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In renewable energy management, the precise prediction of wind power generation remains a major
challenge. This study proposes an integrated approach employing an artificial neural network (ANN) and
a support vector machine (SVM) to construct a robust short-term prediction model for wind energy output.
Central to this research is the utilization of a power station as the subject of analysis, wherein historical
meteorological data and concurrent power generation figures form the foundational dataset. Employing
a backpropagation (BP) neural network and support vector regression (SVR), the model adeptly
synthesizes the data, facilitating predictions with satisfactory accuracy. The hybrid model exhibits a root
mean square error (RMSE) of 0.18033, slightly higher than the backpropagation neural network (BPNN)
model's 0.1796. However, it exhibits significantly enhanced stability under extreme weather conditions,
reducing error fluctuation by 14.3% and maximum error by 18.1%. Given that power dispatch systems
prioritize prediction stability over absolute accuracy—as sudden fluctuations can cause outages—this
model achieves critical reliability by sacrificing only 0.0007 RMSE, thereby aligning with practical
engineering requirements.

Povzetek: Raziskava preucuje interakcijo med umetno inteligenco in kognitivnim modeliranjem za
izboljsanje odlocanja. Eksperimentalni izidi potrjujejo pomembne izboljsave napovedne uspesnosti, kar
poudarja potencial hibridnih racunalniskih okvirov za napredovanje inteligentnih sistemov in

interdisciplinarnih aplikacij v dinamicnih okoljih.

1 Introduction

Owing to swift economic growth, the societal need for
electric energy is growing on a daily basis. Electric energy
has become an essential source of energy in everyday life
[1]. Simultaneously, as knowledge advances and
environmental awareness increases, renewable energy
sources (RESs), including solar energy, wind energy,
hydro energy, and geothermal energy, have emerged as
the primary focus of research in the pursuit of eco-friendly
power generation methods. Investigating renewable
energy sources (RESS), such as solar energy, wind energy,
hydro energy, and geothermal energy, has emerged as the
primary focus of human endeavors in the realm of eco-
friendly power production. Electricity is a crucial
secondary energy source for the advancement of modern
society, and optimizing the conversion of these emerging
energy sources into electricity is a key aspect of the future
energy revolution.

The wind resources on Earth are plentiful, and the
overall quantity of wind energy is approximately three
times the global energy consumption. Each utilization of
wind energy has the potential to decrease global energy
consumption, and China accounts for almost 50% of the
world's total wind energy resources. Utilizing the entirety
of the wind energy available for electricity generation will
greatly propel China's energy reform. Currently, wind
power is essential for conserving energy, alleviating

power supply constraints, and promoting energy
efficiency because of the state's endorsement and
assistance [2].

Research on wind power forecasting originated
internationally in the 1970s. During that period, a
laboratory in the United States recognized the need to
accurately predict short-term wind speed and wind output
for power firms. Presently, their theoretical system has
reached a high level of maturity. Traditional wind power
prediction models have successfully integrated numerical
weather prediction (NWP) data into their research. These
models exhibit minimal prediction errors and vyield
favourable results. Consequently, they are suitable for
practical implementation in large-scale grid-connected
wind power dispatch. The majority of existing wind power
prediction  systems globally  utilize  numerical
meteorological forecast data as the input parameter for the
learning algorithm, which then forecasts the future wind
power. Machine learning models are increasingly popular
in wind energy prediction because of their powerful ability
to learn complex nonlinear relationships between data.
Machine learning models are categorized into three
different types: supervised learning, unsupervised
learning, and semisupervised learning. A wide range of
traditional supervised machine learning models, such as
regression analysis [3], SVM [4], tree-based models [5],
and traditional artificial neural networks [6, 7], have been
applied to predict the wind power (WP) of individual wind
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turbines. Bouche et al. [8] primarily examined the short-
term prediction of wind speed and wind power. It employs
machine learning techniques to integrate the results of
numerical weather prediction models with local data.
Niksa-Rynkiewicz et al. [9] employed diverse forms of
deep neural networks (DNNs) to address the issue of
predicting short-term wind power generation (STWPP)
via an intelligent approach. The primary benefit of this
system is its ability to make accurate predictions by
utilizing only a small number of parameters. Accurate
wind power forecasting is crucial for wind farms because
of the significant expansion and great potential of wind
power generation as a renewable energy source.

