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In the context of the digital transformation of the film art industry, the traditional animation scene 

production model faces the problems of low efficiency, high cost, and difficulty in meeting the audience's 

demand for high-quality scenes. To overcome this dilemma, this paper utilizes convolutional neural 

networks for the automatic generation of film art animation scenes. By constructing a multi-scale feature 

fusion convolutional network (MFFCN), the multi-scale convolution kernels are integrated to extract 

features in parallel, and the attention mechanism is combined with the generative adversarial network for 

scene generation. The experiment uses Kaggle's Anime Images Dataset, which includes fantastical 

landscapes and futuristic cityscapes. The proposed MFFCN model, with three convolutional branches and 

two attention modules, is compared to four models, including a geometric rule-based model and a support 

vector machine. Results demonstrate that MFFCN improves PSNR by 15 dB and SSIM by over 40% over 

the geometric model. It also excels in scene richness and visual style. This research advances computer 

graphics and deep learning in art generation, providing a realistic and intelligent solution for animation 

scene development that improves film industry operations and stylization. 

Povzetek: Za samodejno generiranje filmskih animacijskih prizorov je razvit MFFCN-GAN: 

večločljivostni MFFCN (3 konvolucijske veje) z dvojnim pozornostnim modulom in GAN. Na podatkih 

Kaggle Anime Images doseže boljše rezultate od geometrijskega modela z bogatejšimi prizori in boljšo 

slogovno skladnostjo.

1 Introduction 

In today’s era of rapid digital development, the film 

industry is undergoing unprecedented changes. 

According to incomplete statistics, thousands of new 

films are released worldwide each year, including a large 

number of animated films and various films containing 

animated scenes [1]. As a critical component of film art, 

the quality and efficiency of animated scenes directly 

impact the quality and production cycle of the entire film 

[2]. 

Take a well-known animation film production 

company, for example. In the traditional animation 

production process, animators spend weeks or even 

months generating a complex animation scene. Moreover, 

a significant amount of manpower is required for this 

process, involving the collaborative work of numerous 

professionals, including modelers, texture artists, and 

lighting engineers. According to the company's internal 

data, labor costs account for approximately 70% of the  

total production cost for the animation scene. At the same 

time, due to the cumbersome production process and the 

uncertainty of human operation, approximately 30% of 

the animation scenes require repeated modification after  

 

production, which undoubtedly further increases the time 

and cost consumption [3]. This traditional production 

model is unable to meet the current film market's growing  

demand for high-quality animation scenes and the 

requirements of a fast production cycle. In addition, as 

the audience's aesthetic level continues to improve, the 

requirements for the visual effects and artistic expression 

in animation scenes are also increasing [4]. They expect 

to see more realistic, delicate, and creative animation 

scenes, and traditional production methods face 

significant challenges in meeting these high requirements 

[5]. To defend CNN predictions using human-

interpretable logic frameworks and arguments. 

Autonomous graphics rendering and scene interpretation 

require CNN output transparency and confidence, which 

this technique provides. The study improves 

interpretability without compromising model accuracy. 

The argumentation model may become computationally 

expensive when applied to deep architectures or huge 

datasets, limiting its use in real-time animation systems. 

[6]. 

In the current field of computer technology, research 

on animation scene generation has achieved certain 

results. Many scholars and research institutions are 

committed to using various technical means to improve 

this situation. On the one hand, in the field of rule-based 
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animation scene generation, existing studies have 

achieved automatic scene generation by formulating a 

series of complex rules and algorithms. For example, a 

research team proposed a method for generating 

animation scenes based on geometric rules. By setting 

specific geometric shape combination rules and spatial 

layout rules, some relatively simple animation scenes can 

be automatically generated to a certain extent. However, 

the limitation of this method is that it relies too heavily 

on pre-set rules and lacks effective integration of various 

random factors and artistic creativity in the complex real 

world, resulting in the generated scenes often appearing 

dull, lacking realism, and lacking artistic appeal, making 

it difficult to apply to high-quality film production. On 

the other hand, numerous attempts have been made in 

research on animation scene generation using machine 

learning. For example, some studies have employed 

traditional machine learning algorithms, such as support 

vector machines, to classify and combine scene elements. 

However, when these traditional machine learning 

algorithms process complex image and scene data, due to 

the limitations of their own model structure and learning 

ability, they often cannot fully explore the deep-level 

features and internal laws in the data, resulting in 

generated animation scenes that are unsatisfactory in 

detail and overall effect. 

Current research focuses on utilizing more advanced 

deep learning algorithms to address the challenges in 

animation scene generation. However, there are also 

many controversial points in this area of research. For 

example, different researchers have different views on the 

selection and optimization of deep learning models. 

Some researchers believe that more complex models with 

more parameters should be used to achieve stronger 

expressive power. In contrast, others worry that overly 

complex models will lead to problems such as overfitting 

and advocate the use of relatively simple but carefully 

optimized models. This article aims to apply 

convolutional neural networks, a powerful deep learning 

technology, to the automatic generation of animation 

scenes in film art. By constructing a suitable 

convolutional neural network model and training it with 

a large amount of film animation scene data, it can 

automatically learn the characteristics of various 

elements in the animation scene and the complex 

relationships between them, thereby achieving high-

quality and efficient automatic generation of animation 

scenes. 

The key issues that need to be addressed in this study 

include designing a convolutional neural network 

architecture suitable for animation scene generation, 

effectively processing and utilizing different types of 

animation scene data, and avoiding model overfitting 

during training. The innovation of this study lies in its 

application of convolutional neural networks to the field 

of animation scene generation in film art for the first time. 

It is expected to break the limitations of traditional 

production methods and bring new production models 

and concepts to the film art industry. The expected 

contribution is that it can greatly improve the generation 

efficiency of animation scenes, reduce production costs, 

and improve the artistic quality and visual effects of 

animation scenes. From a theoretical perspective, this 

study aims to enrich and enhance the relevant theories of 

computer graphics and the application of deep learning in 

the field of art. In practice, it will provide film production 

companies with a practical and efficient solution for 

animation scene production, promoting the film art 

industry to develop in a more intelligent and efficient 

direction. 

Research Objectives: 

The purpose of this project is to investigate the 

following formal research topics to answer essential 

difficulties in the field of animation scene generation: 

RQ1: In comparison to single-scale or rule-based 

models, is it possible for a multi-scale feature fusion 

convolutional network (MFFCN) to achieve a minimum 

improvement of thirty percent in the SSIM of animation 

sequences that have been generated? 

RQ2: The incorporation of attention modules into 

MFFCN results in an improvement in the perceptual 

quality and artistic coherence of the scenes that are 

generated, as determined by PSNR and expert review. 

RQ3: Is it possible for the suggested architecture to 

preserve its generalizability over a wide variety of scene 

types, including those that are set in the future and fantasy, 

without exhibiting severe overfitting? 

Hypothesis: 

Due to its simultaneous multi-scale convolutional 

branches and attention mechanism, the MFFCN model 

outperforms standard models (such as geometric rule-

based and SVM) in terms of SSIM by more than 40% and 

in terms of PSNR by approximately 15 decibels. 

