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The development of New Energy Vehicles (NEVs), such as battery electric vehicles, is vital to addressing 

global issues like environmental pollution and fossil fuel depletion. However, optimizing their energy 

management strategies (EMSs) is complex due to conflicting goals, dynamic driving conditions, and 

system nonlinearity. This study proposes a dynamic EMS based on Multi-Agent Reinforcement Learning 

(MARL) using a Scalable Satin Bowerbird Optimizer-driven Multi-Agent Deep Q-Network (SSB-

MADQN). The approach aims to enhance fuel economy, maintain battery State of Charge (SOC), and 

reduce battery degradation in real-time driving scenarios. Prior to training, data preprocessing—

including min-max normalization and Principal Component Analysis (PCA)—improves learning 

efficiency. The MADQN framework consists of agents representing subsystems such as the engine, battery, 

and regenerative braking, each trained using a deep Q-network with three hidden layers (128-64-32 

neurons). The dataset comprises 5,000 samples with 13 features, including vehicle speed, power demand, 

and battery performance. Evaluated on HWFET and WLTC driving cycles, the proposed strategy reduces 

fuel consumption by 0.912 L (WLTC) and 0.681 L (HWFET) compared to traditional methods. It effectively 

regulates SOC and reduces high-power discharge events, confirming the robustness of MARL for adaptive 

and efficient EMS in NEVs. 

Povzetek: Raziskava predlaga dinamično strategijo upravljanja z energijo (EMS) za NEV na osnovi MARL 

(SSB-MADQN). Optimizira porabo goriva, stanje napolnjenosti baterije (SOC) in zmanjšuje degradacijo, 

s čimer izboljša učinkovitost v realnem času. 

 

1 Introduction 

The growing demand for NEVs, which includes hybrids 

and battery electric vehicles, occurs because they serve as 

an environmentally friendly replacement for traditional 

internal combustion engine vehicles that offer improved 

air quality decreased greenhouse gas emissions, and 

reliable energy systems [1]. Strong worldwide climate 

change understanding, along with decreasing fossil fuel 

reserves, has made NEV development essential for 

countries implementing sustainable transportation 

solutions [2]. Conventional EMS approaches, such as rule-

based, fuzzy logic, or model predictive control methods, 

rely on pre-defined heuristics or offline optimization and 

often fail to adapt in real-time to complex, dynamic 

environments like varying road gradients, traffic 

conditions, and driving behaviours [3]. The growing 

complexity of NEVs and their need for adaptive, real-time 

decision-making have thus pushed the investigation 

toward leveraging artificial intelligence (AI) techniques 

such as machine learning (ML) and reinforcement learning 

(RL) [4]. Figure 1 shows the dynamic energy management 

strategy for NEVs. 

 

 
 

Figure 1: Dynamic energy management strategy for 

NEVs 

 

Reinforcement learning has shown significant promise in 

EMS optimization by enabling systems to accumulate 

reward functions, such as fuel efficiency or battery health 

[5]. However, most existing RL-based EMS frameworks 
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operate under a single-agent paradigm, where the entire 

decision-making process is centralized, which limits 

scalability and does not fully represent the distributed 

nature of NEV components. In reality, energy management 

involves coordination between multiple subsystems [6]. 

The vehicle dynamics are modeled to include real-world 

constraints such as regenerative braking, load variations, 

and battery degradation metrics [7]. Despite various 

conventional EMS strategies yielding acceptable 

performance under ideal conditions, they often fail in 

unpredictable or highly dynamic driving environments. By 

leveraging the strengths of multi-agent systems and 

metaheuristic-optimized DL models, it offers a robust, 

adaptive, and intelligent EMS that is both scalable and 

energy-efficient. It highlights the transformative potential 

of AI-driven strategies in the automotive domain, 

particularly for real-time optimization and sustainable 

energy utilization in NEVs.  

To address these limitations, MARL has emerged as an 

innovative solution for optimizing EMS in a decentralized 

and cooperative manner. In MARL-based EMS, different 

vehicle components are modeled as intelligent agents, such 

as a battery agent and an engine agent that learn to make 

decisions based on local observations and collaborate to 

achieve a global objective. It allows for distributed control, 

reduced computational complexity, and more effective 

adaptation to real-time driving dynamics. A novel MARL-

based EMS framework is proposed using an SSB-

MADQN. The SSB is a nature-inspired metaheuristic 

algorithm based on the mating behavior of satin 

bowerbirds, known for balancing exploration and 

exploitation efficiently. The aim is to enhance fuel 

economy, sustain battery SOC, and decrease battery 

degradation under dynamic driving conditions. 

 

1.1 Key contribution 

Data Collection: The dataset captures real driving 

conditions, fuel consumption, power distribution, and 

battery health metrics specific to NEV scenarios. 

Data preprocessing: Applied data cleaning and min-max 

normalization to standardize input variables, ensuring 

consistent scale and reducing data noise for learning 

stability. 

Feature extraction: Used PCA to extract 12 principal 

components, preserving 95% variance for improved 

training efficiency and dimensionality reduction. 