To optimize the system cost, a neural network
structure for wind power prediction that directly considers
different energy system conditions was proposed in the
literature [10]. This approach led to a more consistent
prediction performance and reduced the error variance by
70%. On the other hand, Al-ganess et al. [11] developed
an efficient forecasting model via a nature-inspired
optimization algorithm and proposed an optimized
dendritic neural regression (DNR) model for wind energy
forecasting. The model achieved excellent results in the
evaluation of the dataset.

The exploration of wind power prediction in China
started late, and research was not conducted until the end
of the 20th century; however, research and development
were fast. Despite its late start, China has made
remarkable progress in wind power prediction research,
driven by the increasing demand for renewable energy and
the development of related technologies. Owing to the
lack of numerical weather forecast data dedicated to wind
power prediction, researchers focused mainly on the
theoretical exploration of ultrashort-term prediction via
prediction methods, including time series, artificial neural
networks, and support vector machines.

In the study [12], historical wind power time series
data were used to calculate financial and technical
indicators. Then, the Monte Carlo method and rank-based
ant colony algorithm are employed to optimize the
parameters for the calculation of these financial technical
indicators. Finally, the XGBoost algorithm, which
combines financial and technical indicators with historical
power data, is used to predict future wind power. An
optimal ensemble method is proposed in the literature [13]
for wind power generation forecasting. The ensemble
forecasting method is the most commonly used method in
weather forecasting and combines several different
forecasting models to improve forecasting accuracy. In
addition, Sasser et al. [14] proposed a decision tree model
that combines the rotor-equivalent wind speed and lapse
rate. It employs a decision tree machine learning model to
evaluate the effectiveness of the hub-height wind speed,
rotor-equivalent wind speed, and lapse rate in power
prediction. Atmospheric data trains regression trees to
correlate power outputs with wind profiles and
meteorological  characteristics,  predicting  power
responses on the basis of physical patterns. The decision
tree model was trained on four vertical wind profile
classifications, highlighting the necessity of calculating
the wind speed at various rotor layer levels. A deep
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learning model based on NWP data was proposed in the
literature [15] to improve the accuracy of wind power
prediction. Traditional NWP-based forecasting methods
involve high computational effort for complex
meteorological models. In contrast, the method in this
literature uses a deep learning model to achieve accurate
prediction of wind power by training and learning a large
amount of computational resources NWP data.
Habtemariam et al. [16] proposed a robust and optimized
long short-term memory network for forecasting wind
power generation the day ahead in the context of
Ethiopia’s renewable energy sector. The proposed method
uses Bayesian optimization to find the best
hyperparameter combination in a reasonable computation
time. Abou Houran et al. [17] proposed a wind power
prediction method Coati Optimization Algorithm-based
hybrid deep learning CNN-LSTM based on a
Convolutional Neural Network (CNN) and Long Short-
Term Memory network (LSTM) and Swarm Intelligence
(SI) optimization algorithms. The composite model
incorporates LSTM and Sl to produce a framework that
can precisely estimate offshore wind output in the short
term, addressing the discrepancies and limits of
conventional estimation methods.

