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Dynamic advertising (ad) requires personalized, engaging content across multiple platforms. Traditional 

approaches struggle with scalability and cross-platform adaptation. Leveraging deep learning (DL), 

particularly Generative Adversarial Networks (GANs), offers the potential to automate and optimize ad 

creative generation with higher precision and contextual adaptability. This research aims to develop a DL 

framework that dynamically generates and optimizes advertising creatives—leveraging Adaptive 

Elephant Clan Optimizer with a Spatially Conditioned StyleGAN (AECO-SC StyleGAN) for dynamic 

cross-platform advertisement creative generation. Adaptive Elephant Clan Optimizer (AECO) 

dynamically adjusts training hyperparameters to improve model convergence, while Spatially 

Conditioned StyleGAN (SC-StyleGAN) generates platform-specific ad creatives by incorporating spatial 

constraints for contextual alignment. Our system is trained on the Ad ImageNet dataset, which includes 

9,003 ad samples with paired images and promotional text from platforms like Facebook and Instagram. 

All data were resized to 256×256, normalized, and tokenized for training. Using Python, the model 

demonstrates superior performance in creative generation and engagement prediction. The proposed 

AECO-SC StyleGAN model achieved an NDCG of 0.61, an accuracy of 98.48%, and a weighted F1-score 

of 98.5%, outperforming prior approaches such as VGG + Layout + NIMA (NDCG 0.22) and XCEPTION 

(accuracy 98.27%, F1-score 98.2%). These results highlight the effectiveness of integrating adaptive 

optimization and spatial conditioning in generating high-quality, context-aware advertising creatives, 

offer a scalable and automated solution for cross-platform digital marketing.   

Povzetek: Okvir AECO-SC StyleGAN uporablja globoko učenje (GAN in StyleGAN s prostorskim 

pogojevanjem) in adaptivno optimizacijo (AECO) za dinamično generiranje in optimizacijo visoko 

kakovostnih oglasnih vsebin na več platformah. Sistem dosega kvalitetno napovedovanju angažiranosti 

oglasov, kar avtomatizira prilagojeno digitalno trženje.

1 Introduction 

Digital marketing leaders consider the capacity to send 

customized advertising content across numerous platforms 

as their main competitive advantage [1]. Advertising 

through traditional methods faces difficulties when 

adjusting to user preference changes across multiple 

platform formats that include social media and mobile 

applications, together with websites [2]. DL techniques 

appear as groundbreaking solutions to address the 

marketing challenges that face the optimization of ad 

creativity. GANs have become prominent among these DL 

techniques because they enable the production of high-

quality, realistic, adaptable content [3]. The procedure 

enables machine automation to produce relevant visual 

advertisements with appropriate platform parameters for 

distinct user groups [4]. The model uses dual-network 

training, which combines a generator for designing ad 

variants together with a discriminator for evaluation 

purposes to achieve continuous output improvement 

through adversarial learning processes [5]. Such adaptive 

creativity improves advertising diversity and allows for 

better metrics engagement, including the click-through 

rate (CTR) and conversion rate (CVR). 

The system processes real-time performance records in 

conjunction with user adjustments to automatically modify 

its creative elements and maintain platform usage between 

various platforms [6]. Digital marketing and artificial 

intelligence maintain an expanding relationship that gives 

marketers data-driven creative solutions to overcome their 

creative limitations [7]. This GAN-based framework 

provides automated design solutions for advertising 

content, which enable more efficient personalized 

advertising in an online environment dominated by 

competition. The aim was to develop a DL framework that 

utilizes the AECO-SC StyleGAN to dynamically generate, 

refine, and optimize advertising creatives across multiple 

https://doi.org/10.31449/inf.v49i12.
mailto:15753572255@163.com


390   Informatica 49 (2025) 389–402                                                                                                                                        Y. Zhang 

 

platforms for enhanced personalization and performance 

in digital marketing campaigns.  

The proposed AECO algorithm is a derivative-free 

population-based metaheuristic. It simulates the social 

behavior of elephants in clans to adaptively adjust 

hyperparameters by exploring the solution space through 

stochastic position updates, without relying on the gradient 

of the loss function. This enables AECO to dynamically 

optimize hyperparameters such as learning rate, style 

weights, and batch size during GAN training, improving 

convergence stability and creative output quality. 

The structure presents the development and evaluation of 

an intelligent advertising creative generation system using 

AECO and SC-StyleGAN. Section 2 reviews related 

works, highlighting recent advancements in GAN-based 

advertising optimization and cross-platform creative 

generation. Section 3 outlines the proposed methodology, 

detailing the preprocessing of advertising data, AECO-

based hyperparameter tuning, and the architecture of the 

SC-StyleGAN for spatially contextual ad generation. 

Section 4 discusses the experimental setup, performance 

evaluation, and comparative results with baseline models. 

Section 5 concludes with future directions to enhance 

scalability, personalization, and real-time adaptability in 

advertising technologies. 

 

2 Related works 

Automating the generation of ad creatives from landing 

pages using abstractive text summarization, enabling rapid 

experimentation in large-scale marketing campaigns, was 

examined by [8]. The advertising creative optimization by 

modeling complex interactions between creative elements 

and improving Click-Through Rate (CTR) prediction 

using an Auto ML-inspired framework was enhanced [9]. 

The Automated Creative Optimization (AutoCO) 

framework outperformed baselines, achieving lower 

cumulative regret and a 7% CTR increase in online A/B 

testing. 

The two-stage dynamic and creative optimization 

framework, combining AutoCo and a transformer-based 

rerank model to improve CTR prediction and creative 

ranking under ambiguous data conditions, was developed 

by [10]. Experimental and online testing showed a 10% 

CTR improvement over baselines, demonstrating superior 

performance. The integration of a Particle Swarm 

Optimization-based Recurrent Neural Network (PSO-

based RNN) algorithm with Computer-Aided Design 

(CAD) tools to automate the generation and optimization 

of advertising artistic designs, enhancing design efficiency 

and creativity, was explored by [11]. 

The Dynamic Creative Optimization (DCO) problem, by 

determining the optimal product and creative ad 

combination under constraints like ad fatigue and user 

diversity, was examined [12]. The advertising design, 

creativity, and efficiency were enhanced by integrating 

CAD technology and data-driven automation [13]. The 

developed model enabled the automated generation of 

diverse advertising designs, successfully reflecting 

creative schemes and allowing quantitative evaluation, 

thus validating its effectiveness in promoting innovative 

advertising solutions. The integration of artificial 

intelligence in advertising with an emphasis on content 

production, targeting, personalization, and ad optimization 

was explored by [14]. Table 1 provides a comparative 

overview of recent GAN-based approaches. While 

previous studies have focused on general image synthesis 

or aesthetic enhancement, none leverage spatial 

conditioning and adaptive optimization specifically for 

advertising creative generation. 

 

 

Table 1: Conventional approaches of GAN for dynamic advertising creative optimization 

Study Model Dataset Metrics Used Key Results Limitation 

Jiang et al. 

[15] 

StyleGAN 

(AdSEE) 

Proprietary Ad 

Dataset 

CTR, Qualitative 

Feedback 

CTR 

improvement: 

+12% 

Limited 

generalizability 

Shilova et al. 

