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In renewable energy management, the precise prediction of wind power generation remains a major 

challenge. This study proposes an integrated approach employing an artificial neural network (ANN) and 

a support vector machine (SVM) to construct a robust short-term prediction model for wind energy output. 

Central to this research is the utilization of a power station as the subject of analysis, wherein historical 

meteorological data and concurrent power generation figures form the foundational dataset. Employing 

a backpropagation (BP) neural network and support vector regression (SVR), the model adeptly 

synthesizes the data, facilitating predictions with satisfactory accuracy. The hybrid model exhibits a root 

mean square error (RMSE) of 0.18033, slightly higher than the backpropagation neural network (BPNN) 

model's 0.1796. However, it exhibits significantly enhanced stability under extreme weather conditions, 

reducing error fluctuation by 14.3% and maximum error by 18.1%. Given that power dispatch systems 

prioritize prediction stability over absolute accuracy—as sudden fluctuations can cause outages—this 

model achieves critical reliability by sacrificing only 0.0007 RMSE, thereby aligning with practical 

engineering requirements. 

Povzetek: Raziskava preučuje interakcijo med umetno inteligenco in kognitivnim modeliranjem za 

izboljšanje odločanja. Eksperimentalni izidi potrjujejo pomembne izboljšave napovedne uspešnosti, kar 

poudarja potencial hibridnih računalniških okvirov za napredovanje inteligentnih sistemov in 

interdisciplinarnih aplikacij v dinamičnih okoljih. 

 

1 Introduction 
Owing to swift economic growth, the societal need for 

electric energy is growing on a daily basis. Electric energy 

has become an essential source of energy in everyday life 

[1]. Simultaneously, as knowledge advances and 

environmental awareness increases, renewable energy 

sources (RESs), including solar energy, wind energy, 

hydro energy, and geothermal energy, have emerged as 

the primary focus of research in the pursuit of eco-friendly 

power generation methods. Investigating renewable 

energy sources (RESs), such as solar energy, wind energy, 

hydro energy, and geothermal energy, has emerged as the 

primary focus of human endeavors in the realm of eco-

friendly power production. Electricity is a crucial 

secondary energy source for the advancement of modern 

society, and optimizing the conversion of these emerging 

energy sources into electricity is a key aspect of the future 

energy revolution. 

The wind resources on Earth are plentiful, and the 

overall quantity of wind energy is approximately three 

times the global energy consumption. Each utilization of 

wind energy has the potential to decrease global energy 

consumption, and China accounts for almost 50% of the 

world's total wind energy resources. Utilizing the entirety 

of the wind energy available for electricity generation will 

greatly propel China's energy reform. Currently, wind 

power is essential for conserving energy, alleviating  

 

power supply constraints, and promoting energy 

efficiency because of the state's endorsement and 

assistance [2]. 

Research on wind power forecasting originated 

internationally in the 1970s. During that period, a 

laboratory in the United States recognized the need to 

accurately predict short-term wind speed and wind output 

for power firms. Presently, their theoretical system has 

reached a high level of maturity. Traditional wind power 

prediction models have successfully integrated numerical 

weather prediction (NWP) data into their research. These 

models exhibit minimal prediction errors and yield 

favourable results. Consequently, they are suitable for 

practical implementation in large-scale grid-connected 

wind power dispatch. The majority of existing wind power 

prediction systems globally utilize numerical 

meteorological forecast data as the input parameter for the 

learning algorithm, which then forecasts the future wind 

power. Machine learning models are increasingly popular 

in wind energy prediction because of their powerful ability 

to learn complex nonlinear relationships between data. 

Machine learning models are categorized into three 

different types: supervised learning, unsupervised 

learning, and semisupervised learning. A wide range of 

traditional supervised machine learning models, such as 

regression analysis [3], SVM [4], tree-based models [5], 

and traditional artificial neural networks [6, 7], have been 

applied to predict the wind power (WP) of individual wind 
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turbines. Bouche et al. [8] primarily examined the short-

term prediction of wind speed and wind power. It employs 

machine learning techniques to integrate the results of 

numerical weather prediction models with local data. 

Niksa-Rynkiewicz et al. [9] employed diverse forms of 

deep neural networks (DNNs) to address the issue of 

predicting short-term wind power generation (STWPP) 

via an intelligent approach. The primary benefit of this 

system is its ability to make accurate predictions by 

utilizing only a small number of parameters. Accurate 

wind power forecasting is crucial for wind farms because 

of the significant expansion and great potential of wind 

power generation as a renewable energy source. 

To optimize the system cost, a neural network 

structure for wind power prediction that directly considers 

different energy system conditions was proposed in the 

literature [10]. This approach led to a more consistent 

prediction performance and reduced the error variance by 

70%. On the other hand, Al-qaness et al. [11] developed 

an efficient forecasting model via a nature-inspired 

optimization algorithm and proposed an optimized 

dendritic neural regression (DNR) model for wind energy 

forecasting. The model achieved excellent results in the 

evaluation of the dataset. 

The exploration of wind power prediction in China 

started late, and research was not conducted until the end 

of the 20th century; however, research and development 

were fast. Despite its late start, China has made 

remarkable progress in wind power prediction research, 

driven by the increasing demand for renewable energy and 

the development of related technologies. Owing to the 

lack of numerical weather forecast data dedicated to wind 

power prediction, researchers focused mainly on the 

theoretical exploration of ultrashort-term prediction via 

prediction methods, including time series, artificial neural 

networks, and support vector machines. 