In research on ANNs and SVMs for short-term wind
speed prediction, Tagliaferri et al. [18] studied two short-
term wind direction prediction methods based on artificial
neural networks (ANNSs) and support vector machines
(SVMs). The study evaluated the prediction effects of
these two methods by optimizing parameters such as the
moving average length of the input data, the length of the
input vector, and the number of layers of the neural
network. The results showed that although the mean
absolute error of the ANN was relatively large, its
prediction accuracy significantly improved with
increasing network size. Moreover, Barhmi and EIl Fatni
[19] proposed four hybrid models that combine an SVM
and an ANN for hourly wind speed prediction. The key
parameters affecting the wind speed were selected through
ordinary least squares (OLS) analysis, and genetic
algorithms (GA) and particle swarm optimization (PSO)
were used to tune the models. The results showed that the
ANN model outperformed the SVM model in terms of
prediction performance. Additionally, Zheng et al. [20]
proposed a new kernel ridge regression (RR) model and
compared it with the SVM and ANN reference models to
verify its efficiency in different prediction time ranges (1
hour, 12 hours, and 24 hours). The study revealed that the
kernel ridge regression model outperformed the SVM and
ANN in terms of wind speed prediction, especially when
mutual information feature selection was used, which
could more accurately predict the wind speed.

Hu et al. [21] proposes a bidirectional signal
decomposition (BST) and reformed grasshopper
optimization algorithm (RGOA) enhanced LSTM model
for wind power forecasting (15.2% RMSE reduction),
alongside a normal distribution optimized whale
algorithm (NDO-WOA) for wind-integrated dynamic
economic dispatch (5.7% cost reduction in IEEE 30-bus
system). Pan et al. [22] achieves R?=0.9785 in PV
prediction via modified CEEMDAN decomposition and
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Warship-optimized BiLSTM. Both studies demonstrate
that hybrid intelligent algorithms significantly improve
renewable energy forecasting and dispatch efficiency.

As shown in Table 1, although each study has
discussed ANN and SVM in detail, there has been a lack
of attempts to combine these two methods. For example,
utilizing the nonlinear learning ability of ANNs and the
generalization ability of SVMs may improve the
prediction accuracy. We hypothesize that combining
SVR's regularization effect with BPNN's nonlinear feature
extraction will enhance model robustness without
sacrificing predictive accuracy.

Table 1: Comparis on of wind power prediction models.

Reference | Model Dataset | RMSE Key
Features
[12] XGBoost |8000 |0.1850 | Financial
indicators
[15] LSTM 10000 10.1820| NWP data
CNN- Coati
[17] LSTM 7500 101780 optimization
Our Single
BPNN BPNN 6775 10.1796 hidden layer
Our BPNN- Integrated
Hybrid SVR 6775 0.1803 approach

This research establishes three core objectives to
address critical gaps in wind power forecasting: First, to
validate the stability advantages of the hybrid model under
extreme weather conditions where conventional models
falter. Second, to develop a comprehensive "accuracy-
stability” evaluation framework that moves beyond
traditional single-metric assessments. Third, to solve the
"accuracy cliff" phenomenon observed during abrupt
meteorological transitions, where prediction reliability
dramatically decreases despite moderate overall accuracy.
These objectives collectively address operational

challenges in grid integration of renewable energy sources.

This paper is structured as follows: Section 1
introduces the research background, challenges in wind
power forecasting, and related works. Section 2 elaborates
on the wind power prediction model based on the artificial
neural network, including data preprocessing, model
design, and hyperparameter optimization. Section 3
presents the wind power prediction model using support
vector regression. Section 4 details the proposed hybrid
BPNN-SVR model, including its architecture, theoretical
justification, and experimental validation. Section 5
provides the conclusion and discussion of the study, along
with future research directions.

2 Wind power prediction model
based on an artificial neural
network

Artificial neural networks (ANNS) are renowned for their
exceptional nonlinear fitting capabilities, with adjustable
parameters and structures, making them extensively
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utilized in wind power prediction (WPP). Traditional
ANNSs include backpropagation neural networks (BPNNS),
radial basis function neural networks (RBFNNs), and
generalized regression neural networks (GRNNs), among
others. Notably, BPNN stands as the most classical form.

Prior to the simulation, constructing a BP neural
network is necessary. It imports historical data into the
model for training, iterates to obtain the weight and
threshold of each layer of the neural network, and
ultimately predicts power on the basis of future weather
forecast data [23].

Output Layer

Hidden Layer

Input Layer

Figure 1: BP neural network.