Proposed method: SSB-MADQN, a MARL-based 

framework with decentralized agents and a Satin 

Bowerbird-optimized DQN for dynamic NEV energy 

management. 

 

1.2 Motivation 

The motivation for this research is driven by the need for 

more effective and adaptive energy management strategies 

for new energy vehicles (NEVs). Current systems face 

challenges in optimizing fuel efficiency, battery health, 

and driving performance simultaneously, especially under 

dynamic driving conditions. By leveraging Multi-Agent 

Reinforcement Learning (MARL) and the novel SSB-

MADQN approach, this research aims to reduce fuel 

consumption while maintaining optimal battery SOC and 

minimizing degradation, ultimately contributing to more 

sustainable and efficient NEV operation in real-world 

scenarios. 

The research is comprised of the following sections: In 

Section 2, a list of relevant works was presented. In 

Section 3, the methodology is described. In Section 4, the 

findings are presented. The discussion portion is provided 

in Section 5, and Section 6 contains the conclusion. 

 

2 Related work 

A novel multiple-input and multiple-output (MIMO) 

control technique based on Multi-Agent Deep 

Reinforcement Learning (MDARL) was examined in [8] 

for the multi-mode photovoltaic EV. Two learning agents 

would collaborate under the MDARL, utilizing the deep 

deterministic policy gradient (DDPG) algorithm by 

implementing a handshaking technique that provided a 

relevance ratio. To improve fuel economy, [9] provided a 

unique EV EMS based on the MDARL architecture. Under 

power limits, the EMS effectively achieved optimal power 

transmission between the engine and battery. 

The optimal functioning of a fleet of EVs that were 

directed to supply power to a group of clients at various 

places was covered in [10]. MARL was used in a 

Decentralised Markov Decision Procedure reformulation 

framework to be practicable for a fleet of EVs to function 

well and provide energy to numerous clients at various 

places. A unique optimum energy management approach 

based on the suggested MDARL technique was presented 

in [11]. It used a deep neural network to train a strategy 

based on multi-agent deep deterministic policy gradient 

(MADDPG) learning capacity and stacked denoising auto-

encoders. By considering the different characteristics of 

both electrical and thermal energies. 

A MADRL optimization approach was proposed in [12] 

for energy control with EV charging development. To 

determine the optimal choice, the aggregator and 

prosumers were designed to be intelligent agents that 

communicate with one another. Utilizing EV battery 

scheduling, prosumers might save on power costs. A new 

Multi-Agent ActorCritic (MA2C) system was examined in 

[13], which was specifically designed for mixed-traffic 

situations. The MA2C algorithm offers an extensive 

method of managing urban traffic that prioritizes 

effectiveness, safety, and passenger security. 

To effectively recommend public charging stations, [14] 

anticipated a Multi-Agent Spatio-Temporal Reinforcement 

Learning (Master) that takes into consideration several 
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long-term spatiotemporal characteristics. The Demand 

Response potential in smart homes using a multi-agent 

reinforcement learning framework enhanced with 

BiLSTM and Attention Mechanism for improved data 

efficiency and handling stochastic household loads [15]. 

The BiLSTMA-MADDPG model improves data 

efficiency, convergence speed, and scalability in 

controlling household appliances under limited training 

samples. Table 1 presents recent advancements in multi-

agent reinforcement learning (MARL) for energy 

management in smart systems. It highlights diverse 

applications ranging from EVs and smart grids to smart 

homes using algorithms like MADDPG, MA2C, and 

BiLSTMA-MADDPG. While most approaches show 

improved performance in energy savings and efficiency, 

common limitations include coordination complexity, high 

computational needs, and data inefficiency.  

 

Table 1: Contrast examination of traditional works 

 

Ref. Year Area Focused Algorithms Limitations Performance 

[8] 2023 Energy Management in 

Multi-mode plug-in 

hybrid EVs 

MADRL, DDPG, 

Hand-shaking 

Strategy, Relevance 

Ratio 

Requires careful 

tuning of DDPG 

parameters; 

learning 

performance is 

sensitive to 

learning rate 

Energy savings can range 

from 4% to 23.54% when 

compared to a single-agent 

system and a rule-based 

system. 

 

[9] 2025 Hybrid EVs, Energy 

Management Strategy 

MADRL, MADDPG Complexity in 

multi-agent 

coordination, 

simulation-based 

validation only 

Fuel consumption was 

reduced by 26.91% 

(WLTC) and 8.41% 

(HWFET), improving 

EMS robustness. 

[10] 2022 Smart Grids, Multi-

Agent Systems, EVs. 

MARL, Decentralized 

Markov Decision 

Process (Dec-MDP), 

Actor-Critic Networks 

High initial 

training complexity 

assumes accurate 

agent-environment 

modeling. 

Significant reduction in 

simulation time; superior 

scalability and efficiency 

[11] 2023 Optimal Energy 

Management, Smart 

Grid, Multi-Energy 

MicroGrids. 