In the study [12], historical wind power time series 

data were used to calculate financial and technical 

indicators. Then, the Monte Carlo method and rank-based 

ant colony algorithm are employed to optimize the 

parameters for the calculation of these financial technical 

indicators. Finally, the XGBoost algorithm, which 

combines financial and technical indicators with historical 

power data, is used to predict future wind power. An 

optimal ensemble method is proposed in the literature [13] 

for wind power generation forecasting. The ensemble 

forecasting method is the most commonly used method in 

weather forecasting and combines several different 

forecasting models to improve forecasting accuracy. In 

addition, Sasser et al. [14] proposed a decision tree model 

that combines the rotor-equivalent wind speed and lapse 

rate. It employs a decision tree machine learning model to 

evaluate the effectiveness of the hub-height wind speed, 

rotor-equivalent wind speed, and lapse rate in power 

prediction. Atmospheric data trains regression trees to 

correlate power outputs with wind profiles and 

meteorological characteristics, predicting power 

responses on the basis of physical patterns. The decision 

tree model was trained on four vertical wind profile 

classifications, highlighting the necessity of calculating 

the wind speed at various rotor layer levels. A deep 

learning model based on NWP data was proposed in the 

literature [15] to improve the accuracy of wind power 

prediction. Traditional NWP-based forecasting methods 

involve high computational effort for complex 

meteorological models. In contrast, the method in this 

literature uses a deep learning model to achieve accurate 

prediction of wind power by training and learning a large 

amount of computational resources NWP data. 

Habtemariam et al. [16] proposed a robust and optimized 

long short-term memory network for forecasting wind 

power generation the day ahead in the context of 

Ethiopia’s renewable energy sector. The proposed method 

uses Bayesian optimization to find the best 

hyperparameter combination in a reasonable computation 

time. Abou Houran et al. [17] proposed a wind power 

prediction method Coati Optimization Algorithm-based 

hybrid deep learning CNN-LSTM based on a 

Convolutional Neural Network (CNN) and Long Short-

Term Memory network (LSTM) and Swarm Intelligence 

(SI) optimization algorithms. The composite model 

incorporates LSTM and SI to produce a framework that 

can precisely estimate offshore wind output in the short 

term, addressing the discrepancies and limits of 

conventional estimation methods. 

In research on ANNs and SVMs for short-term wind 

speed prediction, Tagliaferri et al. [18] studied two short-

term wind direction prediction methods based on artificial 

neural networks (ANNs) and support vector machines 

(SVMs). The study evaluated the prediction effects of 

these two methods by optimizing parameters such as the 

moving average length of the input data, the length of the 

input vector, and the number of layers of the neural 

network. The results showed that although the mean 

absolute error of the ANN was relatively large, its 

prediction accuracy significantly improved with 

increasing network size. Moreover, Barhmi and El Fatni 

[19] proposed four hybrid models that combine an SVM 

and an ANN for hourly wind speed prediction. The key 

parameters affecting the wind speed were selected through 

ordinary least squares (OLS) analysis, and genetic 

algorithms (GA) and particle swarm optimization (PSO) 

were used to tune the models. The results showed that the 

ANN model outperformed the SVM model in terms of 

prediction performance. Additionally, Zheng et al. [20] 

proposed a new kernel ridge regression (RR) model and 

compared it with the SVM and ANN reference models to 

verify its efficiency in different prediction time ranges (1 

hour, 12 hours, and 24 hours). The study revealed that the 

kernel ridge regression model outperformed the SVM and 

ANN in terms of wind speed prediction, especially when 

mutual information feature selection was used, which 

could more accurately predict the wind speed. 

Hu et al. [21] proposes a bidirectional signal 

decomposition (BST) and reformed grasshopper 

optimization algorithm (RGOA) enhanced LSTM model 

for wind power forecasting (15.2% RMSE reduction), 

alongside a normal distribution optimized whale 

algorithm (NDO-WOA) for wind-integrated dynamic 

economic dispatch (5.7% cost reduction in IEEE 30-bus 

system). Pan et al. [22] achieves R2=0.9785 in PV 

prediction via modified CEEMDAN decomposition and 
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Warship-optimized BiLSTM. Both studies demonstrate 

that hybrid intelligent algorithms significantly improve 

renewable energy forecasting and dispatch efficiency. 

As shown in Table 1, although each study has 

discussed ANN and SVM in detail, there has been a lack 

of attempts to combine these two methods. For example, 

utilizing the nonlinear learning ability of ANNs and the 

generalization ability of SVMs may improve the 

prediction accuracy. We hypothesize that combining 

SVR's regularization effect with BPNN's nonlinear feature 

extraction will enhance model robustness without 

sacrificing predictive accuracy. 

 

 
This research establishes three core objectives to 

address critical gaps in wind power forecasting: First, to 

validate the stability advantages of the hybrid model under 

extreme weather conditions where conventional models 

falter. Second, to develop a comprehensive "accuracy-

stability" evaluation framework that moves beyond 

traditional single-metric assessments. Third, to solve the 

"accuracy cliff" phenomenon observed during abrupt 

meteorological transitions, where prediction reliability 

dramatically decreases despite moderate overall accuracy. 

These objectives collectively address operational 

challenges in grid integration of renewable energy sources. 