This architecture uses a single hidden layer BP neural
network, comprising an input layer, a hidden layer, and an
output layer. The structure of the BP neural network is
shown in Figure 1. The quantity of neurons in the input
and output layers is solely determined by the number of
dimensions of the input and output parameter vectors.

The number of neurons in the hidden layer is usually
determined empirically or experimentally, and the
selection process is carried out using a specific equation
[24], as shown in Equation (1).

| =J/m+n+h, @)

where, | is the number of hidden nodes; m is the number
of input nodes; n is the number of output nodes; and h is
the regulation constant, which is usually 1~10.

In this design, the input vectors are the wind speed,
temperature, humidity, and barometric pressure (due to the
existence of the wind turbine yaw system, the problem of
wind direction is no longer necessary), the output vector
is the power, so m=4, n=1, and h are variable parameters,
and the number of nodes of the hidden layer neurons is
determined by finding the minimum value of the error of
the experiment 1=5.

In this work, the sigmoid function is selected as the
activation function of the neurons in the hidden layer and
the output layer of the BP neural network. The sigmoid
function is chosen because it can introduce nonlinearity
into the neural network, enabling the model to learn
complex nonlinear relationships in the data. Its range of (0,
1) also helps normalize the output of neurons, which is
beneficial for the training process.
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Many factors affect the prediction accuracy of the BP
neural network model, such as the initialization of weights
and thresholds, the number of training sessions, the
learning rate, the number of neurons in the hidden layer,
and the number of layers, which can influence the
prediction effect of the model. In this design, all the
weights and thresholds are initialized to 1, and the number
of neurons in the hidden layer is 5. The model is tuned
from two perspectives: the number of training sessions
and the learning rate.

2.1 Data collection and preprocessing

This study utilizes a dataset comprising 10-minute
resolution measurements from a wind farm in Northern
China (40°-42°N), spanning the years 2019 to 2021. This
temporal range captures full seasonal cycles, including
winter icing events (T < -5°C), summer typhoon impacts
(V > 12 m/s), and transitional season frontal passages. The
dataset contains a total of 8,832 data points, recording key
parameters such as wind speed, temperature, humidity,
barometric pressure and the actual wind power generation
output.

(1) Data Cleaning

Missing values: The dataset was initially screened for
missing values. Records containing incomplete data were
systematically removed to ensure the integrity of the
dataset.

Outlier detection: Statistical methods such as Z score
analysis are used to identify and remove outlier data points
that may significantly affect the results.

After the data cleaning process, 6775 original data
points remained.

Extreme weather events were rigorously defined

using operational criteria from grid management protocols:

(a) Sustained wind speeds exceeding 12 m/s, or

(b) Rapid wind speed changes >5 m/s within 10-
minute intervals.

These thresholds identified 427 extreme condition
samples (6.3% of total dataset) that represent high-risk
scenarios for grid stability. All extreme events were
verified against meteorological alerts from China's
National Climate Center to ensure accurate classification
of typhoon, gale, and storm conditions that challenge
conventional forecasting models.

(2) Feature Engineering

Normalization: To ensure that all the features
contribute equally to model training, continuous variables
such as the wind speed and temperature are normalized to
a range between 0 and 1.

Feature Selection: Features related to wind power
prediction are selected on the basis of correlation analysis.
This step helps reduce the dimensionality of the dataset
and improves model performance.

(3) Dataset Splitting:

Training and Testing Split: The cleaned dataset,
consisting of 6,775 data points, is divided into training and
testing sets. The first 6,000 data points are used for
training the model, whereas the remaining 775 data points
are used for testing.

(4) Input Feature Specification
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(a) Wind speed (m/s): Continuous, range 0-25 m/s

(b) Temperature (°C): Continuous, range -15 to 40°C

(c) Humidity (%): Continuous, range 0-100%

(d) Barometric pressure (hPa): Continuous, range
980-1040 hP

(5) Normalization Method

Min-Max scaling applied to all features, as shown in
Equation (2):

X = — )
Xmax ~ Xmin

(6) Cross-validation

To further enhance the robustness of the model, a k-
fold cross-validation method is employed on the training
set. This involves dividing the training data into k subsets
and repeatedly training and validating the model on
different subsets to ensure that the model’s performance is

not affected by the initial data split.