MADRL, Stacked 

Denoising Auto-

Encoders framework 

Requires high 

computational 

resources, 

complexity in 

decentralized 

implementation, 

and training 

convergence 

Achieved optimal dispatch 

of electric and thermal 

energies, and reduced 

emissions and costs. 

[12] 2023 Smart Grid Energy 

Management, EV 

Scheduling, Solar 

Photovoltaic (PV) 

Integration 

MADRL, Real-Time 

Pricing, Smart Agent 

Interaction 

High 

computational 

requirements for 

real-time DRL. 

 

Mean power consumption 

was reduced by 9.04% (vs. 

no EV usage) and reduced 

by 39.57% (vs. 

conventional pricing) 

[13] 2024 Smart Cities, 

Autonomous Vehicles, 

Sustainable Mobility 

MA2C, 

Reinforcement 

Learning, Actor-Critic 

Architecture 

Complexity of 

multi-agent 

coordination; 

Requires realistic 

traffic data for 

deployment 

Outperforms existing 

models in lane-changing 

efficiency, safety, comfort, 

and inter-vehicle 

cooperation. 

[14] 2021 EVs Charging 

Recommendation, 

Smart Mobility, DRL 

MA2C Framework, 

Centralized Attentive 

Critic, Delayed Access 

Strategy 

Required 

coordination 

among distributed 

agents 

Outperforms 9 baseline 

approaches in 

recommending charging 

stations. 

[15] 2023 Demand Response in 

Smart Homes 

BiLSTMA-MADDPG 

(Multi-Agent RL) 

Non-stationary 

environment; data 

inefficiency 

Improved data efficiency, 

faster convergence, and 

better scalability with 

small samples. 
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3 Methodology 

The methodology involves modeling the NEV's energy 

system as a multi-agent environment with engine and 

battery agents. Real-time driving data undergoes data 

cleaning and min-max normalization, and PCA for feature 

extraction. AnSSB-MADQN is employed to optimize 

power distribution. Trained on WLTC and HWFET cycles, 

this strategy improves fuel efficiency, stabilizes SOC, and 

reduces battery degradation, enabling adaptive, real-time 

energy management under dynamic driving conditions. 

Figure 2 presents the proposed methodology’s overview. 

 

 
 

Figure 2: Proposed methodology overflow 

 

3.1 Data collection 

The NEV energy management dataset was collected from 

the Kaggle source. It is meant to assist in finding the most 

effective ways to save energy in NEVs, using the approach 

of MARL. It  

includes data about real-world traffic, energy distribution, 

mileage, and battery health for multiple driving routines. 

70% of the dataset was used for training and 30% for 

testing to evaluate performance under diverse scenarios. 

Source:https://www.kaggle.com/datasets/ziya07/nev-

energy-management-dataset/data 

 

3.1.1 Data Description 

The NEV Energy Management Dataset features 5,000 

records with 13 attributes for measuring vehicle speed 

along with acceleration, power demand, fuel usage, and 

battery performance across different driving conditions. 

The system combines essential variables such as engine 

power, battery power and SOC, battery degradation, and 

regenerative braking power to assess energy efficiency and 

sustainability levels.  

3.1.2 Data Exploration 

The pair plot demonstrates the relationship dynamics 

between speed, power demand, battery power, SOC, and 

fuel consumption variables for designing a dynamic 

energy management strategy in NEVs. The diagonal 

presentation displays distribution patterns to identify 

normal or skewed data shapes. The correlations and strong 

positive associations between power demand and battery 

power become visible through off-diagonal scatter plots. 

Figure 3 shows the data exploration. 

 

 
 

Figure 3: Data exploration outcomes 

 

3.2 Data preprocessing using data cleaning 

To clean the NEV energy management dataset, missing 

values should be handled through mean or median 

imputation techniques while maintaining sparse data rows. 

Convert data types to ensure consistency across numerical 

and categorical fields. The data types should be converted 

to achieve numerical and categorical field consistency. 

Reduction of redundant data will occur by eliminating 

duplicate records. The system needs to identify and handle 

unusual cases found in energy consumption alongside 

battery degradation trends. A final test must verify the data 

balance between driving cycles and efficiency classes. 

 

3.2.1 Min-Max normalization 

The process of min-max normalization transforms new 

energy vehicle energy management datasets into 

standardized ranges, which improves both model 

performance and speed of convergence, and accuracy 

during energy efficiency optimization. Using linear 

modifications of the original data, min-max normalization 

creates a balanced set of value comparisons between the 

data before and after the execution, as follows in Equation 

(1). 

 

𝑊𝑛𝑒𝑤= 
𝑊−min (𝑊)

max(𝑊)−min (𝑊)
….                      (1) 

 

𝑊𝑛𝑒𝑤- The adjusted value derived from the normalized 

outcomes 

𝑊- Old Value 

max(𝑊)-The dataset's maximum value 

min (𝑊)- The dataset's minimum value 

 

 

 

https://www.kaggle.com/datasets/ziya07/nev-energy-management-dataset/data
https://www.kaggle.com/datasets/ziya07/nev-energy-management-dataset/data
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3.3 Feature extraction using PCA 

The dynamic energy management technique becomes 

more efficient by eliminating unnecessary variables and 

focusing exclusively on critical factors. This results in 

faster convergence and more accurate decision-making via 

the MARL framework for energy distribution. PCA was 

used to minimize the dimensionality of the dataset while 

retaining the majority of its informational richness. In 

addition, 5 derived characteristics were designed to 

capture complicated energy dynamics such as power 

fluctuation, energy trends, and driving cycle behavior, 

which are crucial for intelligent EMS control.  

