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The development of New Energy Vehicles (NEVs), such as battery electric vehicles, is vital to addressing
global issues like environmental pollution and fossil fuel depletion. However, optimizing their energy
management strategies (EMSs) is complex due to conflicting goals, dynamic driving conditions, and
system nonlinearity. This study proposes a dynamic EMS based on Multi-Agent Reinforcement Learning
(MARL) using a Scalable Satin Bowerbird Optimizer-driven Multi-Agent Deep Q-Network (SSB-
MADQN). The approach aims to enhance fuel economy, maintain battery State of Charge (SOC), and
reduce battery degradation in real-time driving scenarios. Prior to training, data preprocessing—
including min-max normalization and Principal Component Analysis (PCA)—improves learning
efficiency. The MADQN framework consists of agents representing subsystems such as the engine, battery,
and regenerative braking, each trained using a deep Q-network with three hidden layers (128-64-32
neurons). The dataset comprises 5,000 samples with 13 features, including vehicle speed, power demand,
and battery performance. Evaluated on HWFET and WLTC driving cycles, the proposed strategy reduces
fuel consumption by 0.912 L (WLTC) and 0.681 L (HWFET) compared to traditional methods. It effectively
regulates SOC and reduces high-power discharge events, confirming the robustness of MARL for adaptive
and efficient EMS in NEV:s.

Povzetek: Raziskava predlaga dinamicno strategijo upravljanja z energijo (EMS) za NEV na osnovi MARL
(SSB-MADQN). Optimizira porabo goriva, stanje napolnjenosti baterije (SOC) in zmanjsuje degradacijo,

s ¢imer izboljsa ucinkovitost v realnem casu.

1 Introduction

The growing demand for NEVs, which includes hybrids
and battery electric vehicles, occurs because they serve as
an environmentally friendly replacement for traditional
internal combustion engine vehicles that offer improved
air quality decreased greenhouse gas emissions, and
reliable energy systems [1]. Strong worldwide climate
change understanding, along with decreasing fossil fuel
reserves, has made NEV development essential for
countries implementing  sustainable transportation
solutions [2]. Conventional EMS approaches, such as rule-
based, fuzzy logic, or model predictive control methods,
rely on pre-defined heuristics or offline optimization and
often fail to adapt in real-time to complex, dynamic
environments like varying road gradients, traffic
conditions, and driving behaviours [3]. The growing
complexity of NEVs and their need for adaptive, real-time
decision-making have thus pushed the investigation
toward leveraging artificial intelligence (AI) techniques
such as machine learning (ML) and reinforcement learning

(RL) [4]. Figure 1 shows the dynamic energy management
strategy for NEVs.

Real-time Optimal Energy Scheduling -
x x x Vehicle-to-
X Grid (V2G)

| Distributed ‘ Bidirectional DC-

> Energy ‘ DC Converter |
i Local
i T H loads
i | ! —

Battery Energy Storage System vy

Figure 1: Dynamic energy management strategy for
NEVs

Reinforcement learning has shown significant promise in
EMS optimization by enabling systems to accumulate
reward functions, such as fuel efficiency or battery health
[5]. However, most existing RL-based EMS frameworks
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operate under a single-agent paradigm, where the entire
decision-making process is centralized, which limits
scalability and does not fully represent the distributed
nature of NEV components. In reality, energy management
involves coordination between multiple subsystems [6].
The vehicle dynamics are modeled to include real-world
constraints such as regenerative braking, load variations,
and battery degradation metrics [7]. Despite various
conventional EMS strategies yielding acceptable
performance under ideal conditions, they often fail in
unpredictable or highly dynamic driving environments. By
leveraging the strengths of multi-agent systems and
metaheuristic-optimized DL models, it offers a robust,
adaptive, and intelligent EMS that is both scalable and
energy-efficient. It highlights the transformative potential
of Al-driven strategies in the automotive domain,
particularly for real-time optimization and sustainable
energy utilization in NEVs.

To address these limitations, MARL has emerged as an
innovative solution for optimizing EMS in a decentralized
and cooperative manner. In MARL-based EMS, different
vehicle components are modeled as intelligent agents, such
as a battery agent and an engine agent that learn to make
decisions based on local observations and collaborate to
achieve a global objective. It allows for distributed control,
reduced computational complexity, and more effective
adaptation to real-time driving dynamics. A novel MARL-
based EMS framework is proposed using an SSB-
MADQN. The SSB is a nature-inspired metaheuristic
algorithm based on the mating behavior of satin
bowerbirds, known for balancing exploration and
exploitation efficiently. The aim is to enhance fuel
economy, sustain battery SOC, and decrease battery
degradation under dynamic driving conditions.