2.2 Evaluation indicators

To better evaluate the effectiveness of the model and
algorithm, one evaluation indicator is employed for
effectiveness assessment:

The root mean square error (RMSE) is used to gauge
the deviation between the predicted value and the actual
value. The expression for the RMSE is depicted in
Equation (3):

l N
€rmse = Wz Vs — Yau |
i-1

®)

where, ysi represents the predicted value and y.; represents
the observed value.

The root mean square error (RMSE) is used to gauge
the deviation between the predicted value and the actual
value. In wind power prediction, the RMSE can
comprehensively reflect the overall error magnitude,
helping to evaluate the model's ability to predict wind
power accurately. A lower RMSE indicates a better-fitting
model.

2.3 Hyperparameter optimization via grid
search

To rigorously validate the BPNN architecture selection
and address potential concerns about model simplicity, we
conducted an extensive grid search over key
hyperparameters.

(1) The search space encompassed four critical
dimensions:

(a) Number of hidden layers: [1, 2]

(b) Neurons per layer: [5, 10, 15, 20]

(c) Activation functions: ['sigmoid’, 'tanh’, 'relu’]

(d) Learning rates: [0.01, 0.05, 0.1, 0.2]

This combinatorial search vyielded 72 unique
configurations (2 layers x 4 neuron counts x 3 activations
x 3 learning rates). Each configuration was evaluated
using 5-fold cross-validation on the 6,000-sample training
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dataset, with early stopping (patience=10 iterations) to
prevent overfitting. The root mean square error (RMSE)
served as the primary evaluation metric, with each fold's
performance recorded and averaged across all folds.

(2) The comprehensive grid search analysis (72
configurations evaluated via 5-fold cross-validation)
yielded four principal insights:

(a) Optimal Architecture: A single hidden layer with
5 sigmoid neurons achieved the lowest RMSE (0.1812 +
0.0023), demonstrating ideal representational capacity for
this prediction task.

(b) Diminishing Returns on Complexity: Increasing
neuron counts (>5) or adding a second hidden layer
consistently degraded performance (RMSE increase of
0.3-2.3%), revealing incompatibility between model
complexity and dataset scale (6,000 samples).

(c) Activation Superiority: Sigmoid significantly
outperformed both tanh (+1.0% RMSE reduction) and
ReLU (+2.3%), with its bounded output range (0,1)
proving particularly suitable for normalized power
forecasting targets.

(d) Optimal Learning Rate: #=0.1 struck the optimal
balance between convergence speed (average 45 iterations)
and precision, whereas lower rates (0.01) delayed
convergence (60+ iterations) and higher values (0.2)
induced oscillatory behavior.

These findings collectively validate that simpler
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architectures mitigate overfitting risks (sample/parameter
ratio: 240:1) while alleviating gradient attenuation issues,
thereby achieving optimal bias-variance tradeoffs for this
regression challenge.

2.4 Initialization strategy analysis

The choice of weight initialization significantly impacts
neural network convergence and performance. We
rigorously evaluated three prominent methods using 5-
fold cross-validation with our optimal architecture (single
hidden layer, 5 sigmoid neurons, #=0.1).

As shown in Table 2, the comparative analysis of
initialization strategies demonstrates the comprehensive
advantages of the Xavier method: it achieves the lowest
RMSE (0.4% lower than He initialization and 1.7% lower
than random uniform initialization), exhibits faster
convergence (10-25% reduction in training epochs), and
enhances stability (21% lower cross-validation variance).
The mean gradient norm (0.48) being closest to the
theoretical optimum of 0.5 confirms its effectiveness in
gradient propagation optimization. To ensure the
reproducibility of experiments, we fixed the random seed
to 42. Weights were initialized using the Xavier method
[25], and biases were initialized to zero.

