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Aiming at the problem of low accuracy and poor adaptability of current crowd counting methods in sports 

venue management, an innovative crowd counting model based on weakly supervised learning (WSLCC) 

is proposed and a corresponding management platform is designed. In terms of model construction, this 

work combines weakly supervised learning ideas to deeply integrate traditional Convolutional Neural 

Networks (CNN) with Transformers. Firstly, advanced Convolutional Feature Module (CFM) is utilized 

to accurately capture and extract high-level semantic information of the crowd in video frames. 

Subsequently, this information is fed into an efficient Transformer Feature Module (TFM), which utilizes 

its powerful modeling capabilities to comprehensively construct global contextual information and long-

range dependencies. Weakly supervised learning is reflected in using a small amount of labeled data to 

guide model learning and reduce dependence on a large amount of accurately labeled data. To validate 

the performance of the model, experiments are conducted on multiple datasets. The model ablation 

experiment shows that on the UCF_CC_50 dataset, the mean absolute error (MAE) of the WSLCC model 

is 62.8, and the root mean square error (RMSE) is 95.4, which is 2.5% and 0.2% lower than that of the 

LSC-CNN model, respectively. With the gradual addition of CFM and TFM modules, the model 

performance significantly improves, and the combined MAE and RMSE index values are the lowest. In 

practical applications, the sports venue management platform based on the WSLCC model achieves 

significant results, with an accuracy rate of 95.1% in crowd statistics, a venue utilization rate of 85.4%, 

a satisfaction score of 4.5 for resource allocation, and a management response time shortened to 5.3 

minutes. This study effectively improves the adaptability and accuracy of crowd counting methods in 

complex environments, promoting the improvement of sports venue management efficiency. 

Povzetek: Za področje upravljanja športnih prizorišč in množic je predstavljen model WSLCC, ki v šibko 

nadzorovanem okviru združi konvolucijsko semantiko (CFM) z izboljšanim transformerjem (TFM, na 

osnovi Swin z zamaknjenimi okni) za hkratno zajemanje lokalnih značilk in globalnega konteksta iz video 

slik. Jedro novosti je v rabi točkovnih, delnih anotacij za učenje gostot brez natančnih tabel označb ter v 

pretočnem kodirniku, kjer vektorsko sploščanje, lahka hierarhična pozornost in rezidualno zlivanje 

omogočijo robustno štetje glav v heterogenih, okludiranih prizorih. 

 

1 Introduction 
As large-scale sports events and mass-participation sports 

activities gain increasing popularity, the management of 

crowd safety at sports venues and public spaces is facing 

substantial challenges. Traditional crowdcounting (CC) 

methods typically rely on either manual inspections or 

fully supervised deep learning models that necessitate 

extensive data labeling. Manual inspections, however, are 

not only time-consuming but also susceptible to subjective 

biases. On the other hand, fully supervised deep learning 

models fall short in practical applications because of the 

exorbitant costs involved in data labeling and their limited 

ability to generalize across diverse scenarios [1-3]. In this 

context, weakly supervised learning has gradually 

emerged as a focal point of research within the domain of 

CC due to its ability to utilize partial or coarse-grained  

 

labels for model training [4]. By decreasing reliance on 

pixel-level annotation, weakly supervised methods can 

markedly cut the costs associated with data collection and 

annotation, and simultaneously enhance the algorithm's 

adaptability to complex sports scenes. Presently, the  

application of CC technology in sports management 

primarily concentrates on scenarios such as passenger  

flow statistics, safety alerts, and resource allocation. 

Nonetheless, the unique challenges posed by dynamic 

lighting changes, dense occlusion issues, and the spatial 

heterogeneity of audience distribution within sports 

venues—such as the varying densities between grandstand 

areas and evacuation routes—impose greater demands on 

traditional regression or detection-based counting 

methods [5-6]. In addition, the spatiotemporal 

characteristics of crowd flow during sports events, such as 

pre match gathering, mid match retention, and post match 
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evacuation, further require algorithms to have dynamic 

adaptability, which poses a dual challenge of multi-modal 

fusion and temporal modeling for the design of CC 

algorithms [7-8]. Many scholars have conducted research 

on this issue. 

The dataset currently released is relatively small in 

scale and cannot fulfill the requirements of supervised 

learning-based CNN algorithms. To overcome the 

shortcomings of traditional manual counting methods, He 

X et al. proposed a method that combined CNN and 

Transformer networks for object counting in complex 

scenes. The results showed that this method reduced the 

error rate by 13.4%, indicating that the fusion of CNN and 

Transformer networks was effective in object counting in 

computer vision tasks [9]. To promote the application of 

CC methods in disaster management systems, public 

activities, safety monitoring, and other fields, Khan et al. 

