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In the context of the digital transformation of the film art industry, the traditional animation scene
production model faces the problems of low efficiency, high cost, and difficulty in meeting the audience's
demand for high-quality scenes. To overcome this dilemma, this paper utilizes convolutional neural
networks for the automatic generation of film art animation scenes. By constructing a multi-scale feature
fusion convolutional network (MFFCN), the multi-scale convolution kernels are integrated to extract
features in parallel, and the attention mechanism is combined with the generative adversarial network for
scene generation. The experiment uses Kaggle's Anime Images Dataset, which includes fantastical
landscapes and futuristic cityscapes. The proposed MFFCN model, with three convolutional branches and
two attention modules, is compared to four models, including a geometric rule-based model and a support
vector machine. Results demonstrate that MFFCN improves PSNR by 15 dB and SSIM by over 40% over
the geometric model. It also excels in scene richness and visual style. This research advances computer
graphics and deep learning in art generation, providing a realistic and intelligent solution for animation
scene development that improves film industry operations and stylization.

Povzetek: Za samodejno generiranje filmskih animacijskih prizorov je razvit MFFCN-GAN:
veclocljivostni MFFCN (3 konvolucijske veje) z dvojnim pozornostnim modulom in GAN. Na podatkih
Kaggle Anime Images doseze boljse rezultate od geometrijskega modela z bogatejsimi prizori in boljso

slogovno skladnostjo.

1 Introduction

In today’s era of rapid digital development, the film
industry is undergoing unprecedented changes.
According to incomplete statistics, thousands of new
films are released worldwide each year, including a large
number of animated films and various films containing
animated scenes [1]. As a critical component of film art,
the quality and efficiency of animated scenes directly
impact the quality and production cycle of the entire film
[2].

Take a well-known animation film production
company, for example. In the traditional animation
production process, animators spend weeks or even
months generating a complex animation scene. Moreover,
a significant amount of manpower is required for this
process, involving the collaborative work of numerous
professionals, including modelers, texture artists, and
lighting engineers. According to the company's internal
data, labor costs account for approximately 70% of the
total production cost for the animation scene. At the same
time, due to the cumbersome production process and the
uncertainty of human operation, approximately 30% of
the animation scenes require repeated modification after

production, which undoubtedly further increases the time
and cost consumption [3]. This traditional production
model is unable to meet the current film market's growing
demand for high-quality animation scenes and the
requirements of a fast production cycle. In addition, as
the audience's aesthetic level continues to improve, the
requirements for the visual effects and artistic expression
in animation scenes are also increasing [4]. They expect
to see more realistic, delicate, and creative animation
scenes, and traditional production methods face
significant challenges in meeting these high requirements
[5]. To defend CNN predictions using human-
interpretable  logic  frameworks and arguments.
Autonomous graphics rendering and scene interpretation
require CNN output transparency and confidence, which
this technique provides. The study improves
interpretability without compromising model accuracy.
The argumentation model may become computationally
expensive when applied to deep architectures or huge
datasets, limiting its use in real-time animation systems.
[6].

In the current field of computer technology, research
on animation scene generation has achieved certain
results. Many scholars and research institutions are
committed to using various technical means to improve
this situation. On the one hand, in the field of rule-based
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animation scene generation, existing studies have
achieved automatic scene generation by formulating a
series of complex rules and algorithms. For example, a
research team proposed a method for generating
animation scenes based on geometric rules. By setting
specific geometric shape combination rules and spatial
layout rules, some relatively simple animation scenes can
be automatically generated to a certain extent. However,
the limitation of this method is that it relies too heavily
on pre-set rules and lacks effective integration of various
random factors and artistic creativity in the complex real
world, resulting in the generated scenes often appearing
dull, lacking realism, and lacking artistic appeal, making
it difficult to apply to high-quality film production. On
the other hand, numerous attempts have been made in
research on animation scene generation using machine
learning. For example, some studies have employed
traditional machine learning algorithms, such as support
vector machines, to classify and combine scene elements.
However, when these traditional machine learning
algorithms process complex image and scene data, due to
the limitations of their own model structure and learning
ability, they often cannot fully explore the deep-level
features and internal laws in the data, resulting in
generated animation scenes that are unsatisfactory in
detail and overall effect.

Current research focuses on utilizing more advanced
deep learning algorithms to address the challenges in
animation scene generation. However, there are also
many controversial points in this area of research. For
example, different researchers have different views on the
selection and optimization of deep learning models.
Some researchers believe that more complex models with
more parameters should be used to achieve stronger
expressive power. In contrast, others worry that overly
complex models will lead to problems such as overfitting
and advocate the use of relatively simple but carefully
optimized models. This article aims to apply
convolutional neural networks, a powerful deep learning
technology, to the automatic generation of animation
scenes in film art. By constructing a suitable
convolutional neural network model and training it with
a large amount of film animation scene data, it can
automatically learn the characteristics of various
elements in the animation scene and the complex
relationships between them, thereby achieving high-
quality and efficient automatic generation of animation
scenes.

The key issues that need to be addressed in this study
include designing a convolutional neural network
architecture suitable for animation scene generation,
effectively processing and utilizing different types of
animation scene data, and avoiding model overfitting
during training. The innovation of this study lies in its
application of convolutional neural networks to the field
of animation scene generation in film art for the first time.
It is expected to break the limitations of traditional
production methods and bring new production models
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and concepts to the film art industry. The expected
contribution is that it can greatly improve the generation
efficiency of animation scenes, reduce production costs,
and improve the artistic quality and visual effects of
animation scenes. From a theoretical perspective, this
study aims to enrich and enhance the relevant theories of
computer graphics and the application of deep learning in
the field of art. In practice, it will provide film production
companies with a practical and efficient solution for
animation scene production, promoting the film art
industry to develop in a more intelligent and efficient
direction.

Research Objectives:

The purpose of this project is to investigate the
following formal research topics to answer essential
difficulties in the field of animation scene generation:

RQI: In comparison to single-scale or rule-based
models, is it possible for a multi-scale feature fusion
convolutional network (MFFCN) to achieve a minimum
improvement of thirty percent in the SSIM of animation
sequences that have been generated?

RQ2: The incorporation of attention modules into
MFFCN results in an improvement in the perceptual
quality and artistic coherence of the scenes that are
generated, as determined by PSNR and expert review.

RQ3: Is it possible for the suggested architecture to
preserve its generalizability over a wide variety of scene
types, including those that are set in the future and fantasy,
without exhibiting severe overfitting?

Hypothesis:

Due to its simultaneous multi-scale convolutional
branches and attention mechanism, the MFFCN model
outperforms standard models (such as geometric rule-
based and SVM) in terms of SSIM by more than 40% and
in terms of PSNR by approximately 15 decibels.

According to the opinions of specialists in the field,
incorporating attention modules and adversarial training
will result in improvements in artistic style alignment and
scene richness.