By eliminating the class label, each observation in a data 

set of 𝑙 observations is mathematically 𝑚-dimensional. 

Assuming that 𝑤1, 𝑤2, … . . , 𝑤𝑙   ∈ ℜ𝑚 .  The subsequent 

procedures for calculating PCA. 

Determine the mean vector µ in 𝑚-dimensions by 

Equation (2). 

 

𝜇 =
1

𝑙
∑ 𝑤𝑗

𝑙
𝑗=1           (2) 

 

Determine the observed data's estimated matrix of 

covariance 𝑇 by Equation (3). 

 

𝑇 =
1

𝑙
∑ (𝑤𝑗 − 𝜇)(𝑤𝑗 − 𝜇)

𝑠𝑙
𝑗=1         (3) 

 

Determine the associated eigenvectors and eigenvalues of 

𝑇, whereby 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑙 ≥ 0.  Determine the 𝑙 

primary components from the 𝑙 original variables by 

Equation (4). 

 

𝑧1 = 𝑏11𝑤1 + 𝑏12𝑤2 + ⋯ + 𝑏1𝑙𝑤𝑙

𝑧2 = 𝑏21𝑤1 + 𝑏22𝑤2 + ⋯ + 𝑏2𝑙𝑤𝑙
⋯

𝑧𝑙 = 𝑏𝑙1𝑤1 + 𝑏𝑙2𝑤2 + ⋯ + 𝑏𝑙𝑙𝑤𝑙

        (4) 

 

It is orthogonal that 𝑧𝑙 are uncorrelated. As much of the 

initial variation in the data set can be explained by 𝑧1, as 

much of the residual variance can be explained by 𝑧2, etc. 

In the most useful data sets, a small number of bigger 

eigenvalues often outnumber the others, as follows in 

Equation (4). Where the proportion maintained in the data 

format is denoted by 𝑧𝑙. 

 

𝛾𝑙 =
𝜆1+𝜆2+⋯+𝜆𝑛

𝜆1+𝜆2+⋯+𝜆𝑛+⋯+𝜆𝑙
≥ 80%        (5) 

 

Principal Component Analysis (PCA) was applied to 

reduce the dimensionality of the input space. Although the 

original dataset consisted of 13 attributes, only 12 numeric 

features were used for PCA, excluding the non-numeric 

target column. PCA transformed this 12-dimensional 

feature space into 6 uncorrelated principal components, 

capturing over 95% of the total variance and improving 

model training efficiency by eliminating redundancy. After 

applying min-max normalization, PCA reduced the feature 

space to 6 principal components, maintaining more than 

95% of the total variance while minimizing duplication, 

boosting the energy management model's learning 

efficiency. Figure 4 shows the PCA-based feature 

contribution to the first principal component, which 

explains the most variation. This information assists in 

determining the most significant elements for EMS 

optimization. Notably, this representation is based on the 

PCA loading matrix before dimensionality reduction. 

Figure 4 shows PCA-Based Feature Importance Output for 

Energy Management Optimization. 

 

 

 
 

Figure 4: PCA-based feature importance output for 

energy management optimization 

 

• Data Cleaning (13 features): Outliers, 

impossible values (e.g., negative fuel), and 

missing values were handled through imputation 

and filtering. 

• Normalization (13 features): Each feature was 

scaled to a standard range (mean = 0, std = 1) for 

consistent learning performance. 

• PCA Application: Principal component analysis 

reduced the final 18-dimensional space to 6 

principal components, capturing >95% variance, 

enhancing model training speed and 

generalization. 

 

While the original dataset contained 13 attributes, 5 

additional derived features were introduced through 

feature engineering to enhance the model's ability to 

capture dynamic driving patterns and battery behavior. For 

instance, ΔSOC (change in State of Charge) reflects short-

term battery discharge rates, offering temporal insights that 

static SOC cannot. Similarly, features like speed trend and 

regenerative efficiency were designed to capture vehicle 

acceleration patterns and energy recovery rates, 

respectively. These engineered features provide higher-

level abstractions that improve the learning model’s 

contextual awareness. PCA was then applied to this 18-

dimensional space to reduce redundancy, improve 
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generalization, and retain the most informative patterns by 

selecting 6 principal components that preserved over 95% 

of the variance. 

 

3.4 SSB-MADQN 

The SSB-MADQN is a novel framework for dynamic 

energy management in NEVs. It integrates the SBO to 

enhance agent policy optimization and exploration within 

a MADQN environment. By enabling decentralized 

cooperation among energy management agents, SSB-

MADQN effectively balances power delivery among both 

the engine and battery, optimizes fuel consumption, and 

mitigates battery degradation under diverse driving cycles. 