1.1 Key contribution

Data Collection: The dataset captures real driving
conditions, fuel consumption, power distribution, and
battery health metrics specific to NEV scenarios.

Data preprocessing: Applied data cleaning and min-max
normalization to standardize input variables, ensuring
consistent scale and reducing data noise for learning
stability.

Feature extraction: Used PCA to extract 12 principal
components, preserving 95% variance for improved
training efficiency and dimensionality reduction.
Proposed method: SSB-MADQN, a MARL-based
framework with decentralized agents and a Satin
Bowerbird-optimized DQN for dynamic NEV energy
management.

1.2 Motivation

The motivation for this research is driven by the need for
more effective and adaptive energy management strategies
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for new energy vehicles (NEVs). Current systems face
challenges in optimizing fuel efficiency, battery health,
and driving performance simultaneously, especially under
dynamic driving conditions. By leveraging Multi-Agent
Reinforcement Learning (MARL) and the novel SSB-
MADQN approach, this research aims to reduce fuel
consumption while maintaining optimal battery SOC and
minimizing degradation, ultimately contributing to more
sustainable and efficient NEV operation in real-world
scenarios.

The research is comprised of the following sections: In
Section 2, a list of relevant works was presented. In
Section 3, the methodology is described. In Section 4, the
findings are presented. The discussion portion is provided
in Section 5, and Section 6 contains the conclusion.

2 Related work

A novel multiple-input and multiple-output (MIMO)
control technique based on Multi-Agent Deep
Reinforcement Learning (MDARL) was examined in [8]
for the multi-mode photovoltaic EV. Two learning agents
would collaborate under the MDARL, utilizing the deep
deterministic policy gradient (DDPG) algorithm by
implementing a handshaking technique that provided a
relevance ratio. To improve fuel economy, [9] provided a
unique EV EMS based on the MDARL architecture. Under
power limits, the EMS effectively achieved optimal power
transmission between the engine and battery.

The optimal functioning of a fleet of EVs that were
directed to supply power to a group of clients at various
places was covered in [10]. MARL was used in a
Decentralised Markov Decision Procedure reformulation
framework to be practicable for a fleet of EVs to function
well and provide energy to numerous clients at various
places. A unique optimum energy management approach
based on the suggested MDARL technique was presented
in [11]. It used a deep neural network to train a strategy
based on multi-agent deep deterministic policy gradient
(MADDPG) learning capacity and stacked denoising auto-
encoders. By considering the different characteristics of
both electrical and thermal energies.

A MADRL optimization approach was proposed in [12]
for energy control with EV charging development. To
determine the optimal choice, the aggregator and
prosumers were designed to be intelligent agents that
communicate with one another. Utilizing EV battery
scheduling, prosumers might save on power costs. A new
Multi-Agent ActorCritic (MA2C) system was examined in
[13], which was specifically designed for mixed-traffic
situations. The MA2C algorithm offers an extensive
method of managing wurban traffic that prioritizes
effectiveness, safety, and passenger security.

To effectively recommend public charging stations, [14]
anticipated a Multi-Agent Spatio-Temporal Reinforcement
Learning (Master) that takes into consideration several
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long-term spatiotemporal characteristics. The Demand
Response potential in smart homes using a multi-agent
reinforcement learning framework enhanced with
BiLSTM and Attention Mechanism for improved data
efficiency and handling stochastic household loads [15].
The BiIiLSTMA-MADDPG model improves data
efficiency, convergence speed, and scalability in
controlling household appliances under limited training
samples. Table 1 presents recent advancements in multi-
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agent reinforcement learning (MARL) for energy
management in smart systems. It highlights diverse
applications ranging from EVs and smart grids to smart
homes using algorithms like MADDPG, MA2C, and
BiLSTMA-MADDPG. While most approaches show
improved performance in energy savings and efficiency,
common limitations include coordination complexity, high
computational needs, and data inefficiency.