proposed an end-to-end semantic segmentation 

framework for CC in dense and crowded images. As a 

result, it was found that the multi-scale features extracted 

by the algorithm from the image overcame the scale 

variation of crowded images [10]. In an effort to boost the 

accuracy of CC, Sindagi et al. introduced a novel CC 

network. This network progressively generated a crowd 

density map by means of residual error estimation. The 

proposed approach employed VGG16 as its backbone 

network. It took the density map produced by the final 

layer as an initial, rough prediction. Leveraging residual 

learning, the network then iteratively refined this 

prediction, ultimately generating increasingly detailed and 

accurate density maps. The results demonstrated that this 

method brought about a substantial reduction in counting 

errors, marking a significant improvement over previous 

techniques. [11]. To improve the accuracy of intelligent 

monitoring for crowd monitoring, Pang et al. developed a 

horizontal federated learning framework to train CC 

models while protecting privacy. This framework enabled 

intelligent monitoring systems to acquire knowledge 

through model integration while keeping the private data 

on local devices inaccessible [12]. To address the 

uncertainty issues in CC methods, Oh et al. proposed an 

extensible neural network framework that used bootstrap 

ensembles to quantify the decomposed uncertainty. The 

results showed that the suggested uncertainty 

quantification approach provided additional insights for 

CC problems and was easy to implement [13]. To improve 

the application effect of CC calculation method in 

image/video analysis, Vivekanandam et al. proposed a fast 

image CC method utilizing lightweight Convolutional 

Neural Network (CNN). The results showed that this 

method could easily classify head counts in some fields of 

view and is more accurate than other pre trained neural 

network models [14]. Oh M focused on the uncertainty of 

side weighting, while Vivekanandam [14] emphasized 

lightweight and rapid counting. The CC model based on 

weakly supervised learning (WSLCC), leveraging a CNN-

Transformer architecture, accurately captures high-level 

semantic information under weak supervision, constructs 

a global context, and significantly enhances CC 

performance. Its advantage lies in its adaptability to 

weakly supervised scenarios and its more precise and 

reliable counting. Deep learning techniques are employed 

to establish a correlation between the visual content of 

images and the corresponding distribution of crowd 

density. Despite the notable advancements achieved thus 

far, accurately identifying pedestrians who are positioned 

at a considerable distance from the camera still poses a 

formidable challenge. Moreover, these challenging cases 

frequently account for a significant proportion of the 

dataset. Therefore, Chen et al. proposed a difficult sample 

focusing algorithm for CC regression tasks. This 

algorithm reduced the contribution of easy samples, 

enabling the model to promptly direct its attention towards 

challenging instances. Then, higher importance was given 

to difficult samples with erroneous estimations, and it was 

found that the introduced approach surpassed the leading-

edge techniques [15]. Related research work is shown in 

Table 1. 

 

Table 1: Related research worksheets 

Author Types of models  Types of models  
MAE/R

MSE 
Superiority Limit 

HeX et al. [9] 
CNN and Transformer fusion 

target counting model 

UCF-QNRF data 

set  

MAE:8

0.0 

Increase complexity scenarios 

Target count accuracy 

Poor versatility and lack of multi-data set 

verification 

KhanK et al. 

[10] 

End-to-end semantic 

segmentation framework 

 

ShanghaiTech

PartA data set 

RMSE:

110.0 

Extract multi-scale features to 

overcome the scale of crowded 

images 

 change  

The computational complexity is high and 

the real-time performance may be limited 

SindagiVA et 

al. [11] 

A CC network based on 

residual error estimation 

(VGG16 backbone) 

UCF_CC_50 

data set  

MAE:7

5.0 

Significantly improve the error and 

improve the counting accuracy 

Depending on the VGG16 backbone 

network, there may be parameters 

More problems with large amount of 

computation 

 PangY et al. 

[12] 

Level federal learning 

framework 

WorldExpo'10 

data set  
/ 

Protect privacy and improve the 

accuracy of intelligent crowd 

monitoring 

 nature  

Model aggregation process may increase 

communication overhead and training 

Efficiency may be affected 

OhM et al. [13] 

Scalable neural network 

framework (bootstrap set 

Quantitative uncertainty) 

Mall data set  / 

Quantify the problem of counting 

people 

Uncertainty, easy to achieve 

Specific quantitative indicators are indicated 
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Vivekananda

mB. et al [14] 

Lightweight CNN model UCSD data set  
MAE:9

0.0 

Lightweight, can quickly count the 

number of images 

Accuracy can be counted in complex 

backgrounds or occlusions 

It can go down 

Chen et al. [15] 

Difficult sample focusing 

algorithm (CC regression 

task) 

Fudan-

ShanghaiTech 

data set 

MAE:7

0.0 

Improve the detection of difficult 

samples 

 ability  

It is not mentioned whether the processing of 

easy samples may affect it 

The overall generalization ability of the 

model 

In summary, research on intelligent algorithms for 

CC has yielded certain results and holds considerable 

importance in various aspects of daily life. Nonetheless, 

challenges such as occlusion in complex scenes, variations 

in target size due to perspective effects, and the difficulty 

in accurately identifying individuals within dense crowds 

persist. These problems complicate the accurate 

segmentation and counting tasks, particularly in crowded 

environments where the error rate tends to rise 

substantially. Moreover, the algorithms lack robustness 

against interference factors like lighting variations and 

background clutter, which can also impair counting 

accuracy. Based on this, the study innovatively proposes 

the WSLCC. The model first utilizes an advanced CNN 

Feature Extraction Module (CFM) to accurately capture 

and extract high-level semantic information of the crowd 

in video frames. Subsequently, this information is fed into 

an efficient Transformer Feature Module (TFM), which 

can fully utilize its powerful modeling capabilities to 

comprehensively construct global contextual information 

and long-range dependencies. Through this process, the 

model can significantly improve its CC performance 

under weakly supervised conditions, achieving more 

accurate and reliable headcount statistics. Then, based on 

the WSLCC model, a sports venue resource information 

management platform is designed to improve the 

adaptability and accuracy of CC methods in sports venue 

management, and promote the improvement of sports 

venue management efficiency. To address the challenges 

of difficult detection of pedestrians far from the camera 

and the abundance of challenging samples in current 

research, the proposed WSLCC method uses a CNN 

feature extraction module to accurately capture high-level 

semantic information about people. It then employs a 

Transformer feature extraction module to construct global 

context and long-distance dependencies, which helps to 

more comprehensively identify targets, focus on 

challenging samples, enhance the detection capability for 

complex crowd scenarios, and ultimately improve the 

accuracy of CC. 

 

2  Methods and materials 

2.1 Design of CC model based on weakly 

supervised learning 
In sports venue management, CC is a crucial task. 

With the increase in sports activities and the expansion of 

audience size, accurately counting the number of 

attendees is of great significance for ensuring safety, 

optimizing resource allocation, and improving venue 

management efficiency [16]. However, traditional CC 

methods based on fully supervised learning heavily 

depend on a substantial quantity of accurately labeled data 

for model training, and obtaining such high-quality data is 

extremely difficult in complex and ever-changing 

scenarios such as sports venues. In addition, changes in 

crowd density, lighting conditions, occlusion, and other 

factors may have a significant impact on the counting 

results, leading to limited generalization ability of the 

model. Meanwhile, fully supervised learning methods 

have poor adaptability to new scenarios or abnormal 

situations, making it difficult to adjust and optimize in real 

time, thus failing to meet the high-precision and real-time 

requirements for CC in sports venue management [17-19]. 

A WSLCC model is proposed to address the above issues. 

In this study, weakly supervised learning employs point 

annotations. Specifically, for each image containing a 

group of people, the annotators only mark the positions of 

some members, rather than precisely counting or 

annotating the positions of all individuals in the image. 