[16] 

Diffusion + 

Outpainting 

User Behavior 

+ Ad Images 

Personalization 

Score 

+15% relevance High computational 

cost 

Xu et al. [17] PDA-GAN PubLayNet, 

Rico 

Layout Accuracy, 

Realism 

Improved layout 

realism 

Focused on layout 

generation 

Aghazadeh 

et al. [18] 

Various (CAP 

Evaluation) 

Generated Ad 

Images 

CAP (Creativity, 

Alignment, 

Persuasion) 

Structured ad 

quality eval 

No generative 

model proposed 

Ma and Zhao 

[19] 

Enhanced 

DCGAN 

Logo Design 

Dataset 

FID, User Rating FID: 23.4, User 

preference 

Focused only on 

logos, not full ads 

2.1 Problem statement  

Digital marketing teams need to use personalized and 

platform-specific ads, but it is difficult to scale them using 

traditional methods which results in reduced engagement 

and inconsistency [15] [16]. Although GANs make 

automation possible, current models usually do not take 

context into account [17], run on computers for long 
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periods [16] or mostly generate logos [18]. To overcome 

these problems, the study offers a framework that uses 

Spatially Conditioned GANs, AECO for hyperparameter 

adjustment and combines various input types to improve 

the quality and performance of automatic ad creation. 

 

 

3 Methodology 

The Ad ImageNet dataset contains image-text 

advertisement samples, with images typically sized and 

text averaging. For data preprocessing, images are resized 

to uniform dimensions, normalized for intensity 

consistency, and tokenized for textual elements. The 

AECO-SC StyleGAN framework uses spatial conditioning 

and adaptive optimization to dynamically generate and 

optimize advertising creatives for enhanced cross-platform 

engagement and performance. Figure 1 shows the general 

outline of the methodological approach. 

 

 
 

Figure 1: General outline of the methodological approach 

 

3.1 Data collection 

The Ad ImageNet dataset, sourced from the Peter Brendan 

repository, consists of 9,003 image-text advertisement 

samples totaling approximately 682 MB in size. Each entry 

includes a banner-style advertisement image along with 

associated promotional text. The dataset captures a variety 

of standard ad dimensions, with the most frequent being 

254 × 254 pixels, commonly used in digital marketing. The 

textual content varies in length, with an average of around 

525 characters, covering diverse product and event 

advertisements. The dataset was split into 70% training, 

15% validation, and 15% testing sets to ensure robust 

performance evaluation across unseen data. 

Source: 

https://huggingface.co/datasets/PeterBrendan/AdImageNe

t 

 

3.2 Data preprocessing using image resizing 

Image resizing standardizes input dimensions, enabling 

consistent data processing for DL models and optimizing 

the generation of dynamic advertising creative. Although 

the original dataset images varied in size most frequently 

256 × 256 pixels the images were uniformly resized to 224 

× 224 × 3 pixels for this research. The 244 ×  224 𝑥 3-

pixel image size was used to simplify the original image 

size. This input data type was created by resizing the image 

using bicubic interpolation. Because the outcome was 

smoother at the edges than with bilinear interpolation, this 

approach was chosen. Bicubic was the perfect balance 

between process time and high-quality results. The bicubic 

interpolation estimates the pixels in the (𝑗, 𝑖) positions 

using a sampling (𝑆) distance of 16 nearby pixels (4𝑥4) in 

equations (1)-(5). Figure 2 illustrates (a) before resizing 

and (b) after resizing. 

𝑔𝑗,𝑖 = [𝑋−1(𝑇𝑧)𝑋0(𝑇𝑧)𝑋1(𝑇𝑧)𝑋2(𝑇𝑧)] 

[
 
 
 
 
𝑔𝑗−1,𝑖−1 𝑔𝑗,𝑖−1 𝑔𝑗+1,𝑖−1 𝑔𝑗+2,𝑖−1

𝑔𝑗−1,𝑖 𝑔𝑗,𝑖 𝑔𝑗+1,𝑖 𝑒𝑗+2,𝑖

𝑔𝑗−1,𝑖+1 𝑔𝑗,𝑖+1 𝑔𝑗+1,𝑖+1 𝑔𝑗+2,𝑖+1

𝑔𝑗−1,𝑖+2 𝑔𝑗,𝑖+2 𝑔𝑗+1,𝑖+2 𝑔𝑗+2,𝑖+2]
 
 
 
 

 

[

𝑋−1    (𝑇𝑤)

𝑋0      (𝑇𝑤)
𝑋1     (𝑇𝑤)

𝑋2     (𝑇𝑤)

] 

 

                                                                             (1) 

Where: 𝑇𝑧 = 𝑖
′ − 𝑖,      𝑇𝑤 = 𝑗

′ − 𝑗 and  

𝑔𝑗,𝑖 = 𝑝𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒 𝑎𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (𝑗, 𝑖) 

𝑋−1(𝑇) =
−𝑇3+2𝑇2−𝑇

2
         (2) 

𝑋0(𝑇) =
−3𝑇3+5𝑇2+2

2
         (3) 

https://huggingface.co/datasets/PeterBrendan/AdImageNet
https://huggingface.co/datasets/PeterBrendan/AdImageNet
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𝑋1(𝑇) =
−3𝑇3+4𝑇2+2

2
         (4) 

𝑋2(𝑇) =
𝑇3−𝑇2

2
          (5) 

 
Figure 2: (a) Before resizing and (b) After resizing 

 

3.2.1 Tokenization 

The raw advertising text was first processed with 

tokenization so that the model could efficiently generate 

and improve dynamic ad content. The text for promotion 

was separated into words, phrases and sentences using 

natural language processing. Turning unstructured text 

into a structured form made it simpler to examine texts and 

connect models. Keeping the important connections and 

order in each sentence, tokenization protected the key 

meaning needed to make an ad relevant. Because the text 

in ads is generally brief, simple tokenization and 

embedding were adequate. The fact that it is lightweight 

helped the system express meaning with little cost which 

improved the performance of the AECO-SC StyleGAN 

framework. Figure 3 shows (a) Positive Worlds Cloud and 

(b) Ad Image Net Words Cloud. 

 
Figure 3: Tokenization outcome (a) Positive Worlds 

Cloud and (b) Ad Image Net Words Cloud 

 

3.3 AECO-SC StyleGAN 

The hybrid deep learning framework is called the AECO-

SC StyleGAN and is meant to dynamically develop and 

improve advertisement creative work. The method 

implements AECO, a metaheuristic that studies elephant 

behavior, together with SC-StyleGAN, a modified GAN 

that adds spatial and contextual inputs. The adaptive 

approach of AECO to changing hyperparameters leads to 

faster learning and better exploration of various solutions, 

compared to the Adam optimizer. SC-StyleGAN makes 

use of semantic maps, sketches and embeddings from 

different sources to produce images that look good when 

used in ads. When combined, this integration improves 

how creative works on ads, how it is predicted to be 

received by the target audience and how well it adapts to 

various digital platforms, giving a solid, effective system 

for today’s data-driven advertising. The AECO-SC 

StyleGAN for Ad Creative Generation in algorithm 1. 