The scalable design ensures adaptability across vehicle 

platforms, while the optimizer enhances learning 

efficiency, making SSB-MADQN a robust solution for 

real-time, intelligent NEV energy management. 

 

3.4.1 MADQN 

The MADQN enables dynamic energy management in 

NEVs by allowing multiple agents (engine, battery, motor) 

to learn cooperative strategies. Through DRL, each agent 

optimizes energy distribution, improving efficiency, 

reducing fuel consumption, and adapting to varying 

driving conditions in real time. It uses a model-free 

reinforcement learning strategy, which eliminates the need 

to explicitly understand the environment's dynamics. 

Agent 1 observes state 𝑡𝑠 and chooses the optimal action 

at time 𝑠 to move to state 𝑡𝑠+1 in traditional Q-learning, 

based on a value model-free approach. The agent then 

changes the Q-value after receiving an instant benefit 

𝑟(𝑡𝑠, 𝑏, 𝑡𝑠+1)at time 𝑠 + 1, as shown in Equation (6). 

 

𝑄𝑠+1(𝑡𝑠, 𝑏𝑠) ← (1 − 𝛼)𝑄𝑠(𝑡𝑠, 𝑏𝑠) + 𝛼[𝑟(𝑡𝑠, 𝑏𝑠, 𝑡𝑠+1) +

𝛾 max
𝑏

𝑄𝑠(𝑡𝑠+1, 𝑏)]        (6) 

In reinforcement learning, 𝛾 is a discount factor, 

𝛾 𝑚𝑎𝑥𝑏
′ 𝑅𝑠(𝑡′, 𝑏′) is the discounted reward, and 𝛼 ∈ [0,1] 

is the learning rate. The Q-values for every potential state 

and action for agent 1 are stored in a two-dimensional 

look-up column with dimensions 𝒯 × ℬ. Consequently, 

the number of actions and states in a complex system 

causes the Q-table's size to grow exponentially. Figure 5 

presents the MADQN architecture. Every edge server is 

regarded as an agent in EV.  Figure 5 depicts the MADQN 

framework utilized in the caching environment, with 

architectural details. The neural networks (Main and 

Target) are implemented as multilayer perceptrons, with an 

input layer matching the state dimension (e.g., 50 

features), two hidden layers of 128 and 64 neurons, 

respectively, employing ReLU activation, and an output 

layer representing the number of potential actions (e.g., 

two for binary caching decisions). These features are 

critical to understanding the model's structure and ensuring 

repeatability. 

 

 

 
 

Figure 5: MADQN architecture 

 

In multi-agent reinforcement learning, the replay buffer 

holds all agents' experiences, which frequently include 

shared observations, actions, and rewards to capture inter-

agent relationships. Each agent's training is stabilized by 

the target network, which provides constant Q-value 

targets and is updated on a regular or soft basis. Q-value 

updates are changed by taking into account not just an 

agent's action and reward, but also the effect of other 

agents' activities, employing centralized training and 

decentralized execution. This allows agents to develop 

coordinated methods while functioning independently 

during deployment. 

A replay buffer is used to retain the agent's experiences, a 

target network (𝜃𝑡𝑔) replicates the main network to offer 

a steady target for learning, and a main network 

parameterized by (𝜃𝑛) is used to estimate Q-values in the 

multi-agent environment. First, agent 1 observes the 

energy demand signal and its states at the time 𝑠 

communicates with neighboring agents (states (𝑡𝑠) and 

policies), and selects an action (𝑏𝑠). For example, suppose 

that Agent 1 is unable to fulfill the energy storage request. 

Suppose that three collaborative NEV modules (engine, 

battery, motor) ({𝑖, 𝑟} ∈ 𝜀𝑛𝑏) with a strategy for new 

energy 𝑞𝐹,𝑗𝑖and 𝑞𝐹,𝑖𝑞 , where 𝑞𝐹,𝑗𝑖 < 𝑞𝐹,𝑖𝑞, have the 

matching content. This situation results in the selection of 

the neighboring agent with energy cost, as shown in 

Equation (7). 

 

𝑏𝑠 = {

arg max𝑏∈ℬ𝑄(𝑡𝑠, 𝑏)       𝑜 = 1 − 𝜖1 − 𝜖2
 

 

𝑟𝑎𝑛𝑑𝑜𝑚 𝑏 ∈ ℬ        𝑜 = 𝜖1

𝑂𝑡ℎ𝑒𝑟 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑝𝑜𝑙𝑖𝑐𝑦 𝑏 ∈ ℬ       𝑜 = 𝜖2

  (7) 

 

Furthermore, it has 𝜖1 and 𝜖2 set to decrease with time. 

Consequently, the model will eventually choose the best 
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course of action. It is suggested to explore if the agent does 

not function well. A collection of recent rewards (𝑅𝐺) is 

tracked, and ∈𝑦 (𝑤ℎ𝑒𝑟𝑒  ∈𝑦  {1, 2})is updated, as shown 

in Equation (8). The step sizes for modifying the 

probability ∈𝑦 are 𝛿+ and 𝛿−, and 𝑟𝑡ℎ is a reward 

threshold. 

