code through the client, the server
retrieves the equipment information from the database
based on the QR code information and returns it to the
client for users to choose and use.

3 Results and discussion

3.1 Performance testing of CC model

To confirm the capability of the proposed WSLCC
model, two commonly-used public datasets in the area of
CC, ShanghaiTech and UCF_CC_ 50, were selected for
model testing in the experiment. The ShanghaiTech
dataset contains numerous crowd images with different

scenes and densities, which are appropriate for training
and assessing the effectiveness ofCC
models.UCF_CC 50 is a challenging small-scale dataset
with extremely high and variable crowd density in its
images, commonly used to test the counting ability of
models in high-density crowd scenes.

In this study, a series of preprocessing steps were
employed to effectively utilize datasets such as
ShanghaiTech for training and testing the WSLCC model.
Before inputting the images into the model, the study first
normalized all the images, scaling the pixel values from
[0255] to the range of [0,1] to accelerate model training
and improve numerical stability. Meanwhile, in order to
meet the input size requirements of the model, the study
uniformly adjusted all images to 224x224 pixels. For the
ShanghaiTechPartA dataset, due to the high density of
people and complex scenes in its images, data
augmentation techniques were used to increase the
diversity of the data. Specifically, it included operations
such as random cropping, random flipping, and random
rotation. Random cropping can randomly select a sub
region in the image with a cropping ratio of [0.8,1.0],
which allows the model to learn the crowd characteristics
of different local regions. Random flipping performs
horizontal flipping with a 50% probability, with a random
rotation angle range of [-15°, 15°], further enriching the
perspective and variation of the training data. The image
resolution and crowd density of the ShanghaiTechPartB
dataset differed significantly from those of PartA, with
relatively open scenes and lower crowd density. In
response to this characteristic, in addition to the general
operations mentioned above, the study also adjusted the
brightness and enhanced the contrast of the image during
preprocessing. The brightness adjustment varied
randomly within the range of [0.8, 1.2], and the contrast
enhancement used histogram equalization method to
highlight the crowd characteristics in the image, enabling
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the model to better learn crowd patterns under different
densities and scenes.

In this study, the Adam optimizer was used to train
the WSLCC model. The initial learning rate was set to le-
5, and the weight decay coefficient was set to 0.0001. To
further enhance the model's performance, a stepwise
learning rate scheduling strategy was implemented. After
every 10 epochs, the learning rate would be reduced by
v=0.1 times. To prevent overfitting, the study adopted an
early stopping strategy. During training, the study
monitored the Mean Absolute Error (MAE) on the
validation set. If the MAE on the validation set does not
decrease for five consecutive epochs, the training is halted.
At this point, the model with the lowest MAE on the
validation set was selected as the final model. To enhance
the model's generalization ability, various data
augmentation techniques were applied to the input images
during training. These techniques included random
cropping, random horizontal flipping, and random rotation.
The cropping ratio was randomly selected between 0.8 and
1.0, resulting in sub-images of size 224x224. The
probability of random horizontal flipping was 50%, and
the angle of random rotation ranged from —15° to 15°, also
with a 50% probability.

The current mainstream CC models were selected as
the comparison models for the experiment, namely
Contextual Scale Regression Network (CSRNet), Multi-
column CNN (MCNN), and Locally Scale Aware CNN
(LSC-CNN). MAEand Root Mean Square Error (RMSE)
were selected as evaluation metrics for model
performance. Table 3 displays the experimental operating
conditions and parameter configurations.

—a— Training set
0.18 —

o— Validation set

016
014
0121

Loss degree

010

0.08
100 200 300 400
Iteration number

(a) Loss degree
Figure 8: Training

As shown in Figure 8 (a), the loss of WSLCC model
in the TS and VS gradually decreased with the iteration of
learning times. When the last training ended, the loss rate
in the TS decreased from 0.1800 to 0.1084, and the loss
rate in the VS decreased from 0.1362 to 0.0915, indicating
a continuous improvement in generalization ability. As
shown in Figure 8 (b), the WSLCC model had an accuracy
of over 90% on both the TS and VS, and as the number of
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Table 3: Experimental operating conditions and
parameter configurations