According to the opinions of specialists in the field, 

incorporating attention modules and adversarial training 

will result in improvements in artistic style alignment and 

scene richness. 

2 Literature review 

2.1 Early exploration of animation scene 

generation technology 
In the early days, rule-based methods dominated the 

generation of animation scenes. Some studies used 

geometric rules to generate animation scenes. These 

methods pre-set the shapes, positions, and spatial 

relationships of objects to achieve preliminary 

construction of scenes [7]. However, these methods have 

obvious limitations [8]. Due to their high reliance on 

preset rules and lack of consideration for the complexity 

of the real world and the flexibility of artistic creation, the 

generated scenes often lack realism and rich artistic 

expression, making it difficult to meet the production 

requirements of movie-level animation scenes. In some 

practical applications, scenes generated based on 

geometric rules can only score 0.3-0.4 in the evaluation 
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of the structural similarity index (SSIM), which is far 

below the expected standard for high-quality scenes as 

perceived by the human eye [9]. 

At the same time, traditional machine learning 

algorithms, such as support vector machines, have also 

been tried to be applied to animation scene generation. 

These methods attempt to achieve classification and 

combination of scene elements by learning from a large 

amount of sample data. However, due to the limitations 

of traditional machine learning algorithms in processing 

complex image data, their ability to extract deep-level 

features of scenes is limited, resulting in generated scenes 

that are unsatisfactory in terms of detail and overall effect. 

For example, in terms of peak signal-to-noise ratio 

(PSNR), an important indicator for measuring image 

quality, scene images generated based on support vector 

machines can usually only reach 20-23dB, and the image 

quality is poor, which cannot create the immersive visual 

experience required by film art [10]. 

 

2.2 The rise of deep learning technology in 

animation scene generation 
With the rapid development of deep learning technology, 

its powerful feature learning and pattern recognition 

capabilities have brought new opportunities for 

animation scene generation. With its unique structure, 

convolutional neural networks have demonstrated 

excellent performance in image and video processing, 

and have gradually become the core technology for 

animation scene generation research [11]. 

Some studies have begun to attempt to build 

convolutional neural network models to achieve 

automatic generation of animation scenes. Some models 

extract features and reduce the dimension of input data by 

stacking convolutional layers and pooling layers, and 

then generate corresponding animation scenes [12]. 

However, these early models still have numerous 

problems when handling complex animation scenes [13]. 

For example, they do not fully extract the features of 

elements at different scales in the scene, resulting in a 

lack of detail and layering in the generated scenes. In the 

evaluation of perceptual loss, the distance between the 

scenes generated by such models and the real scenes in 

the feature space is large, indicating that the generated 

scenes are significantly different from the real scenes at 

the perceptual level, and it is not easy to bring a real and 

natural visual experience to the audience. 

To address the aforementioned shortcomings, the 

multi-scale feature fusion convolutional network 

(MFFCN) was developed. MFFCN introduces multiple 

convolutional layers with different sizes of convolution 

kernels to extract scene features of varying scales in 

parallel, effectively addressing the issue of information 

loss in the feature extraction process of a single-scale 

convolution kernel [14]. By combining features from 

different scales, the model can more effectively capture 

the detailed information and overall structure of the scene, 

thereby significantly improving the quality of the 

generated scene. Relevant experiments show that 

compared with traditional convolutional neural networks, 

MFFCN improves the SSIM index by about 0.3-0.4 and 

the PSNR index by about 8-10dB. The generated scene is 

more closely aligned with the real scene in terms of 

structure and image quality [15]. 

In addition, the introduction of the attention 

mechanism further optimizes the performance of 

convolutional neural networks in animation scene 

generation. Through the spatial attention and channel 

attention mechanisms, the model can focus more 

attention on key information in the scene and highlight 

features that have a significant impact on scene 

generation, thereby producing animation scenes with 

greater artistic appeal and realism. For example, in the 

evaluation of scene richness, the scene generated by the 

model that introduces the attention mechanism contains a 

significantly larger number of scene elements, making 

the scene fuller and more vivid, presenting richer visual 

content to the audience [16]. 

 

2.3 Co-development of generative 

adversarial networks and model 

optimization 
The emergence of generative adversarial networks 

(GANs) has brought revolutionary changes to animation 

scene generation. GANs consist of a generator and a 

discriminator, and through adversarial training between 

the two, the quality of generated data is continuously 

improved [17]. In the field of animation scene generation, 

the generative adversarial model based on MFFCN has 

been widely studied and applied. 

The generator takes the scene features after feature 

extraction and enhancement as input, gradually restores 

the image size through a series of deconvolution layers, 

and generates an animated scene. The discriminator 

distinguishes between the generated scene and the real 

scene, and the feedback results are used to guide the 

optimization of the generator and the discriminator [18]. 

In the adversarial training process, the goal of the 

generator is to make the generated scene as realistic as 

possible to deceive the discriminator. In contrast, the 

discriminator aims to enhance its ability to distinguish 

between real and generated scenes. This adversarial game 

process prompts the generator to improve and generate 

higher-quality animated scenes continually. 

In terms of model training and optimization, the 

cross-entropy loss function is employed to measure the 

discrimination error of the discriminator, while the 

combination of adversarial loss and feature matching loss 

is utilized to optimize the generator. By properly 

adjusting the weights of these loss functions, the 

generator can effectively balance the goals of deceiving 

the discriminator and generating scenes with features 

similar to those of real scenes. Experimental results show 

that the model using this optimization strategy has 
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achieved significant improvements in multiple evaluation 

indicators. For example, in the evaluation of artistic style 

matching, expert ratings indicate that the scenes 

generated by the model can score 8-9 points (out of 10), 

which is significantly better than those of other 

comparison models. 

Although the current animation scene generation 

technology, based on convolutional neural networks, has 

made significant progress, there are still some problems 

to be addressed. On the one hand, the existing datasets 

may not encompass all types of animation scenes, which 

limits the model's generalization ability. For some special 

styles or complex scenes, the model's generation effect 

may not be satisfactory. On the other hand, the current 

evaluation indicators primarily focus on aspects such as 

visual quality and content richness. There is a lack of in-

depth research and evaluation on the effects of generated 

scenes in animation narratives, emotional expression, and 

other aspects. Future research can be conducted by 

expanding the scale and diversity of datasets, as well as 

introducing more dimensional evaluation indicators, to 

further promote the development of automatic animation 

scene generation technology and provide more efficient 

and high-quality solutions for the film art industry. 

Table 1 presents a comparative analysis of 

Animation Scene Generation Methods and their 

performance. The MFFCN offers a solution to the 

fundamental shortcomings identified in earlier models. 