This paper is structured as follows: Section 1 

introduces the research background, challenges in wind 

power forecasting, and related works. Section 2 elaborates 

on the wind power prediction model based on the artificial 

neural network, including data preprocessing, model 

design, and hyperparameter optimization. Section 3 

presents the wind power prediction model using support 

vector regression. Section 4 details the proposed hybrid 

BPNN-SVR model, including its architecture, theoretical 

justification, and experimental validation. Section 5 

provides the conclusion and discussion of the study, along 

with future research directions. 

2 Wind power prediction model 

based on an artificial neural 

network 
Artificial neural networks (ANNs) are renowned for their 

exceptional nonlinear fitting capabilities, with adjustable 

parameters and structures, making them extensively 

utilized in wind power prediction (WPP). Traditional 

ANNs include backpropagation neural networks (BPNNs), 

radial basis function neural networks (RBFNNs), and 

generalized regression neural networks (GRNNs), among 

others. Notably, BPNN stands as the most classical form. 

Prior to the simulation, constructing a BP neural 

network is necessary. It imports historical data into the 

model for training, iterates to obtain the weight and 

threshold of each layer of the neural network, and 

ultimately predicts power on the basis of future weather 

forecast data [23]. 

 

 
 

This architecture uses a single hidden layer BP neural 

network, comprising an input layer, a hidden layer, and an 

output layer. The structure of the BP neural network is 

shown in Figure 1. The quantity of neurons in the input 

and output layers is solely determined by the number of 

dimensions of the input and output parameter vectors. 

The number of neurons in the hidden layer is usually 

determined empirically or experimentally, and the 

selection process is carried out using a specific equation 

[24], as shown in Equation (1). 

 

l m n h= + + ,                                                              (1) 

 

where, l is the number of hidden nodes; m is the number 

of input nodes; n is the number of output nodes; and h is 

the regulation constant, which is usually 1~10. 

In this design, the input vectors are the wind speed, 

temperature, humidity, and barometric pressure (due to the 

existence of the wind turbine yaw system, the problem of 

wind direction is no longer necessary), the output vector 

is the power, so m=4, n=1, and h are variable parameters, 

and the number of nodes of the hidden layer neurons is 

determined by finding the minimum value of the error of 

the experiment l=5. 

In this work, the sigmoid function is selected as the 

activation function of the neurons in the hidden layer and 

the output layer of the BP neural network. The sigmoid 

function is chosen because it can introduce nonlinearity 

into the neural network, enabling the model to learn 

complex nonlinear relationships in the data. Its range of (0, 

1) also helps normalize the output of neurons, which is 

beneficial for the training process. 

Table 1: Comparis on of wind power prediction models. 

Reference Model Dataset RMSE 
Key 

Features 

[12] XGBoost 8000 0.1850 
Financial 

indicators 

[15] LSTM 10000 0.1820 NWP data 

[17] 
CNN-

LSTM 
7500 0.1780 

Coati 

optimization 

Our 

BPNN 
BPNN 6775 0.1796 

Single 

hidden layer 

Our 

Hybrid 

BPNN-

SVR 
6775 0.1803 

Integrated 

approach 

 

 

Figure 1: BP neural network. 
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Many factors affect the prediction accuracy of the BP 

neural network model, such as the initialization of weights 

and thresholds, the number of training sessions, the 

learning rate, the number of neurons in the hidden layer, 

and the number of layers, which can influence the 

prediction effect of the model. In this design, all the 

weights and thresholds are initialized to 1, and the number 

of neurons in the hidden layer is 5. The model is tuned 

from two perspectives: the number of training sessions 

and the learning rate. 

2.1 Data collection and preprocessing 

This study utilizes a dataset comprising 10-minute 

resolution measurements from a wind farm in Northern 

China (40°-42°N), spanning the years 2019 to 2021. This 

temporal range captures full seasonal cycles, including 

winter icing events (T < -5°C), summer typhoon impacts 

(V > 12 m/s), and transitional season frontal passages. The 

dataset contains a total of 8,832 data points, recording key 

parameters such as wind speed, temperature, humidity, 

barometric pressure and the actual wind power generation 

output. 

(1) Data Cleaning 

Missing values: The dataset was initially screened for 

missing values. Records containing incomplete data were 

systematically removed to ensure the integrity of the 

dataset. 

Outlier detection: Statistical methods such as Z score 

analysis are used to identify and remove outlier data points 

that may significantly affect the results. 

After the data cleaning process, 6775 original data 

points remained. 

Extreme weather events were rigorously defined 

using operational criteria from grid management protocols:  

(a) Sustained wind speeds exceeding 12 m/s, or  

(b) Rapid wind speed changes >5 m/s within 10-

minute intervals.  

These thresholds identified 427 extreme condition 

samples (6.3% of total dataset) that represent high-risk 

scenarios for grid stability. All extreme events were 

verified against meteorological alerts from China's 

National Climate Center to ensure accurate classification 

of typhoon, gale, and storm conditions that challenge 

conventional forecasting models. 

(2) Feature Engineering 

Normalization: To ensure that all the features 

contribute equally to model training, continuous variables 

such as the wind speed and temperature are normalized to 

a range between 0 and 1. 

Feature Selection: Features related to wind power 

prediction are selected on the basis of correlation analysis. 

This step helps reduce the dimensionality of the dataset 

and improves model performance. 

(3) Dataset Splitting: 

Training and Testing Split: The cleaned dataset, 

consisting of 6,775 data points, is divided into training and 

testing sets. The first 6,000 data points are used for 

training the model, whereas the remaining 775 data points 

are used for testing. 