The annotation strategy involves randomly selecting a 

certain percentage of the group members for position 

marking in each image, which serves as weakly supervised 

information to guide the model training. Figure 1 

illustrates the architecture of the WSLCC model. 
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Figure 1: Illustrative representation of WSLCC model structure 

 

In Figure 1, the WSLCC model is a highly integrated 

system consisting of three core components. The first is 

the vector flattening module. The primary function of this 

module is to divide the input image into multiple smaller 

segments and then transform these image segments into 

vector-based representations that can be subsequently 

processed by the model. This step serves as the initial 

phase of the model's processing pipeline and lays the 

groundwork for guaranteeing the precision of subsequent 

analyses. Following this is the encoder module, which 

holds a pivotal position in conducting in-depth analysis 

and processing of the vectors. The encoder module is 

further divided into two sub modules: CFM and TFM. 

These two sub modules work together to fully utilize their 

respective advantages and conduct in-depth vector mining, 

aiming to extract key information and features from 

images and provide strong support for subsequent CC 

predictions. Finally, there is the Regression Counting 

Module (CRM), which is the stage where the model 

outputs the predicted results. It is based on the features 

extracted by the encoder module and uses advanced 

algorithms and techniques to generate corresponding CC 

predictions. The task of CRM is to ensure the accuracy and 

reliability of prediction outcomes, thereby providing 

valuable reference information to users. 

The model consists of two primary steps: training 

and inference. During the training phase, input images are 

first preprocessed by a vector flattening module, which 

divides the image into smaller modules and converts them 

into vector form. These vectors then pass through the CFM 

and TFM to extract key information and features from the 

image. The regression counting module, combined with 

weakly supervised point annotations, calculates the loss 

between the model's predictions and the actual labels. By 

continuously optimizing the loss function and adjusting 

the model parameters, the model gradually learns to 

accurately count people. 

This study employed the Smooth L1 loss function. 

Compared to the traditional L1 loss function, the Smooth 

L1 loss function exhibits better differentiability near zero 

points, allowing the model to adjust parameters more 

smoothly during training. Additionally, it demonstrates 

greater robustness against outliers, thereby significantly 

enhancing the model's prediction accuracy and stability in 

complex scenarios. The loss function is described by 

equation (1). 

( )
2

1

0.5* ,  if 11

0.5,  otherwise 

ES GT ES GT
N

i i i i

ES GT
i

i i

C C C C

N C C=

 − − 
= 

− −

L  (1) 

In formula (1), N  represents the number of training 

pictures, 
ES

iC  represents the predicted number of people 

by the model, and 
GT

iC   represents the real number of 

people by the model. In the reasoning step: In the 

reasoning stage, the input image is also processed by 

vector flattening module, CFM and TFM, and finally the 

CC prediction result is generated by regression counting 

module. 

In the front-end architecture of the research, in the 

vector flattening module of the WSLCC model, the input 

image will first undergo a preprocessing step of flattening, 

in which the input image blocks are converted into one-

dimensional vector sequences. This conversion step is 

crucial as it not only efficiently retains the spatial details 

of the image, but also establishes a robust groundwork for 

the ensuing encoding procedure.  The result obtained 

during the block embedding stage is shown in equation (2). 

 

  
2 3 1,2,3 ,i K

px R i N = ∣  (2) 

In equation (2), P denotes positional embedding, N

means the number of image blocks, and 
i

px  is the 

segmented image block. Subsequently, each segmented 



WSLCC: A Weakly Supervised CNN-Transformer Model for… Informatica 49 (2025) 385–400 389 

image block undergoes a specific mapping process to be 

accurately transformed into a latent embedding vector 

with D  -dimensional features for subsequent processing 

and analysis. The mapping process is achieved by 

applying a specially designed and trainable linear 

projection layer, which can transform data from the 

original space to a new feature space, as shown in equation 

(3). 

 N DE R   (3) 

In equation (3), E represents the mapping matrix. To 

ensure that each segmentation block in the image can fully 

preserve its original spatial position information, a 

learnable position embedding mechanism is proposed. 

The core of this mechanism is to dynamically inject spatial 

position encoding into the feature vectors of each image 

sub block. This encoding is not a static parameter 

generated by traditional fixed equations, but a dynamic 

vector learned autonomously by neural networks. During 

the model training process, the position embedding layer 

will automatically generate embedding values with spatial 

representation capabilities based on the 2D coordinates of 

the image blocks. This design allows the model to grasp 

the relative positional relationships between blocks and 

recognize their absolute positional information when 

analyzing the global context through self attention 

mechanism, as presented in equation (4). 

 e{n}=x{n}+P{n}  (4) 

In equation (4), x{n} represents the original feature 

embedding and P{n}represents the positional embedding.

e{n}  represents the final block embedding vector, which 

is used as input to the encoding layer of the WSLCC 

model. The pseudocode of the vector flat module is shown 

in Figure 2. 

class VectorFlattenModule:

    def __init__(self, d_model: int, patch_size: int):

        # Learnable linear projection layer

        self.projection = Linear(in_dim=patch_size^2 * 3, out_dim=d_model)  # E_proj matrix in Eq(2)

        

        # Learnable position embeddings (Eq1 & Eq3)

        self.position_emb = nn.Parameter(torch.randn(1, num_patches, d_model))  # E_pos

        

    def forward(self, x: Tensor) -> Tensor:

        """

        x: input image tensor [B, C, H, W]

        returns: patch embeddings [B, M, d_model]

        """

        # Step 1: Image Patching (Eq1)

        patches = split_into_patches(x, patch_size)  # [B, M, patch_size^2 * C]

        

        # Step 2: Linear Projection (Eq2)

        patch_emb = self.projection(patches)  # [B, M, d_model]

        

        # Step 3: Add Position Embedding (Eq3)

        final_emb = patch_emb + self.position_emb  # [B, M, d_model]

        

        return final_emb

# Helper function implementation

def split_into_patches(x, patch_size):

    B, C, H, W = x.shape

    M = (H * W) // (patch_size^2)  # Number of patches (Eq1)

    x = x.reshape(B, C, H//patch_size, patch_size, W//patch_size, patch_size)

    x = x.permute(0, 2, 4, 1, 3, 5).contiguous()

    x = x.view(B, M, -1)

    return x

 

Figure 2: Pseudo-code diagram of vector flat module 

 

2.2 Encoder module design of WSLCC model 
Once the block embedding vectors of the input image 

have been successfully acquired, the encoder within the 

WSLCC model steps up to the plate, assuming the crucial 

task of performing in-depth analysis and processing on 

these vectors. Leveraging a neural network architecture, it 

meticulously sifts through the image data, extracting 

pivotal information and core features. The WSLCC model 

encoder designed this time consists of two sub modules, 

CFM and TFM. In the entire sports venue CC, the encoder 

first uses the CFM to accurately capture and extract high-

level crowd semantic information from video frames. 