These shortcomings include inadequate style fidelity and 

insufficient feature extraction across scales. MFFCN can 

improve both the structural quality (SSIM +0.3~0.4) and 

visual fidelity (PSNR +8–10 dB) of the image in 

comparison to ordinary CNNs. This is achieved by 

utilizing multi-scale convolutional branches and dual 

attention modules. Furthermore, it supports a wider 

variety of visual styles and scene complexities, providing 

a robust solution for developing high-quality, stylistically 

aligned animation scenes. This is something that previous 

systems have struggled to accomplish. 

 

Table 1: Comparative analysis of animation scene generation methods and performance 

Method Model Type SSIM 
PSNR 

(dB) 

Artistic Style 

Support 
Scene Type Limitations 

Geometric Rule-

Based [7][8] 
Rule-Based 

0.30–

0.40 
<18 Very Low 

Rigid, lacks realism/artistic 

depth 

SVM-Based Model 

[10] 
Traditional ML ~0.45 20–23 Low 

Poor image quality, lacks 

fine details 

Early CNN Models 

[11][13] 
CNN 

0.50–

0.60 
24–26 Medium 

Incomplete multi-scale 

feature capture 

CNN + Attention 

[16] 
CNN + Attention ~0.65 26–28 High 

Improved focus, limited 

scale awareness 

GAN-Based Model 

[17][18] 
GAN ~0.68 28–30 High 

Limited on small-scale 

texture fidelity 

Proposed MFFCN 
CNN + Multi-Scale 

+ Attention 

0.70–

0.80 
33–35 Very High 

Supports complex, stylized, 

diverse scenes 

 

3 Research methods 

3.1 Convolutional neural network structure 

design 
In the study of automatically generating film art 

animation scenes, conventional convolutional neural 

networks have limitations in extracting features of 

elements of different scales within the scene when 

processing complex animation scenes. To this end, this 

paper proposes a Multi-Scale Feature Fusion 

Convolutional Network (MFFCN) to effectively capture 

multi-scale information in animation scene data, thereby 

meeting the needs of high-quality animation scene 

generation. 

MFFCN is comprised of three convolutional 

branches, each of which corresponds to a kernel size of 

3×3, 5×5, and 7×7 accordingly. To maintain the spatial 

dimensions, each branch makes use of the "same" 

padding. There are 64 output channels for each branch, 

and these outputs are concatenated before being sent to a 

2-layer fusion module that has 128 and 64 channels, 

respectively. 

Figure 1 illustrates the MFFCN-GAN architecture 

for automatically generating animated scenes. It begins 

with extracting features at multiple scales using three 

parallel convolution layers with kernel sizes of 3×3, 5×5, 

and 7×7. The outputs are combined and then sent through 

a 1×1 convolution to reduce the dimensions. A dual 

attention module (spatial and channel) makes the features 

better. The generator employs four deconvolution layers 
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to gradually increase the size of the features, resulting in 

an output image of 256 × 256 × 3. Five convolution layers 

and a sigmoid classifier make up the discriminator. It 

examines both real and synthetic scenes, utilizing feature 

fusion and adversarial learning to enable high-quality, 

coherent scene synthesis. 

 

 

Figure 1: Overall MFFCN-GAN architecture with intermediate tensor representation 

 

 

Figure 2: Schematic illustration of preprocessing steps 

 

The core design of the MFFCN network is based on 

the characteristics of the convolution operation. 

Conventional convolution kernels have a fixed size and 

are difficult to capture scene features of different scales 
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simultaneously. This paper introduces multiple 

convolution layers with different sizes of convolution 

kernels to process the input animation scene data in 

parallel. Assume that the input data is H W CX  
represented as [height, width, number of channels]. 

Figure 2 shows the whole preparation pipeline for 

an anime-style input image that will be used to train 

MFFCN-GAN. The first step is to resize the image to a 

consistent size (256×256) so that all the data in the dataset 

is the same size. After that, normalization typically scales 

pixel intensities to the range [−1, 1], which helps the 

model train more efficiently. To increase spatial variation 

and make it appear as if characters are facing the other 

way, a horizontal flip is used. Color jitter stabilizes things 

by adjusting the brightness, contrast, saturation, and hue. 

Rotation causes the image to appear slightly off (for 

example, ±10°), a common effect used in angled images, 

often found in animation. A Gaussian blur makes things 

appear blurry or as if they're moving, which makes it 

harder for the model to learn in poor visual conditions. 

The cutout mask augmentation randomly hides sections 

of the image, forcing the model to infer what the entire 

picture looks like. These changes all help with 

generalization by making it appear as a variety of real-

world animation situations. The MFFCN-GAN's feature 

extraction pipeline generates additional outputs. This 

preprocessing enhances the diversity of training without 

altering the creative content. 

Define a set of convolution kernels of different sizes 

i i ih w C C

iK
  

 , 1,2 ,,i n= , and the corresponding bias 

is iC

ib  . Then i the output of the convolutional layer 

iY can be expressed as Formula (1). 

1 1 1

1 2

0 0 0

( , , ) ( , , ,:)
i ih w C

i i i

x y c

X x p y p c K x yY c b
− − −

= = =

 
= + +  + 

 


 (1) 

Among them,    the activation function is the 

most notable. This paper adopts the ReLU activation 

function, 
1p   and 

2p   is the padding parameter to 

ensure that the data size remains unchanged before and 

after the convolution operation. 

Convolutional layers with different convolution 

kernel sizes extract features of different scales. To fully 

integrate these features, this paper proposes a feature 

fusion module. The outputs of multiple convolutional 

layers are spliced according to the channel dimension to 

obtain the spliced features 
concatY , as shown in Formula 

(2). 

 1 2Concat( , , , )concat nY YY Y=  (2) 

Then, 1 1  the concatenated features are processed 

by a convolution layer to reduce the number of 

parameters and the amount of calculation. Suppose the 

1 1 convolution kernel is 
1

1 1

n

i f

i

C C

fK =

  
 , the bias is

fC

fb  , then the fused feature fusionY  is Formula (3). 

 
1

1

0

(:,:, ) (0,0, ,:)

n

i

i

C

fusion concat f f

c

Y c K cY b
=

−

=

 
 

=  + 
 
 
 

  (3) 

Compared to traditional convolutional neural 

networks, MFFCN can extract features in parallel 

through multi-scale convolution kernels and effectively 

fuse information from different scales, thereby avoiding 

the loss of partial information when extracting features 

with a single-scale convolution kernel, and improving the 

network's ability to express complex features of 

animation scenes. 

 

3.2 Scene feature extraction and 

representation 
In the automatic generation of animation scenes, 

accurately extracting and representing scene features is 

key. The fused features extracted by MFFCN still require 

further processing to obtain a more semantically 

informative scene feature representation. This paper 

combines the spatial attention mechanism with the 

channel attention mechanism to enhance the fused 

features. In addition to channel attention, the CBAM-

inspired module also incorporates spatial attention. A 

multilayer perceptron (MLP) with a reduction ratio of 16 

is utilized for the channel attention. The generation of the 

attention map in spatial attention is accomplished through 

the utilization of a 7×7 convolution, which operates at the 

resolution of the initial feature map. 