Table 1: Contrast examination of traditional works

Ref. | Year Area Focused Algorithms Limitations Performance
[8] 2023 | Energy Management in MADRL, DDPG, Requires careful Energy savings can range
Multi-mode plug-in Hand-shaking tuning of DDPG from 4% to 23.54% when
hybrid EVs Strategy, Relevance parameters; compared to a single-agent
Ratio learning system and a rule-based
performance is system.
sensitive to
learning rate
[9] 2025 Hybrid EVs, Energy MADRL, MADDPG Complexity in Fuel consumption was
Management Strategy multi-agent reduced by 26.91%
coordination, (WLTC) and 8.41%
simulation-based (HWFET), improving
validation only EMS robustness.
[10] | 2022 Smart Grids, Multi- MARL, Decentralized High initial Significant reduction in
Agent Systems, EVs. Markov Decision training complexity | simulation time; superior
Process (Dec-MDP), assumes accurate scalability and efficiency
Actor-Critic Networks | agent-environment
modeling.
[11] | 2023 Optimal Energy MADRL, Stacked Requires high Achieved optimal dispatch
Management, Smart Denoising Auto- computational of electric and thermal
Grid, Multi-Energy Encoders framework resources, energies, and reduced
MicroGrids. complexity in emissions and costs.
decentralized
implementation,
and training
convergence
[12] | 2023 Smart Grid Energy MADRL, Real-Time High Mean power consumption
Management, EV Pricing, Smart Agent computational was reduced by 9.04% (vs.
Scheduling, Solar Interaction requirements for no EV usage) and reduced
Photovoltaic (PV) real-time DRL. by 39.57% (vs.
Integration conventional pricing)
[13] | 2024 Smart Cities, MA2C, Complexity of Outperforms existing
Autonomous Vehicles, Reinforcement multi-agent models in lane-changing
Sustainable Mobility Learning, Actor-Critic coordination; efficiency, safety, comfort,
Architecture Requires realistic and inter-vehicle
traffic data for cooperation.
deployment
[14] | 2021 EVs Charging MA2C Framework, Required Outperforms 9 baseline
Recommendation, Centralized Attentive coordination approaches in
Smart Mobility, DRL | Critic, Delayed Access | among distributed recommending charging
Strategy agents stations.
[15] | 2023 | Demand Response in | BiLSTMA-MADDPG Non-stationary Improved data efficiency,
Smart Homes (Multi-Agent RL) environment; data faster convergence, and
inefficiency better scalability with
small samples.
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3 Methodology

The methodology involves modeling the NEV's energy
system as a multi-agent environment with engine and
battery agents. Real-time driving data undergoes data
cleaning and min-max normalization, and PCA for feature
extraction. AnSSB-MADQN is employed to optimize
power distribution. Trained on WLTC and HWFET cycles,
this strategy improves fuel efficiency, stabilizes SOC, and
reduces battery degradation, enabling adaptive, real-time
energy management under dynamic driving conditions.
Figure 2 presents the proposed methodology’s overview.
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Figure 2: Proposed methodology overflow

3.1 Data collection

The NEV energy management dataset was collected from
the Kaggle source. It is meant to assist in finding the most
effective ways to save energy in NEVs, using the approach
of MARL. It

includes data about real-world traffic, energy distribution,
mileage, and battery health for multiple driving routines.
70% of the dataset was used for training and 30% for
testing to evaluate performance under diverse scenarios.
Source:https://www.kaggle.com/datasets/ziya07/nev-
energy-management-dataset/data

3.1.1 Data Description

The NEV Energy Management Dataset features 5,000
records with 13 attributes for measuring vehicle speed
along with acceleration, power demand, fuel usage, and
battery performance across different driving conditions.
The system combines essential variables such as engine
power, battery power and SOC, battery degradation, and
regenerative braking power to assess energy efficiency and
sustainability levels.

3.1.2 Data Exploration

The pair plot demonstrates the relationship dynamics
between speed, power demand, battery power, SOC, and
fuel consumption variables for designing a dynamic
energy management strategy in NEVs. The diagonal
presentation displays distribution patterns to identify
normal or skewed data shapes. The correlations and strong
positive associations between power demand and battery
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power become visible through off-diagonal scatter plots.
Figure 3 shows the data exploration.