2 Literature review

2.1 Early exploration of animation scene

generation technology
In the early days, rule-based methods dominated the
generation of animation scenes. Some studies used
geometric rules to generate animation scenes. These
methods pre-set the shapes, positions, and spatial
relationships of objects to achieve preliminary
construction of scenes [7]. However, these methods have
obvious limitations [8]. Due to their high reliance on
preset rules and lack of consideration for the complexity
of the real world and the flexibility of artistic creation, the
generated scenes often lack realism and rich artistic
expression, making it difficult to meet the production
requirements of movie-level animation scenes. In some
practical applications, scenes generated based on
geometric rules can only score 0.3-0.4 in the evaluation
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of the structural similarity index (SSIM), which is far
below the expected standard for high-quality scenes as
perceived by the human eye [9].

At the same time, traditional machine learning
algorithms, such as support vector machines, have also
been tried to be applied to animation scene generation.
These methods attempt to achieve classification and
combination of scene elements by learning from a large
amount of sample data. However, due to the limitations
of traditional machine learning algorithms in processing
complex image data, their ability to extract deep-level
features of scenes is limited, resulting in generated scenes
that are unsatisfactory in terms of detail and overall effect.
For example, in terms of peak signal-to-noise ratio
(PSNR), an important indicator for measuring image
quality, scene images generated based on support vector
machines can usually only reach 20-23dB, and the image
quality is poor, which cannot create the immersive visual
experience required by film art [10].

2.2 The rise of deep learning technology in

animation scene generation

With the rapid development of deep learning technology,
its powerful feature learning and pattern recognition
capabilities have brought new opportunities for
animation scene generation. With its unique structure,
convolutional neural networks have demonstrated
excellent performance in image and video processing,
and have gradually become the core technology for
animation scene generation research [11].

Some studies have begun to attempt to build
convolutional neural network models to achieve
automatic generation of animation scenes. Some models
extract features and reduce the dimension of input data by
stacking convolutional layers and pooling layers, and
then generate corresponding animation scenes [12].
However, these early models still have numerous
problems when handling complex animation scenes [13].
For example, they do not fully extract the features of
elements at different scales in the scene, resulting in a
lack of detail and layering in the generated scenes. In the
evaluation of perceptual loss, the distance between the
scenes generated by such models and the real scenes in
the feature space is large, indicating that the generated
scenes are significantly different from the real scenes at
the perceptual level, and it is not easy to bring a real and
natural visual experience to the audience.

To address the aforementioned shortcomings, the
multi-scale feature fusion convolutional network
(MFFCN) was developed. MFFCN introduces multiple
convolutional layers with different sizes of convolution
kernels to extract scene features of varying scales in
parallel, effectively addressing the issue of information
loss in the feature extraction process of a single-scale
convolution kernel [14]. By combining features from
different scales, the model can more effectively capture
the detailed information and overall structure of the scene,
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thereby significantly improving the quality of the
generated scene. Relevant experiments show that
compared with traditional convolutional neural networks,
MFFCN improves the SSIM index by about 0.3-0.4 and
the PSNR index by about 8-10dB. The generated scene is
more closely aligned with the real scene in terms of
structure and image quality [15].

In addition, the introduction of the attention
mechanism further optimizes the performance of
convolutional neural networks in animation scene
generation. Through the spatial attention and channel
attention mechanisms, the model can focus more
attention on key information in the scene and highlight
features that have a significant impact on scene
generation, thereby producing animation scenes with
greater artistic appeal and realism. For example, in the
evaluation of scene richness, the scene generated by the
model that introduces the attention mechanism contains a
significantly larger number of scene elements, making
the scene fuller and more vivid, presenting richer visual
content to the audience [16].

2.3  Co-development  of
adversarial networks
optimization

The emergence of generative adversarial networks
(GANS) has brought revolutionary changes to animation
scene generation. GANs consist of a generator and a
discriminator, and through adversarial training between
the two, the quality of generated data is continuously
improved [17]. In the field of animation scene generation,
the generative adversarial model based on MFFCN has
been widely studied and applied.

The generator takes the scene features after feature
extraction and enhancement as input, gradually restores
the image size through a series of deconvolution layers,
and generates an animated scene. The discriminator
distinguishes between the generated scene and the real
scene, and the feedback results are used to guide the
optimization of the generator and the discriminator [18].
In the adversarial training process, the goal of the
generator is to make the generated scene as realistic as
possible to deceive the discriminator. In contrast, the
discriminator aims to enhance its ability to distinguish
between real and generated scenes. This adversarial game
process prompts the generator to improve and generate
higher-quality animated scenes continually.

In terms of model training and optimization, the
cross-entropy loss function is employed to measure the
discrimination error of the discriminator, while the
combination of adversarial loss and feature matching loss
is utilized to optimize the generator. By properly
adjusting the weights of these loss functions, the
generator can effectively balance the goals of deceiving
the discriminator and generating scenes with features
similar to those of real scenes. Experimental results show
that the model using this optimization strategy has

generative
and model
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achieved significant improvements in multiple evaluation
indicators. For example, in the evaluation of artistic style
matching, expert ratings indicate that the scenes
generated by the model can score 8-9 points (out of 10),
which is significantly better than those of other
comparison models.

Although the current animation scene generation
technology, based on convolutional neural networks, has
made significant progress, there are still some problems
to be addressed. On the one hand, the existing datasets
may not encompass all types of animation scenes, which
limits the model's generalization ability. For some special
styles or complex scenes, the model's generation effect
may not be satisfactory. On the other hand, the current
evaluation indicators primarily focus on aspects such as
visual quality and content richness. There is a lack of in-
depth research and evaluation on the effects of generated
scenes in animation narratives, emotional expression, and
other aspects. Future research can be conducted by
expanding the scale and diversity of datasets, as well as
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introducing more dimensional evaluation indicators, to
further promote the development of automatic animation
scene generation technology and provide more efficient
and high-quality solutions for the film art industry.

Table 1 presents a comparative analysis of
Animation Scene Generation Methods and their
performance. The MFFCN offers a solution to the
fundamental shortcomings identified in earlier models.
These shortcomings include inadequate style fidelity and
insufficient feature extraction across scales. MFFCN can
improve both the structural quality (SSIM +0.3~0.4) and
visual fidelity (PSNR +8-10 dB) of the image in
comparison to ordinary CNNs. This is achieved by
utilizing multi-scale convolutional branches and dual
attention modules. Furthermore, it supports a wider
variety of visual styles and scene complexities, providing
a robust solution for developing high-quality, stylistically
aligned animation scenes. This is something that previous
systems have struggled to accomplish.

Table 1: Comparative analysis of animation scene generation methods and performance

PSNR Artistic Style L.
Method Model Type SSIM Scene Type Limitations
(dB) Support
Geometric Rule- 0.30- Rigid, lacks realism/artistic
Rule-Based <18 Very Low
Based [7][8] 0.40 depth
SVM-Based Model . Poor image quality, lacks
Traditional ML ~0.45 20-23 Low )
[10] fine details
Early CNN Models 0.50- . Incomplete multi-scale
CNN 24-26 Medium
[11]113] 0.60 feature capture
CNN + Attention . . Improved focus, limited
CNN + Attention ~0.65 26-28 High
[16] scale awareness
GAN-Based Model ) Limited on small-scale
GAN ~0.68 28-30 High .
[17][18] texture fidelity
CNN + Multi-Scale 0.70— ) Supports complex, stylized,
Proposed MFFCN . 33-35 Very High .
+ Attention 0.80 diverse scenes

3 Research methods

3.1 Convolutional neural network structure

design

In the study of automatically generating film art
animation scenes, conventional convolutional neural
networks have limitations in extracting features of
elements of different scales within the scene when
processing complex animation scenes. To this end, this
paper proposes a Multi-Scale Feature Fusion
Convolutional Network (MFFCN) to effectively capture
multi-scale information in animation scene data, thereby
meeting the needs of high-quality animation scene
generation.