(4) Input Feature Specification 

(a) Wind speed (m/s): Continuous, range 0-25 m/s 

(b) Temperature (°C): Continuous, range -15 to 40°C 

(c) Humidity (%): Continuous, range 0-100% 

(d) Barometric pressure (hPa): Continuous, range 

980-1040 hP 

(5) Normalization Method 

Min-Max scaling applied to all features, as shown in 

Equation (2): 

 

min

norm

max min

x x
x

x x

−
=

−
                                                          (2) 

(6) Cross-validation 

To further enhance the robustness of the model, a k-

fold cross-validation method is employed on the training 

set. This involves dividing the training data into k subsets 

and repeatedly training and validating the model on 

different subsets to ensure that the model’s performance is 

not affected by the initial data split. 

2.2 Evaluation indicators 

To better evaluate the effectiveness of the model and 

algorithm, one evaluation indicator is employed for 

effectiveness assessment: 

The root mean square error (RMSE) is used to gauge 

the deviation between the predicted value and the actual 

value. The expression for the RMSE is depicted in 

Equation (3): 
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1

f

1
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(3) 

 

where, yfi represents the predicted value and yai represents 

the observed value. 

The root mean square error (RMSE) is used to gauge 

the deviation between the predicted value and the actual 

value. In wind power prediction, the RMSE can 

comprehensively reflect the overall error magnitude, 

helping to evaluate the model's ability to predict wind 

power accurately. A lower RMSE indicates a better-fitting 

model. 

2.3 Hyperparameter optimization via grid 

search 

To rigorously validate the BPNN architecture selection 

and address potential concerns about model simplicity, we 

conducted an extensive grid search over key 

hyperparameters.  

(1) The search space encompassed four critical 

dimensions: 

(a) Number of hidden layers: [1, 2] 

(b) Neurons per layer: [5, 10, 15, 20] 

(c) Activation functions: ['sigmoid', 'tanh', 'relu'] 

(d) Learning rates: [0.01, 0.05, 0.1, 0.2] 

This combinatorial search yielded 72 unique 

configurations (2 layers × 4 neuron counts × 3 activations 

× 3 learning rates). Each configuration was evaluated 

using 5-fold cross-validation on the 6,000-sample training 
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dataset, with early stopping (patience=10 iterations) to 

prevent overfitting. The root mean square error (RMSE) 

served as the primary evaluation metric, with each fold's 

performance recorded and averaged across all folds.  

(2) The comprehensive grid search analysis (72 

configurations evaluated via 5-fold cross-validation) 

yielded four principal insights: 

(a) Optimal Architecture: A single hidden layer with 

5 sigmoid neurons achieved the lowest RMSE (0.1812 ± 

0.0023), demonstrating ideal representational capacity for 

this prediction task. 

(b) Diminishing Returns on Complexity: Increasing 

neuron counts (>5) or adding a second hidden layer 

consistently degraded performance (RMSE increase of 

0.3-2.3%), revealing incompatibility between model 

complexity and dataset scale (6,000 samples). 

(c) Activation Superiority: Sigmoid significantly 

outperformed both tanh (+1.0% RMSE reduction) and 

ReLU (+2.3%), with its bounded output range (0,1) 

proving particularly suitable for normalized power 

forecasting targets. 

(d) Optimal Learning Rate: η=0.1 struck the optimal 

balance between convergence speed (average 45 iterations) 

and precision, whereas lower rates (0.01) delayed 

convergence (60+ iterations) and higher values (0.2) 

induced oscillatory behavior. 

These findings collectively validate that simpler 

architectures mitigate overfitting risks (sample/parameter 

ratio: 240:1) while alleviating gradient attenuation issues, 

thereby achieving optimal bias-variance tradeoffs for this 

regression challenge. 

2.4 Initialization strategy analysis 

The choice of weight initialization significantly impacts 

neural network convergence and performance. We 

rigorously evaluated three prominent methods using 5-

fold cross-validation with our optimal architecture (single 

hidden layer, 5 sigmoid neurons, η=0.1).  

As shown in Table 2, the comparative analysis of 

initialization strategies demonstrates the comprehensive 

advantages of the Xavier method: it achieves the lowest 

RMSE (0.4% lower than He initialization and 1.7% lower 

than random uniform initialization), exhibits faster 

convergence (10-25% reduction in training epochs), and 

enhances stability (21% lower cross-validation variance). 

The mean gradient norm (0.48) being closest to the 

theoretical optimum of 0.5 confirms its effectiveness in 

gradient propagation optimization. To ensure the 

reproducibility of experiments, we fixed the random seed 

to 42. Weights were initialized using the Xavier method 

[25], and biases were initialized to zero. 

 

 

 

2.5 Choosing the right number of training 

sessions 

The number of trainings is an important factor affecting 

the accuracy of the model, and selecting the optimal 

number of training sessions through experiments is one 

of the key steps in wind power prediction. However, in 

practice, the optimal training number can be determined 

only through trial and error. In the subsequent 

experiments, the initial training number is set to 10, the 

increment is 10, and the learning rate is 0.1. 

As shown in Table 3, when there are 5 neurons in a 

single hidden layer and 6000 training data points, the 

model's accuracy increases as the number of training 

iterations increases to a certain threshold. However, 

beyond this threshold, the model's accuracy will decline 

instead. For this particular design, as the number of 

training iterations reaches approximately 50, the error is 

significantly reduced, and the prediction accuracy is 

relatively high. 

Table 2: Initialization Methods Comparison (5-fold CV Average). 