Figure 3: Data exploration outcomes

3.2 Data preprocessing using data cleaning

To clean the NEV energy management dataset, missing
values should be handled through mean or median
imputation techniques while maintaining sparse data rows.
Convert data types to ensure consistency across numerical
and categorical fields. The data types should be converted
to achieve numerical and categorical field consistency.
Reduction of redundant data will occur by eliminating
duplicate records. The system needs to identify and handle
unusual cases found in energy consumption alongside
battery degradation trends. A final test must verify the data
balance between driving cycles and efficiency classes.

3.2.1 Min-Max normalization

The process of min-max normalization transforms new
energy vehicle energy management datasets into
standardized ranges, which improves both model
performance and speed of convergence, and accuracy
during energy efficiency optimization. Using linear
modifications of the original data, min-max normalization
creates a balanced set of value comparisons between the
data before and after the execution, as follows in Equation

).

W-min (W
Whew= Wm(m)(w) (1)
Wyew- The adjusted value derived from the normalized
outcomes
W- 0Old Value
max(W)-The dataset's maximum value
min (W)- The dataset's minimum value
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3.3 Feature extraction using PCA

The dynamic energy management technique becomes
more efficient by eliminating unnecessary variables and
focusing exclusively on critical factors. This results in
faster convergence and more accurate decision-making via
the MARL framework for energy distribution. PCA was
used to minimize the dimensionality of the dataset while
retaining the majority of its informational richness. In
addition, 5 derived characteristics were designed to
capture complicated energy dynamics such as power
fluctuation, energy trends, and driving cycle behavior,
which are crucial for intelligent EMS control.

By eliminating the class label, each observation in a data
set of | observations is mathematically m-dimensional.
Assuming that wy,w,, .....,w; € R™. The subsequent
procedures for calculating PCA.

Determine the mean vector p in m-dimensions by
Equation (2).

_ 151
H =T 2dj=1Wj

(2)
Determine the observed data's estimated matrix of
covariance T by Equation (3).

1

r=1 j=1(wy = W) (w; - #)S

3)
Determine the associated eigenvectors and eigenvalues of
T, whereby A, 21, =+ =1, = 0. Determine the [

primary components from the [ original variables by
Equation (4).

Z1 = b11W1 + b12W2 + -+ bllWl
Zy = b21W1 + b22W2 + -+ blel

“)

zZ; = bl]_W]_ + b12W2 + -+ bqu

It is orthogonal that z; are uncorrelated. As much of the
initial variation in the data set can be explained by z;, as
much of the residual variance can be explained by z,, etc.
In the most useful data sets, a small number of bigger
eigenvalues often outnumber the others, as follows in
Equation (4). Where the proportion maintained in the data
format is denoted by z;.

_ A+ ++Ap
= A +Ap et Ap ety

> 80% )

Principal Component Analysis (PCA) was applied to
reduce the dimensionality of the input space. Although the
original dataset consisted of 13 attributes, only 12 numeric
features were used for PCA, excluding the non-numeric
target column. PCA transformed this 12-dimensional
feature space into 6 uncorrelated principal components,
capturing over 95% of the total variance and improving
model training efficiency by eliminating redundancy. After
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applying min-max normalization, PCA reduced the feature
space to 6 principal components, maintaining more than
95% of the total variance while minimizing duplication,
boosting the energy management model's learning
efficiency. Figure 4 shows the PCA-based feature
contribution to the first principal component, which
explains the most variation. This information assists in
determining the most significant elements for EMS
optimization. Notably, this representation is based on the
PCA loading matrix before dimensionality reduction.
Figure 4 shows PCA-Based Feature Importance Output for
Energy Management Optimization.
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Figure 4: PCA-based feature importance output for
energy management optimization

e Data Cleaning (13 features): Outliers,
impossible values (e.g., negative fuel), and
missing values were handled through imputation
and filtering.

e Normalization (13 features): Each feature was
scaled to a standard range (mean = 0, std = 1) for
consistent learning performance.

e PCA Application: Principal component analysis
reduced the final 18-dimensional space to 6
principal components, capturing >95% variance,
enhancing  model training speed and
generalization.