First, 
fusionY   perform spatial attention calculation 

on the fused features. Through average pooling and 

maximum pooling operations, the average feature s

avgF  

and maximum feature in the spatial dimension are 

obtained respectively s

maxF , as shown in Formula (4) and 

Formula (5). 

 

1 1

0 0

1
( , ,:)

H W
s

avg fusion

h w

wF Y h
H W

− −

= =

=



 (4) 

 
1 1

0 0max max ( , ,:)s H W

max h w fusionY wF h− −

= ==
 (5) 

Concatenate these two features along the channel 

dimension to obtain Concat( , )s s

s avg maxFF F=  , and then 

pass through a convolutional layer to generate a spatial 

attention map S , as shown in Formula (6). 

 ( )s s sK bS F  +=  (6) 

Where, 𝐾𝑠 ∈ 𝑆
1×1×2𝐶𝑓×𝐶𝑓   is the convolution 
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kernel, 𝑏𝑠 ∈ 𝑆
𝐶𝑓   and is the bias. Multiply the spatial 

attention map with the fusion feature to obtain the feature 

after spatial attention enhancement 
sY  , as shown in 

Formula (7). 

 s fusionY SY =   (7) 

Next, the channel attention is calculated. 
sY

Average pooling and maximum pooling are performed on 

the spatial dimension to obtain the average feature c

avgF

and maximum feature on the channel dimension c

maxF , as 

shown in Formula (8) and Formula (9). 

 

1 1

0 0

1
( , ,:)

H W
c

avg s

h w

Y w
H

F h
W

− −

= =

=



 (8) 

 
1 1

0 0max max ( , ,:)c H W

max h w sY wF h− −

= ==  (9) 

After these two features are concatenated and 

processed by a multi-layer perceptron (MLP), the channel 

attention map is obtained C , as shown in Formula (10). 

 
( )( )MLP Concat( , )c c

avg maxF FC =
 (10) 

Multiply the channel attention map by 
sY to obtain 

the final enhanced feature 
enhancedY , as shown in Formula 

(11). 

 enhanced sY Y C=   (11) 

Compared with the traditional method of using only 

a single attention mechanism, this combination of spatial 

attention and channel attention can more 

comprehensively mine the important information of 

scene features in the spatial and channel dimensions, 

highlight the features that play a key role in animation 

scene generation, and improve the representation ability 

of scene features. 

 

3.3 Scene generation based on generative 

adversarial network 
In the field of film art animation, generating high-quality, 

realistic scenes has always been a key goal of research 

and creation. The traditional method of creating 

animation scenes is not only time-consuming and 

laborious, but also has certain limitations in terms of 

richness and realism. To effectively break through these 

bottlenecks, this paper introduces the innovative idea of 

the generative adversarial network (GAN). It constructs a 

generative adversarial model based on the multi-scale 

feature fusion convolutional network (MFFCN), aiming 

to automatically generate high-quality animation scenes. 

To ensure robust GAN training, we employed spectral 

normalization in the discriminator, introduced a gradient 

penalty term (λ = 10) similar to that of WGAN-GP, and 

utilized label smoothing (actual labels = 0.9) to stabilize 

the adversarial gradients. 

The generative adversarial network comprises a 

generator and a discriminator, which are trained through 

adversarial games to continually improve the quality of 

generated data. In the model constructed in this paper, the 

generator is responsible for generating animation scenes 

based on the extracted scene features, while the 

discriminator assesses the authenticity of the generated 

scenes and real scenes. 

 

3.3.1 Design and implementation of the generator 

The generator takes the enhanced features 
enhancedY

as input, and its core structure consists of a series of 

deconvolution layers. The deconvolution operation can 

gradually restore the size of the image to generate the 

desired animation scene X̂  . Let the deconvolution 

kernel be 1d d d di i i i

i

h w C C

dK −
  

  , the bias be di

i

C

db   , 

and i  the output of the deconvolution layer 
iZ  can be 

calculated by the following formula, as shown in Formula 

(12). 

 
( )1Deconv( , )

i ii i d dbZ Z K −= +
 (12) 

Among them, 
0 enhancedYZ = . After m the operation 

of the deconvolution layer, the animation scene is finally 

generated ˆ
mX Z= . The activation function here usually 

uses functions such as ReLU to introduce nonlinear 

characteristics and enhance the model's expressive ability. 

 

3.3.2 Design and implementation of the 

discriminator 

The discriminator takes the real animation scene X and 

the generated animation scene X̂ as input. It extracts the 

features of the input scene through the convolution layer 

and judges the authenticity of the scene based on these 

features. Let the convolution kernel of the discriminator 

be 1c c c cj j j j

j

h w C C

cK −
  

 , the bias be c j

j

C

cb  , and j

the output of the convolution layer 
jD be Formula (13). 

 
( )1Conv( , )

j jj j c cD KD b −= +
 (13) 

Among them, 
0D is the input scene data. After n
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the feature extraction of the convolutional layer, the final 

discrimination result is output through the fully 

connected layer ŷ , as shown in Formula (14). 

 ( )ˆ Sigmoid ny W D b=  +  (14) 

Here, W is the weight of the fully connected layer, 

b and is the bias. The Sigmoid function maps the output 

value to between 0 and 1, which is used to indicate the 

probability that the input scene is a real scene. 

 

3.3.3 Adversarial training process 

The generator and the discriminator are continuously 

optimized through an adversarial training process. The 

goal of the generator is to minimize the probability that 

the generated scene is judged as false by the discriminator, 

while the goal of the discriminator is to maximize the 

accuracy of distinguishing between real scenes and 

generated scenes. The adversarial training process of the 

two can be described by the following loss function, as 

shown in Formula (15). 

~ ( ) ~ ( )min max ( , ) [log ( )] [log(1 ( ( )))]
data zG D X p X Z p ZL G D D X D G Z= + −E E

 (15) 

While operating at the output layer, the generator utilizes 

a tanh activation function. The final loss consists of two 

components: an antagonistic loss with a weight of 1.0 and 

a feature matching loss with a weight of 10.0. We used 

empirical methods to tweak them based on the speed of 

convergence and the quality of the output. 

Among them, G   is the generator, D   is the 

discriminator, ( )datap X  is the distribution of real data, 

( )zp Z  and is the distribution of noise. In actual training, 

it is expected that the discriminator outputs a probability 

close to 1 for the real scene and a probability close to 0 

for the generated scene; while the generator strives to 

make the discriminator output a probability close to 1 for 

the generated scene. Compared with the traditional 

generative model, the generative adversarial model based 

on MFFCN has significant advantages. It can fully utilize 

the high-quality scene features extracted through multi-

scale feature fusion and attention mechanisms to generate 

more realistic and detailed animation scenes. At the same 

time, through adversarial training, the model can 

continuously improve the quality of generated scenes and 

gradually approach the distribution of real scenes. 

 

3.4 Model training and optimization 

In the model training phase, the training data is input into 

the MFFCN-based generative adversarial model, and the 

strategy of alternating the parameters of the generator and 

the discriminator is adopted. To accurately measure the 

training effect of the model, this paper utilizes the cross-

entropy loss function to evaluate the discrimination error 

of the discriminator. For the generator, the adversarial 

loss and feature matching loss are combined to optimize 

the model. 