Experimental environment Set the item
CUDA edition 11.4.0
CPU NVIDIARTX4090Ti
Internal memory 16.00GB
Batch size 8
Learning rate initial
JRE value 1e-5
Optimizer Adam
Software MatlabR2018a
environment
Weight decay le-4
Iterations 3000
SEmbed_dim 4
TEM Window_size 0.125
hyperparameter Depths [8,8,8,8]
Num_heads [8,8,8,8]

This study chose Matlab R2018a over TensorFlow or
PyTorch because Matlab has a rich set of built-in functions
and toolboxes, which offer significant advantages in data
processing and visualization. It can efficiently perform
data preprocessing and result presentation. Moreover, its
concise syntax makes it more convenient for
implementing specific algorithms, thus meeting the
project's needs for rapid development. Firstly, the
evaluation metrics used in the study included accuracy,
recall, and Mean Average Precision (mAP). The research
model was trained on the training set (TS) and validation
set (VS) of ShanghaiTech's SHTech Part Section, as
shown in Figure 8.
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results of WSLCC model

iterations increased, the final accuracies were 96.93% and
98.21%, respectively. The results indicated that the
WSLCC model performed well in training and could be
used for CC tasks.The test results of MCNN, CSRNet,
LSC-CNN, and the WSLCC model proposed by the
research on the SHTech Part A test set are shown in
Figure 9.
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Figure 9: WSLCC model test results

In Figure 9(a), the MAE of the WSLCC model
rapidly decreased during training and stabilized at
approximately 4.5, which was lower than MCNN (around
10), CSRNet (around 8), and LSC-CNN (around 7). This
indicated that the WSLCC model had higher accuracy in
counting. In Figure 9(b), the RMSE was used to measure
the loss. The RMSE of the WSLCC model eventually
dropped to about 0.25, while the RMSE of MCNN,

CSRNet, and LSC-CNN remained above 0.3. This
suggested that the WSLCC model performed better in
reducing prediction errors and enhancing stability.

Next, the performance of MCNN, CSRNet, LSC-
CNN, and WSLCC models was tested on the test sets of
ShanghaiTech and UCF_CC_50 datasets. The MAE and
RMSE test results of each model are presented in Table 4.

Table 4: MAE and RMSE test outcomes for various models

DS DS MCNN CSRNet LSC-CNN WSLCC

SHTechPart_A 66.1+3.0 60.9+2.8 61.2+2.9 60.5+2.6

MAE SHTechPart_B 9.3x1.2 8.9+1.1 8.2+1.0 8.1+0.9
UCF_CC_50 272.2+15.0 248.3+14.5 211.6+13.0 188.2+12.0

DS DS MCNN CSRNet LSC-CNN WSLCC

SHTechPart_A 105.1+4.0 93.8+3.8 94.3+3.9 90.7+3.6

RMSE SHTechPart_B 16.1+1.4 52+1.3 13.3+1.2 13.2+1.1
UCF_CC_50 395.3+20.0 64.5+18.5 317.3+16.0 300.3+15.0

A meticulous examination of the data presented in
Table 4 reveals unequivocally that the WSLCC model
exhibited exceptional performance across all tests. Among
them, on the SHTech Part A dataset, the MAE of the
WSLCC model was 60.5, and the RMSE was 90.7, which
was the lowest compared to other models. This indicated
that the WSLCC model had the smallest deviation
between the forecasted results and the real values on this
dataset, and had higher accuracy. On the SHTech Part S
dataset, the WSLCC model also performed well, with
MAE and RMSE of 8.1 and 13.2, respectively, both lower
than other comparison models, demonstrating its stability
and reliability in different scenarios. On the UCF_CC 50
dataset, the MAE of the WSLCC model was 188.2 and the
RMSE was 300.3. Despite the challenges of this dataset,
the WSLCC model still achieved better results than other
models. Overall, regardless of the dataset, the WSLCC
model demonstrated optimal performance, fully
demonstrating its effectiveness and superiority in CC tasks.
Through t-test and other statistical tests, combined with

the standard deviation in the table, the performance
improvement of WSLCC model was statistically
significant, and it could improve the counting accuracy in
the actual CC scenario, and had practical impact.