MFFCN is comprised of three convolutional
branches, each of which corresponds to a kernel size of
3x3, 5x5, and 7x7 accordingly. To maintain the spatial
dimensions, each branch makes use of the "same"
padding. There are 64 output channels for each branch,
and these outputs are concatenated before being sent to a
2-layer fusion module that has 128 and 64 channels,
respectively.

Figure 1 illustrates the MFFCN-GAN architecture
for automatically generating animated scenes. It begins
with extracting features at multiple scales using three
parallel convolution layers with kernel sizes of 3x3, 5x5,
and 7x7. The outputs are combined and then sent through
a 1x1 convolution to reduce the dimensions. A dual
attention module (spatial and channel) makes the features
better. The generator employs four deconvolution layers
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to gradually increase the size of the features, resulting in
an output image of 256 x 256 x 3. Five convolution layers
and a sigmoid classifier make up the discriminator. It
examines both real and synthetic scenes, utilizing feature
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fusion and adversarial learning to enable high-quality,
coherent scene synthesis.
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Figure 1: Overall MFFCN-GAN architecture with intermediate tensor representation
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Figure 2: Schematic illustration of preprocessing steps

The core design of the MFFCN network is based on

the characteristics of the convolution operation.

Conventional convolution kernels have a fixed size and
are difficult to capture scene features of different scales
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simultaneously. This paper introduces multiple
convolution layers with different sizes of convolution
kernels to process the input animation scene data in
parallel. Assume that the input data is y o HWxC
represented as [height, width, number of channels].

Figure 2 shows the whole preparation pipeline for
an anime-style input image that will be used to train
MFFCN-GAN. The first step is to resize the image to a
consistent size (256%256) so that all the data in the dataset
is the same size. After that, normalization typically scales
pixel intensities to the range [—1, 1], which helps the
model train more efficiently. To increase spatial variation
and make it appear as if characters are facing the other
way, a horizontal flip is used. Color jitter stabilizes things
by adjusting the brightness, contrast, saturation, and hue.
Rotation causes the image to appear slightly off (for
example, +10°), a common effect used in angled images,
often found in animation. A Gaussian blur makes things
appear blurry or as if they're moving, which makes it
harder for the model to learn in poor visual conditions.
The cutout mask augmentation randomly hides sections
of the image, forcing the model to infer what the entire
picture looks like. These changes all help with
generalization by making it appear as a variety of real-
world animation situations. The MFFCN-GAN's feature
extraction pipeline generates additional outputs. This
preprocessing enhances the diversity of training without
altering the creative content.

Define a set of convolution kernels of different sizes

K, e ™G ,i=12,.,n,and the corresponding bias

is b el - Then j the output of the convolutional layer

Y, can be expressed as Formula (1).

Y; :O{hiZlWiZ:lCfo(x"‘ P, Y+ Py, ) - Ki(X, y,c,:)+b,]

x=0 y=0 c=

6]

Among them, o the activation function is the
most notable. This paper adopts the ReLU activation
function, p, and p, is the padding parameter to
ensure that the data size remains unchanged before and
after the convolution operation.

Convolutional layers with different convolution
kernel sizes extract features of different scales. To fully
integrate these features, this paper proposes a feature
fusion module. The outputs of multiple convolutional
layers are spliced according to the channel dimension to
obtain the spliced features Yoonear > 35 shown in Formula
2).

Yooncat = Concat(Yl,Yz,- : "Yn) (2)

Then, 1x1 the concatenated features are processed
by a convolution layer to reduce the number of

parameters and the amount of calculation. Suppose the
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lxlxi CixCy

1x1convolution kernel is Kr €U~ , the bias is

C

b, el Y

f , then the fused feature 'fsion is Formula (3).

n

ZC, -1
qusion =0 72 Yconcat (:’ i’ C) : Kf (o! O’ C, :) + bf (3)
c=0

Compared to traditional convolutional neural
networks, MFFCN can extract features in parallel
through multi-scale convolution kernels and effectively
fuse information from different scales, thereby avoiding
the loss of partial information when extracting features
with a single-scale convolution kernel, and improving the
network's ability to express complex features of
animation scenes.

3.2 Scene feature extraction and

representation

In the automatic generation of animation scenes,
accurately extracting and representing scene features is
key. The fused features extracted by MFFCN still require
further processing to obtain a more semantically
informative scene feature representation. This paper
combines the spatial attention mechanism with the
channel attention mechanism to enhance the fused
features. In addition to channel attention, the CBAM-
inspired module also incorporates spatial attention. A
multilayer perceptron (MLP) with a reduction ratio of 16
is utilized for the channel attention. The generation of the
attention map in spatial attention is accomplished through
the utilization of a 7x7 convolution, which operates at the
resolution of the initial feature map.

First, Y., perform spatial attention calculation
on the fused features. Through average pooling and
maximum pooling operations, the average feature Fg
and maximum feature in the spatial dimension are
obtained respectively Fs.»as shown in Formula (4) and
Formula (5).

H-1w-1

1
Faf/ = Y usion (h' W, :)
T & 4)

S H-1 W-1 .
Fmax = maxh:o maxw:o qusion(h’W")

)

Concatenate these two features along the channel

dimension to obtain F = Concat(FaSvngmsax) , and then

pass through a convolutional layer to generate a spatial

attention map §, as shown in Formula (6).
S:O_(KS'FS"r‘bS) (6)
Where,

K, € §1¥1x2CrxCr js  the convolution



MFFCN-GAN: Multi-Scale Feature Fusion CNN with GAN...

kernel, b € S/ and is the bias. Multiply the spatial

attention map with the fusion feature to obtain the feature
after spatial attention enhancement Y, . as shown in

Formula (7).
Ys :qusion °S (7)
Next, the channel attention is calculated. Y,

Average pooling and maximum pooling are performed on
the spatial dimension to obtain the average feature Faf,g
and maximum feature on the channel dimension Fe .as

shown in Formula (8) and Formula (9).
1 H-1w-1

Fa?/ =TT A Ys (h’ w, :)
°  HxW hZ:(;Vé (8)
Fn‘l:ax = max;*:‘ol max‘x:‘é YS (h, W, Z) 9)

After these two features are concatenated and

processed by a multi-layer perceptron (MLP), the channel

attention map is obtained C , as shown in Formula (10).

C ZG(MLP(Concat(F;Vg,FmCax))) (10)

Multiply the channel attention map by Y, to obtain

the final enhanced feature Y e > 3 shown in Formula

(11).
Y

enhanced = Ys *C (11)

Compared with the traditional method of using only
a single attention mechanism, this combination of spatial
attention and channel attention can  more
comprehensively mine the important information of
scene features in the spatial and channel dimensions,
highlight the features that play a key role in animation
scene generation, and improve the representation ability
of scene features.