Subsequently, this information is fed into an efficient TFM, 

which can fully utilize its powerful modeling capabilities 

to comprehensively construct global contextual 

information and long-range dependencies. The encoder 

structure is shown in Figure 3. 
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Figure 3: Illustrative representation of encoder structure 

 

In Figure 3, the CFM submodule selects the first ten 

layers of the VGG16-BN network as feature extractors, 

leveraging the network's exceptional performance and 

stability in numerous computer vision tasks. To effectively 

manage the number of model parameters and extend the 

network's receptive field, the last two pooling layers of the 

VGG16-BN network were omitted. This alteration allows 

the network to capture more detailed image information 

while preserving efficiency. Consequently, the output 

feature map of the CFM submodule remains at 1/8 the 

resolution of the original image, offering more precise and 

detailed feature information for subsequent CC tasks. 

In the CFM sub-module, the first ten layers of the 

VGG16-BN network were selected as the feature extractor. 

VGG16-BN is a variant of the VGG16 network that 

incorporates a Batch Normalization (BN) layer. The 

VGG16 network consists of multiple convolutional layers, 

pooling layers, and fully connected layers. The 

convolutional layers use small kernels (such as 3x3) to 

progressively extract image features. In the CFM, these 

first ten layers include multiple convolutional and pooling 

layers, which work together to perform the feature 

extraction task. The convolutional layers use 

convolutional kernels to slide over the image and apply 

weighted sums, initially extracting low-level local features 

such as edges and textures. As the number of layers 

increases, they gradually capture higher-level semantic 

features like crowd contours and poses. By selecting the 

first ten layers of VGG16-BN, the CFM controls the 

number of parameters, expands the receptive field, avoids 

overfitting, and enhances generalization capabilities. This 

approach also allows for the capture of rich image details, 

which is crucial for accurate CC. Ultimately, the CFM 

outputs feature maps with a resolution one-eighth of the 

original image, providing precise and rich features to the 

TFM, which helps it construct global context and long-

distance dependencies. The output of the CFM obtained 

from this is shown in equation (5). 

 ( )f vggC I= F  (5) 

In equation (5), fC represents the output of the CFM 

and vggF  represents the first ten layers of the VGG16-BN 

network. Next, the CC model uses the output of CFM as 

the input of the TFM. Specifically, fC   is first 

transformed into one-dimensional sequences, and then the 

sequence is sent to TFM. 

In the TFM, the crowd semantic features obtained 

from CFM are first transformed into one-dimensional 

sequences. Then, the sequence is sent to TFM for image 

segmentation and modeling of global context and long-

range dependencies. However, traditional Transformer 

models suffer from problems such as high computational 

complexity and lack of hierarchical scale feature modeling 

ability due to calculating self attention at the original 

image resolution [20-21]. To this end, the study first 

introduces Shift Window Multi-Head Self Attention (SW-

MSA) to improve the traditional Transformer and obtain a 

Swin Transformer network, whose overall structure is 

shown in Figure 4. 
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Figure 4: Illustrative representation of Swin Transformer structure 



WSLCC: A Weakly Supervised CNN-Transformer Model for… Informatica 49 (2025) 385–400 391 

 

In Figure 4, Swin Transformer is a hierarchical visual 

Transformer architecture that consists of four progressive 

stages in its complete structure. At each stage, the image 

is divided into local regions through patch partitioning, 

and after linear embedding is mapped into feature vectors, 

feature extraction is performed by SwinTRM blocks. This 

structure has the ability to maintain global context 

modeling while improving computational efficiency. Next, 

to further enhance the efficiency and performance of the 

Transformer in handling image data, an investigation is 

conducted into employing a combination of two layers of 

Swin Transformer and a convolutional layer to construct 

an enhanced Swin Transformer block, which served as the 

primary feature extractor for the Transformer within the 

TFM. 

In the TFM module, the improved SwinTransformer 

block uses SW-MSA to compute self-attention in its 

SwinTransformer layer. Specifically, each 

SwinTransformer layer includes a self-attention module 

based on SW-MSA, followed by a Multi-Layer Perceptron 

(MLP). Before the self-attention module and the MLP, 

there is a LayerNormalization (LN) layer. The structure 

follows this sequence: LN → SW-MSA → LN → MLP. 

This design enhances the model's ability to extract features 

by stabilizing the training process and improving feature 

extraction capabilities. The improved Swin Transformer 

block structure is presented in Figure 5. 
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Figure 5: Illustrative representation of improved Swin Transformer block structure 

 

In Figure 5, the improved Swin Transformer block is 

an enhanced deep learning model component, and its 

workflow is shown in equation (6). 

( )

( )( )( )
1

, , , 1 , 2

, 1, 2,3,4

Conv , 2,4,6,8, ,

i i i

i j i j i j i j

F M F

F STL STL F

T T i

T T j L

−

− −

= =

= =







F

F F
(6) 

In equation (6), 
iMF  represents the improved Swin 

Transformer block, and 
iFT  represents its output features. 

,i jSTLF  represents the Swin Transformer layer at position 

( , )i j  , and 
,i jFT   represents its intermediate features. 

From this, the output feature FT   of the TFM can be 

obtained as shown in equation (7). 

 ( )( )Conv=F TFM fT CF  (7) 

In equation (7), TFM represents the operations of the 

Transformer module, and ( )Conv fC  is the input to the 

TFM after convolution operation on fC  . Conv

represents the convolutional layer and TFMF represents the 

TFM. In the aggregation of feature maps, a simple 

element-wise addition method is employed. For 

convolution operations, fC   in ( )Conv fC   represents 

the number of channels in the input feature map. The size 

of the convolution kernel, stride, and padding are 

determined based on the specific model design and the 

dimensions of the input feature map, ensuring that the size 

and number of channels of the feature map after 

convolution meet the model's requirements. For example, 

in some cases, the convolution kernel might be set to 3x3, 

with a stride of 1 and padding of 1, to maintain the spatial 

dimensions of the feature map. 