 

∈𝑦= {
∈𝑦+ 𝛿+,   𝔼(𝑄𝐺) < 𝑟𝑡ℎ

∈𝑦− 𝛿−,   𝔼(𝑄𝐺) ≥ 𝑟𝑡ℎ
        (8) 

 

The agent moves on to the next state (𝑡𝑠 + 1) for the 

selected action (𝑏𝑠), preserves moving in the replay buffer 

of size, and receives an instant benefit (𝑟𝑠 + 1). During the 

training stage, agent 1 uses mini-batch descent to train the 

primary network after selecting a mini-batch of size 𝐴 

from the replay buffer. In every 𝐼 step, the target network 

replicates the primary network to provide learning 

stability, as follows in Equation (9). 

 

𝑄𝑠+1 = (𝑡𝑠, 𝑏𝑡) ← (1 − 𝛼)𝑄𝑠(𝑡𝑠, 𝑏𝑡; 𝜃𝑛) +

𝛼[𝑟(𝑡𝑠, 𝑏𝑡 , 𝑇𝑠+1) + 𝛾 𝑚𝑎𝑥
𝑏

𝑄𝑠(𝑡𝑠+1, 𝑏; 𝜃𝑠ℎ) −

𝑄𝑠(𝑡𝑠, 𝑏𝑡; 𝜃𝑛)] + ∑ 𝑤𝑗𝑖𝑄𝑠−1(𝑡𝑠, 𝑏𝑡; 𝜃𝑛)𝑖𝜖𝑀𝑓
       (9) 

 

Where 𝜔𝑗𝑖  is modeled as inversely proportional to the 

EMS(𝑟𝐹, 𝑦𝑥) among 𝑖and 𝑗, and is used to highlight the 

effect of neighbor 𝐼 on agent 1.  

 

3.4.2 SSB 

The traditional Satin Bowerbird (SB) optimizer struggles 

to effectively manage the complex, dynamic, and multi-

objective nature of energy management strategies in new 

energy vehicles (NEVs). It lacks the scalability and the 

ability to deal with several competing priorities, including 

fuel consumption, battery capacity, and reducing battery 

degradation. The basic SB algorithm lacks mechanisms for 

efficiently navigating high-dimensional search spaces or 

adapting to rapidly changing driving conditions. It also 

falls short in maintaining solution diversity and handling 

trade-offs among multiple objectives, often leading to 

premature convergence or local optima. Furthermore, its 

limited ability to handle real-time updates and high-

dimensional decision spaces reduces its effectiveness in 

dynamic driving conditions, prompting the need for 

improved approaches like the Scalable SB (SSB) 

optimizer. SSB efficiently balances energy distribution 

between battery and engine systems, adjusts to various 

driving schedules, speeds up how policies are learned and 

helps achieve better fuel efficiency, fewer emissions, and 

longer life of the vehicle battery in complex driving 

situations.  

 

➢ Logistic Chaos's initialization: 

Although the algorithm's initial population utilizes a 

random initialization mode according to natural law, a 

better initialization approach would greatly accelerate the 

intelligent optimization algorithm's convergence speed. 

The population is also initialized by the SB using random 

values. A logistic chaos map was created to improve the 

starting population's diversity, which in turn led to a better-

starting population, which improved the algorithm's 

accuracy and speed of convergence. Equation (10) 

illustrates the logistic chaos map calculating method. 

 

𝑊𝑗+1 = 𝜇𝑊𝑗 ∗ (1 − 𝑊𝑗)       (10) 

 

The control parameters 𝜇 have a value range of 0 𝑡𝑜 4. 

There will be more confusion when the number of 𝜇 is 

higher. The chaotic initialization effect will be amplified𝜇. 

Equation (11) is used as the population initialization. 

 

𝑝𝑜𝑝(𝑗). 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 𝑌(𝑗, : ).∗ (𝑉𝑎𝑟𝑀𝑎𝑥 − 𝑉𝑎𝑟𝑀𝑖𝑛) +

𝑉𝑎𝑟𝑀𝑖𝑛       (11) 

➢ The cauchy variation method: 

Instead of using the conventional SB mutation technique, 

which produces a shorter peak dispersed at the origin and 

a longer spread in the remainder, the Cauchy mutation 

strategy guarantees more disruption near the current 

population. Equation (12) shows the Cauchy variation 

approach. 

 

𝑊𝑗,𝑖
𝑠+1 = 𝑊𝑏𝑒𝑠𝑡 + 𝐶𝑎𝑢𝑐ℎ𝑦(0,1)⨁ 𝑊𝑏𝑒𝑠𝑡(𝑠)       (12) 

 

Where 𝑊𝑏𝑒𝑠𝑡(𝑠) is the location of an individual that 

requires variation, and 𝐶𝑎𝑢𝑐ℎ𝑦   (0,1) is the typical 

Cauchy distribution. Equation (13) computes the relevant 

variation probability.  