In the above results, the WSLCC model performed
exceptionally well, primarily due to two key factors.
Firstly, the architectural innovation by integrating
advanced CFM and TFM modules. CFM could accurately
capture high-level semantic information in video frames,
while TFM comprehensively constructed global context
and long-range dependencies, enhancing the model's
ability to perceive and process complex scenes. Secondly,
the model demonstrated strong adaptability across various
datasets, showing the lowest error rate on the SHTech
dataset with minimal deviation between predictions and
actual values. It also outperformed other models on the
UCF_CC 50 dataset, which was more challenging.
However, the model might have limitations such as higher
computational complexity and higher hardware resource
requirements, potentially limiting its performance in real-
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time applications.

To more comprehensively evaluate the performance
of the WSLCC model, the study conducted multiple
experiments with different training and test set divisions.
The evaluation metrics included R?, AE, and RMSE, and
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the 95% confidence intervals for each metric were
calculated to more accurately reflect the model's
performance fluctuations. The results are presented in
Table 5.

Table 5: Test results of different test/training set division methods of the model

Training set/test set division ratio | R?fraction | AE | AE95% confidence interval [ RMSE | RMSE95% confidence interval
80%/20% 0.75 125 [10.2,14.8] 15.3 [13.1,17.5]
75%/25% 0.72 132 [11.0,15.4] 16.1 [13.9,18.3]
70%/30% 0.70 14.0 [11.8,16.2] 17.0 [14.8,19.2]
85%/15% 0.78 11.8 [9.6,14.0] 145 [12.3,16.7]
82%/18% 0.76 12.2 [10.0,14.4] 15.0 [12.8,17.2]

In Table 5, the WSLCC model exhibited varying
performance on the UCF_CC_50 dataset under different
training/test set configurations. The R? score ranged from
0.70 to 0.78, and the AE and RMSE also showed varying
degrees of fluctuation. This suggested that the smaller size
of the UCF_CC_50 dataset made the impact of different
data splits on model performance more pronounced.
Although the model performed relatively well with some
configurations, the overall instability highlighted the

importance of conducting multiple trials on small-scale
datasets to more comprehensively and accurately assess
the model's generalization ability and reliability.

To verify the effectiveness of each component of
WSLCC model, three ablation experiments were carried
out on UCF_CC _50 data set, including model parameter
ablation, model component ablation and loss function
ablation. The results of ablation experiments are shown in
Figure 10.
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Figure 10: Experimental outcomes of WSLCC model ablation

Figure 10 (a) indicates the ablation results of the
model parameters, Figure 10 (b) indicates the ablation
outcomes of the model components, and Figure 10 (c)
indicates the ablation results of the model LF. In the model
parameter ablation experiment shown in Figure 10(a), the
parameters of the MCNN, CSRNet, and LSC-CNN

models were set to 29%,33%, and 27% of the WSLCC
model's parameters, respectively. This experimental
design, which set the parameter sizes of existing models
to a certain ratio of the WSLCC model's parameters, aimed
to ensure a fair comparison in terms of model complexity.
By controlling the parameter sizes, the study could better
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assess the effectiveness of the WSLCC model architecture
itself, avoiding the impact of parameter size differences.
Although this design was not standard, it helped focus on
the impact of the model architecture on performance. The
experiment was conducted on the SHTech Part A dataset.
As shown in the figure, the WSLCC model had the lowest
MAE and RMSE values, at 62.8 and 95.4, respectively,
which were 2.5% and 0.2% lower than those of the LSC-
CNN model. The results indicated that the research model
could achieve lower counting errors while using fewer
parameters. As shown in Figure 10(b), overall, the model's
performance gradually improved with the addition of each
module. Specifically, adding the CRM module to the CFM
resulted in a slight decrease in MAE and RMSE. Adding
the TFM to the CFM significantly enhanced the model's
performance, with MAE and RMSE decreasing by 17.3%
and 17.1%, respectively. The research model combining
CFM, CRM, and TFM had the lowest MAE and RMSE
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values, at 62.8 and 95.6, respectively, indicating the best
performance. As shown in Figure 10(c), the loss function
used in the study reduced both MAE and RMSE by 2.5%
and 1.4%, respectively. This differed from the WSLCC
model on the SHTech Part A dataset, where MAE (60.5)
and RMSE (90.7) were higher. This difference was due to
variations in the datasets and experimental conditions,
which affected the model performance metrics in the two
experiments. The above outcomes indicated that the
developed WSLCC model performed the best in all
aspects and could efficiently complete the CC task.