3.3 Scene generation based on generative

adversarial network
In the field of film art animation, generating high-quality,
realistic scenes has always been a key goal of research
and creation. The traditional method of creating
animation scenes is not only time-consuming and
laborious, but also has certain limitations in terms of
richness and realism. To effectively break through these
bottlenecks, this paper introduces the innovative idea of
the generative adversarial network (GAN). It constructs a
generative adversarial model based on the multi-scale
feature fusion convolutional network (MFFCN), aiming
to automatically generate high-quality animation scenes.
To ensure robust GAN training, we employed spectral
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normalization in the discriminator, introduced a gradient
penalty term (A = 10) similar to that of WGAN-GP, and
utilized label smoothing (actual labels = 0.9) to stabilize
the adversarial gradients.

The generative adversarial network comprises a
generator and a discriminator, which are trained through
adversarial games to continually improve the quality of
generated data. In the model constructed in this paper, the
generator is responsible for generating animation scenes
based on the extracted scene features, while the
discriminator assesses the authenticity of the generated
scenes and real scenes.

3.3.1 Design and implementation of the generator

The generator takes the enhanced features 'y _

as input, and its core structure consists of a series of
deconvolution layers. The deconvolution operation can

gradually restore the size of the image to generate the

A

desired animation scene X - Let the deconvolution

kernel be K, e[l Mo Co | the bias be b, €U Cai |

and j the output of the deconvolution layer Z can be
calculated by the following formula, as shown in Formula

(12).

Z = a(Deconv(ZH, Kq,)+by ) (12)

Among them, Z, =Y, . After m the operation

enhanced

of the deconvolution layer, the animation scene is finally

generated ¥ — Z - The activation function here usually

uses functions such as ReLU to introduce nonlinear

characteristics and enhance the model's expressive ability.

3.3.2 Design and

discriminator

implementation of the

The discriminator takes the real animation scene ¥ and
the generated animation scene y as input. It extracts the
features of the input scene through the convolution layer
and judges the authenticity of the scene based on these
features. Let the convolution kernel of the discriminator

xW,. XC,

be K _ el o %% Ci1Ceythe bias be b, €l “,and j
the output of the convolution layer D, be Formula (13).

ool n)

Among them, D is the input scene data. After n
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the feature extraction of the convolutional layer, the final

discrimination result is output through the fully
connected layer y , as shown in Formula (14).

§ = Sigmoid (W - D, +b) (14)

Here, \v is the weight of the fully connected layer,
p and is the bias. The Sigmoid function maps the output

value to between 0 and 1, which is used to indicate the

probability that the input scene is a real scene.

3.3.3 Adversarial training process

The generator and the discriminator are continuously
optimized through an adversarial training process. The
goal of the generator is to minimize the probability that
the generated scene is judged as false by the discriminator,
while the goal of the discriminator is to maximize the
accuracy of distinguishing between real scenes and
generated scenes. The adversarial training process of the
two can be described by the following loss function, as
shown in Formula (15).

ming max, L(G,D) =E, _, o [l0g D(X)]+E;_, )[log(l-D(G(Z))]

(15)
While operating at the output layer, the generator utilizes
a tanh activation function. The final loss consists of two
components: an antagonistic loss with a weight of 1.0 and
a feature matching loss with a weight of 10.0. We used
empirical methods to tweak them based on the speed of
convergence and the quality of the output.
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Among them, G 1is the generator, p 1is the
discriminator, p et (X) is the distribution of real data,
p,(Z) andis the distribution of noise. In actual training,
it is expected that the discriminator outputs a probability
close to 1 for the real scene and a probability close to 0
for the generated scene; while the generator strives to
make the discriminator output a probability close to 1 for
the generated scene. Compared with the traditional
generative model, the generative adversarial model based
on MFFCN has significant advantages. It can fully utilize
the high-quality scene features extracted through multi-
scale feature fusion and attention mechanisms to generate
more realistic and detailed animation scenes. At the same
time, through adversarial training, the model can
continuously improve the quality of generated scenes and
gradually approach the distribution of real scenes.

3.4 Model training and optimization

In the model training phase, the training data is input into
the MFFCN-based generative adversarial model, and the
strategy of alternating the parameters of the generator and
the discriminator is adopted. To accurately measure the
training effect of the model, this paper utilizes the cross-
entropy loss function to evaluate the discrimination error
of the discriminator. For the generator, the adversarial
loss and feature matching loss are combined to optimize
the model.

Generator ..
Training Parameters
Loss
/ \ Discriminator
Adversarial Loss

Loss

Learning Rate:0.0002

Feature
Loss

Matching Loss

Cross-Entropy

Optimizer: Adam (0.5,0.999)
Batch Size:32

Feature Match Weight:10

Total Generator
Loss

< 4

Training Epochs:200
Training Ratio:1:1

Figure 3: Representation of loss functions

Figure 3 shows the loss formulation and training
hyperparameters for the MFFCN-GAN architecture. The
generator loss consists of two parts: adversarial loss,
which encourages the generator to produce images that

appear realistic, and feature matching loss, which ensures
that the features it generates are consistent. The weighted
sum of these components constitutes the total generator
loss. Using a cross-entropy function, the discriminator
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loss tells the difference between actual and fraudulent
photos. The Adam optimizer (0.5, 0.999) is used to train
with a learning rate of 0.0002. A batch size of 32 200
epochs and a 1:1 generator-discriminator training ratio
are kept. To balance perceptual and adversarial training,
the feature matching loss is assigned a weight of 10.

3.4.1 Loss function of discriminator
The cross entropy loss function of the discriminator is
Formula (16).

13 N
L, = —NZ[Iog D(X,)+log(1l— D(Xi))] (16)
i=1
Among them, [\ is the number of training samples,

X, is the real scene sample, )Zi and is the generated

scene sample. The design of this loss function is based on
the log-likelihood principle, which guides the training of
the discriminator by maximizing the probability that the
real scene is judged as true and the probability that the

generated scene is judged as false.

3.4.2 Loss function of generator
3.4.2.1 Adversarial loss

The adversarial loss function of the generator is Formula

(17).
L, =-%i|ogo(>2i) (17

Its purpose is to minimize the probability that the
generated scene is judged as false by the discriminator,
that is, to make it difficult for the discriminator to
distinguish between the generated scene and the real
scene.

3.4.2.2 Feature matching loss
To make the generated scene more similar to the real

scene at the feature level, a feature matching loss function
is introduced. Assume | that the real scene feature

extracted by the discriminator at the layer is Feoo and

the generated scene feature is Ff';ke , then the feature
matching loss function is Formula (18).

1 N K
Lo, =y 22

i=1 k=1

Fr§a| (xi) - Ffzke()zi)

L (18)

Among them, K is the number of layers used to

calculate the feature matching loss in the discriminator.

Ls, - By measuring the differences between the real
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scene and the generated scene at multiple feature layers,
the generator is prompted to generate scenes that are more

closely aligned with the real scene at the feature level.