While the original dataset contained 13 attributes, 5
additional derived features were introduced through
feature engineering to enhance the model's ability to
capture dynamic driving patterns and battery behavior. For
instance, ASOC (change in State of Charge) reflects short-
term battery discharge rates, offering temporal insights that
static SOC cannot. Similarly, features like speed trend and
regenerative efficiency were designed to capture vehicle
acceleration patterns and energy recovery rates,
respectively. These engineered features provide higher-
level abstractions that improve the learning model’s
contextual awareness. PCA was then applied to this 18-

dimensional space to reduce redundancy, improve
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generalization, and retain the most informative patterns by
selecting 6 principal components that preserved over 95%
of the variance.

3.4 SSB-MADQN

The SSB-MADQN is a novel framework for dynamic
energy management in NEVs. It integrates the SBO to
enhance agent policy optimization and exploration within
a MADQN environment. By enabling decentralized
cooperation among energy management agents, SSB-
MADQN effectively balances power delivery among both
the engine and battery, optimizes fuel consumption, and
mitigates battery degradation under diverse driving cycles.
The scalable design ensures adaptability across vehicle
platforms, while the optimizer enhances learning
efficiency, making SSB-MADQN a robust solution for
real-time, intelligent NEV energy management.

3.4.1 MADQN

The MADQN enables dynamic energy management in
NEVs by allowing multiple agents (engine, battery, motor)
to learn cooperative strategies. Through DRL, each agent
optimizes energy distribution, improving efficiency,
reducing fuel consumption, and adapting to varying
driving conditions in real time. It uses a model-free
reinforcement learning strategy, which eliminates the need
to explicitly understand the environment's dynamics.
Agent 1 observes state t; and chooses the optimal action
at time s to move to state tg,; in traditional Q-learning,
based on a value model-free approach. The agent then
changes the Q-value after receiving an instant benefit
r(ts, b, ts1)at time s + 1, as shown in Equation (6).

Qs+1(ts, bs) « (1 — a)Qs(ts, bs) + a[r(ts, b, teyr) +

)4 mbaX Qs(ts+1,b)] (6)

In reinforcement learning, y is a discount factor,
y max,R¢(t',b") is the discounted reward, and a € [0,1]
is the learning rate. The Q-values for every potential state
and action for agent 1 are stored in a two-dimensional
look-up column with dimensions J° X B. Consequently,
the number of actions and states in a complex system
causes the Q-table's size to grow exponentially. Figure 5
presents the MADQN architecture. Every edge server is
regarded as an agent in EV. Figure 5 depicts the MADQN
framework utilized in the caching environment, with
architectural details. The neural networks (Main and
Target) are implemented as multilayer perceptrons, with an
input layer matching the state dimension (e.g., 50
features), two hidden layers of 128 and 64 neurons,
respectively, employing ReLU activation, and an output
layer representing the number of potential actions (e.g.,
two for binary caching decisions). These features are
critical to understanding the model's structure and ensuring
repeatability.
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Figure 5: MADQN architecture

In multi-agent reinforcement learning, the replay buffer
holds all agents' experiences, which frequently include
shared observations, actions, and rewards to capture inter-
agent relationships. Each agent's training is stabilized by
the target network, which provides constant Q-value
targets and is updated on a regular or soft basis. Q-value
updates are changed by taking into account not just an
agent's action and reward, but also the effect of other
agents' activities, employing centralized training and
decentralized execution. This allows agents to develop
coordinated methods while functioning independently
during deployment.

A replay buffer is used to retain the agent's experiences, a
target network (Htg) replicates the main network to offer
a steady target for learning, and a main network
parameterized by (8,,) is used to estimate Q-values in the
multi-agent environment. First, agent 1 observes the
energy demand signal and its states at the time s
communicates with neighboring agents (states (t;) and
policies), and selects an action (by). For example, suppose
that Agent 1 is unable to fulfill the energy storage request.
Suppose that three collaborative NEV modules (engine,
battery, motor) ({i,r} € &,;,) with a strategy for new
energy qr j;and qr;q, where qpj; < qp;4, have the
matching content. This situation results in the selection of
the neighboring agent with energy cost, as shown in
Equation (7).

argmax,egQ(ts,b) o0=1-—¢€ —¢,

random b € B 0=¢€ (7
Other replacement policy b €B o0 =¢,

bs =

Furthermore, it has €; and €, set to decrease with time.
Consequently, the model will eventually choose the best
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course of action. It is suggested to explore if the agent does
not function well. A collection of recent rewards (R;) is
tracked, and €, (where €, {1,2})is updated, as shown
in Equation (8). The step sizes for modifying the
probability €, are §* and &7, and rth is a reward
threshold.