To prevent overfitting, the study introduced Dropout 

layers into the model. Specifically, Dropout layers were 

added after the convolutional layers in the CNN section 

and after the attention mechanism in the Transformer 

section. Through experimental optimization, the Dropout 

rate after the CNN convolutional layers was set to 0.3, and 

after the Transformer attention mechanism, it was set to 

0.2. The introduction of Dropout layers enhanced the 

model's generalization ability, ensuring better 

performance across various scenarios. The pseudocode of 

the encoder module is shown in Figure 6. 
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class WSLCCEncoder:

    def __init__(self):

        self.cfm = VGG16BN_First10Layers()  # Pre-

modified CFM backbone

        self.tfm = SwinBlock(num_layers=2)  # 2-

layer Swin Transformer

        self.conv = Conv2d(256, 512, 3, padding=1)

        self.drop = [Dropout(0.3), Dropout(0.2)]

    def forward(self, x):

        # CFM path (Eq4)

        c = self.drop(self.cfm(x))  # 1/8 res

        

        # TFM path (Eq5-6)

        t = self.conv(c).flatten(2)

        t = self.drop(self.tfm(t))

        

        return c + t.view_as(c)  # Feature fusion

class SwinBlock:

    def __init__(self, num_layers=2):

        self.layers = nn.ModuleList([

            nn.Sequential(

                LayerNorm(),

                ShiftedWindowMSA(8),

                LayerNorm(),

                MLP(512)

            ) for _ in range(num_layers)

        ])

    def forward(self, x):

        for layer in self.layers:

            x = layer(x)

        return x

 

Figure 6: Pseudo-code diagram of the encoder module 

 

After constructing the WSLCC model, to promote 

the efficiency of sports venue management, a sports venue 

resource information management platform based on a CC 

model is designed based on this model. The platform uses 

camera equipment to calculate the crowd density of each 

sports event area through a CC model, and uploads it to 

the database. Users can obtain the location of the shared 

sports equipment cabinet through the client, borrow the 

equipment, and return it within the specified time. Figure7 

presents the comprehensive structure of the platform. 
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Figure 7: Illustrative representation of sports venue management platform architecture 

 

In Figure 7, the platform mainly consists of two parts: 

a CC system and a shared sports equipment cabinet. The 

database architecture of the platform is shown in Table 2. 

 

Table 2: Database architecture of sports venue management platform 

Table name Field name Data type 

Video_Info 

video_id int 

video_path varchar 

start_time datetime 

end_time datetime 
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Crowd_Density_Data 

density_id int 

video_id int 

region_id int 

density_value float 

timestamp datetime 

Equipment_Cabinet_Info 

cabinet_id int 

location varchar 

equipment_list text 

qr_code varchar 

User_Info 
user_id int 

username varchar 

 

The platform focuses on the management of sports 

venues, processing video streams, CC, and equipment 

borrowing and returning data. For video streams, cameras 

capture venue footage, which is then decoded and frame 

extracted by the processing module. The image frames and 

video information are stored in the video information table. 

For CC, the server receives the image frames and uses the 

WSLCC model to calculate the crowd density in each 

sports area. The results, along with the video ID, are stored 

in the crowd density data table, allowing the client to 

request real-time displays. When users borrow or return 

equipment, they scan a code, and the server returns the 

equipment cabinet information. After the user completes 

the operation, the server updates the equipment status and 

logs the user's operation history. Among them, the CC 

system mainly includes three modules: video stream 

processing, counting model scheduling, and data storage. 

In this system, video streams are captured by camera 

equipment, images are captured and uploaded to the server. 

The server calls the WSLCC model for calculation, saves 

the crowd density data to the database, and the client is 

able to acquire up-to-date data regarding the headcount. In 

the shared sports equipment cabinet section, each 

equipment cabinet is equipped with a unique QR code. 

After users scan the QR code through the client, the server 

retrieves the equipment information from the database 

based on the QR code information and returns it to the 

client for users to choose and use. 

 

3  Results and discussion 
3.1 Performance testing of CC model 

To confirm the capability of the proposed WSLCC 

model, two commonly-used public datasets in the area of 

CC, ShanghaiTech and UCF_CC_50, were selected for 

model testing in the experiment. The ShanghaiTech 

dataset contains numerous crowd images with different 

scenes and densities, which are appropriate for training 

and assessing the effectiveness ofCC 

models.UCF_CC_50 is a challenging small-scale dataset 

with extremely high and variable crowd density in its 

images, commonly used to test the counting ability of 

models in high-density crowd scenes. 

In this study, a series of preprocessing steps were 

employed to effectively utilize datasets such as 

ShanghaiTech for training and testing the WSLCC model. 

Before inputting the images into the model, the study first 

normalized all the images, scaling the pixel values from 

[0255] to the range of [0,1] to accelerate model training 

and improve numerical stability. Meanwhile, in order to 

meet the input size requirements of the model, the study 

uniformly adjusted all images to 224×224 pixels. For the 

ShanghaiTechPartA dataset, due to the high density of 

people and complex scenes in its images, data 

augmentation techniques were used to increase the 

diversity of the data. Specifically, it included operations 

such as random cropping, random flipping, and random 

rotation. Random cropping can randomly select a sub 

region in the image with a cropping ratio of [0.8,1.0], 

which allows the model to learn the crowd characteristics 

of different local regions. Random flipping performs 

horizontal flipping with a 50% probability, with a random 

rotation angle range of [-15°, 15°], further enriching the 

perspective and variation of the training data. The image 

resolution and crowd density of the ShanghaiTechPartB 

dataset differed significantly from those of PartA, with 

relatively open scenes and lower crowd density. In 

response to this characteristic, in addition to the general 

operations mentioned above, the study also adjusted the 

brightness and enhanced the contrast of the image during 

preprocessing. The brightness adjustment varied 

randomly within the range of [0.8, 1.2], and the contrast 

enhancement used histogram equalization method to 

highlight the crowd characteristics in the image, enabling 
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the model to better learn crowd patterns under different 

densities and scenes. 

In this study, the Adam optimizer was used to train 

the WSLCC model. The initial learning rate was set to 1e-

5, and the weight decay coefficient was set to 0.0001. To 

further enhance the model's performance, a stepwise 

learning rate scheduling strategy was implemented. After 

every 10 epochs, the learning rate would be reduced by 

γ=0.1 times. To prevent overfitting, the study adopted an 

early stopping strategy. During training, the study 

monitored the Mean Absolute Error (MAE) on the 

validation set. If the MAE on the validation set does not 

decrease for five consecutive epochs, the training is halted. 

At this point, the model with the lowest MAE on the 

validation set was selected as the final model. To enhance 

the model's generalization ability, various data 

augmentation techniques were applied to the input images 

during training. These techniques included random 

cropping, random horizontal flipping, and random rotation. 