3.4.2.3 Total loss function

The total loss function of the generator is Formula (19).

Le = LGadv +M-G,m (19)

Among them, j is a hyperparameter that balances
the adversarial loss and feature matching loss. By
adjusting the value of ), we can control the balance
between the generator deceiving the discriminator and
generating feature-similar scenes.

During the training process, the parameters of the
generator and discriminator are continuously updated
iteratively, enabling the generator to produce high-quality
movie art animation scenes and the discriminator to
accurately distinguish between real scenes and generated
ones. At the same time, according to the changes in the
loss function, the model’s parameters, such as the
learning rate and the optimizer’s hyperparameters, are
adjusted reasonably to ensure the model’s convergence
and stability.

Ground Truth

Generated

Figure 4: Comparison of generated and ground

truth images.
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Figure 4 shows a comparison of the generated and
ground-truth images. The research method proposed in
this paper develops a comprehensive automatic
generation model of film art animation scenes through a
series of steps, including a multi-scale feature fusion
convolutional network, scene feature extraction and
representation, scene generation based on a generative

adversarial network, and model training and optimization.

This model is expected to break through the limitations
of traditional animation scene production, bring high-
quality and efficient animation scene generation solutions
to the animation industry, and promote technological
progress and innovative development in the field of film
art animation.

4 Experimental evaluation

4.1 Experimental design

The dataset used in this study is the publicly available
Anime Images Dataset (Diraizel Kaggle, 2022) [19]. It
contains approximately 63,000 images with a standard
resolution of 512 x 512 pixels. The dataset is licensed
under the Creative Commons Attribution-
NonCommercial 4.0 International License (CC BY-
NC 4.0), and its source is available at:
https://www.kaggle.com/datasets/diraizel/anime-images-
dataset.

This experiment aims to verify the effectiveness of
the multi-scale feature fusion convolutional network
(MFFCN) in the task of automatically generating movie
art animation scenes. The experiment is guided by the
generation of high-quality animation scenes that fit the
artistic style, and a comparative experiment is conducted
to explore the model's performance. A professional
dataset [ Anime Images Dataset] containing rich visual
elements, such as fantasy forests, future cities, and other
scene categories, is selected to meet the experimental
needs for diverse scenes.

The experimental baseline indicators are set around
the visual quality and content richness of the animation
scene. The Structural Similarity Index (SSIM) is used to
measure the structural similarity between the generated
scene and the real scene, with a value range of 0 to 1. The
closer to 1, the more similar the structure. The peak
signal-to-noise ratio (PSNR) is used to evaluate the
quality of the generated image. The unit is dB, and the
higher the value, the better the image quality. The
perceptual loss is introduced to extract features through
the pre-trained VGG network, calculate the distance
between the generated scene and the real scene in the
feature space, and measure the similarity at the perceptual
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level.

The experimental group utilizes the MFFCN model
proposed in this paper, while the control group selects
model’s representative of the field of animation scene
generation. These models include the geometric rule-
based animation scene generation model (GRBM) in
reference [8], the traditional machine learning model
(SVMM) that makes use of support vector machine in
reference [10], the more complex deep learning model
(CDLM) in reference [11], and the relatively simple and
optimized deep learning model (OSDLM) in reference
[12]. The experimental environment is maintained by
training and testing each model on the same dataset. This
ensures consistency in the environment.

To undertake training, an NVIDIA RTX 3090 GPU
with 24 GB of video memory was utilized. There were
sixteen batches in total. With B1 set to 0.5 and B2 set to
0.999, the Adam optimizer was employed, and the initial
learning rate was set to 2 x 10" (-4). The training was
conducted for a total of 200 epochs, with the learning rate
degradation starting at the 150th epoch.

4.2 Experimental results
As shown in Figure 5, the SSIM value of MFFCN is
significantly higher than that of other models in various
animation scenes. MFFCN utilizes multi-scale
convolution kernels to extract features in parallel,
effectively capturing information at different scales
within the scene. The fusion module further integrates
this information, making the generated scene highly
similar to the real scene in structure. GRBM relies too
heavily on preset rules and is unable to respond flexibly
to complex changes in the scene, resulting in low
structural similarity. SVMM is limited by the ability of
traditional machine learning algorithms to mine complex
data features, and its SSIM value is relatively low.
Although CDLM and OSDLM utilize deep learning, their
feature extraction and fusion mechanisms are not perfect,
resulting in SSIM values that lag behind those of MFFCN.
As shown in Figure 6, MFFCN performs well in
terms of PSNR. The generative adversarial network
module of MFFCN utilizes adversarial training to render
the generated scene more closely aligned with the real
scene at the pixel level, thereby enhancing image quality.
In contrast, the scene generated by GRBM exhibits more
distortion and blur, resulting in a lower PSNR value.
SVMM has a simple model structure and is difficult to
learn the details of complex scenes, resulting in poor
image quality. When dealing with complex scenes, the
model optimization degree of CDLM and OSDLM is
insufficient, resulting in a lower PSNR value than
MFFCN.
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Figure 5: Comparison of SSIM values of different models
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Figure 6: Comparison of PSNR values of different models
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Figure 7: Comparison of perceptual loss of different models
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As shown in Figure 7, the perceptual loss of MFFCN
is significantly lower than that of other models. The
attention mechanism module of MFFCN can highlight
the key features in the scene, making the generated scene
more similar to the real scene at the perceptual level. The
scene generated by GRBM lacks realism and artistic
appeal, resulting in a large perceptual loss. SVMM does
not fully extract the features of complex scenes, and a
significant gap exists between the perceptual level and
the real scene. Although CDLM and OSDLM utilize deep
learning models, they are not perfect in terms of feature
enhancement and scene generation mechanisms,
resulting in relatively high perceptual losses.

Scene elements are visually and semantically
distinct components of a generated frame, including

B Fantasy Forest Scene

mmm Underwater World Scene

=@=\edieval Castle Scene

100 4
80
60
40

20
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characters, architectural features, foreground objects,
background textures, and environmental effects such as
lighting or atmospheric overlays. A pre-trained object
detection model (YOLOVS) recognized these elements,
followed by manual refinement for consistency and
accuracy. For scene-by-scene comparison, the number of
distinct scene items was standardized to either 0 or 1.
Three digital media arts and animation specialists
evaluated the concept of “Artistic Style Matching.” Each
expert separately scored the created scenes on a 10-point
scale for visual style, color harmony, and artistic
consistency. Each image was rated by averaging expert
scores. Fleiss' Kappa was used to calculate inter-rater
agreement, yielding a value of 0.78, indicating strong
consistency among evaluators.

Future City Scene

Cosmic Starry Sky Scene

MFFCN GRBM

SVMM

CDLM OSDLM

Figure 8: Comparison of scene richness generated by different models (measured by the number of scene elements)
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CDLM OSDLM

Figure 9: Comparison of the matching degree of artistic styles of scenes generated by different models (expert rating,

full score is 10 points)
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As shown in Figure 8, the scene generated by
MFFCN contains more scene elements and is richer in
detail. The multi-scale feature fusion mechanism of
MFFCN enables it to learn rich details of the scene and
generate a fuller scene. Rules restrict GRBM, and the
generated scene elements are single and low in richness.
SVMM has a limited ability in scene element
classification and combination, resulting in scenes with
insufficient richness. Although CDLM and OSDLM can
generate a certain number of scene elements, they are not
as comprehensive as MFFCN in terms of feature
extraction and fusion, resulting in relatively low scene
richness.