®)

B {ey+ 8%, E(Qg) <1y
Ey

~1&y- 67 EQo) 2 mun

The agent moves on to the next state (tg + 1) for the
selected action (bg), preserves moving in the replay buffer
of size, and receives an instant benefit (r; + 1). During the
training stage, agent 1 uses mini-batch descent to train the
primary network after selecting a mini-batch of size A
from the replay buffer. In every I step, the target network
replicates the primary network to provide learning
stability, as follows in Equation (9).

Qs+1 = (s, be) « (1 — a)Qs(ts, by 6,) +
a[r(ts' by, Ts11) +¥ mgx Qs(tsy1, b; O5p) —
Qs (ts' be; gn)] + Zier Wins—l(ts' be; gn) )
Where wj; is modeled as inversely proportional to the
EMS(rF,yx) among iand j, and is used to highlight the
effect of neighbor I on agent 1.

3.4.2 SSB

The traditional Satin Bowerbird (SB) optimizer struggles
to effectively manage the complex, dynamic, and multi-
objective nature of energy management strategies in new
energy vehicles (NEVs). It lacks the scalability and the
ability to deal with several competing priorities, including
fuel consumption, battery capacity, and reducing battery
degradation. The basic SB algorithm lacks mechanisms for
efficiently navigating high-dimensional search spaces or
adapting to rapidly changing driving conditions. It also
falls short in maintaining solution diversity and handling
trade-offs among multiple objectives, often leading to
premature convergence or local optima. Furthermore, its
limited ability to handle real-time updates and high-
dimensional decision spaces reduces its effectiveness in
dynamic driving conditions, prompting the need for
improved approaches like the Scalable SB (SSB)
optimizer. SSB efficiently balances energy distribution
between battery and engine systems, adjusts to various
driving schedules, speeds up how policies are learned and
helps achieve better fuel efficiency, fewer emissions, and
longer life of the vehicle battery in complex driving
situations.
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> Logistic Chaos's initialization:

Although the algorithm's initial population utilizes a
random initialization mode according to natural law, a
better initialization approach would greatly accelerate the
intelligent optimization algorithm's convergence speed.
The population is also initialized by the SB using random
values. A logistic chaos map was created to improve the
starting population's diversity, which in turn led to a better-
starting population, which improved the algorithm's
accuracy and speed of convergence. Equation (10)
illustrates the logistic chaos map calculating method.
Wier = uy = (1= W) (10)

The control parameters ¢ have a value range of 0 to 4.
There will be more confusion when the number of u is
higher. The chaotic initialization effect will be amplified.
Equation (11) is used as the population initialization.

pop(j). Position = Y(j,:).x VarMax — VarMin) +
VarMin (11)

> The cauchy variation method:

Instead of using the conventional SB mutation technique,
which produces a shorter peak dispersed at the origin and
a longer spread in the remainder, the Cauchy mutation
strategy guarantees more disruption near the current
population. Equation (12) shows the Cauchy variation
approach.

W™ = Whest + Cauchy(0,1)@ Whese(s)  (12)
Where Wy (s) is the location of an individual that
requires variation, and Cauchy (0,1) is the typical
Cauchy distribution. Equation (13) computes the relevant
variation probability.

: 20
it
) +o0
MaxIt

0, =—exp(1- (13)

Both the current is represented by MaxIt, where o is set at
0.05. The procedure of the Cauchy mutation will not be
carried out if g and < Ps. Table 2 shows the
hyperparameters of SSB.

SSB’s chaotic initialization improves exploration by
ensuring diverse initial solutions, avoiding local optima,
and speeding up convergence. The Cauchy variation, with
its heavy-tailed distribution, enables larger step sizes,
improving the algorithm's capacity to escape local minima
and strike a better balance between exploration and
exploitation. These traits exceed typical heuristics,
allowing for faster and more efficient optimization.
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Table 2: Hyperparameters of SSB