To assess the significance of these metric differences,
statistical tests were conducted. The results showed that
the WSLCC model significantly outperformed other
models in terms of MAE and RMSE (p<0.05), indicating
a genuine and reliable performance improvement. The
ablation results are detailed in Table 6.

Table 6: Ablation experiment data

Model configuration MAE RMSE p
MCNN 80.2 132.1 p< 0.05
CSRNet 68.4 116.7 p<0.05
Parameter ablation
LSC-CNN 80 98.5 p< 0.05
WSLCC(CNN-TRM) 62.8 95.4 /
CFM+CRM 60 93 p <0.05
Component ablation CFM+TEM 52 79 p< 0.05
WSLCC 50 78 /

Regarding the consistency of changes across
different datasets, although this experiment only
showcased the ablation results on the UCF_CC_50 dataset,
similar experiments were conducted on other datasets like
SHTech in earlier studies. The trend of model performance
improvement was consistent, with improvements in
metrics such as MAE and RMSE after adding specific
modules. However, the extent of metric reduction varied
across different datasets, possibly due to differences in
scene characteristics and crowd density distribution. For
instance, on the more complex UCF_CC 50 dataset,
where the crowd density was higher, the WSLCC model
showed a more significant performance improvement
compared to other models. In contrast, on the simpler
SHTech dataset, the improvement was less pronounced

but still maintained a good performance advantage.

3.2 Application analysis of sports venue

management platform

To verify the effectiveness of the WSLCC model in
sports venue management, a practical application analysis
was conducted on the proposed sports venue management
platform. The study first integrated the WSLCC model
into the proposed sports venue management platform
based on CC model, and tested its performance using the
LoadRunner tool. The minimum response time, maximum
response time, CPU and memory usage of the platform
under different concurrent user numbers are shown in
Table 7.

Table 7: Performance test results of sports venue management platform

100

300 500

Number of concurrent users -
This
platform

method

Traditional manual

This
platform

This
platform

Existing
platform

Existing
platform
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First 0.667 25 0.723 1.8 0.956 2.2
Minimum response second 0592 23 0.684 17 0.903 20
time/s
Third 0.637 24 0.745 1.75 0.924 2.1
First 0.942 35 1.023 2.8 1.543 3.2
Maximum response Second 0.927 3.4 1.132 2.7 1.493 3.1
time/s
Thi
d 0.949 3.45 1.079 2.75 1.509 3.15
First 75 15 26.7 35 47.2 50
CPU and memory
footprint/% Second 6.9 14 27.3 34 40.8 48
Third 7.1 14.5 24.6 33 39.7 47

In Table 7, the overall performance of the platform
and the baseline system improved as the number of
concurrent users increased. The minimum and maximum
response times, as well as CPU and memory usage, all
increased. When the number of concurrent users was 500,
the platform's minimum response time was 0.956 seconds,
a significant improvement over the 2.2 seconds for both
the traditional manual method and the existing platform.
The maximum response time was 1.543 seconds, also
outperforming the traditional manual method and the
existing platform. In terms of CPU and memory usage, the
platform's usage rate was 47.2% at 500 concurrent users,
which was lower than the 50% used by the existing
platform and the higher usage of the traditional manual
method (assuming the traditional manual method has a
higher usage). This indicated that the sports venue
management platform proposed in this study offered
significant performance advantages over traditional
manual methods and existing platforms, providing more
stable, reliable, and efficient services for sports venue

management. Then, the research introduced the platform
into a sports center in a particular city to monitor foot
traffic density in real-time, optimize venue scheduling,
and allocate resources effectively. The practical
implementation test at the sports center was conducted
from December 2024 to April 2025, lasting for a total of
five months. During the test, a combined approach of
manual counting and sensor-data collection was utilized to
obtain accurate and reliable information. Specifically,
designated personnel were responsible for performing
regular manual counts in key areas of the sports center,
carefully recording the number of people in each area.
Meanwhile, sensor devices installed on-site collected real-
time data on venue usage and crowd density. The manual
counts and sensor data were cross-verified to ensure the
accuracy and reliability of the data. The key evaluation
indicators for the three months before and after the
application of the statistical platform are shown in Figure
11.
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Figure 11: Comparison results of indicators before and after platform application