Method RMSE Convergence Stability (σ) Gradient Norm 

Xavier [25] 0.1796 45 0.0023 0.48 

He [26] 0.1803 50 0.0029 0.52 

Random Uniform [27] 0.1827 60 0.0038 0.67 

Table 3: Performance of BP Neural Network Across Training Iteration Counts (Learning rate unified at 0.1). 

Model Single hidden layer neurons Train_data Iterations Learning rate RMSE 

BP 5 6000 10 0.1 0.2607 

BP 5 6000 20 0.1 0.2318 

BP 5 6000 30 0.1 0.2119 

BP 5 6000 40 0.1 0.1917 

BP 5 6000 50 0.1 0.1796 

BP 5 6000 60 0.1 0.1778 

BP 5 6000 70 0.1 0.1839 

BP 5 6000 80 0.1 0.1944 

BP 5 6000 90 0.1 0.2066 
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Although 60 iterations yielded the minimal RMSE 

(0.1778), the subsequent performance degradation at 70 

iterations (RMSE=0.1839) indicates early signs of 

overfitting. To ensure model generalizability while 

maintaining near-optimal accuracy, we conservatively 

select 50 iterations (RMSE=0.1796) as the operational 

baseline. 

2.6 Choosing the right learning rate 

The learning rate η has an impact on the magnitude of 

weight adjustments in each layer of the artificial neural 

network model during training. If the number is very large, 

the network may be unable to complete the training 

process, resulting in a failure to produce accurate 

predictions. Conversely, if the value is excessively small, 

it will prolong the training period and hinder the learning 

speed of the neural network. Like the process of selecting 

the training number, the learning rate is determined by the 

trial-and-error method to identify the optimal value. In the 

subsequent experiments, a fixed number of 50 training 

sessions is selected, and the impact of varying learning 

rates on the model's accuracy is examined. The 

experimental results for different learning rates are shown 

in Table 4. 

 

As shown in Table 5, with 5 neurons in a single hidden 

layer, 6000 training data points, and 50 training iterations, 

a learning rate η=0.1 yields a satisfactory prediction effect. 

3 Wind power prediction based on 

the SVR 
Support vector machines, machine learning techniques 

developed in the 1960s, are commonly employed in data 

mining tasks such as pattern recognition and function 

regression. They are highly regarded for their ability to fit 

and approximate functions accurately in regression 

algorithms. The support vector machine regression 

prediction model has an advantage over the neural 

network model in that it can effectively minimize 

prediction error, prevent dimensional catastrophe, address 

overlearning issues, and avoid becoming stuck in local 

extremes [28-30]. 

 

 
The Support Vector Regression (SVR) is essentially a 

special form of support vector machine. It allows a certain 

deviation ε between the predicted value f(x) and the actual 

value y. Loss is computed only if the absolute difference 

between f(x) and y exceeds ε. This mechanism helps SVR 

focus on minimizing the prediction error while 

maintaining a certain generalization ability. The structure 

of the SVR model is shown in Figure 2. 

3.1 Hyperparameter optimization  

To determine the optimal hyperparameters for the SVR 

model with Gaussian kernel, we conducted a 

comprehensive grid search over three key parameters: the 

regularization parameter C, the kernel coefficient γ, and 

the ε- tube width ε. The search ranges were set as follows: 

Table 4: Training effect of the BP neural network under different iteration numbers (Different learning rates). 

Model Single hidden layer neurons Train_data Iterations Learning rate MSE 

BP 5 6000 50 0.05 0.2345 

BP 5 6000 50 0.1 0.1796 

BP 5 6000 50 0.2 0.9757 

Table 5: Grid Search Results (Top 5 Configurations). 

Hidden Layers Neurons Activation Learning Rate Avg RMSE (5-fold) Training Time (s) 

1 5 sigmoid 0.1 0.1812 ± 0.0023 42.7 

1 10 tanh 0.05 0.1825 ± 0.0028 58.3 

1 5 tanh 0.1 0.1831 ± 0.0031 43.9 

2 [5,5] sigmoid 0.1 0.1847 ± 0.0035 78.2 

1 15 relu 0.01 0.1853 ± 0.0041 65.4 

 

 

Figure 2: SVR model. 
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C{0.1, 1, 10, 100}, γ{0.001, 0.01, 0.1, 1}, and 

ε{0.001, 0.005, 0.01, 0.05, 0.1}. Each combination was 

evaluated using 5-fold cross-validation on the training set 

(6,000 samples) and the RMSE was used as the evaluation 

metric. 

As shown in Table 6, The optimal hyperparameters 

were found to be C=10, γ=0.1, and ε=0.01, achieving an 

RMSE of 0.1996 on the test set. To analyze the sensitivity 

of the model to, we fixed ε and γ at their optimal values 

and varied ε. 

3.2 Analysis of hyperparameter sensitivity 

As shown in Table 7, the sensitivity analysis reveals 

critical insights into the robustness of the optimal SVR 

configuration: 

(1) C (Regularization) Stability: 

(a) Minimal RMSE change (+0.8%/-0.3%) with ±20% 

variation; 

(b) Demonstrates excellent tolerance to regularization 

strength adjustments; 

(c) Failure modes: Underfitting at low C (<8), 

overfitting at high C (>12). 

(2) γ (Kernel Coefficient) Asymmetry: 

(a) Greater sensitivity to increase (+1.2%) than 

decrease (-0.9%); 

(b) High γ (>0.12) causes kernel oversmoothing - 

misses wind ramp events; 

(c) Low γ (<0.08) induces noise amplification during 

turbulenc. 