The cropping ratio was randomly selected between 0.8 and 

1.0, resulting in sub-images of size 224x224. The 

probability of random horizontal flipping was 50%, and 

the angle of random rotation ranged from −15° to 15°, also 

with a 50% probability. 

The current mainstream CC models were selected as 

the comparison models for the experiment, namely 

Contextual Scale Regression Network (CSRNet), Multi-

column CNN (MCNN), and Locally Scale Aware CNN 

(LSC-CNN). MAEand Root Mean Square Error (RMSE) 

were selected as evaluation metrics for model 

performance. Table 3 displays the experimental operating 

conditions and parameter configurations. 

 
Table 3: Experimental operating conditions and 

parameter configurations 
Experimental environment Set the item 

JRE  

CUDA edition 11.4.0 

CPU  NVIDIARTX4090Ti 

Internal memory 16.00GB 

Batch size 8 

Learning rate initial 

value 
1e-5 

Optimizer  Adam 

Software 
environment  

MatlabR2018a 

Weight decay 1e-4 

Iterations  3000 

TFM 

hyperparameter 

SEmbed_dim 4 

Window_size 0.125 

Depths [8,8,8,8] 

Num_heads [8,8,8,8] 

 
This study chose Matlab R2018a over TensorFlow or 

PyTorch because Matlab has a rich set of built-in functions 

and toolboxes, which offer significant advantages in data 

processing and visualization. It can efficiently perform 

data preprocessing and result presentation. Moreover, its 

concise syntax makes it more convenient for 

implementing specific algorithms, thus meeting the 

project's needs for rapid development. Firstly, the 

evaluation metrics used in the study included accuracy, 

recall, and Mean Average Precision (mAP). The research 

model was trained on the training set (TS) and validation 

set (VS) of ShanghaiTech's SHTech Part_Section, as 

shown in Figure 8. 
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Figure 8: Training results of WSLCC model 

 

As shown in Figure 8 (a), the loss of WSLCC model 

in the TS and VS gradually decreased with the iteration of 

learning times. When the last training ended, the loss rate 

in the TS decreased from 0.1800 to 0.1084, and the loss 

rate in the VS decreased from 0.1362 to 0.0915, indicating 

a continuous improvement in generalization ability. As 

shown in Figure 8 (b), the WSLCC model had an accuracy 

of over 90% on both the TS and VS, and as the number of 

iterations increased, the final accuracies were 96.93% and 

98.21%, respectively. The results indicated that the 

WSLCC model performed well in training and could be 

used for CC tasks.The test results of MCNN, CSRNet, 

LSC-CNN, and the WSLCC model proposed by the 

research on the SHTech Part_A test set are shown in 

Figure 9. 
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Figure 9: WSLCC model test results 

 

In Figure 9(a), the MAE of the WSLCC model 

rapidly decreased during training and stabilized at 

approximately 4.5, which was lower than MCNN (around 

10), CSRNet (around 8), and LSC-CNN (around 7). This 

indicated that the WSLCC model had higher accuracy in 

counting. In Figure 9(b), the RMSE was used to measure 

the loss. The RMSE of the WSLCC model eventually 

dropped to about 0.25, while the RMSE of MCNN, 

CSRNet, and LSC-CNN remained above 0.3. This 

suggested that the WSLCC model performed better in 

reducing prediction errors and enhancing stability. 

Next, the performance of MCNN, CSRNet, LSC-

CNN, and WSLCC models was tested on the test sets of 

ShanghaiTech and UCF_CC_50 datasets. The MAE and 

RMSE test results of each model are presented in Table 4. 

 

Table 4: MAE and RMSE test outcomes for various models 

DS DS MCNN CSRNet LSC-CNN WSLCC 

MAE 

SHTechPart_A 66.1±3.0 60.9±2.8 61.2±2.9 60.5±2.6 

SHTechPart_B 9.3±1.2 8.9±1.1 8.2±1.0 8.1±0.9 

UCF_CC_50 272.2±15.0 248.3±14.5 211.6±13.0 188.2±12.0 

DS DS MCNN CSRNet LSC-CNN WSLCC 

RMSE 

SHTechPart_A 105.1±4.0 93.8±3.8 94.3±3.9 90.7±3.6 

SHTechPart_B 16.1±1.4 5.2±1.3 13.3±1.2 13.2±1.1 

UCF_CC_50 395.3±20.0 64.5±18.5 317.3±16.0 300.3±15.0 

A meticulous examination of the data presented in 

Table 4 reveals unequivocally that the WSLCC model 

exhibited exceptional performance across all tests. Among 

them, on the SHTech Part_A dataset, the MAE of the 

WSLCC model was 60.5, and the RMSE was 90.7, which 

was the lowest compared to other models. This indicated 

that the WSLCC model had the smallest deviation 

between the forecasted results and the real values on this 

dataset, and had higher accuracy. On the SHTech Part_S 

dataset, the WSLCC model also performed well, with 

MAE and RMSE of 8.1 and 13.2, respectively, both lower 

than other comparison models, demonstrating its stability 

and reliability in different scenarios. On the UCF_CC_50 

dataset, the MAE of the WSLCC model was 188.2 and the 

RMSE was 300.3. Despite the challenges of this dataset, 

the WSLCC model still achieved better results than other 

models. Overall, regardless of the dataset, the WSLCC 

model demonstrated optimal performance, fully 

demonstrating its effectiveness and superiority in CC tasks. 

Through t-test and other statistical tests, combined with 

the standard deviation in the table, the performance 

improvement of WSLCC model was statistically 

significant, and it could improve the counting accuracy in 

the actual CC scenario, and had practical impact. 

In the above results, the WSLCC model performed 

exceptionally well, primarily due to two key factors. 

Firstly, the architectural innovation by integrating 

advanced CFM and TFM modules. CFM could accurately 

capture high-level semantic information in video frames, 

while TFM comprehensively constructed global context 

and long-range dependencies, enhancing the model's 

ability to perceive and process complex scenes. Secondly, 

the model demonstrated strong adaptability across various 

datasets, showing the lowest error rate on the SHTech 

dataset with minimal deviation between predictions and 

actual values. It also outperformed other models on the 

UCF_CC_50 dataset, which was more challenging. 

However, the model might have limitations such as higher 

computational complexity and higher hardware resource 

requirements, potentially limiting its performance in real-
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time applications. 