 

Algorithm 1: AECO-SC StyleGAN for Ad Creative Generation 

𝑆𝑡𝑒𝑝 1: 𝑆𝑒𝑡𝑢𝑝 

𝑑𝑒𝑓 𝑠𝑒𝑡𝑢𝑝(): 

    𝑁,𝑀, 𝐺, 𝑇 =  𝑛𝑢𝑚_ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑠(), 40, 5, 100 

    𝑃_𝑚, 𝜆1, 𝜆𝐺𝑃, 𝜆𝐿𝑃, 𝜆𝐹𝑀 =  0.3, 1.0, 0.8, 0.7, 0.5 

    𝑑𝑎𝑡𝑎 =  𝑙𝑜𝑎𝑑_𝑎𝑑𝑣𝑒𝑟𝑡_𝑑𝑎𝑡𝑎𝑠𝑒𝑡() 

    𝑟𝑒𝑡𝑢𝑟𝑛 𝑁,𝑀, 𝐺, 𝑇, 𝑃_𝑚, 𝜆1, 𝜆𝐺𝑃, 𝜆𝐿𝑃, 𝜆𝐹𝑀, 𝑑𝑎𝑡𝑎 

𝑆𝑡𝑒𝑝 2: 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

𝑑𝑒𝑓 𝑖𝑛𝑖𝑡_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑀,𝑁): 

    𝑟𝑒𝑡𝑢𝑟𝑛 [{′𝑝𝑎𝑟𝑎𝑚𝑠′: 𝑟𝑎𝑛𝑑_𝑣𝑒𝑐(𝑁), ′𝑓𝑖𝑡𝑛𝑒𝑠𝑠′: 𝑁𝑜𝑛𝑒} 𝑓𝑜𝑟 _ 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒(𝑀)] 

𝑆𝑡𝑒𝑝 3: 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 

𝑑𝑒𝑓 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑖𝑛𝑑, 𝑑𝑎𝑡𝑎, 𝜆1, 𝜆𝐺𝑃, 𝜆𝐿𝑃, 𝜆𝐹𝑀): 

    𝑚𝑜𝑑𝑒𝑙 =  𝑡𝑟𝑎𝑖𝑛_𝑆𝐶_𝑆𝑡𝑦𝑙𝑒𝐺𝐴𝑁(𝑖𝑛𝑑[′𝑝𝑎𝑟𝑎𝑚𝑠′], 𝑑𝑎𝑡𝑎, 𝜆1, 𝜆𝐺𝑃, 𝜆𝐿𝑃, 𝜆𝐹𝑀) 

    𝑟𝑒𝑡𝑢𝑟𝑛 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑙𝑜𝑠𝑠(𝑚𝑜𝑑𝑒𝑙, 𝑑𝑎𝑡𝑎) 

𝑆𝑡𝑒𝑝 4: 𝐶𝑙𝑎𝑛 𝑈𝑝𝑑𝑎𝑡𝑒 

𝑑𝑒𝑓 𝑐𝑙𝑎𝑛_𝑢𝑝𝑑𝑎𝑡𝑒(𝑝𝑜𝑝, 𝑔𝑏𝑒𝑠𝑡): 

    𝑓𝑜𝑟 𝑐𝑙𝑎𝑛 𝑖𝑛 𝑓𝑜𝑟𝑚_𝑐𝑙𝑎𝑛𝑠(𝑝𝑜𝑝): 

        𝑚𝑎𝑡𝑟𝑖𝑎𝑟𝑐ℎ =  𝑚𝑖𝑛(𝑐𝑙𝑎𝑛, 𝑘𝑒𝑦 = 𝑙𝑎𝑚𝑏𝑑𝑎 𝑥: 𝑥[′𝑓𝑖𝑡𝑛𝑒𝑠𝑠′]) 

        𝑓𝑜𝑟 𝑒 𝑖𝑛 𝑐𝑙𝑎𝑛: 

            𝑖𝑓 𝑒 ! =  𝑚𝑎𝑡𝑟𝑖𝑎𝑟𝑐ℎ: 



AECO-SC StyleGAN: A Cross-Platform GAN Framework for…                                              Informatica 49 (2025) 389–402 393 

 

                𝑒[′𝑝𝑎𝑟𝑎𝑚𝑠′] +=  𝑟𝑎𝑛𝑑()  ∗  (𝑚𝑎𝑡𝑟𝑖𝑎𝑟𝑐ℎ[′𝑝𝑎𝑟𝑎𝑚𝑠′]  −  𝑒[′𝑝𝑎𝑟𝑎𝑚𝑠′]) 

        𝑚𝑎𝑡𝑟𝑖𝑎𝑟𝑐ℎ[′𝑝𝑎𝑟𝑎𝑚𝑠′] +=  𝑟𝑎𝑛𝑑()  ∗  (𝑔𝑏𝑒𝑠𝑡[′𝑝𝑎𝑟𝑎𝑚𝑠′]  −  𝑚𝑎𝑡𝑟𝑖𝑎𝑟𝑐ℎ[′𝑝𝑎𝑟𝑎𝑚𝑠′]) 

𝑆𝑡𝑒𝑝 5: 𝑀𝑎𝑙𝑒 𝑈𝑝𝑑𝑎𝑡𝑒 & 𝐸𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

𝑑𝑒𝑓 𝑚𝑎𝑙𝑒_𝑎𝑛𝑑_𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑝𝑜𝑝, 𝑃_𝑚): 

    𝑚𝑎𝑙𝑒𝑠 =  𝑠𝑒𝑙𝑒𝑐𝑡_𝑚𝑎𝑙𝑒𝑠(𝑝𝑜𝑝, 𝑃_𝑚) 

    𝑐𝑒𝑛𝑡𝑒𝑟 =  𝑚𝑒𝑎𝑛_𝑣𝑒𝑐([𝑒[′𝑝𝑎𝑟𝑎𝑚𝑠′] 𝑓𝑜𝑟 𝑒 𝑖𝑛 𝑝𝑜𝑝]) 

    𝑓𝑜𝑟 𝑚 𝑖𝑛 𝑚𝑎𝑙𝑒𝑠: 

        𝑚[′𝑝𝑎𝑟𝑎𝑚𝑠′] +=  𝑟𝑎𝑛𝑑()  ∗  (𝑐𝑒𝑛𝑡𝑒𝑟 −  𝑚[′𝑝𝑎𝑟𝑎𝑚𝑠′]) 

    𝑟𝑒𝑝𝑙𝑎𝑐𝑒_𝑤𝑒𝑎𝑘𝑒𝑠𝑡(𝑝𝑜𝑝) 

    𝑝𝑜𝑝. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑐𝑎𝑙𝑓(𝑝𝑜𝑝)) 

    𝑟𝑎𝑛𝑑𝑜𝑚_𝑟𝑒𝑠𝑒𝑡_𝑏𝑜𝑡𝑡𝑜𝑚(𝑝𝑜𝑝, 𝑝𝑐𝑡 = 0.3) 

𝑆𝑡𝑒𝑝 6: 𝑀𝑎𝑖𝑛 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 

𝑑𝑒𝑓 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒_𝐴𝐸𝐶𝑂_𝑆𝐶𝑆𝑡𝑦𝑙𝑒𝐺𝐴𝑁(): 