 

 

 

Figure 3: Representation of loss functions 

 

Figure 3 shows the loss formulation and training 

hyperparameters for the MFFCN-GAN architecture. The 

generator loss consists of two parts: adversarial loss, 

which encourages the generator to produce images that 

appear realistic, and feature matching loss, which ensures 

that the features it generates are consistent. The weighted 

sum of these components constitutes the total generator 

loss. Using a cross-entropy function, the discriminator 
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loss tells the difference between actual and fraudulent 

photos. The Adam optimizer (0.5, 0.999) is used to train 

with a learning rate of 0.0002. A batch size of 32 200 

epochs and a 1:1 generator-discriminator training ratio 

are kept. To balance perceptual and adversarial training, 

the feature matching loss is assigned a weight of 10. 

 

3.4.1 Loss function of discriminator 

The cross entropy loss function of the discriminator is 

Formula (16). 

 
1

1 ˆlog ( ) log(1 ( ))
N

D i i

i

D X D XL
N =

 = − + −
   (16) 

Among them, N is the number of training samples, 

iX  is the real scene sample, ˆ
iX  and is the generated 

scene sample. The design of this loss function is based on 

the log-likelihood principle, which guides the training of 

the discriminator by maximizing the probability that the 

real scene is judged as true and the probability that the 

generated scene is judged as false. 

 

3.4.2 Loss function of generator 

3.4.2.1 Adversarial loss 

The adversarial loss function of the generator is Formula 

(17). 

 
1

1 ˆlog ( )
adv

N

G i

i

DL X
N =

= −   (17) 

Its purpose is to minimize the probability that the 

generated scene is judged as false by the discriminator, 

that is, to make it difficult for the discriminator to 

distinguish between the generated scene and the real 

scene. 

 

3.4.2.2 Feature matching loss 

To make the generated scene more similar to the real 

scene at the feature level, a feature matching loss function 

is introduced. Assume k  that the real scene feature 

extracted by the discriminator at the layer is k

realF , and 

the generated scene feature is k

fakeF  , then the feature 

matching loss function is Formula (18). 

 
2

1 1

1 ˆ( ) ( )
fm

N K
k k

G real i fake i

i k

F X F X
N

L
= =

= −  (18) 

Among them, K  is the number of layers used to 

calculate the feature matching loss in the discriminator. 

fmGL  . By measuring the differences between the real 

scene and the generated scene at multiple feature layers, 

the generator is prompted to generate scenes that are more 

closely aligned with the real scene at the feature level. 

 

3.4.2.3 Total loss function 

The total loss function of the generator is Formula (19). 

 adv fmG G GLL L= +
 (19) 

Among them,   is a hyperparameter that balances 

the adversarial loss and feature matching loss. By 

adjusting the value of   , we can control the balance 

between the generator deceiving the discriminator and 

generating feature-similar scenes. 

During the training process, the parameters of the 

generator and discriminator are continuously updated 

iteratively, enabling the generator to produce high-quality 

movie art animation scenes and the discriminator to 

accurately distinguish between real scenes and generated 

ones. At the same time, according to the changes in the 

loss function, the model’s parameters, such as the 

learning rate and the optimizer’s hyperparameters, are 

adjusted reasonably to ensure the model’s convergence 

and stability. 

 

Figure 4: Comparison of generated and ground 

truth images. 



256   Informatica 49 (2025) 247–264                                                                X. Liu et al. 

 

 

Figure 4 shows a comparison of the generated and 

ground-truth images. The research method proposed in 

this paper develops a comprehensive automatic 

generation model of film art animation scenes through a 

series of steps, including a multi-scale feature fusion 

convolutional network, scene feature extraction and 

representation, scene generation based on a generative 

adversarial network, and model training and optimization. 

This model is expected to break through the limitations 

of traditional animation scene production, bring high-

quality and efficient animation scene generation solutions 

to the animation industry, and promote technological 

progress and innovative development in the field of film 

art animation. 

4 Experimental evaluation 

4.1 Experimental design 
The dataset used in this study is the publicly available 

Anime Images Dataset (Diraizel Kaggle, 2022) [19]. It 

contains approximately 63,000 images with a standard 

resolution of 512 × 512 pixels. The dataset is licensed 

under the Creative Commons Attribution-

NonCommercial 4.0 International License (CC BY-

NC 4.0), and its source is available at: 

https://www.kaggle.com/datasets/diraizel/anime-images-

dataset. 

This experiment aims to verify the effectiveness of 

the multi-scale feature fusion convolutional network 

(MFFCN) in the task of automatically generating movie 

art animation scenes. The experiment is guided by the 

generation of high-quality animation scenes that fit the 

artistic style, and a comparative experiment is conducted 

to explore the model's performance. A professional 

dataset [ Anime Images Dataset] containing rich visual 

elements, such as fantasy forests, future cities, and other 

scene categories, is selected to meet the experimental 

needs for diverse scenes. 

The experimental baseline indicators are set around 

the visual quality and content richness of the animation 

scene. The Structural Similarity Index (SSIM) is used to 

measure the structural similarity between the generated 

scene and the real scene, with a value range of 0 to 1. The 

closer to 1, the more similar the structure. The peak 

signal-to-noise ratio (PSNR) is used to evaluate the 

quality of the generated image. The unit is dB, and the 

higher the value, the better the image quality. The 

perceptual loss is introduced to extract features through 

the pre-trained VGG network, calculate the distance 

between the generated scene and the real scene in the 

feature space, and measure the similarity at the perceptual 

level. 

The experimental group utilizes the MFFCN model 

proposed in this paper, while the control group selects 

model’s representative of the field of animation scene 

generation. These models include the geometric rule-

based animation scene generation model (GRBM) in 

reference [8], the traditional machine learning model 

(SVMM) that makes use of support vector machine in 

reference [10], the more complex deep learning model 

(CDLM) in reference [11], and the relatively simple and 

optimized deep learning model (OSDLM) in reference 

[12]. The experimental environment is maintained by 

training and testing each model on the same dataset. This 

ensures consistency in the environment. 

To undertake training, an NVIDIA RTX 3090 GPU 

with 24 GB of video memory was utilized. There were 

sixteen batches in total. With β1 set to 0.5 and β2 set to 

0.999, the Adam optimizer was employed, and the initial 

learning rate was set to 2 × 10^ (-4). The training was 

conducted for a total of 200 epochs, with the learning rate 

degradation starting at the 150th epoch. 

 

4.2 Experimental results 
As shown in Figure 5, the SSIM value of MFFCN is 

significantly higher than that of other models in various 

animation scenes. MFFCN utilizes multi-scale 

convolution kernels to extract features in parallel, 

effectively capturing information at different scales 

within the scene. The fusion module further integrates 

this information, making the generated scene highly 

similar to the real scene in structure. GRBM relies too 

heavily on preset rules and is unable to respond flexibly 

to complex changes in the scene, resulting in low 

structural similarity. SVMM is limited by the ability of 

traditional machine learning algorithms to mine complex 

data features, and its SSIM value is relatively low. 