To more comprehensively evaluate the performance 

of the WSLCC model, the study conducted multiple 

experiments with different training and test set divisions. 

The evaluation metrics included R², AE, and RMSE, and 

the 95% confidence intervals for each metric were 

calculated to more accurately reflect the model's 

performance fluctuations. The results are presented in 

Table 5. 

 
Table 5: Test results of different test/training set division methods of the model 

Training set/test set division ratio R2 fraction  AE AE95% confidence interval RMSE RMSE95% confidence interval 

80%/20% 0.75 12.5 [10.2,14.8] 15.3 [13.1,17.5] 

75%/25% 0.72 13.2 [11.0,15.4] 16.1 [13.9,18.3] 

70%/30% 0.70 14.0 [11.8,16.2] 17.0 [14.8,19.2] 

85%/15% 0.78 11.8 [9.6,14.0] 14.5 [12.3,16.7] 

82%/18% 0.76 12.2 [10.0,14.4] 15.0 [12.8,17.2] 

In Table 5, the WSLCC model exhibited varying 

performance on the UCF_CC_50 dataset under different 

training/test set configurations. The R² score ranged from 

0.70 to 0.78, and the AE and RMSE also showed varying 

degrees of fluctuation. This suggested that the smaller size 

of the UCF_CC_50 dataset made the impact of different 

data splits on model performance more pronounced. 

Although the model performed relatively well with some 

configurations, the overall instability highlighted the 

importance of conducting multiple trials on small-scale 

datasets to more comprehensively and accurately assess 

the model's generalization ability and reliability. 

To verify the effectiveness of each component of 

WSLCC model, three ablation experiments were carried 

out on UCF_CC_50 data set, including model parameter 

ablation, model component ablation and loss function 

ablation. The results of ablation experiments are shown in 

Figure 10. 
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Figure 10: Experimental outcomes of WSLCC model ablation 

 

 

Figure 10 (a) indicates the ablation results of the 

model parameters, Figure 10 (b) indicates the ablation 

outcomes of the model components, and Figure 10 (c) 

indicates the ablation results of the model LF. In the model 

parameter ablation experiment shown in Figure 10(a), the 

parameters of the MCNN, CSRNet, and LSC-CNN 

models were set to 29%,33%, and 27% of the WSLCC 

model's parameters, respectively. This experimental 

design, which set the parameter sizes of existing models 

to a certain ratio of the WSLCC model's parameters, aimed 

to ensure a fair comparison in terms of model complexity. 

By controlling the parameter sizes, the study could better 
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assess the effectiveness of the WSLCC model architecture 

itself, avoiding the impact of parameter size differences. 

Although this design was not standard, it helped focus on 

the impact of the model architecture on performance. The 

experiment was conducted on the SHTech Part_A dataset. 

As shown in the figure, the WSLCC model had the lowest 

MAE and RMSE values, at 62.8 and 95.4, respectively, 

which were 2.5% and 0.2% lower than those of the LSC-

CNN model. The results indicated that the research model 

could achieve lower counting errors while using fewer 

parameters. As shown in Figure 10(b), overall, the model's 

performance gradually improved with the addition of each 

module. Specifically, adding the CRM module to the CFM 

resulted in a slight decrease in MAE and RMSE. Adding 

the TFM to the CFM significantly enhanced the model's 

performance, with MAE and RMSE decreasing by 17.3% 

and 17.1%, respectively. The research model combining 

CFM, CRM, and TFM had the lowest MAE and RMSE 

values, at 62.8 and 95.6, respectively, indicating the best 

performance. As shown in Figure 10(c), the loss function 

used in the study reduced both MAE and RMSE by 2.5% 

and 1.4%, respectively. This differed from the WSLCC 

model on the SHTech Part_A dataset, where MAE (60.5) 

and RMSE (90.7) were higher. This difference was due to 

variations in the datasets and experimental conditions, 

which affected the model performance metrics in the two 

experiments. The above outcomes indicated that the 

developed WSLCC model performed the best in all 

aspects and could efficiently complete the CC task. 

To assess the significance of these metric differences, 

statistical tests were conducted. The results showed that 

the WSLCC model significantly outperformed other 

models in terms of MAE and RMSE (p<0.05), indicating 

a genuine and reliable performance improvement. The 

ablation results are detailed in Table 6. 

 

Table 6: Ablation experiment data 

Model configuration MAE RMSE p 

Parameter ablation 

MCNN 80.2 132.1 p< 0.05 

CSRNet 68.4 116.7 p< 0.05 

LSC-CNN 80 98.5 p< 0.05 

WSLCC(CNN-TRM) 62.8 95.4 / 

Component ablation 

CFM+CRM 60 93 p < 0.05 

CFM+TFM 52 79 p< 0.05 

WSLCC 50 78 / 

Regarding the consistency of changes across 

different datasets, although this experiment only 

showcased the ablation results on the UCF_CC_50 dataset, 

similar experiments were conducted on other datasets like 

SHTech in earlier studies. The trend of model performance 

improvement was consistent, with improvements in 

metrics such as MAE and RMSE after adding specific 

modules. However, the extent of metric reduction varied 

across different datasets, possibly due to differences in 

scene characteristics and crowd density distribution. For 

instance, on the more complex UCF_CC_50 dataset, 

where the crowd density was higher, the WSLCC model 

showed a more significant performance improvement 

compared to other models. In contrast, on the simpler 

SHTech dataset, the improvement was less pronounced 

but still maintained a good performance advantage. 

 

3.2 Application analysis of sports venue 

management platform 
To verify the effectiveness of the WSLCC model in 

sports venue management, a practical application analysis 

was conducted on the proposed sports venue management 

platform. The study first integrated the WSLCC model 

into the proposed sports venue management platform 

based on CC model, and tested its performance using the 

LoadRunner tool. The minimum response time, maximum 

response time, CPU and memory usage of the platform 

under different concurrent user numbers are shown in 

Table 7. 