    𝑁,𝑀, 𝐺, 𝑇, 𝑃_𝑚, 𝜆1, 𝜆𝐺𝑃, 𝜆𝐿𝑃, 𝜆𝐹𝑀, 𝑑𝑎𝑡𝑎 =  𝑠𝑒𝑡𝑢𝑝() 

    𝑝𝑜𝑝 =  𝑖𝑛𝑖𝑡_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑀,𝑁) 

    𝑓𝑜𝑟 _ 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒(𝑇): 

        𝑓𝑜𝑟 𝑒 𝑖𝑛 𝑝𝑜𝑝: 

            𝑒[′𝑓𝑖𝑡𝑛𝑒𝑠𝑠′]  =  𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑒, 𝑑𝑎𝑡𝑎, 𝜆1, 𝜆𝐺𝑃, 𝜆𝐿𝑃, 𝜆𝐹𝑀) 

        𝑔𝑏𝑒𝑠𝑡 =  𝑚𝑖𝑛(𝑝𝑜𝑝, 𝑘𝑒𝑦 = 𝑙𝑎𝑚𝑏𝑑𝑎 𝑥: 𝑥[′𝑓𝑖𝑡𝑛𝑒𝑠𝑠′]) 

        𝑐𝑙𝑎𝑛_𝑢𝑝𝑑𝑎𝑡𝑒(𝑝𝑜𝑝, 𝑔𝑏𝑒𝑠𝑡) 

        𝑚𝑎𝑙𝑒_𝑎𝑛𝑑_𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑝𝑜𝑝, 𝑃_𝑚) 

    𝑟𝑒𝑡𝑢𝑟𝑛 𝑔𝑏𝑒𝑠𝑡 

 

3.3.1 SC StyleGAN 

SC-StyleGAN enables location-specific control over 

visual features, enhancing the deep learning framework’s 

ability to dynamically generate and optimize personalized, 

visually consistent advertising creatives across different 

contexts. The StyleGAN network generates high-quality 

images by applying an 18 ×  512 style code to 18 layers 

of the network. It starts with a constant 4 ×  4 feature map 

and progressively grows by a factor of 2 at each stage, 

ultimately producing images of up to 1024 ×

 1024 pixels. Each style block receives a 1 ×  512 style 

code that modulates convolution operations, enabling fine 

control over visual attributes. These style codes 

correspond to different levels of detail: coarse styles affect 

the overall layout and color schemes, middle styles  

 

influence microstructure and facial features, and fine styles 

regulate high-frequency details and textures.  Non-visual 

data like captions, CTR, and demographics are encoded 

into embeddings using text encoders  

 

and fully connected layers. These embeddings are fused 

with spatial inputs (semantic maps and sketches) through 

modulation layers that adjust the style codes, allowing SC-

StyleGAN to generate creatives tailored to both visual 

features and user/context data. For training and evaluation 

in this study, input images were uniformly resized to 

224 ×  224 pixels, serving as the initial resolution before 

the progressive growth to higher resolutions during 

generation. Figure 4 illustrates the network architecture of 

SC-StyleGAN. 

 
 

Figure 4: Network architecture of SC-StyleGAN 
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SC-StyleGAN was a conditional generation system that 

uses a semantic map and sketches to identify spatial 

features for coarse and intermediate styles. It consists of 

two sub-networks: the production network, which uses 

layers, and the spatial encoding network, which maps input 

conditions to intermediates. Two encoding modules are 

suggested for the spatial encoding network, which 

individually translates the semantic map and 512 ×

 512 sketches into 64 ×  256 ×  256 spatial feature 

maps. With a spatial dimension of 32 𝑥 32, the combined 

map of features was encoded to correspond with the 

coarse-moderated style in the StyleGAN synthesizing 

module. To create a 32 𝑥 32 intermediate image, the same 

steps are followed for the spatial intermediate feature map. 

Table 2 represents the architectural and computational 

footprint of the SC-StyleGAN model.  

 

Table 2: SC-StyleGAN architecture details: input 

dimensions, layer-wise parameters, and computational 

complexity 

 

Comp

onent 

Layer 

Type 

Input 

Shape 

Output 

Shape 

Par

ams 

FL

OPs 

Semant

ic 

Encode

r (E_s) 

Conv2

D + 

ReLU 

× 4 

512×51

2×3 

64×256

×256 

~3.1

M 

~2.5

B 

Sketch 

Encode

r (E_k) 

Conv2

D + 

ReLU 

× 4 

512×51

2×1 

64×256

×256 

~2.8

M 

~2.2

B 

Spatial 

Combi

ner 

Add/C

oncat + 

Down

Conv 

64×256

×256 

64×32×

32 

~0.6

M 

~0.3

B 

StyleG

AN 

(Synth

esis 

Net) 

StyleB

lock × 

18 

1×512 1024×1

024×3 

~30

M 

~75

B 

 

Objective Function: The SC-StyleGAN was to precisely 

map the determined conditions to their equivalents in the 

synthesis process while encoding the spatial constraint for 

the StyleGAN synthesizing procedure while preserving the 

invention value of the StyleGAN. Equation (6) fulfills the 

training process's goal in the following ways. 

  

K(Jgt, Jsyn) = λK1K1(Jgt, Jsyn) + λKGPKGP + λKLPKLP +

λKFMKFM         (6) 

 

The SC-StyleGAN training uses a composite loss to 

enhance image quality and consistency. The 𝐿1 loss (𝐾1) 

ensures pixel-level accuracy, while the global perceptual 

loss (𝐾𝐺𝑃) maintains semantic alignment at full scale. The 

local perceptual loss (𝐾𝐿𝑃) improves detail by comparing 

image patches, and the feature matching loss (𝐾𝐹𝑀) 

stabilizes training by aligning intermediate features. 

Together, these losses guide the network toward realistic 

and context-aware ad generation. The perceptual metrics 

(LPIPS) measure the overall perceptual loss after shrinking 

the target and synthesized images to 64 x 64. The local 

perceptive loss (LLP) and the global perceptive loss (LGP) 

are expressed mathematically as follows in equations (7)-

(8). 

 

𝐾𝐺𝑃(𝐽𝑔𝑡 , 𝐽𝑠𝑦𝑛) = 𝐿𝑃𝐼𝑃𝑆(𝐽𝑔𝑡
𝑟𝑒, 𝐽𝑠𝑦𝑛

𝑟𝑒 )       (7) 

𝐾𝐿𝑃(𝐽𝑔𝑡 , 𝐽𝑠𝑦𝑛) =
1

𝐿
∑ 𝐿𝑃𝐼𝑃𝑆(𝐽𝑔𝑡

𝑙 , 𝐽𝑠𝑦𝑛
𝑙 )𝐿

𝑙=1       (8) 

 

Where 𝐽𝑔𝑡
𝑟𝑒and 𝐽𝑠𝑦𝑛

𝑟𝑒 are the resized reality and, synthesizing 

the image, respectively, and 𝐿𝑃𝐼𝑃𝑆(. , . ) was the 

perceptual measuring function. In each phase, 𝐽𝑔𝑡
𝑙 and 

𝐽𝑠𝑦𝑛
𝑙 stand for the 𝑘 − 𝑡ℎ randomly clipped ground truth 

and synthetic patches, respectively, in equation (9). 