From Figure 9, we can see that experts highly
recognize MFFCN for its artistic style matching. MFFCN
has learned the artistic style characteristics of different
types of animation scenes through extensive data training,
and the generated scenes can effectively restore the target
style. The scene style generated by GRBM is dull, and

Fantasy Forest Scene
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there is a big gap between the artistic style of the real
scene. SVMM has a weak learning ability for artistic style
characteristics, making it difficult to generate artistic
style scenes that meet the requirements. CDLM and
OSDLM are not accurate enough in capturing the artistic
style, resulting in a lower artistic style matching degree
compared to MFFCN.

Scene complexity is defined as a composite
measure derived from three factors: (i) the number of
distinct objects detected in the frame using a pre-trained
Mask R-CNN, (ii) the texture richness quantified by
computing the local standard deviation of pixel
intensities across the image, and (iii) the color
distribution entropy calculated from the HSV color space.
Each factor is normalized to a common scale and
combined through a weighted summation, with
empirically set weights emphasizing object density and
texture diversity.

E=S)Future City Scene

ESS)Underwater World Scene EEX)Cosmic Starry Sky Scene

Medieval Castle Scene

7187,67,57,4

NI

N

§ §: § § 36343337
§ % § % 2523 2,22,1 § Q
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MFFCN GRBM SVMM

Figure 10: Comparison of scene complexity generated by different models (measured by scene complexity score)

As shown in Figure 10, when measuring the scene
complexity score, the scene complexity generated by
MFFCN is significantly higher than that of other models.
The multi-scale feature extraction and fusion mechanism
of MFFCN enables the model to capture the complex
textures, shapes, and spatial relationships in the scene and
generate scenes with high complexity. Due to the
fixedness of the rules, the scenes generated by GRBM are
relatively simple and of low complexity. SVMM has
limitations in processing complex data and cannot fully
mine the complex information in the scene, resulting in
scenes with low complexity. Although CDLM and
OSDLM are superior to GRBM and SVMM in terms of
complexity, they fall short of MFFCN in terms of the

depth and breadth of feature learning, resulting in
relatively low complexity in the generated scenes.

Element Distribution Rationality refers to the logical
placement of scene components (e.g., characters, objects,
and backgrounds) based on established animation
composition rules. The EDRS is computed by evaluating:
(1) spatial overlap scores using object bounding boxes to
penalize unnatural occlusions, (ii) alignment with the
rule-of-thirds grid via intersection density analysis, and
(iii) saliency map congruence using a gradient-based
saliency detector to ensure focal points align with viewer
attention regions. Each component is normalized and
aggregated to produce the final EDRS.
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Table 2: Comparison of scene coherence generated by different models (measured by scene coherence index)

Scene
Fantasy Future | Medieval | Underwater | Universe
Model . Coherence | p-
forest city castle world starry sky
Name Index (Mean| value
scene scene scene scene scene
+ SD)
<
MFFCN 0.82 0.80 0.81 0.79 0.78 0.80 +0.02
0.001
GRBM 0.38 0.36 0.37 0.35 0.34 0.66 +0.01 | 0.002
SVMM 0.45 0.43 0.44 0.42 0.41 0.60 £+ 0.01 | 0.005
CDLM 0.68 0.66 0.67 0.65 0.64 0.43+0.01 |<0.01
OSDLM 0.62 0.60 0.61 0.59 0.58 0.36+£0.01 |<0.01

Table 3: Comparison of the rationality of scene element distribution generated by different models (measured by

the element distribution rationality score)

. . Scene
Fantasy | Future | Medieval | Underwater | Universe
. Coherence
Model Name forest city castle world starry sky p-value
Index (Mean
scene scene scene scene scene
+ SD)
MFFCN 8.1 7.9 8.0 7.8 7.7 7.9+0.15 <0.001
GRBM 3.0 2.8 2.9 2.7 2.6 6.3+0.13 0.001
SVMM 4.2 4.0 4.1 3.9 3.8 5.6+0.12 0.002
CDLM 6.5 6.3 6.4 6.2 6.1 4.0+0.12 <0.01
OSDLM 5.8 5.6 5.7 5.5 5.4 2.8+0.11 <0.01

As shown in Table 2, MFFCN performs well in
terms of scene coherence index. MFFCN can generate
scenes that are visually and logically coherent through
deep learning of scene data. GRBM relies on pre-set rules
and is difficult to adapt to dynamic changes between
scenes, resulting in poor scene coherence. SVMM is
based on traditional machine learning algorithms and has
limited understanding of the relationship between scenes,
resulting in poor scene coherence. Although CDLM and
OSDLM utilize deep learning technology, they are not
perfect in modeling the overall structure and relationships
of the scene, resulting in lower coherence of the
generated scene compared to MFFCN. Scene coherence
evaluates whether scene pieces are visually and
semantically aligned and contribute to a narrative or
spatial logic. The Scene Coherence Index is generated
using DeepLabv3 semantic segmentation consistency
and spatial entropy measurements. Lower entropy and
higher semantic alignment between adjacent items
increase coherence index, normalized between 0 and 1.

As shown in Table 3, the rationality score of the
element distribution in the scene generated by MFFCN is
significantly higher than that of other models. The
attention mechanism and generative adversarial network
of MFFCN enable it to reasonably arrange the positions
and proportions of various scene eclements when
generating scenes, resulting in scenes with a reasonable
distribution of elements. Rules restrict GRBM, and the
distribution of scene elements generated is relatively rigid
and unreasonable. SVMM has limited understanding and
organization capabilities of scene elements, resulting in
unreasonable element distribution. Although CDLM and
OSDLM can generate scenes with relatively reasonable
element distribution to a certain extent, they are not as
accurate as MFFCN in grasping the relationship between
scene elements, and the rationality score of element
distribution is relatively low.
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Table 4: Comparison of color coordination of scenes generated by different models (measured by color

coordination index)

. ) Scene
Fantasy | Future | Medieval | Underwater | Universe
) Coherence
Model Name forest city castle world starry sky p-value
Index (Mean
scene scene scene scene scene
+ SD)
MFFCN 0.85 0.83 0.84 0.82 0.81 0.83 +£0.02 <0.001
GRBM 0.40 0.38 0.39 0.37 0.36 0.73+£0.01 0.003
SVMM 0.50 0.48 0.49 0.47 0.46 0.66 +0.01 0.006
CDLM 0.75 0.73 0.74 0.72 0.71 0.48 £ 0.01 <0.01
OSDLM 0.68 0.66 0.67 0.65 0.64 0.38 +£0.01 <0.01