(3) ε (Tube Width) Criticality: 

(a) Highest sensitivity among parameters 

(+1.5%/+2.1%); 

(b) Small ε (<0.008) amplifies meteorological sensor 

noise; 

(c) Large ε (>0.012) delays response to wind speed 

jumps (>3m/s). 

 

3.3 SVR Model Implementation 

The process of using the SVR model for short-term wind 

power prediction is similar to the BP neural network 

prediction described earlier. The data are saved in MySQL 

during data preprocessing at the beginning of the 

experiment, so the data can be directly removed from 

MySQL to train the SVR model at this time, again using 

the first 6,000 data points for training and then using the 

last 100 data points to simulate the data. The model is 

validated by simulating weather forecast data. 

The support vector machine's main job is to divide 

samples linearly in the feature space, so the quality of the 

feature space directly affects how well it works. The 

kernel function, which defines the feature space, affects 

the support vector machine. The kernel function is an 

important part of model training, and Table 8 shows the 

training accuracy of the model when different kernel 

functions are selected. 

As shown in Table 8, the selection of a kernel function 

significantly affects the accuracy of the prediction model 

when SVR is used to forecast wind power. Poor selection 

of the kernel function and incorrect mapping of the sample 

to a feature space can result in suboptimal prediction 

performance, potentially leading to significant deviations. 

Hence, selecting the Gaussian kernel in this design is 

essential to provide a minimal error that just satisfies the 

required level of accuracy. There are two main reasons for 

this. 

 

Table 6: Top 10 hyperparameter combinations by cross-validation RMSE. 

Rank C γ ε 5-Fold CV RMSE (Mean ± SD) Test RMSE 

1 10 0.1 0.01 0.2001 ± 0.0023 0.1996 

2 10 0.01 0.01 0.2013 ± 0.0028 0.2010 

3 1 0.1 0.01 0.2038 ± 0.0031 0.2035 

4 10 0.1 0.005 0.2042 ± 0.0035 0.2040 

5 100 0.1 0.01 0.2057 ± 0.0039 0.2053 

6 10 0.05 0.01 0.2065 ± 0.0041 0.2061 

7 5 0.1 0.01 0.2070 ± 0.0043 0.2068 

8 10 0.1 0.02 0.2072 ± 0.0042 0.2070 

9 20 0.1 0.01 0.2075 ± 0.0045 0.2072 

10 10 0.2 0.01 0.2080 ± 0.0048 0.2077 

Table 7: Hyperparameter sensitivity analysis. 

Parameter Optimal RMSE ↑±20% Failure Mode 

C 10 +0.8%/-0.3% Under/overfitting 

γ 0.1 +1.2%/-0.9% Kernel over/under-smoothing 

ε 0.01 +1.5%/+2.1% Noise sensitivity/lag 
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(1) Nonlinear Mapping Capability: The Gaussian 

kernel has a strong nonlinear mapping capability, which 

allows it to transform nonlinear problems in the input 

space into linear problems in the high-dimensional feature 

space. This capability is crucial for handling the complex 

nonlinear relationships present in wind power forecasting. 

(2) Infinite Dimensional Feature Space: The Gaussian 

kernel corresponds to an infinite dimensional feature 

space, enabling it to capture all possible patterns in the 

data without being limited by the feature dimensions. 

In contrast, linear and polynomial kernels have 

limited feature dimensions and may not adequately 

capture complex nonlinear relationships. The linear kernel 

is suitable for simple linear relationships in data. However, 

in wind power forecasting, where the relationships are 

often complex and nonlinear, it shows relatively poor 

performance. The polynomial kernel can capture some 

nonlinear relationships but is limited by its degree. Owing 

to its strong nonlinear mapping ability and infinite-

dimensional feature space, the Gaussian kernel is more 

suitable for handling complex data in wind power 

prediction. The sigmoid kernel, as shown in the 

experiment, is not suitable for this task because of its large 

prediction error. 

4 SVR versus neural network 

prediction models 
When the neural network is initialized with random 

weights and thresholds, the results of each training vary 

even under the same data, training times, and learning rate 

conditions. This indicates that the neural network's 

performance is highly sensitive to the initialization of 

weights and thresholds. 

The BP neural network model requires a long training 

time, and since each update of weights and thresholds is 

only for a single sample, the parameters may become 

useless during the update process. On the other hand, in 

SVR, as long as the input samples are the same, using the 

same kernel function and loss function can yield the same 

results. The training speed is fast, but the accuracy of the 

SVR results is slightly lower. By combining the 

advantages and disadvantages of both methods, the use of 

the BP neural network (BPNN) and support vector 

regression (SVR) methods can improve the accuracy of 

wind power prediction. 

4.1 Methodology: integration of the BP 

neural network and support vector 

regression 

4.1.1 Definition of hybrid model 

The definition of a hybrid model is as follows: 

(1) Initial training: 

BP Neural Network: The BPNN is first trained on the 

preprocessed dataset to capture the nonlinear relationships 

between the input features and the wind power output. The 

BPNN configuration has 5 neurons in a single hidden layer, 

50 training iterations, and a learning rate η=0.1. 

Support Vector Regression: Simultaneously, the SVR 

model is trained on the same dataset. The SVR uses a 

Gaussian kernel. 

(2) Feature Extraction from the BPNN: 

Once the BPNN is trained, it is used to transform the 

input data into a higher-dimensional feature space. The 

outputs from the hidden layers of the BPNN serve as new, 

informative features that encapsulate complex patterns 

and relationships present in the data. 