 

𝐾𝐹𝑀 =
1

𝑀
∑ ||𝐻𝑘(𝑔𝑡) − 𝐻𝑘(𝑠𝑦𝑛)||

1𝑘        (9) 

 

Where 𝐻𝑘(. ) was the output map of features of the pre-

trained StyleGAN synthesizing network's 𝑘 − 𝑡ℎ 

resolution block (with a matching spatial resolution of 2𝑘). 

The number of computed blocks was 𝑀. Following the 

replacement resolution block, it computes the 𝐾1  norm 

between the ground truth generation and the synthesized 

processes(𝑘 ∈ {6,7,8,9}𝑎𝑛𝑑 𝑀 = 4). 

 

3.3.2 AECO 

To improve model convergence, stability, and learning 

efficiency, AECO dynamically modifies training 

hyperparameters. This raises the caliber and efficacy of 

engagement of generated ad creatives spanning platforms. 

The AECO enhances the DL framework by efficiently 

optimizing parameters, enabling dynamic generation of 

personalized advertising creative through adaptive search, 

exploration, and convergence strategies. The ECO was 

enhanced into an improved version to support a DL 

framework that dynamically generates and optimizes 

advertising creatives. This AECO algorithm addresses the 

limitations of the original by improving convergence speed 

and solution quality, enabling more effective, real-time 

content creation and personalization in advertising through 

intelligent data-driven optimization. 

Many tasks using Adam and RMSprop are successful, but 

they have issues with GANs, including convergence 

issues, collapsing to single modes, and being sensitive to 

changes in learning rates. To resolve these issues in 

creating ads for different channels, the new AECO strategy 

adapts by using evolutionary methods to tune 

hyperparameters, which boosts the stability and resilience 
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of the model when facing different spatial and contextual 

situations. 

Elephant migration under the direction of each clan 

principal was simulated using the ECO algorithm. This 

part provides an autonomous movement range and an 

autonomous movement position for each elephant to keep 

the algorithm from reaching a local optimum, enhance 

image variety, and replicate the aforementioned behaviors 

based on the initial elephant position to generate creative 

advertising, as illustrated in equations (10) and (11). 

   

∆𝑊𝑗
0(𝑖) = ∆𝑊𝑚𝑖𝑛(𝑖) + 𝑞 × (∆𝑊𝑚𝑎𝑥(𝑖) − ∆𝑊𝑚𝑖𝑛(𝑖))

        (10) 

 

Where 𝑞 was a random number in the interval that is 

uniformly distributed [0, 1], and ∆𝑊𝑗
0(𝑖)(𝑗 =

1,2, … . ,𝑀, 𝑖 = 1,2, … . , 𝐶) represents the range of 

independent movement of the 𝑗 − 𝑡ℎ elephant in the 𝑖 −

𝑡ℎ  dimension at the starting time. Both ∆𝑊𝑚𝑖𝑛(𝑖) =

−∆𝑊𝑚𝑎𝑥(𝑖) and ∆𝑊𝑚𝑎𝑥(𝑖) = 𝐸 × (𝑊𝑚𝑎𝑥(𝑖) −

𝑊𝑚𝑖𝑛(𝑖)) represent the lower and upper bounds of the 𝑖 −

𝑡ℎ dimensional autonomous motion space. Generally 

speaking, 𝐸 can be seen as 0.005 for improved outcomes,  

 

𝑌𝑊𝑗
0(𝑖) = 𝑊𝑗

0(𝑖) + ∆𝑊𝑗
0(𝑖)      (11) 

 

As evolution advances, the autonomous range of mobility 

of each elephant should likewise diminish as individuals 

become closer to one another. Therefore, the independent 

moving range updates technique in equation (12) is used. 

 

∆𝑊𝑗
𝑖𝑡+1(𝑖) = [0.9 − (0.8 ×

𝑖𝑡

𝑖𝑡𝑚𝑎𝑥
)] × ∆𝑊𝑗

𝑖𝑡(𝑖) (12) 

 

Enhancement of the family clan's renewal technique: The 

mother elephant was the best person in each family clan, 

and all other clan members learn from the generative 

image. While clan members are responsible for 

maintaining population diversity to provide the mother 

elephant with superior evolutionary information for quick 

convergence, the mother elephant was primarily 

responsible for swiftly investigating the area where the 

hypothesized optimal location was located.  

(1) A method of updating each clan member individually 

based on the autonomous location traction equation (13), 

this section proposes a way to update the individual 

population members based on autonomous location 

traction to better maintain species variety and avoid 

significantly slowing down the algorithm's rate of 

convergence. 

 

𝑊𝐹𝐶𝑗,𝑛
𝑖𝑡+1 =

{
 
 
 

 
 
 𝑍𝑋𝐹𝐶𝑗,𝑛

𝑖𝑡+1 (𝑖) + 𝑞 × 𝛼 × [𝑊𝐹𝐶𝑁𝐶−𝑗,𝑁
𝑖𝑡 (𝑖) − 𝑊𝐹𝐶𝑗,𝑛

𝑖𝑡 (𝑖)]

+𝑞 × 𝛼 × [𝑊𝑀𝐶,𝑅𝑚
𝑖𝑡 (𝑖) − 𝑊𝐹𝐶𝑗,𝑛

𝑖𝑡 (𝑖)],   𝑖𝑓 𝑛 >
𝑁𝑒

2

𝑍𝑀𝐹𝐶𝑗,𝑛
𝑖𝑡+1 (𝑖) + 𝑞 × 𝛼 × [𝑊𝐹𝐶𝑗,𝑁

𝑖𝑡 (𝑖) − 𝑊𝐹𝐶𝑗,𝑛
𝑖𝑡 (𝑖)]

+𝑞 × 𝛼 ×

[𝑊𝑀𝐶,𝑅𝑚
𝑖𝑡 (𝑖) − 𝑊𝐹𝐶𝑗,𝑛

𝑖𝑡 (𝑖)], 𝑒𝑙𝑠𝑒

   

                           

             (13) 

In the 𝑁𝑐 − 𝑗family group  𝑊𝐹𝐶𝑀𝑑=𝑗,
   at the 𝑗 − 𝑡ℎ 

iteration, the matriarch of the female elephant was 

represented by 𝑊𝐹𝐶𝑀𝑑=𝑗,𝑁
𝑖𝑡 . After sorting at 𝑖𝑡 + 1 iteration 

𝑍𝑋𝐹𝐶𝑗,𝑛
𝑖𝑡+1  was the autonomous position of the 𝑛(𝑛 =

1,2, … . ,𝑀𝑓) clan member, and equation (14) shows that 𝑞 

was a uniformly spread range form [0, 1]. 𝛼 was the 

improved adaptable scaling factor.  

 

𝛼 = 2 − (𝑑 ×
𝑖𝑡

𝑖𝑡𝑚𝑎𝑥
)      (14) 

 

Where 𝑑 was a fixed value that was typically set to 0.5 to 

get the best results, while the optimization issue itself 

requires in different values. 