 

𝑂𝑡 = − exp (1 −
𝑖𝑡

𝑀𝑎𝑥𝐼𝑡
)

20

+ 𝑜      (13) 

 

Both the current is represented by 𝑀𝑎𝑥𝐼𝑡, where 𝑜 is set at 

0.05. The procedure of the Cauchy mutation will not be 

carried out if 𝑞 and < 𝑃𝑠. Table 2 shows the 

hyperparameters of SSB. 

SSB’s chaotic initialization improves exploration by 

ensuring diverse initial solutions, avoiding local optima, 

and speeding up convergence. The Cauchy variation, with 

its heavy-tailed distribution, enables larger step sizes, 

improving the algorithm's capacity to escape local minima 

and strike a better balance between exploration and 

exploitation. These traits exceed typical heuristics, 

allowing for faster and more efficient optimization. 
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Table 2: Hyperparameters of SSB 

 

No. Hyperparameter Symbol / Name Typical Value 

/ Range 

Description 

1 Population size P 5 – 50 Number of candidate 

solutions (bowerbirds) 

2 Maximum iterations MaxIter 10 – 100 Maximum SBO optimization 

cycles 

3 Attraction coefficient α 0.05 – 0.3 Strength of movement 

toward better solutions 

4 Random scaling factor rand () [0, 1] Random noise for solution 

diversification 

5 Learning rate search 

range 

LR_range [0.0001, 0.01] Search space for learning rate 

6 Epsilon search range ε_range [0.1, 1.0] Exploration rate range 

7 Discount factor search 

range 

γ_range [0.8, 0.99] Reward discount factor range 

8 Fitness function F(x) Avg episodic 

reward 

Evaluate solution quality 

9 Movement formula x_new = x + α * rand () 

* (x_best - x) 

— Bowerbird movement update 

10 Dimensionality of 

solution 

D 3 Parameters optimized (LR, ε, 

γ) 

4 Results and discussion 

The result comparison parameters, such as EMS 

optimization results for different strategies under WLTC, 

EMS optimization results for different strategies under 

HWFET, and control action, are used to demonstrate the 

comparison of the proposed model, SSB-MADQN, for 

energy management strategy for new energy with the 

existing techniques, such as MADDPG [9] and Deep Q-

learning Adaptive Moment Estimation (DQL-AMSGrad) 

[16]. The experimental setup is presented in Table 3. 

 

Table 3: Experimental setup 

 

Projects Environment 

Operating System Windows 10(x64) 

CPU i5-9500HF 

CPU@2.40GHz 

Memory Size 32GB 

GPU NVIDIA GeForce GTX 

2080 Ti 

CUDA Version 10.2 

Python Version 3.8 

Episode count 

Batch size 

Convergence 

criteria 

1000 

64 

Training stops when 

reward, loss, episodes, or 

epsilon criteria are met. 

 

 

4.1 Confusion matrix 

The results of the confusion matrix are shown in Figure 6. 

The model accurately predicted all classes: 152 samples as 

class 0, 777 as class 1, and 71 as class 2, with zero 

misclassifications. This indicates that the energy 

management model is highly effective in correctly 

categorizing vehicle energy efficiency levels or strategies 

with no false positives or negatives across all classes. The 

predicted classes represent EMS efficiency levels: 0 

(High), 1 (Medium), and 2 (low).  

 

 

 
 

Figure 6: Confusion matrix outcomes 

 

mailto:CPU@2.40GHz
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4.2 Battery degradation distribution 

The distribution of battery degradation in NEV highlights 

a concentration of around 10%. It suggests significant wear 

under certain conditions, necessitating a dynamic energy 

management strategy. By integrating real-time degradation 

data, NEVs can optimize engine-battery energy 

distribution, extend battery life, and improve energy 

efficiency, especially under high-degradation scenarios. It 

supports adaptive, data-driven decision-making for 

sustainable vehicle performance. Figure 7 presents the 

distribution of battery degradation outcomes. 

 
 

Figure 7: Distribution of battery degradation outcomes 

 

4.3 WLTC  

The EMS optimization results under the WLTC driving 

cycle show that the proposed SSB-MADQN method 

outperforms the existing method, MADDPG. SSB-

MADQN achieves a higher terminal SOC (0.643 vs. 

0.598), lower equivalent fuel consumption (0.912 L vs. 

0.977 L), and improved fuel efficiency (3.864 L/100km vs. 

4.199 L/100km), demonstrating its effectiveness in 

dynamic energy management for NEVs by enhancing 

energy utilization and reducing fuel use. Figure 8 presents 

the EMS optimization under WLTC. 

 

 
Figure 8: Graphical representation of WLTC 

 

4.4 HWFET 

According to the HWFET driving cycle, SSB-MADQN 

performs better than MADDPG when optimizing the EMS 

system. It achieves a higher terminal SOC (0.603 vs. 

0.556), reduced equivalent fuel consumption (0.681 L vs. 

0.734 L), and better fuel efficiency (4.121 L/100km vs. 

4.446 L/100km), indicating improved energy recovery and 

reduced fuel usage in dynamic energy management for 

NEVs. Figure 9 presents the EMS optimization under 

HWFET. 