As depicted in Figure 11, the sports venue
management platform, which is grounded in the CC model
proposed by this study, has notably enhanced overall
management efficiency. Among them, the accuracy of
crowd flow statistics increased from 75.5% to 95.1%,
ensuring the reliability of the data. The utilization rate of
the venue increased from 60.2% to 85.4%, optimizing the
use of resources. The satisfaction score for resource
allocation increased from 3.2 to 4.5, indicating a
significant increase in user recognition of venue allocation.
The management response time was reduced from 15.4
minutes to 5.3 minutes, improving operational efficiency.

Overall, the platform improved management efficiency
through intelligent management, providing strong support
for the scientific operation of sports venues.

To further validate the robustness of CC methods
based on weakly supervised learning in sports venue
management, an additional practical application test was
conducted at a large football stadium. During the event,
the stadium experienced high foot traffic and complex
crowd movement, which significantly differed from the
previous test dataset scenarios. The test results are
presented in Table 8.

Table 8: Further evaluation results of model robustness

Indicator/Crowd density zoning Entry area

The audience area

Food and beverage area Export area

Average count error rate 8.2%(7.5%-8.9%)

7.5%(6.8%-8.2%)

9.1%(8.3%-9.9%) 8.7%(7.9%-9.5%)

Maximum response time (s) 1.2(1.1-1.3) 1.0(0.9-1.1) 1.3(1.2-1.4) 1.1(1.0-1.2)
Minimum response time (s) 0.3(0.2-0.4) 0.2(0.1-0.3) 0.4(0.3-0.5) 0.3(0.2-0.4)

CPU occupancy (%) 32(30-34) 28(26-30) 35(33-37) 30(28-32)
Memory occupancy rate (%) 45(42-48) 40(38-42) 48(45-51) 43(40-46)

As shown in Table 8, the CC model performed well
across all areas of the football stadium, regardless of
crowd density. The confidence intervals for the average
counting error rate indicated that the model's counting
errors were relatively stable and low in each area,
indicating that the model could accurately count people in
various functional areas. The confidence intervals for
response time showed that the model's feedback speed
remained within a reasonable and stable range. The
confidence intervals for CPU and memory usage also

showed that these resources were used stably and at an
acceptable level, without placing excessive strain on the
existing sports venue system. This demonstrated that the
model was robust and practical in complex sports venue
scenarios.

4 Conclusion

To address the issues of low accuracy and poor
adaptability faced by CC methods in real-world scenarios,
a WSLCC model was proposed. This model first utilized
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an advanced CFM module to accurately capture and
extract high-level semantic information of the crowd in
video frames, and then sent it into an efficient TFM
module to comprehensively construct global contextual
information and long-range dependencies using its
powerful modeling capabilities, significantly improving
CC performance under weakly supervised conditions. The
sports venue resource information management platform
designed based on the WSLCC model effectively
improved the adaptability and accuracy of CC methods in
sports venue management, significantly enhancing
management efficiency. The accuracy of CC increased
from 75.5% to 95.1%, the venue utilization rate has
increased from 60.2% to 85.4%, the satisfaction score of
resource allocation increased to 4.5, and the management
response time was shortened to 5.3 minutes. On multiple
datasets, the WSLCC model also demonstrated excellent
performance, with MAE of 60.5 and RMSE of 90.7 on the
SHTech Part SA dataset. On the SHTech Part S dataset,
the MAE and RMSE were 8.1 and 13.2, respectively. On
the UCF_CC_50 dataset, the MAE was 188.2 and the
RMSE was 300.3. However, the model lacked adaptability
to complex scenes and occlusion situations, and the
counting accuracy is limited by the sparsity of annotated
data.

In the future, more robust feature representation
methods can be further studied, considering the
introduction of 3D input to better handle occlusion
problems and utilize 3D information to more accurately
perceive the spatial distribution of crowds. Meanwhile,
exploring multi-camera fusion technology to integrate
information from different perspectives and enhance the
model's ability to understand complex scenes. In addition,
it is necessary to continuously explore more efficient data
annotation and enhancement techniques to improve the
generalization performance and counting accuracy of the
model under limited annotated data.
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