(2) An autonomous location traction-based individual 

update method for matriarchs is employed; as previously 

stated, the globally optimal individuals swiftly approach 

the globally optimal region after traversing each of the 

matriarchs in the ECO algorithm. This section suggests an 

autonomous position, traction-based matriarch updating 

approach, as illustrated in equation (15). 

 

𝑊𝐹𝐶𝑗,𝑛
𝑖𝑡+1 (𝑖) = 𝑍𝑋𝐹𝐶𝑗,𝑛

𝑖𝑡+1 (𝑖) + 𝑞 × 𝛽 × [𝑊𝐵𝑒𝑠𝑡
𝑖𝑡 (𝑖) −

𝑊𝐹𝐶𝑗,𝑁
𝑖𝑡 (𝑖)]        (15) 

 

The scaling factor 𝛽 was determined using equation (14), 

while 𝑍𝑋𝐹𝐶𝑗,𝑁
𝑖𝑡+1  was the independent movement location of 

the matriarch in this clan at the 𝑖𝑡 + 1 iteration, acquired 

similarly to equation (16). 

 

𝛽 = 3 − (𝑑 ×
𝑖𝑡

𝑖𝑡𝑚𝑎𝑥
)       (16) 

 

Improvement of the individual renewal method of the male 

elephant clan: According to the ECO algorithm, the male 

elephant clan was essential in creating globally ideal 

locations for female clan leaders and substituting certain 

family members to supply evolutionary data. Despite this, 

the number of male elephants might add to the diversity of 

the family clan. In light of this, equation (17) provides the 

male elephant individual renewal formula to guarantee that 

the male elephant clan has particular population diversity 

and generates as much evolutionary information as 

possible. 



396   Informatica 49 (2025) 389–402                                                                                                                                        Y. Zhang 

 

𝑊𝑀𝐶,𝑚
𝑖𝑡+1 (𝑖) = 𝑍𝑋𝑀𝐶,𝑚

𝑖𝑡+1 (𝑖) + 𝑞 × 𝑜 × (𝑊𝐶𝑒𝑛𝑡𝑒𝑟
𝑖𝑡 −

𝑊𝑀𝐶,𝑚
𝑖𝑡 (𝑖))        (17) 

 

In the 𝑖𝑡 + 1 iteration of the male elephant clan 𝑍𝑋𝑀𝐶,𝑚
𝑖𝑡+1  

represents the autonomous movement location of the 𝑚 −

𝑡ℎ(𝑚 = 1,2, … ,𝑀𝑓) elephant. Equation (18) illustrates 

that the 𝑜 was determined using 𝑊𝐶𝑒𝑛𝑡𝑒𝑟
𝑖𝑡 , which was the 

location of the maternal elephant patriarch in each family 

clan in the 𝑖𝑡 − 𝑡ℎ iteration. 

 

𝑊𝐶𝑒𝑛𝑡𝑒𝑟
𝑖𝑡 =

1

𝑁𝑐−1
× ∑ 𝑊𝐹𝐶𝑗,𝑁

𝑖𝑡𝑁𝑐−1
𝑗=1       (18) 

 

Improvement of individual replacement strategy for part of 

the family clan: Enhance the plan for replacing adult 

elephants. The following adult elephant replacement was 

suggested to guarantee the algorithm's speed of 

convergence and boost the variety of the creative ad 

images, as adult elephants are not the superior elephants 

within this clan. Equation (19) indicates the central 

position of all clan members. Otherwise, as indicated by 

equation (20), the superior person was chosen to replace 

the real adult elephant from both the new individual and 

the original adult elephant.  

 

𝑊𝐹𝐶𝑗,𝐺𝑚
𝑖𝑡+1 =

1

𝑁𝑒
∑ 𝑊𝐹𝐶𝑗

𝑖𝑡+1(𝑖)𝑁𝑒
𝑗=1       (19) 

 

𝑊𝐹𝐶𝑗,𝐶𝑎𝑙 𝑒
𝑖𝑡+1 (𝑖) = 𝑊𝐹𝐶𝑗,𝐺𝑚

𝑖𝑡+1 (𝑖) + 𝑞 × [
𝑊𝐹𝐶𝑗,𝑅𝑓
𝑖𝑡+1 (𝑖)+𝑊𝑀𝐶,𝑅𝑚

𝑖𝑡+1 (𝑖)

2
−

𝑊𝐹𝐶𝑗,𝐺𝑚
𝑗+1 (𝑖)]      (20) 

 

Improve the inferior small elephant replacement strategy: 

The ECO algorithm replaces the poor individuals in family 

clans to maintain population diversity, but reduces 

convergence speed. Early iterations have significant 

differences, while late iterations focus on population 

diversity. The worst 0.3Ne tiny elephants in each family 

clan are replaced with new individuals in the evolutionary 

stage. Equation (21) generates new individuals during the 

pre-evolutionary period, where 𝑖𝑡 < 𝑖𝑡𝑚𝑎𝑥. The 𝑖𝑡 +

1 iteration of the family clan 𝑊𝐹𝐶𝑗
𝑖𝑡+1, where 𝑊𝐹𝐶𝑗,𝑥

𝑖𝑡+1 (𝑖) was 

the worst one to be replaced. 

 

𝑊𝐹𝐶𝑗,𝐶𝑎𝑙 𝑒
𝑖𝑡+1 (𝑖) = 𝑊𝐹𝐶𝑗,𝑥

𝑖𝑡+1 (𝑖) + 𝑞 × [
𝑊𝐹𝐶𝑗,𝑅𝑓
𝑖𝑡+1 (𝑖)+𝑊𝑀𝐶,𝑅𝑚

𝑖𝑡+1 (𝑖)

2
−

𝑊𝐹𝐶𝑗,𝑥
𝑖𝑡+1 (𝑖)]      (21) 

 

AECO enhances SC-StyleGAN by tuning 

hyperparameters using elephant-inspired population 

dynamics. Each elephant’s position represents a candidate 

solution, evolving through clan-based exploration and 

adaptive updates. This improves convergence and avoids 

common GAN issues. However, the mapping between 

AECO’s search positions and StyleGAN’s exact 

hyperparameters (like learning rate or noise scale) should 

be clarified. 

 

4 Results and discussion  

All experiments used Python 3.10.1 on an NVIDIA Tesla 

V100 GPU. AECO-SC StyleGAN trained for 50 epochs 

(1,000 iterations each) in approximately 12 GPU hours, 

outperforming Adam (15 GPU hours) in efficiency. The 

proposed strategy was assessed and its effectiveness was 

determined using the following indicators: Normalized 

Discounted Cumulative Gain (NDCG), accuracy, and 

weighted F1, The Fréchet Inception Distance (FID), 

Structural Similarity Index Measure (SSIM) and Peak 

Signal-to-Noise Ratio (PSNR). Although AECO-SC 

StyleGAN is a generative framework, its output creatives 

are evaluated using a downstream binary classification 

task predicting ad engagement (high vs. low CTR). All 

models, including baselines like VGG + Layout + NIMA 

and XCEPTION, are evaluated on this task for a fair 

comparison, also implementing the baseline method to this 

research. Table 3 represents hyperparameters for AECO-

SC StyleGAN-based framework used in dynamic 

advertising creative optimization. 