 

 
 

Figure 9: Graphical Representation of HWFET 
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4.5 Control action 
A comparison of control action variations over time in 

dynamic energy management for NEVs. DQL-AMSGrad 

shows fluctuating control values, peaking at 1.5, indicating 

moderate adaptability. The proposed SSB-MADQN model 

consistently yields slightly higher control actions, with 

smoother transitions and a peak of 1.7, reflecting improved 

responsiveness and stability. It suggests SSB-MADQN's 

superior performance in managing energy distribution 

dynamically and efficiently in NEV systems. Table 4 and 

Figure 10 show control action outcomes. 

 

 

Table 4: Control action outcomes 

 
Model 10 20 30 40 50 60 70 80 90 100 

DQL-

AMSGrad 

[16] 

1.3 0.4 0.3 1.0 0.1 0.8 1.2 1.5 0.1 0.3 

SSB-

MADQN 

[proposed] 

1.5 0.6 0.7 1.2 0.2 1.0 1.4 1.7 0.3 0.6 

 

 
 

Figure 10: Graphical representation of control action 

 

 

4.6 Performance metrics summary of SSB-

MADQN for NEV energy management 

The primary performance metrics of the proposed multi-

agent deep reinforcement learning framework applied to 

dynamic energy management in new energy vehicles 

(NEVs). Metrics include fuel consumption, battery SOC 

limits, battery degradation rate, and computational 

efficiency during both training and real-time inference. 

These results demonstrate the framework’s effectiveness 

in balancing energy usage and system longevity. Table 5 

displays the SSB-MADQN performance.  

 

 

Table 5: Key results of SSB-MADQN performance 

 

Performance metric SSB-MADQN (Proposed) 

Fuel Usage 3.4 L/100km 

SOC Bounds 20% – 80% 

Degradation Rate (%) 0.72% 

Training Time 4.1 hours 

Inference Time 14 ms 

 

5 Comparative analysis with existing 

systems 

A dynamic EMS for NEVs optimizes power distribution 

between the battery and engine in real-time, enhancing 

energy efficiency, reducing emissions, and adapting to 

varying driving conditions. MADDPG faces limitations in 

scalability and convergence stability when managing  

 

complex multi-agent interactions in dynamic NEV energy 

environments. Such technology mandates a large amount 

of training  

material alongside powerful computing capabilities. The 

integration of DQL-AMSGrad with adaptive learning rates 

facilitates better convergence, but it performs poorly with 

the continuous action spaces regularly found in NEV 

energy systems. The decision-making processes of these 
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methods show poor adaptation to sudden driving condition 

changes, along with restricted performance across 

different driving cycles, which affects real-time decisions 

in NEVs. The proposed SSB-MADQN enhances 

scalability and convergence stability by integrating the 

SSB with MADQN, enabling efficient exploration and 

exploitation in complex NEV environments. The system 

successfully deals with complex action spaces together 

with dynamic driving conditions because it learns quickly 

and provides reliable real-time energy management 

functionality that outperforms MADDPG and DQL-

AMSGrad by showing better adaptability and 

generalization over several driving cycles. The proposed 

strategy relies heavily on high-quality simulations, which 

may not fully capture real-world complexities. 

Additionally, there is a lack of real-world validation, and 

the interpretability of multi-agent reinforcement learning 

models remains a challenge, hindering broader practical 

adoption. 

 

6 Conclusion 

Energy efficiency and operational performance in NEVs 

have significantly improved through the application of AI-

driven optimization strategies. The suggested SSB-

MADQN architecture used MARL to allow cooperative 

agents to control the engine and battery's power allocation 

in real time under various driving circumstances. Data 

preprocessing methods, such as data cleaning and min-

max normalization, and PCA employed for feature 

extraction, ensured consistency, reduced dimensionality, 

and enhanced model learning. Experimental results 

revealed notable improvements, with fuel consumption 

reduced under WLTC compared to MADDPG, achieving 

a final consumption of 3.864 L/100km, and similarly under 

HWFET with a reduction to 4.121 L/100km. These 

outcomes confirm the effectiveness of intelligent EMS in 

achieving adaptive and globally optimized energy 

strategies for NEVs. The limitations of relying solely on 

simulation-based testing and plans to incorporate real-

world ECU-in-the-loop evaluation to enhance validation. 

Another key challenge is the interpretability of the MARL 

model, for which we plan to adopt explainability 

techniques such as SHAP or LIME to analyze Q-values 

and better understand agent decisions. Additionally, 

potential deployment on edge computing platforms like 

NVIDIA Jetson is being considered to assess real-time 

feasibility. The proposed approach shows strong potential 

for real-time EMS in NEVs by leveraging decentralized 

agents and a powerful optimizer for high-dimensional 

spaces. However, to strengthen its scientific contribution, 

future work should focus on improving algorithm 

transparency, ensuring rigorous experimentation, and 

incorporating advanced statistical techniques for deeper 

validation and performance comparison. 
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