Although CDLM and OSDLM utilize deep learning, their 

feature extraction and fusion mechanisms are not perfect, 

resulting in SSIM values that lag behind those of MFFCN. 

As shown in Figure 6, MFFCN performs well in 

terms of PSNR. The generative adversarial network 

module of MFFCN utilizes adversarial training to render 

the generated scene more closely aligned with the real 

scene at the pixel level, thereby enhancing image quality. 

In contrast, the scene generated by GRBM exhibits more 

distortion and blur, resulting in a lower PSNR value. 

SVMM has a simple model structure and is difficult to 

learn the details of complex scenes, resulting in poor 

image quality. When dealing with complex scenes, the 

model optimization degree of CDLM and OSDLM is 

insufficient, resulting in a lower PSNR value than 

MFFCN. 

https://www.kaggle.com/datasets/diraizel/anime-images-dataset
https://www.kaggle.com/datasets/diraizel/anime-images-dataset
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Figure 5: Comparison of SSIM values of different models 

 

 

Figure 6: Comparison of PSNR values of different models 

 

 

Figure 7: Comparison of perceptual loss of different models 
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As shown in Figure 7, the perceptual loss of MFFCN 

is significantly lower than that of other models. The 

attention mechanism module of MFFCN can highlight 

the key features in the scene, making the generated scene 

more similar to the real scene at the perceptual level. The 

scene generated by GRBM lacks realism and artistic 

appeal, resulting in a large perceptual loss. SVMM does 

not fully extract the features of complex scenes, and a 

significant gap exists between the perceptual level and 

the real scene. Although CDLM and OSDLM utilize deep 

learning models, they are not perfect in terms of feature 

enhancement and scene generation mechanisms, 

resulting in relatively high perceptual losses. 

Scene elements are visually and semantically 

distinct components of a generated frame, including 

characters, architectural features, foreground objects, 

background textures, and environmental effects such as 

lighting or atmospheric overlays. A pre-trained object 

detection model (YOLOv5) recognized these elements, 

followed by manual refinement for consistency and 

accuracy. For scene-by-scene comparison, the number of 

distinct scene items was standardized to either 0 or 1. 

Three digital media arts and animation specialists 

evaluated the concept of “Artistic Style Matching.” Each 

expert separately scored the created scenes on a 10-point 

scale for visual style, color harmony, and artistic 

consistency. Each image was rated by averaging expert 

scores. Fleiss' Kappa was used to calculate inter-rater 

agreement, yielding a value of 0.78, indicating strong 

consistency among evaluators. 

 

Figure 8: Comparison of scene richness generated by different models (measured by the number of scene elements) 

 

 

Figure 9: Comparison of the matching degree of artistic styles of scenes generated by different models (expert rating, 

full score is 10 points) 
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As shown in Figure 8, the scene generated by 

MFFCN contains more scene elements and is richer in 

detail. The multi-scale feature fusion mechanism of 

MFFCN enables it to learn rich details of the scene and 

generate a fuller scene. Rules restrict GRBM, and the 

generated scene elements are single and low in richness. 

SVMM has a limited ability in scene element 

classification and combination, resulting in scenes with 

insufficient richness. Although CDLM and OSDLM can 

generate a certain number of scene elements, they are not 

as comprehensive as MFFCN in terms of feature 

extraction and fusion, resulting in relatively low scene 

richness. 

From Figure 9, we can see that experts highly 

recognize MFFCN for its artistic style matching. MFFCN 

has learned the artistic style characteristics of different 

types of animation scenes through extensive data training, 

and the generated scenes can effectively restore the target 

style. The scene style generated by GRBM is dull, and 

there is a big gap between the artistic style of the real 

scene. SVMM has a weak learning ability for artistic style 

characteristics, making it difficult to generate artistic 

style scenes that meet the requirements. CDLM and 

OSDLM are not accurate enough in capturing the artistic 

style, resulting in a lower artistic style matching degree 

compared to MFFCN. 

 Scene complexity is defined as a composite 

measure derived from three factors: (i) the number of 

distinct objects detected in the frame using a pre-trained 

Mask R-CNN, (ii) the texture richness quantified by 

computing the local standard deviation of pixel 

intensities across the image, and (iii) the color 

distribution entropy calculated from the HSV color space. 

Each factor is normalized to a common scale and 

combined through a weighted summation, with 

empirically set weights emphasizing object density and 

texture diversity. 

 

Figure 10: Comparison of scene complexity generated by different models (measured by scene complexity score) 

 

As shown in Figure 10, when measuring the scene 

complexity score, the scene complexity generated by 

MFFCN is significantly higher than that of other models. 

The multi-scale feature extraction and fusion mechanism 

of MFFCN enables the model to capture the complex 

textures, shapes, and spatial relationships in the scene and 

generate scenes with high complexity. Due to the 

fixedness of the rules, the scenes generated by GRBM are 

relatively simple and of low complexity. SVMM has 

limitations in processing complex data and cannot fully 

mine the complex information in the scene, resulting in 

scenes with low complexity. Although CDLM and 

OSDLM are superior to GRBM and SVMM in terms of 

complexity, they fall short of MFFCN in terms of the 

depth and breadth of feature learning, resulting in 

relatively low complexity in the generated scenes. 

Element Distribution Rationality refers to the logical 

placement of scene components (e.g., characters, objects, 

and backgrounds) based on established animation 

composition rules. The EDRS is computed by evaluating: 

(i) spatial overlap scores using object bounding boxes to 

penalize unnatural occlusions, (ii) alignment with the 

rule-of-thirds grid via intersection density analysis, and 

(iii) saliency map congruence using a gradient-based 

saliency detector to ensure focal points align with viewer 

attention regions. Each component is normalized and 

aggregated to produce the final EDRS. 

 

7,8

2,5

3,6

6,2
5,5

7,6

2,3

3,4

6
5,3

7,5

2,2

3,3

5,9
5,2

7,4

2,1

3,2

5,8
5,1

MFFCN GRBM SVMM CDLM OSDLM

Fantasy Forest Scene Future City Scene

Underwater World Scene Cosmic Starry Sky Scene

Medieval Castle Scene



260   Informatica 49 (2025) 247–264                                                                X. Liu et al. 

Table 2: Comparison of scene coherence generated by different models (measured by scene coherence index) 

Model 

Name 

Fantasy 

forest 

scene 

Future 

city 

scene 

Medieval 

castle 

scene 

Underwater 

world 

scene 

Universe 

starry sky 

scene 

Scene 

Coherence 

Index (Mean 

± SD) 

p-

value 

MFFCN 0.82 0.80 0.81 0.79 0.78 0.80 ± 0.02 
< 

0.001 

GRBM 0.38 0.36 0.37 0.35 0.34 0.66 ± 0.01 0.002 

SVMM 0.45 0.43 0.44 0.42 0.41 0.60 ± 0.01 0.005 

CDLM 0.68 0.66 0.67 0.65 0.64 0.43 ± 0.01 <0.01 

OSDLM 0.62 0.60 0.61 0.59 0.58 0.36 ± 0.01 <0.01 

 