 

Table 3: Hyperparameter Settings for AECO-SC 

StyleGAN Framework 

Hyperparameter Value 

Batch Size 32 

Learning Rate (Generator) 0.0001 

Learning Rate 

(Discriminator) 

0.0004 

Epochs 200 

Image Size 256 × 256 × 3 

Latent Vector Dimension (z) 512 

Dropout Rate 0.3 

Activation Function Leaky ReLU (α=0.2) 

Normalization Instance 

Normalization 

AECO Population Size 30 

AECO Max Iterations 100 

 

4.1 Evaluation task 

The primary task is a binary classification of ad creatives 

into 'high engagement' vs. 'low engagement' based on 

historical CTR data. Ads with CTR above the 75th 

percentile were labeled as high engagement (1), and others 

as low engagement (0). This classification target enables 

the model to learn aesthetic and contextual cues that align 

with user interaction patterns. The dataset was split 

70/15/15 for training, validation, and testing. Evaluation 

was conducted on the unseen 15% test set. Performance 

metrics included NDCG, classification accuracy, and 

weighted F1-score FID, SSIM, and PSNR. Baseline 
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models included Visual Geometry Group Layout feature 

Neural Image Assessment (VGG + Layout features + 

NIMA) [20], XCEPTION [21], AdvAE-GAN [22] , 

BicycleGAN [22], V-GAN [23], and Vanilla GAN [23]. 

All models were trained under similar hardware and 

optimization conditions to ensure a fair comparison. Table 

4 shows the comparison of classifiers and their 

performance evaluation results.  

The evaluation pipeline begins with AECO-SC StyleGAN 

generating advertising creatives. These outputs are labeled 

based on a CTR threshold to indicate high or low 

engagement. A classifier then predicts engagement levels, 

allowing metrics like NDCG, Accuracy, and Weighted F1-

score to assess how well the generated creatives align with 

user interaction patterns. 

 

4.2 Accuracy and loss 

The training accuracy and loss over 50 epochs for the 

proposed AECO-SC StyleGAN, XCEPTION, and VGG + 

Layout + NIMA are displayed in Figure 5(a, b). The 

AECO-SC StyleGAN consistently achieves superior 

accuracy and inferior loss, demonstrating better learning 

efficiency, faster convergence, and more stable training. 

Accuracy values were mentioned in percentage. Both 

training and validation accuracy curves show steady 

growth and eventual stabilization, indicating effective 

learning with minimal overfitting. Similarly, the loss 

curves for training and validation exhibit a clear downward 

trend, reflecting successful convergence. These results 

highlight the model's ability to efficiently capture cross-

platform advertising dynamics, generate high-quality 

creatives, and maintain strong generalization across 

datasets, ultimately improving engagement prediction 

performance. 

 
 

Figure 5: Accuracy and Loss Comparison of Models 

 

4.3 Ad image dimension distribution 

The GAN ad image dimension distribution operates as a 

cross-platform deep learning framework that generates 

multiple platform-optimized sizes for presented images. 

Standard display and mobile ad dimensions are the format 

choices for most images, which guarantee visual 

performance while ensuring cross-platform compatibility. 

Figure 6 displays the Ad image dimensions across digital 

platforms. 

 

4.4 Clicks-through rate (CTR) by platform 

The CTR performance stands tested across different 

platforms through the use of a GAN framework for 

dynamic ad optimization. Results indicate that 

performance metrics vary between platforms since mobile 

achieves better CTR than desktop. Through its creative 

adaptation, the GAN model demonstrates high 

engagement while showing the power of deep learning as 

a means to improve cross-platform digital advertisement 

results. Figure 7 shows the CTR distribution across four 

social platforms. 

 

 
 

Figure 6: Ad image dimensions across digital platforms 

 

 



398   Informatica 49 (2025) 389–402                                                                                                                                        Y. Zhang 

 

 
 

Figure 7: CTR distribution across four social platforms 

 

4.5 Convergence and runtime analysis 

To compare the stability of the training between AECO and 

Adam, by run both for 100 iterations shown in Figure 8. 

AECO demonstrated a quicker and smoother convergence, 

as seen by its early near-zero loss. Ad creative generation 

requires a stable and fast system, as it works with many 

constraints in quick optimization. By using adaptive 

learning, AECO avoids the problems of local minima and 

maintains consistency, which makes it effective than Adam 

and RMSprop for cross-platform advertising. 

 
 

Figure 8: Outcomes of convergence and runtime analysis 

 

4.6 NDCG 

The NDCG score was applied to measure how relevant and 

well-arranged the ad creatives were for users. Because of 

this, NDCG is better suited for this task, as it rewards 

higher positions for predicting relevant content. A better 

NDCG means the model ranks the most engaging and 

appropriate content first, which helps in dynamic 

advertising situations where space and time are both 

limited. The NDCG for the AECO-SC StyleGAN was 

0.61, much better than the NDCG of 0.22 for the baseline 

VGG + Layout + NIMA model. From this, we can see that 

our model helps us better find and rank the strongest ad 

creatives first. With this accuracy, marketers are better 

equipped to promote content that has a significant effect. 

Figure 9 illustrates the NDCG scores of all the evaluated 

models. 

 

 
 

Figure 9: Illustrates NDCG performance results 

 

4.7 Accuracy 

Accuracy indicates how effectively the classifier predicts 

whether generated advertisements will result in high or 

low user engagement (based on CTR), thus assessing the 

effectiveness of the generated creatives. The high accuracy 

in generating platform-specific ad creatives consistently 

aligns with user engagement metrics, outperforming 

baseline models in aesthetic coherence, contextual 

relevance, and predictive performance across platforms. 

The results demonstrate that XCEPTION achieved an 

accuracy of 98.27%, while AECO-SC StyleGAN 

performed slightly better with an accuracy of 98.48%, 

showcasing their effectiveness in the given task. 

 

4.8 Weighted F1 

The F1-score balances precision and recall, crucial for 

imbalanced engagement data, indicating how well the 

model generates relevant, high-performing ads while 

minimizing misclassification. The Weighted F1 score was 

a metric used to evaluate the performance of a GAN in 

dynamic advertising creative optimization, emphasizing 

precision and recall across various platforms. Table 4 gives 

Evaluation of Ad Engagement Prediction Based on 

Generated Ad Creatives. The results show that AECO-SC 

StyleGAN outperforms XCEPTION, achieving a higher 

Weighted F1 score of 98.5% compared to 98.2%, 

demonstrating superior performance in dynamic 

advertising creative optimization. Figure 10 displays the 

accuracy and weighted F1 evaluation results. 
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Figure 10: Accuracy and Weighted F1 Evaluation Results 

 

Table 4:  Evaluation of ad engagement prediction based 

on generated Ad Creatives 

 

Method NDCG 
Accuracy 

(%) 

Weighted 

F1 (%) 

VGG + 

Layout 

features + 

NIMA [20] 

0.22 - - 

XCEPTION 

[21] 
- 98.27 % 98.2 % 

AECO-SC 

StyleGAN 

[Proposed] 

0.61 98.48 % 98.5 % 

 

4.8 Statistical evaluation of model 

performance 

To address this, we have conducted additional experiments 

using five different random seeds. For each seed, the 

model was trained and evaluated independently using the 

same data split. We now report the mean ± standard 

deviations for the key evaluation metrics, including 

Normalized Discounted Cumulative Gain (NDCG), 

Accuracy, and Weighted F1-score. Performance 

Comparison of Creative Generation Models on the Ad 

ImageNet Dataset given below Table 5. 