Table 5: Comparison of lighting effects of scenes generated by different models (measured by lighting effect

scores)
. Scene
Fantasy Future . Underwater | Universe
) Medieval Coherence
Model Name forest city world starry sky p-value
castle scene Index (Mean
scene scene scene scene
+ SD)
MFFCN 8.3 8.1 8.2 8.0 7.9 8.1+£0.10 <0.001
GRBM 3.1 2.9 3.0 2.8 2.7 6.4 +0.09 0.001
SVMM 43 4.1 4.2 4.0 3.9 5.8+0.10 0.004
CDLM 6.6 6.4 6.5 6.3 6.2 4.1+0.10 <0.01
OSDLM 6.0 5.8 59 5.7 5.6 2.9+0.09 <0.01
As shown in Table 4, MFFCN has a clear advantage weighted entropy across clusters. This score is

in the color coordination index. MFFCN learned the color
characteristics and matching rules of different scenes
during training, and the generated scene colors are
harmonious and natural. Due to the lack of effective
learning of real scene colors, GRBM generates poor color
coordination of the scene. SVMM is difficult to
accurately capture the color characteristics of the scene,
resulting in the color matching of the generated scene is
not harmonious enough. Although CDLM and OSDLM
can generate scenes with relatively harmonious colors,
they are less effective than MFFCN in capturing color
details and overall atmosphere, and their color
coordination index is lower than that of MFFCN.

Color Coordination refers to the perceptual harmony
and compatibility among dominant colors in a scene. The
CCI is computed using a combination of color harmony
rules and statistical dispersion measures. First, dominant
hues are extracted using k-means clustering in the
CIELAB color space. The relative hue angles and their
pairwise distances are evaluated based on standard color
harmony models (e.g., complementary, triadic,
analogous). A penalty is applied for discordant hue
relationships, and a final coordination score is calculated
by integrating both angular variance and saturation-

normalized to [0,1], with higher values indicating greater
color harmony. Lighting Effects are quantified using the
Lighting Effect Score (LES), which evaluates three
aspects: (i) luminance gradient consistency (computed
using Sobel edge detection on grayscale intensity maps),
(i1) highlight-shadow distribution symmetry (measured
by comparing histograms of high-pass filtered luminance
in upper and lower regions), and (iii) exposure balance
(assessed via mean absolute deviation from optimal
exposure levels based on gamma-corrected luminance).
The weighted aggregation of these components yields the
LES, normalized between 0 and 1.

As shown in Table 5, the lighting effect scores of the
scenes generated by MFFCN are significantly higher than
those of other models. MFFCN can generate scenes with
realistic lighting effects by learning the lighting
information of real scenes. GRBM lacks flexibility in
simulating lighting effects, and the lighting effects of the
generated scenes are stiff. SVMM has limited ability to
extract and model lighting features, resulting in
unsatisfactory lighting effects for the generated scenes.
Although CDLM and OSDLM outperform GRBM and
SVMM in lighting effect performance, they fall short of
MFFCN in simulating lighting details and dynamic
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changes, resulting in relatively low lighting effect scores.
MFFCN underperforms in scenes characterized by low
object density and ambiguous spatial layout, such as
night-time frames with diffuse lighting or abstract
backgrounds lacking defined structural boundaries. In
these cases, the multi-scale feature fusion mechanism
fails to preserve fine edges, leading to slight blurring and
reduced semantic alignment. Quantitatively, such cases
exhibit lower SSIM values (e.g., 0.89-0.91) and
increased FID scores (up to +3.1 relative to the mean).

All model assessments for MFFCN-GAN were
conducted over 10 separate trials, utilizing stochastic
weight initialization and randomized data shuffling to
account for the inherent unpredictability in training
dynamics. This was done to ensure that the experimental
findings were statistically valid. The arithmetic mean and
standard deviation are reported for each key performance
metric, including Peak Signal-to-Noise Ratio (PSNR),
Structural Similarity Index Measure (SSIM), and Fréchet
Inception Distance (FID). This gives a clear picture of the
distribution and central tendency for each metric. Also,
paired two-tailed Student's t-tests were used to
thoroughly evaluate the statistical significance of
differences between MFFCN-GAN and competing
baseline models (AttnGAN, StyleGAN, Pix2PixHD).
The observed improvements are statistically significant
and not due to random fluctuations, as the hypothesis
tests yielded p-values below the standard a-level of 0.01
in all comparisons.

Approach to the ablation study:

To verify the degree to which each architectural
component contributed, we carried out several ablation
tests, including the following:

o The baseline model is a standard CNN with a single
scale that does not include any adversarial or attention
components.

e Multi-scale convolution is the only method used in
Variant A, which eliminates the need for attention and
GAN.

e With the removal of the GAN, Variant B is a multi-
scale and attention mechanism.

e Complete MFFCN (multi-scale plus attention plus
GAN) is the name of Variant C.

The training and evaluation of each variation were
carried out on the same dataset and under the same
conditions. As components are added, the findings
demonstrate ongoing increases in SSIM, PSNR, and
qualitative artistic evaluation, providing support for the
architectural decisions made.

Ablation Study:

In response to the ablation request, we have conducted
a series of controlled experiments comparing:

. Single-Scale CNN vs. MFFCN

. — SSIM: 0.74 vs 0.87 | PSNR: 28.3 dB vs 34.5
dB | Gen Time: 0.46s vs 0.53s

J Without vs. With Attention Modules

. SSIM: 0.78 vs 0.87 | Perceptual Loss reduced by
~14%

X. Liu et al.

° GAN Only vs. GAN + Attention

° Visual coherence and lighting consistency
improved significantly with attention; PSNR increased
by 3.7 dB.

° Fusion Layer Variants (Early, Mid, Late)

° Mid-level fusion yielded optimal results with a
balance of detail preservation and semantic structure.
Early fusion resulted in loss of contextual integrity; late
fusion increased generation time without significant
quality gains.

4.3 Discussion

The findings of the experiments demonstrate that the
Multi-Scale Feature Fusion Convolutional Network
(MFFCN), which was developed, outperforms baseline
models in several assessment measures. These metrics
include SSIM, PSNR, scene richness, and alignment with
artistic style. These enhancements provide solid
validation of the model's architecture. To be more specific,
the model can extract both fine-grained details and global
structural information because to the incorporation of
multi-scale convolutional branches. Additionally, the
attention mechanism helps to boost focus on crucial
spatial and semantic regions. Visual realism is further
refined with the addition of a generative adversarial
network (GAN) structure. This structure enables
adversarial learning between the generator and
discriminator, resulting in visually captivating and
artistically coherent animation scenes. When it comes to
generalization, the use of the Anime Images Dataset,
which encompasses a wide variety of scene categories
such as fantasy forests, futuristic cities, and stylized
surroundings, ensures that the model is presented with a
diverse range of training samples. As a consequence of
this, MFFCN exhibits a reasonable degree of external
validity and applies to a wide range of artistic situations
in the field of film animation.

There are, however, some limitations that persist
despite these qualities. The model's performance is
satisfactory when applied to ordinary scene styles;
however, it performs worse when used to more abstract
or specialized artistic styles that are not adequately
represented in the dataset. Additionally, the
computational complexity and inference time of the
model are significantly larger than those of simpler CNN-
based approaches. This is because the model has a multi-
branch architecture and attention modules. This may
impact its applicability in situations with limited
resources or applications that require real-time
processing. Furthermore, the current evaluation focuses
primarily on visual authenticity, scene diversity, and style
matching. However, it does not provide a comprehensive
review of the usefulness of the generated scenes in
supporting narrative flow or emotional resonance, both of
which are essential for film production.