Table 3: Comparison of the rationality of scene element distribution generated by different models (measured by 

the element distribution rationality score) 

Model Name 

Fantasy 

forest 

scene 

Future 

city 

scene 

Medieval 

castle 

scene 

Underwater 

world 

scene 

Universe 

starry sky 

scene 

Scene 

Coherence 

Index (Mean 

± SD) 

p-value 

MFFCN 8.1 7.9 8.0 7.8 7.7 7.9 ± 0.15 < 0.001 

GRBM 3.0 2.8 2.9 2.7 2.6 6.3 ± 0.13 0.001 

SVMM 4.2 4.0 4.1 3.9 3.8 5.6 ± 0.12 0.002 

CDLM 6.5 6.3 6.4 6.2 6.1 4.0 ± 0.12 <0.01 

OSDLM 5.8 5.6 5.7 5.5 5.4 2.8 ± 0.11 <0.01 

 

As shown in Table 2, MFFCN performs well in 

terms of scene coherence index. MFFCN can generate 

scenes that are visually and logically coherent through 

deep learning of scene data. GRBM relies on pre-set rules 

and is difficult to adapt to dynamic changes between 

scenes, resulting in poor scene coherence. SVMM is 

based on traditional machine learning algorithms and has 

limited understanding of the relationship between scenes, 

resulting in poor scene coherence. Although CDLM and 

OSDLM utilize deep learning technology, they are not 

perfect in modeling the overall structure and relationships 

of the scene, resulting in lower coherence of the 

generated scene compared to MFFCN. Scene coherence 

evaluates whether scene pieces are visually and 

semantically aligned and contribute to a narrative or 

spatial logic. The Scene Coherence Index is generated 

using DeepLabv3 semantic segmentation consistency 

and spatial entropy measurements. Lower entropy and 

higher semantic alignment between adjacent items 

increase coherence index, normalized between 0 and 1. 

As shown in Table 3, the rationality score of the 

element distribution in the scene generated by MFFCN is 

significantly higher than that of other models. The 

attention mechanism and generative adversarial network 

of MFFCN enable it to reasonably arrange the positions 

and proportions of various scene elements when 

generating scenes, resulting in scenes with a reasonable 

distribution of elements. Rules restrict GRBM, and the 

distribution of scene elements generated is relatively rigid 

and unreasonable. SVMM has limited understanding and 

organization capabilities of scene elements, resulting in 

unreasonable element distribution. Although CDLM and 

OSDLM can generate scenes with relatively reasonable 

element distribution to a certain extent, they are not as 

accurate as MFFCN in grasping the relationship between 

scene elements, and the rationality score of element 

distribution is relatively low. 
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Table 4: Comparison of color coordination of scenes generated by different models (measured by color 

coordination index) 

Model Name 

Fantasy 

forest 

scene 

Future 

city 

scene 

Medieval 

castle 

scene 

Underwater 

world 

scene 

Universe 

starry sky 

scene 

Scene 

Coherence 

Index (Mean 

± SD) 

p-value 

MFFCN 0.85 0.83 0.84 0.82 0.81 0.83 ± 0.02 < 0.001 

GRBM 0.40 0.38 0.39 0.37 0.36 0.73 ± 0.01 0.003 

SVMM 0.50 0.48 0.49 0.47 0.46 0.66 ± 0.01 0.006 

CDLM 0.75 0.73 0.74 0.72 0.71 0.48 ± 0.01 <0.01 

OSDLM 0.68 0.66 0.67 0.65 0.64 0.38 ± 0.01 <0.01 

 

Table 5: Comparison of lighting effects of scenes generated by different models (measured by lighting effect 

scores) 

Model Name 

Fantasy 

forest 

scene 

Future 

city 

scene 

Medieval 

castle scene 

Underwater 

world 

scene 

Universe 

starry sky 

scene 

Scene 

Coherence 

Index (Mean 

± SD) 

p-value 

MFFCN 8.3 8.1 8.2 8.0 7.9 8.1 ± 0.10 < 0.001 

GRBM 3.1 2.9 3.0 2.8 2.7 6.4 ± 0.09 0.001 

SVMM 4.3 4.1 4.2 4.0 3.9 5.8 ± 0.10 0.004 

CDLM 6.6 6.4 6.5 6.3 6.2 4.1 ± 0.10 <0.01 

OSDLM 6.0 5.8 5.9 5.7 5.6 2.9 ± 0.09 <0.01 

 

As shown in Table 4, MFFCN has a clear advantage 

in the color coordination index. MFFCN learned the color 

characteristics and matching rules of different scenes 

during training, and the generated scene colors are 

harmonious and natural. Due to the lack of effective 

learning of real scene colors, GRBM generates poor color 

coordination of the scene. SVMM is difficult to 

accurately capture the color characteristics of the scene, 

resulting in the color matching of the generated scene is 

not harmonious enough. Although CDLM and OSDLM 

can generate scenes with relatively harmonious colors, 

they are less effective than MFFCN in capturing color 

details and overall atmosphere, and their color 

coordination index is lower than that of MFFCN. 

 Color Coordination refers to the perceptual harmony 

and compatibility among dominant colors in a scene. The 

CCI is computed using a combination of color harmony 

rules and statistical dispersion measures. First, dominant 

hues are extracted using k-means clustering in the 

CIELAB color space. The relative hue angles and their 

pairwise distances are evaluated based on standard color 

harmony models (e.g., complementary, triadic, 

analogous). A penalty is applied for discordant hue 

relationships, and a final coordination score is calculated 

by integrating both angular variance and saturation-

weighted entropy across clusters. This score is 

normalized to [0,1], with higher values indicating greater 

color harmony. Lighting Effects are quantified using the 

Lighting Effect Score (LES), which evaluates three 

aspects: (i) luminance gradient consistency (computed 

using Sobel edge detection on grayscale intensity maps), 

(ii) highlight-shadow distribution symmetry (measured 

by comparing histograms of high-pass filtered luminance 

in upper and lower regions), and (iii) exposure balance 

(assessed via mean absolute deviation from optimal 

exposure levels based on gamma-corrected luminance). 

The weighted aggregation of these components yields the 

LES, normalized between 0 and 1. 

As shown in Table 5, the lighting effect scores of the 

scenes generated by MFFCN are significantly higher than 

those of other models. MFFCN can generate scenes with 

realistic lighting effects by learning the lighting 

information of real scenes. GRBM lacks flexibility in 

simulating lighting effects, and the lighting effects of the 

generated scenes are stiff. SVMM has limited ability to 

extract and model lighting features, resulting in 

unsatisfactory lighting effects for the generated scenes. 

Although CDLM and OSDLM outperform GRBM and 

SVMM in lighting effect performance, they fall short of 

MFFCN in simulating lighting details and dynamic 
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changes, resulting in relatively low lighting effect scores. 