(3) Hybrid Model Formation: 

The new features extracted from the BPNN, along 

with the original input features, are then fed into the SVR 

model. This hybrid approach leverages the BPNN's ability 

to capture nonlinearities and the SVR's robustness in 

regression tasks. The combination enhances the model's 

overall prediction capability. 

(4) Final prediction: 

The SVR model, which is enhanced with features 

from the BPNN, performs the final prediction of the wind 

power output. This two-step process ensures that the 

model benefits from the strengths of both BPNN and SVR, 

leading to improved accuracy. 

4.1.2 Specific implementation of hybrid model 

The implementation logic of the hybrid model is as 

follows: 

The key processes of BPNN-SVR hybrid model 

include: 

(1) Feature Fusion Equation 

 

1 2 3 4 1 2 3 4 5[ || ] [ , , , , , , , , ]= =Z X H x x x x h h h h h                (4) 

 

(a) X: Original meteorological features (4D vector: 

wind_speed, temperature, humidity, pressure) 

 

Algorithm: BPNN-SVR Hybrid Prediction Model 

Input:  

  X_train: Training meteorological data matrix [N×4]  

  y_train: Training power output vector [N×1] 

  X_test: Test meteorological data matrix [M×4] 

  params: Hyperparameter set = {epochs:50, C:10, 

γ:0.1, ε:0.01} 

Output: 

  predictions: Test set predicted power [M×1] 

  E: Test set RMSE loss 

1: // Phase 1: Train BPNN 

Table 8: Training effect of SVR under different kernel 

functions. 

Model Kernel Train data   RMSE  

SVR Linear 6000 0.01 0.2375 

SVR Poly 6000 0.01 0.2215 

SVR Gaussian 6000 0.01 0.1996 

SVR Sigmoid 6000 0.01 1.4310 
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2: bpn_model = train_BPNN(X_train, y_train, 

params.epochs) 

3:  

4: // Phase 2: Feature Extraction and Fusion 

5: H_train = []  

6: for i = 1 to N do 

7:   h = bpn_model.get_hidden_features(X_train[i])  // 

h ∈ ℝ⁵ 

8:   H_train[i] = h 

9: end for 

10: Z_train = [X_train || H_train]  // Feature fusion: 

[original⊕hidden] 

11:  

12: // Phase 3: Train SVR 

13: svr_model = train_SVR(Z_train, y_train, params) 

14:  

15: // Phase 4: Test Prediction 

16: predictions = []  

17: for j = 1 to M do 

18:   h = bpn_model.get_hidden_features(X_test[j]) 

19:   Z_test = [X_test[j] || h]  // Feature fusion 

20:   pred = svr_model.predict(Z_test) 

21:   predictions[j] = pred 

22: end for 

23:  

24: // Calculate RMSE 

25: E = 0 

26: for j = 1 to M do 

27:   E = E + (predictions[j] - y_test[j])² 

28: end for 

29: E = sqrt(E/M) 

 

(b) H: BPNN hidden layer outputs (5D vector: 

nonlinear transformations) 

(c) ||: Concatenation operator combining original and 

derived features 

(2) BPNN Hidden Layer Computation 

 

( )i i i=h WX+b                                                            (5) 

 

(a) σ: Sigmoid activation function: σ(z) = 1/(1 + e^{-

z}) 

(b) Wi: 5×4 weight matrix (optimized during training) 

(c) bi: 5×1 bias vector (optimized during training) 

(d) X: Input feature vector  ℝ⁴ 

(3) SVR Prediction Function 

 
*( ) ( [ ], )k k sVpred a a K k b= − + Z Z                            (6) 

 

(a) K(u,v): Gaussian kernel: exp(-γ·||u-v||²) 

(b) ZsV[k]: k-th support vector (critical samples from 

training) 

(c) (ak-ak
*): Lagrangian multipliers from dual 

optimization 

(d) b: Bias term 

(4) RMSE Calculation 

 

2

1
( )

M

j jj
pred y

E
M

=
−

=


                                             (7) 

(a) M: Number of test samples 

(b) predj: Predicted power for sample j 

(c) yj: Actual power for sample j 

4.2 Theoretical justification and practical 

benefits 

The rationale behind this integrated approach is based on 

the complementary strengths of BPNN and SVR: 

(1) BP Neural Network 

BPNNs are powerful in capturing complex, nonlinear 

relationships in the data due to their multilayer structure 

and nonlinear activation functions. However, they can 

sometimes suffer from issues such as overfitting and local 

minima. 

(2) Support Vector Regression: 

On the other hand, SVR excels in regression tasks by 

maximizing the margin and minimizing the prediction 

error, making it less prone to overfitting than traditional 

neural networks are. SVR is particularly effective in high-

dimensional spaces, which complements the feature 

extraction capabilities of BPNNs. 

By combining these two methods, the hybrid model 

benefits from the deep feature extraction ability of the 

BPNNs and the robust regression capability of SVR. This 

synergy results in a model that is more accurate and 

reliable for wind power forecasting. 
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For the test data, the hybrid model based on BP and 

SVR achieved an RMSE of 0.18033, whereas the 

standalone BPNN had an RMSE of 0.1796, and the 

standalone SVR had an RMSE of 0.1996. For different 

wind speeds and weather conditions, the hybrid model 

also achieved more stable and accurate prediction 

performance. The hybrid model demonstrates 

transformative performance during extreme weather 

events through its dual-path architecture.  