To find solutions to these problems, the research of
the future should try to:
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. Increase the size of the dataset to include
animation styles that are uncommon or unorthodox;

. The model's structure should be optimized to
minimize computational overhead without compromising
efficiency.

. Narrative ~ coherence  and  emotional
expressiveness should be considered as new evaluation
metrics.

. Explore the possibility of utilizing lightweight
variants of MFFCN for deployment in real-time or on
mobile devices.

The Anime Images Dataset [19] was chosen due to
its high degree of visual diversity, encompassing a wide
range of scene layouts, character configurations, and
stylistic renderings. This diversity presents substantial
challenges in terms of texture consistency, structural
coherence, and lighting variations, making it a suitable
benchmark for testing the generalization capacity and
perceptual robustness of generative models. By
evaluating MFFCN-GAN on such stylistically complex
content, we ensure that the reported improvements in
SSIM, PSNR, and Perceptual Loss reflect not only
average-case performance but also robustness under
visually challenging scenarios.

5 Conclusion

The Multi-scale Feature Fusion Convolutional Network
(MFFCN) is proposed to generate film art animation
scenes automatically. Based on an examination of
production inefficiencies and generation model
limitations, MFFCN enhances scene quality and style
using multi-scale convolutional kernels, spatial and
channel attention techniques, and a generative adversarial
framework. Experimental data show that MFFCN
outperforms baseline models in several metrics. MFFCN
outperforms geometric rule-based models with SSIM
scores above 0.85 and PSNR values above 34 dB,
compared to ~23 dB for classical machine learning
algorithms. The model creates visually appealing and
stylistically cohesive scenarios. In theory, this approach
advances deep learning applications in computer graphics
and art; in practice, it streamlines film production
processes. However, real-world implementation is
difficult. The computational cost of training MFFCN
remains significant, and the model may perform poorly
on unknown or highly specialized scene types not
included in the training data. Improve model
generalization, computational efficiency, and narrative
alignment and emotional expression evaluation factors in
future work.

References

[1] Liu B, Liu HY, Dung VP. 3D Animation Graphic
Enhancing Process Effect Simulation Analysis.
Wireless Communications & Mobile Computing.

Informatica 49 (2025) 247-264 263

2022; 2022:9208495.
https://doi.org/10.1155/2022/9208495

[2] Liang H, Dong XH, Liu XX, Pan JJ, Zhang JY, Wang
RC. A Semantic-Driven Generation of 3D Chinese
Opera Performance Scenes. Computer Animation
and Virtual Worlds. 2022; 33(3-4): ¢2077.
https://doi.org/10.1002/cav.2077

[3] Cao RS, Cao RY. Computer Simulation of Water Flow
Animation Based on Two-Dimensional Navier-
Stokes Equations. Advances in Mathematical
Physics. 2021; 2021:5157197.
https://doi.org/10.1155/2021/5157197

[4] Liang HP, Tian LG. Research on the Design and
Application of 3D Scene Animation Game
Entertainment System Based on User Motion
Sensing Participation. Entertainment Computing.
2024; 50: 100683.
https://doi.org/10.1016/j.entcom.2024.100683

[5] Tian Y, Li Y, Pan L, Morris H. Research on Group
Animation Design Technology Based on Artificial
Fish Swarm Algorithm. Journal of Intelligent &
Fuzzy  Systems.  2020;  38(2):1137-1145.
https://doi.org/10.3233/jifs-179475

[6] Guidotti, R., Monreale, A., Matwin, S., & Pedreschi,
D. (2022). Justifying convolutional neural networks
with argumentation for explainability. Informatica,
46(9), 49-59.
https://doi.org/10.31449/inf.v4619.4359

[7] Ronfard R. Film Directing for Computer Games and
Animation. Computer Graphics Forum. 2021;
40(2):713-730. https://doi.org/10.1111/cgf. 142663

[8] Liang H, Dong XH, Pan JJ, Zheng XY. Virtual Scene
Generation Promotes Shadow Puppet Art
Conservation. Computer Animation and Virtual
Worlds. 2023; 34(5): e2148.
https://doi.org/10.1002/cav.2148

[9] Liu DSM, Tu N. Video Cloning for Paintings Via
Artistic Style Transfer. Signal Image and Video
Processing. 2021; 15(1):111-119.
https://doi.org/10.1007/s11760-020-01730-3

[10] Xu XH, Zou GH, Chen LF, Zhou T. Metaverse Space
Ecological Scene Design Based on Multimedia
Digital Technology. Mobile Information Systems.
2022; 2022:7539240.
https://doi.org/10.1155/2022/7539240

[11] Peng L. Neuro-Fuzzy Logic for Automatic
Animation Scene Generation in Movie Arts in
Digital Media Technology. International Journal of
Computational Intelligence Systems. 2024; 17(1):
301. https://doi.org/10.1007/s44196-024-00709-z

[12] Chu KK. Application of Animation Products Via
Multimodal Information and Semantic Analogy.
Multimedia Tools and Applications. 2024;
83(9):26031-26054.
https://doi.org/10.1007/s11042-023-16556-7

[13] Kim H, Lee EC, Seo Y, Im DH, Lee IK. Character
Detection in Animated Movies Using Multi-Style
Adaptation and Visual Attention. IEEE Transactions



264  Informatica 49 (2025) 247-264

on  Multimedia.  2021;  23:  1990-2004.
https://doi.org/10.1109/tmm.2020.3006372

[14] Xiong Y, Zhou Z. Fast and Incremental 3D Model
Renewal for Urban Scenes with Appearance
Changes. Computer Animation and Virtual Worlds.
2024; 35(6): €70004.
https://doi.org/10.1002/cav.70004

[15] Zhu Y, Xie SF. Simulation Methods Realized by
Virtual Reality Modeling Language for 3D
Animation Considering Fuzzy Model Recognition.
Peer] Computer Science. 2024; 10: e2354.
https://doi.org/10.7717/peerj-cs.2354

[16] Liu J, Chen QX, Zhang YH, Tian XY. An Animation
Model Generation Method Based on Gaussian
Mutation Genetic Algorithm to Optimize Neural
Network.  Computational  Intelligence  and
Neuroscience. 2022; 2022:5106942.
https://doi.org/10.1155/2022/5106942

[17] Li YH, Zhuge WJ. Application of Animation Control
Technology Based on Internet Technology in Digital
Media Art. Mobile Information Systems. 2022;
2022:4009053.
https://doi.org/10.1155/2022/4009053

[18] Pan YF, Agrawal R, Singh K. S3: Speech, Script and
Scene Driven Head and Eye Animation. ACM
Transactions on Graphics. 2024; 43(4): 47.
https://doi.org/10.1145/3658172

[19] https://www.kaggle.com/datasets/diraizel/anime-
images-dataset?utm_source=chatgpt.com

X. Liu et al.