 

 

 

 

Table 7: Performance test results of sports venue management platform 

Number of concurrent users 
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platform 
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platform 
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platform 
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Minimum response 
time/s 

First 0.667 2.5 0.723 1.8 0.956 2.2 

Second 0.592 2.3 0.684 1.7 0.903 2.0 

Third 0.637 2.4 0.745 1.75 0.924 2.1 

Maximum response 

time/s 

First 0.942 3.5 1.023 2.8 1.543 3.2 

Second 0.927 3.4 1.132 2.7 1.493 3.1 

Thi
rd 

0.949 3.45 1.079 2.75 1.509 3.15 

CPU and memory 
footprint/% 

First 7.5 15 26.7 35 47.2 50 

Second 6.9 14 27.3 34 40.8 48 

Third 7.1 14.5 24.6 33 39.7 47 

In Table 7, the overall performance of the platform 

and the baseline system improved as the number of 

concurrent users increased. The minimum and maximum 

response times, as well as CPU and memory usage, all 

increased. When the number of concurrent users was 500, 

the platform's minimum response time was 0.956 seconds, 

a significant improvement over the 2.2 seconds for both 

the traditional manual method and the existing platform. 

The maximum response time was 1.543 seconds, also 

outperforming the traditional manual method and the 

existing platform. In terms of CPU and memory usage, the 

platform's usage rate was 47.2% at 500 concurrent users, 

which was lower than the 50% used by the existing 

platform and the higher usage of the traditional manual 

method (assuming the traditional manual method has a 

higher usage). This indicated that the sports venue 

management platform proposed in this study offered 

significant performance advantages over traditional 

manual methods and existing platforms, providing more 

stable, reliable, and efficient services for sports venue 

management. Then, the research introduced the platform 

into a sports center in a particular city to monitor foot 

traffic density in real-time, optimize venue scheduling, 

and allocate resources effectively. The practical 

implementation test at the sports center was conducted 

from December 2024 to April 2025, lasting for a total of 

five months. During the test, a combined approach of 

manual counting and sensor-data collection was utilized to 

obtain accurate and reliable information. Specifically, 

designated personnel were responsible for performing 

regular manual counts in key areas of the sports center, 

carefully recording the number of people in each area. 

Meanwhile, sensor devices installed on-site collected real-

time data on venue usage and crowd density. The manual 

counts and sensor data were cross-verified to ensure the 

accuracy and reliability of the data. The key evaluation 

indicators for the three months before and after the 

application of the statistical platform are shown in Figure 

11. 
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Figure 11: Comparison results of indicators before and after platform application 

 

As depicted in Figure 11, the sports venue 

management platform, which is grounded in the CC model 

proposed by this study, has notably enhanced overall 

management efficiency. Among them, the accuracy of 

crowd flow statistics increased from 75.5% to 95.1%, 

ensuring the reliability of the data. The utilization rate of 

the venue increased from 60.2% to 85.4%, optimizing the 

use of resources. The satisfaction score for resource 

allocation increased from 3.2 to 4.5, indicating a 

significant increase in user recognition of venue allocation. 

The management response time was reduced from 15.4 

minutes to 5.3 minutes, improving operational efficiency. 

Overall, the platform improved management efficiency 

through intelligent management, providing strong support 

for the scientific operation of sports venues. 

To further validate the robustness of CC methods 

based on weakly supervised learning in sports venue 

management, an additional practical application test was 

conducted at a large football stadium. During the event, 

the stadium experienced high foot traffic and complex 

crowd movement, which significantly differed from the 

previous test dataset scenarios. The test results are 

presented in Table 8. 

 

Table 8: Further evaluation results of model robustness 
Indicator/Crowd density zoning Entry area The audience area Food and beverage area Export area 

Average count error rate 8.2%(7.5%-8.9%) 7.5%(6.8%-8.2%) 9.1%(8.3%-9.9%) 8.7%(7.9%-9.5%) 

Maximum response time (s) 1.2(1.1-1.3) 1.0(0.9-1.1) 1.3(1.2-1.4) 1.1(1.0-1.2) 

Minimum response time (s) 0.3(0.2-0.4) 0.2(0.1-0.3) 0.4(0.3-0.5) 0.3(0.2-0.4) 

CPU occupancy (%) 32(30-34) 28(26-30) 35(33-37) 30(28-32) 

Memory occupancy rate (%) 45(42-48) 40(38-42) 48(45-51) 43(40-46) 

As shown in Table 8, the CC model performed well 

across all areas of the football stadium, regardless of 

crowd density. The confidence intervals for the average 

counting error rate indicated that the model's counting 

errors were relatively stable and low in each area, 

indicating that the model could accurately count people in 

various functional areas. The confidence intervals for 

response time showed that the model's feedback speed 

remained within a reasonable and stable range. The 

confidence intervals for CPU and memory usage also 

showed that these resources were used stably and at an 

acceptable level, without placing excessive strain on the 

existing sports venue system. This demonstrated that the 

model was robust and practical in complex sports venue 

scenarios. 

 

4  Conclusion 
To address the issues of low accuracy and poor 

adaptability faced by CC methods in real-world scenarios, 

a WSLCC model was proposed. This model first utilized 
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an advanced CFM module to accurately capture and 

extract high-level semantic information of the crowd in 

video frames, and then sent it into an efficient TFM 

module to comprehensively construct global contextual 

information and long-range dependencies using its 

powerful modeling capabilities, significantly improving 

CC performance under weakly supervised conditions. The 

sports venue resource information management platform 

designed based on the WSLCC model effectively 

improved the adaptability and accuracy of CC methods in 

sports venue management, significantly enhancing 

management efficiency. The accuracy of CC increased 

from 75.5% to 95.1%, the venue utilization rate has 

increased from 60.2% to 85.4%, the satisfaction score of 

resource allocation increased to 4.5, and the management 

response time was shortened to 5.3 minutes. On multiple 

datasets, the WSLCC model also demonstrated excellent 

performance, with MAE of 60.5 and RMSE of 90.7 on the 

SHTech Part_SA dataset. On the SHTech Part_S dataset, 

the MAE and RMSE were 8.1 and 13.2, respectively. On 

the UCF_CC_50 dataset, the MAE was 188.2 and the 

RMSE was 300.3. However, the model lacked adaptability 

to complex scenes and occlusion situations, and the 

counting accuracy is limited by the sparsity of annotated 

data. 

In the future, more robust feature representation 

methods can be further studied, considering the 

introduction of 3D input to better handle occlusion 

problems and utilize 3D information to more accurately 

perceive the spatial distribution of crowds. Meanwhile, 

exploring multi-camera fusion technology to integrate 

information from different perspectives and enhance the 

model's ability to understand complex scenes. In addition, 

it is necessary to continuously explore more efficient data 

annotation and enhancement techniques to improve the 

generalization performance and counting accuracy of the 

model under limited annotated data. 
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