When extreme weather conditions occur, as shown in 

Figure 3, conventional BPNN exhibited dangerous 

1.2MW overshoots while the hybrid model maintained 

stable tracking with just 0.4MW deviation. 

This stability stems from the SVR layer's ε-constraint 

mechanism, which suppresses anomalous fluctuations by 

disregarding errors within the ±0.05 tolerance band during 

feature fusion. 

As shown in Table 9, quantitative analysis of 427 

extreme-condition samples confirms systematic 

improvements: 6.86% RMSE reduction, 14.3% lower 

error volatility, and 18.1% smaller maximum errors 

compared to standalone BPNN. 

The hybrid architecture thus transforms the traditional 

accuracy-stability tradeoff into a complementary 

advantage during critical operating conditions. 

The hybrid model is comparable to the complex 

optimal BP model yet significantly superior to the optimal 

SVR model. This model effectively combines the ability 

of BP to capture nonlinear relationships in the data with 

the advantages of SVM in handling high-dimensional data 

and preventing overfitting, thereby enhancing predictive 

accuracy. 

4.3 Statistical verification 

Comprehensive statistical validation confirms the hybrid 

model's operational advantages through three paired t-test 

comparisons of 5-fold cross-validation results, as shown 

in Figure 4 and Table 10. 

 

Figure 3: Extreme weather performance comparison. 

Table 9: Model performance in extreme weather (>12m/s). 

Metric BPNN SVR Hybrid Improvement over BPNN 

RMSE 0.510 0.562 0.475 +6.86% 

MAE 0.421 0.483 0.388 +7.84% 

Error STD 0.042 0.051 0.036 +14.3% 

Max Error 1.82 2.15 1.49 +18.1% 

Accuracy 78.2% 72.5% 85.6% +7.4% 
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The BPNN-Hybrid comparison (p=0.315, Cohen's 

d=0.12) demonstrates statistical equivalence in overall 

accuracy, confirming successful feature preservation 

during integration.  

Conversely, the Hybrid-SVR comparison reveals 

massive improvement (p<0.001, Cohen's d=1.78), 

validating the architecture's ability to overcome 

standalone SVR limitations.  

Extreme-weather-specific tests on 427 high-wind 

samples show even more pronounced benefits: prediction 

stability improvements are statistically significant (error 

STD reduction p=0.008) and practically substantial (14.3% 

lower volatility).  

These results collectively prove that the hybrid model 

maintains baseline accuracy while delivering crucial 

stability enhancements during grid-critical weather 

scenarios. 

The statistical findings necessitate reframing the 

hybrid model's value proposition: Rather than raw 

accuracy gains, its core innovation lies in preserving 

BPNN-level precision (p=0.315) while fundamentally 

transforming stability characteristics.  

This represents a paradigm shift from "accuracy-

centric" to "reliability-focused" forecasting, addressing 

the industry's operational need for consistent performance 

during extreme conditions.  

We specifically establish that the feature extraction + 

robust regression fusion architecture solves the "accuracy 

cliff" problem - where conventional models fail abruptly 

during weather transitions - by maintaining prediction 

integrity at wind speed thresholds (>12 m/s) where grid 

security decisions are most critical.  

The 14.3% error volatility reduction (p=0.008) 

demonstrates this architecture's unique ability to convert 

theoretical robustness into measurable grid security 

benefits. 

5 Conclusion and discussion 

5.1  Conclusion 

This study establishes that the BPNN-SVR hybrid model 

maintains prediction accuracy statistically equivalent to 

optimized BPNN (p=0.315) while delivering 

transformative stability improvements during critical 

operating conditions.  

Quantitative evidence confirms 14.3% error volatility 

reduction (p=0.008) and 18.1% lower maximum errors 

during extreme weather, directly addressing the "accuracy 

cliff" phenomenon in conventional forecasting.  

The hybrid architecture's real-world value lies not in 

marginal accuracy gains, but in its ability to maintain 

prediction integrity during typhoons, storms, and abrupt 

wind transitions - precisely when grid operators require 

reliable forecasts for security decisions.  

This constitutes a paradigm shift from accuracy-

centric to reliability-oriented wind power forecasting, with 

direct implications for renewable integration in national 

power systems. 

5.2 Discussion 

Although the RMSE of the hybrid model is slightly higher 

than that of the BPNN (0.18033 vs. 0.1796), its stability 

under extreme weather conditions is significantly 

improved (error fluctuation reduced by 14.3%, maximum 

 

Figure 4: Comparison of RMSE Distribution (5-fold Cross Validation). 

Table 10: Three paired t-test using 5-fold cross-validation. 

Comparison t-value p-value Cohen’s d Interpretation 

BPNN vs Hybrid 1.08 0.315 0.12 No significant difference 

SVR vs Hybrid 15.32 <0.001 1.78 Massive improvement 

BPNN vs SVR 16.40 <0.001 1.90 Very large difference 
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error reduced by 18.1%). Power grid dispatch prioritizes 

prediction stability over absolute accuracy, as sudden 

fluctuations could lead to power outages. Therefore, the 

hybrid model sacrifices an RMSE of 0.0007 to achieve 

reliability in critical scenarios, aligning with practical 

engineering requirements. 

Future work will explore ensemble methods to 

stabilize ANN outputs, test the model on unseen weather 

regimes, and compare with attention-based deep models 

(e.g., Transformer) or graph neural networks for 

spatiotemporal generalization. 
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