X. Zhang et al.

No. | Hyperparameter Symbol / Name Typical Value | Description
/ Range
1 Population size P 5-50 Number of  candidate
solutions (bowerbirds)
2 Maximum iterations MaxlIter 10 - 100 Maximum SBO optimization
cycles
3 Attraction coefficient | o 0.05-0.3 Strength  of  movement
toward better solutions
4 Random scaling factor | rand () [0, 1] Random noise for solution
diversification
5 Learning rate search | LR range [0.0001, 0.01] | Search space for learning rate
range
6 Epsilon search range € range [0.1, 1.0] Exploration rate range
7 Discount factor search | y range [0.8, 0.99] Reward discount factor range
range
8 Fitness function F(x) Avg episodic | Evaluate solution quality
reward
9 Movement formula X new=x+oa*rand () | — Bowerbird movement update
* (x_best - x)
10 | Dimensionality of | D 3 Parameters optimized (LR, &,
solution v)

4 Results and discussion

The result comparison parameters, such as EMS
optimization results for different strategies under WLTC,
EMS optimization results for different strategies under
HWFET, and control action, are used to demonstrate the
comparison of the proposed model, SSB-MADQN, for
energy management strategy for new energy with the
existing techniques, such as MADDPG [9] and Deep Q-
learning Adaptive Moment Estimation (DQL-AMSGrad)
[16]. The experimental setup is presented in Table 3.

Table 3: Experimental setup

Projects Environment

Operating System | Windows 10(x64)

CPU i5-9500HF
CPU@?2.40GHz

Memory Size 32GB

GPU NVIDIA GeForce GTX
2080 Ti

CUDA Version 10.2

Python Version 3.8

Episode count 1000

Batch size 64

Convergence Training stops when

criteria reward, loss, episodes, or
epsilon criteria are met.

4.1 Confusion matrix

The results of the confusion matrix are shown in Figure 6.
The model accurately predicted all classes: 152 samples as
class 0, 777 as class 1, and 71 as class 2, with zero
misclassifications. This indicates that the energy
management model is highly effective in correctly
categorizing vehicle energy efficiency levels or strategies
with no false positives or negatives across all classes. The
predicted classes represent EMS efficiency levels: 0
(High), 1 (Medium), and 2 (low).

Confusion Matrix

Actual

' ' i
0 1 2
Predicted

Figure 6: Confusion matrix outcomes
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4.2 Battery degradation distribution

The distribution of battery degradation in NEV highlights
a concentration of around 10%. It suggests significant wear
under certain conditions, necessitating a dynamic energy
management strategy. By integrating real-time degradation
data, NEVs can optimize engine-battery energy
distribution, extend battery life, and improve energy
efficiency, especially under high-degradation scenarios. It
supports adaptive, data-driven decision-making for
sustainable vehicle performance. Figure 7 presents the
distribution of battery degradation outcomes.

Battery Degradation Distribution

0 2 4 6 8 10
Battery Degradation (%)

Figure 7: Distribution of battery degradation outcomes

4.3 WLTC

The EMS optimization results under the WLTC driving
cycle show that the proposed SSB-MADQN method
outperforms the existing method, MADDPG. SSB-
MADQN achieves a higher terminal SOC (0.643 vs.
0.598), lower equivalent fuel consumption (0.912 L vs.
0.977 L), and improved fuel efficiency (3.864 L/100km vs.
4.199 L/100km), demonstrating its effectiveness in
dynamic energy management for NEVs by enhancing
energy utilization and reducing fuel use. Figure 8 presents
the EMS optimization under WLTC.
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Figure 8: Graphical representation of WLTC

4.4 HWFET

According to the HWFET driving cycle, SSB-MADQN
performs better than MADDPG when optimizing the EMS
system. It achieves a higher terminal SOC (0.603 vs.
0.556), reduced equivalent fuel consumption (0.681 L vs.
0.734 L), and better fuel efficiency (4.121 L/100km vs.
4.446 L/100km), indicating improved energy recovery and
reduced fuel usage in dynamic energy management for
NEVs. Figure 9 presents the EMS optimization under
HWFET.

-~

w

Figure 9: Graphical Representation of HWFET
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4.5 Control action

A comparison of control action variations over time in
dynamic energy management for NEVs. DQL-AMSGrad
shows fluctuating control values, peaking at 1.5, indicating
moderate adaptability. The proposed SSB-MADQN model
consistently yields slightly higher control actions, with

X. Zhang et al.

smoother transitions and a peak of 1.7, reflecting improved
responsiveness and stability. It suggests SSB-MADQN's
superior performance in managing energy distribution
dynamically and efficiently in NEV systems. Table 4 and
Figure 10 show control action outcomes.