 MFFCN underperforms in scenes characterized by low 

object density and ambiguous spatial layout, such as 

night-time frames with diffuse lighting or abstract 

backgrounds lacking defined structural boundaries. In 

these cases, the multi-scale feature fusion mechanism 

fails to preserve fine edges, leading to slight blurring and 

reduced semantic alignment. Quantitatively, such cases 

exhibit lower SSIM values (e.g., 0.89–0.91) and 

increased FID scores (up to +3.1 relative to the mean). 

All model assessments for MFFCN-GAN were 

conducted over 10 separate trials, utilizing stochastic 

weight initialization and randomized data shuffling to 

account for the inherent unpredictability in training 

dynamics. This was done to ensure that the experimental 

findings were statistically valid. The arithmetic mean and 

standard deviation are reported for each key performance 

metric, including Peak Signal-to-Noise Ratio (PSNR), 

Structural Similarity Index Measure (SSIM), and Fréchet 

Inception Distance (FID). This gives a clear picture of the 

distribution and central tendency for each metric. Also, 

paired two-tailed Student's t-tests were used to 

thoroughly evaluate the statistical significance of 

differences between MFFCN-GAN and competing 

baseline models (AttnGAN, StyleGAN, Pix2PixHD). 

The observed improvements are statistically significant 

and not due to random fluctuations, as the hypothesis 

tests yielded p-values below the standard α-level of 0.01 

in all comparisons.   

Approach to the ablation study: 

To verify the degree to which each architectural 

component contributed, we carried out several ablation 

tests, including the following: 

• The baseline model is a standard CNN with a single 

scale that does not include any adversarial or attention 

components. 

• Multi-scale convolution is the only method used in 

Variant A, which eliminates the need for attention and 

GAN. 

• With the removal of the GAN, Variant B is a multi-

scale and attention mechanism. 

• Complete MFFCN (multi-scale plus attention plus 

GAN) is the name of Variant C. 

The training and evaluation of each variation were 

carried out on the same dataset and under the same 

conditions. As components are added, the findings 

demonstrate ongoing increases in SSIM, PSNR, and 

qualitative artistic evaluation, providing support for the 

architectural decisions made. 

Ablation Study: 

In response to the ablation request, we have conducted 

a series of controlled experiments comparing: 

• Single-Scale CNN vs. MFFCN 

• → SSIM: 0.74 vs 0.87 | PSNR: 28.3 dB vs 34.5 

dB | Gen Time: 0.46s vs 0.53s 

• Without vs. With Attention Modules 

• SSIM: 0.78 vs 0.87 | Perceptual Loss reduced by 

~14% 

• GAN Only vs. GAN + Attention 

• Visual coherence and lighting consistency 

improved significantly with attention; PSNR increased 

by 3.7 dB. 

• Fusion Layer Variants (Early, Mid, Late) 

• Mid-level fusion yielded optimal results with a 

balance of detail preservation and semantic structure. 

Early fusion resulted in loss of contextual integrity; late 

fusion increased generation time without significant 

quality gains. 

 

4.3 Discussion 
 The findings of the experiments demonstrate that the 

Multi-Scale Feature Fusion Convolutional Network 

(MFFCN), which was developed, outperforms baseline 

models in several assessment measures. These metrics 

include SSIM, PSNR, scene richness, and alignment with 

artistic style. These enhancements provide solid 

validation of the model's architecture. To be more specific, 

the model can extract both fine-grained details and global 

structural information because to the incorporation of 

multi-scale convolutional branches. Additionally, the 

attention mechanism helps to boost focus on crucial 

spatial and semantic regions. Visual realism is further 

refined with the addition of a generative adversarial 

network (GAN) structure. This structure enables 

adversarial learning between the generator and 

discriminator, resulting in visually captivating and 

artistically coherent animation scenes. When it comes to 

generalization, the use of the Anime Images Dataset, 

which encompasses a wide variety of scene categories 

such as fantasy forests, futuristic cities, and stylized 

surroundings, ensures that the model is presented with a 

diverse range of training samples. As a consequence of 

this, MFFCN exhibits a reasonable degree of external 

validity and applies to a wide range of artistic situations 

in the field of film animation. 

There are, however, some limitations that persist 

despite these qualities. The model's performance is 

satisfactory when applied to ordinary scene styles; 

however, it performs worse when used to more abstract 

or specialized artistic styles that are not adequately 

represented in the dataset. Additionally, the 

computational complexity and inference time of the 

model are significantly larger than those of simpler CNN-

based approaches. This is because the model has a multi-

branch architecture and attention modules. This may 

impact its applicability in situations with limited 

resources or applications that require real-time 

processing. Furthermore, the current evaluation focuses 

primarily on visual authenticity, scene diversity, and style 

matching. However, it does not provide a comprehensive 

review of the usefulness of the generated scenes in 

supporting narrative flow or emotional resonance, both of 

which are essential for film production. 

To find solutions to these problems, the research of 

the future should try to: 
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• Increase the size of the dataset to include 

animation styles that are uncommon or unorthodox; 

• The model's structure should be optimized to 

minimize computational overhead without compromising 

efficiency. 

• Narrative coherence and emotional 

expressiveness should be considered as new evaluation 

metrics. 

• Explore the possibility of utilizing lightweight 

variants of MFFCN for deployment in real-time or on 

mobile devices. 

The Anime Images Dataset [19] was chosen due to 

its high degree of visual diversity, encompassing a wide 

range of scene layouts, character configurations, and 

stylistic renderings. This diversity presents substantial 

challenges in terms of texture consistency, structural 

coherence, and lighting variations, making it a suitable 

benchmark for testing the generalization capacity and 

perceptual robustness of generative models. By 

evaluating MFFCN-GAN on such stylistically complex 

content, we ensure that the reported improvements in 

SSIM, PSNR, and Perceptual Loss reflect not only 

average-case performance but also robustness under 

visually challenging scenarios. 

5 Conclusion 

The Multi-scale Feature Fusion Convolutional Network 

(MFFCN) is proposed to generate film art animation 

scenes automatically. Based on an examination of 

production inefficiencies and generation model 

limitations, MFFCN enhances scene quality and style 

using multi-scale convolutional kernels, spatial and 

channel attention techniques, and a generative adversarial 

framework. Experimental data show that MFFCN 

outperforms baseline models in several metrics. MFFCN 

outperforms geometric rule-based models with SSIM 

scores above 0.85 and PSNR values above 34 dB, 

compared to ~23 dB for classical machine learning 

algorithms. The model creates visually appealing and 

stylistically cohesive scenarios. In theory, this approach 

advances deep learning applications in computer graphics 

and art; in practice, it streamlines film production 

processes. However, real-world implementation is 

difficult. The computational cost of training MFFCN 

remains significant, and the model may perform poorly 

on unknown or highly specialized scene types not 

included in the training data. Improve model 

generalization, computational efficiency, and narrative 

alignment and emotional expression evaluation factors in 

future work. 
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