 

 

 

 

 

 

Table 5: Performance comparison of creative generation 

models on the Ad ImageNet dataset 

 

Method NDCG 

(Mean 

± SD) 

Accuracy 

(%) (Mean 

± SD) 

Weighted 

F1 (%) 

(Mean ± 

SD) 

VGG + 

Layout + 

NIMA [20] 

0.22 ± 

0.015 

94.62 ± 

0.40 

94.3 ± 0.38 

XCEPTION 

[21] 

0.45 ± 

0.020 

98.27 ± 

0.25 

98.2 ± 0.21 

AECO-SC 

StyleGAN 

[Proposed] 

0.61 ± 

0.018 

98.48 ± 

0.22 

98.5 ± 0.19 

 

In addition to reporting the mean ± SD, we performed 

paired t-tests to evaluate whether the improvements over 

baseline models are statistically significant. The results 

confirm that the performance gains of AECO-SC 

StyleGAN over XCEPTION and VGG+NIMA are 

statistically significant with p < 0.01 for all three metrics.  

 

4.9 Performance comparison of generative 

models 

FID scores of the suggested AECO-SC StyleGAN are 

contrasted with those of other GAN-based baselines in 

Figure 11. Among the tested methods, the proposed 

AECO-SC StyleGAN delivered the best quality, with an 

FID score of 38.4752, compared to 42.3256 for AdvAE-

GAN [22] and 45.0208 for BicycleGAN [22]. 

 

 
 

Figure 11: Generative quality evaluation model 

comparison results. 
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The SSIM and PSNR metrics for AECO-SC StyleGAN 

and other GAN variations are shown in Figure 12. Higher 

PSNR and SSIM values indicate better image fidelity and 

structural similarity to the original images. The AECO-SC 

StyleGAN shows the highest PSNR of 35.8 dB and an 

SSIM of 0.95 which is better than the PSNR of 33.5 dB 

and SSIM of 0.92 for V-GAN [23] and the PSNR of 28.4 

dB and SSIM of 0.85 for Vanilla GAN [23]. It means that 

AECO-SC StyleGAN is able to create images that are 

more clearly detailed and accurate than other styles. 

 
Figure 12: Model comparison results of image quality 

assessment. 

 

4.10 Visual results and assessment of visual 

fidelity 

To evaluate the visual fidelity of the proposed AECO-SC 

StyleGAN, we generated advertisement creatives using the 

Ad ImageNet dataset. Figure 13 illustrates side-by-side 

examples of generated ads, showcasing a variety of 

product categories including fashion, electronics, and 

skincare. The generated ads closely match real ones in 

layout, color schemes, and promotional text, reflecting 

platform-specific design aesthetics. While maintaining 

coherence, the model introduces subtle variations that add 

diversity and creativity. These results demonstrate that 

AECO-SC StyleGAN effectively replicates real ad 

characteristics, providing a scalable and automated 

approach for cross-platform ad generation. 

 

 
Figure 13: Generated Ad Creative using AECO-SC 

StyleGAN 

 

4.11 Discussion 

Dynamic advertising creative optimization across multiple 

platforms aims to enhance user engagement and 

conversions by generating context-aware, personalized ad 

content. Traditional models such as VGG combined with 

Layout features and NIMA [20] rely on fixed image 

features, limiting their capacity to capture the full spectrum 

of complex, interactive visual and contextual patterns 

inherent in cross-platform environments. As a result, the 

creatives they generate often lack adaptability and 

personalization, making them less effective in varied user 

scenarios. Meanwhile, XCEPTION-based GAN [21] 

models, although capable of deeper feature extraction, are 

hindered by their high computational and memory 

demands. Their complex operations limit scalability and 

pose challenges for deployment on lightweight or real-time 

advertising platforms, reducing practicality in widespread 

commercial use. 

In contrast, the proposed AECO-SC StyleGAN framework 

addresses these limitations by integrating adaptive 

hyperparameter tuning and spatial conditioning to generate 

high-fidelity, semantically consistent creatives tailored to 

specific platform requirements. AECO enhances 

convergence and training efficiency, while SC-StyleGAN 

ensures visual and contextual alignment across formats. 

This leads to better performance and improved resource 

utilization, offering a scalable and intelligent solution for 

dynamic advertising creative generation in diverse 

deployment environments. 
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While AECO-SC StyleGAN improves convergence speed 

and reduces memory consumption relative to baseline 

GANs during training, it still requires substantial 

computational resources overall, particularly due to its 

large model size and high-resolution output generation. 

However, once trained, the model supports relatively 

efficient inference, making it suitable for real-time or near-

real-time deployment scenarios. 

 

5 Conclusions 

The DL framework uses GAN for dynamic advertising 

creative optimization, enabling effective cross-platform 

strategies to enhance ad personalization and performance 

in real time. Data collection involved the Ad ImageNet 

dataset, consisting of multimodal ad samples. 

Preprocessing included image resizing, tokenization, and 

intensity normalization. This approach demonstrates a 

scalable, efficient method for cross-platform ad creative 

optimization, ensuring higher engagement and visual 

coherence. The results show that the AECO-SC StyleGAN 

method achieved an NDCG of 0.61, an accuracy of 

98.48%, and a weighted F1 score of 98.5%. These metrics 

highlight the method’s high performance in optimizing 

dynamic advertising creatives with excellent precision and 

relevance. Although AECO-SC StyleGAN shows 

promising results in generating optimized ad creatives 

with high quality, the training process remains 

computationally intensive due to the high-resolution 

outputs and multiple conditioning layers. The model may 

face challenges in ensuring consistency across diverse 

platforms, handling large-scale real-time data, and 

optimizing for varying audience preferences. It also 

requires significant computational resources for training. 

Future scope could focus on improving real-time 

adaptability, cross-platform integration, and reducing 

computational costs for broader adoption in dynamic 

advertising. 

 

5.1 Limitations and future work 

While AECO-SC StyleGAN shows promising results, it 

presents notable limitations. First, training the model 

requires significant computational resources, with 30+ 

hours of training time on high-memory GPUs, limiting 

accessibility for smaller teams. Second, generalization 

across domains remains a challenge. Early tests on ad 

categories like automotive and electronics suggest reduced 

performance, warranting domain-adaptive retraining. 

Third, although AECO-SC generates high-quality 

creatives, its deployment in real-time ad systems is 

untested. Future work will explore integration with ad 

delivery platforms and A/B testing frameworks to assess 

live performance metrics such as CTR and Return on Ad 

Spend (ROAS), moving toward a fully automated ad 

generation and evaluation pipeline. Focus on model 

compression and distillation techniques to reduce training 

time and memory consumption without sacrificing output 

quality. 
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