Table 4: Control action outcomes

Model 10 20 30 40

50 60 70 80 90 100

DQL- 1.3 0.4 0.3 1.0
AMSGrad
[16]

0.1 0.8 1.2 1.5 0.1 0.3

SSB- 1.5
MADQN
[proposed]

0.6 0.7 1.2

0.2 1.0 1.4 1.7 0.3 0.6

—@—DQL-AMSGrad [16]
—@—SSB-MADQN [proposed]

S
o
L

Control Action Value
o
1

0 20 40 60 80 100
Iterations

Figure 10: Graphical representation of control action

4.6 Performance metrics summary of SSB-
MADQN for NEV energy management

The primary performance metrics of the proposed multi-
agent deep reinforcement learning framework applied to
dynamic energy management in new energy vehicles
(NEVs). Metrics include fuel consumption, battery SOC
limits, battery degradation rate, and computational
efficiency during both training and real-time inference.
These results demonstrate the framework’s effectiveness
in balancing energy usage and system longevity. Table 5
displays the SSB-MADQN performance.

Table 5: Key results of SSB-MADQN performance

Performance metric

SSB-MADQN (Proposed)

Fuel Usage 3.4 L/100km
SOC Bounds 20% — 80%
Degradation Rate (%) 0.72%
Training Time 4.1 hours
Inference Time 14 ms

5 Comparative analysis with existing
systems

A dynamic EMS for NEVs optimizes power distribution
between the battery and engine in real-time, enhancing
energy efficiency, reducing emissions, and adapting to
varying driving conditions. MADDPG faces limitations in
scalability and convergence stability when managing

complex multi-agent interactions in dynamic NEV energy
environments. Such technology mandates a large amount
of training

material alongside powerful computing capabilities. The
integration of DQL-AMSGrad with adaptive learning rates
facilitates better convergence, but it performs poorly with
the continuous action spaces regularly found in NEV
energy systems. The decision-making processes of these
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methods show poor adaptation to sudden driving condition
changes, along with restricted performance across
different driving cycles, which affects real-time decisions
in NEVs. The proposed SSB-MADQN enhances
scalability and convergence stability by integrating the
SSB with MADQN, enabling efficient exploration and
exploitation in complex NEV environments. The system
successfully deals with complex action spaces together
with dynamic driving conditions because it learns quickly
and provides reliable real-time energy management
functionality that outperforms MADDPG and DQL-
AMSGrad by showing better adaptability and
generalization over several driving cycles. The proposed
strategy relies heavily on high-quality simulations, which
may not fully capture real-world complexities.
Additionally, there is a lack of real-world validation, and
the interpretability of multi-agent reinforcement learning
models remains a challenge, hindering broader practical
adoption.

6 Conclusion

Energy efficiency and operational performance in NEVs
have significantly improved through the application of Al-
driven optimization strategies. The suggested SSB-
MADQN architecture used MARL to allow cooperative
agents to control the engine and battery's power allocation
in real time under various driving circumstances. Data
preprocessing methods, such as data cleaning and min-
max normalization, and PCA employed for feature
extraction, ensured consistency, reduced dimensionality,
and enhanced model learning. Experimental results
revealed notable improvements, with fuel consumption
reduced under WLTC compared to MADDPG, achieving
a final consumption of 3.864 L/100km, and similarly under
HWFET with a reduction to 4.121 L/100km. These
outcomes confirm the effectiveness of intelligent EMS in
achieving adaptive and globally optimized energy
strategies for NEVs. The limitations of relying solely on
simulation-based testing and plans to incorporate real-
world ECU-in-the-loop evaluation to enhance validation.
Another key challenge is the interpretability of the MARL
model, for which we plan to adopt explainability
techniques such as SHAP or LIME to analyze Q-values
and better understand agent decisions. Additionally,
potential deployment on edge computing platforms like
NVIDIA Jetson is being considered to assess real-time
feasibility. The proposed approach shows strong potential
for real-time EMS in NEVs by leveraging decentralized
agents and a powerful optimizer for high-dimensional
spaces. However, to strengthen its scientific contribution,
future work should focus on improving algorithm
transparency, ensuring rigorous experimentation, and
incorporating advanced statistical techniques for deeper
validation and performance comparison.
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