Table 2: Initialization Methods Comparison (5-fold CV Average).

Method RMSE | Convergence Stability (¢) | Gradient Norm
Xavier [25] 0.1796 | 45 0.0023 0.48
He [26] 0.1803 | 50 0.0029 0.52
Random Uniform [27] | 0.1827 | 60 0.0038 0.67

Table 3: Performance of BP Neural Network Across Training Iteration Counts (Learning rate unified at 0.1).

Model | Single hidden layer neurons | Train_data | Iterations | Learning rate | RMSE

BP 5 6000
BP 5 6000
BP 5 6000
BP 5 6000
BP 5 6000
BP 5 6000
BP 5 6000
BP 5 6000
BP 5 6000

10 0.1 0.2607
20 0.1 0.2318
30 0.1 0.2119
40 0.1 0.1917
50 0.1 0.1796
60 0.1 0.1778
70 0.1 0.1839
80 0.1 0.1944
90 0.1 0.2066

2.5 Choosing the right number of training
sessions

The number of trainings is an important factor affecting
the accuracy of the model, and selecting the optimal
number of training sessions through experiments is one
of the key steps in wind power prediction. However, in
practice, the optimal training number can be determined
only through trial and error. In the subsequent
experiments, the initial training number is set to 10, the
increment is 10, and the learning rate is 0.1.

As shown in Table 3, when there are 5 neurons in a
single hidden layer and 6000 training data points, the
model's accuracy increases as the number of training
iterations increases to a certain threshold. However,
beyond this threshold, the model's accuracy will decline
instead. For this particular design, as the number of
training iterations reaches approximately 50, the error is
significantly reduced, and the prediction accuracy is
relatively high.



294  Informatica 49 (2025) 289-300

Although 60 iterations yielded the minimal RMSE
(0.1778), the subsequent performance degradation at 70
iterations (RMSE=0.1839) indicates early signs of
overfitting. To ensure model generalizability while
maintaining near-optimal accuracy, we conservatively
select 50 iterations (RMSE=0.1796) as the operational
baseline.

2.6 Choosing the right learning rate

The learning rate # has an impact on the magnitude of
weight adjustments in each layer of the artificial neural
network model during training. If the number is very large,
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the network may be unable to complete the training
process, resulting in a failure to produce accurate
predictions. Conversely, if the value is excessively small,
it will prolong the training period and hinder the learning
speed of the neural network. Like the process of selecting
the training number, the learning rate is determined by the
trial-and-error method to identify the optimal value. In the
subsequent experiments, a fixed number of 50 training
sessions is selected, and the impact of varying learning
rates on the model's accuracy is examined. The
experimental results for different learning rates are shown
in Table 4.

Table 4: Training effect of the BP neural network under different iteration numbers (Different learning rates).

Model Singlehidden layer neurons Trainidata Iterations Learning rate | MSE

BP 5 6000
BP 5 6000
BP 5 6000

50 0.05 0.2345
50 0.1 0.1796
50 0.2 0.9757

Table 5: Grid Search Results (Top 5 Configurations).

Hidden Layers | Neurons | Activation

1 5 sigmoid 0.1
1 10 tanh 0.05
1 5 tanh 0.1
2 [5,5] sigmoid 0.1
1 15 relu 0.01

As shown in Table 5, with 5 neurons in a single hidden
layer, 6000 training data points, and 50 training iterations,
a learning rate #=0.1 yields a satisfactory prediction effect.

3 Wind power prediction based on
the SVR

Support vector machines, machine learning techniques
developed in the 1960s, are commonly employed in data
mining tasks such as pattern recognition and function
regression. They are highly regarded for their ability to fit
and approximate functions accurately in regression
algorithms. The support vector machine regression
prediction model has an advantage over the neural
network model in that it can effectively minimize
prediction error, prevent dimensional catastrophe, address
overlearning issues, and avoid becoming stuck in local
extremes [28-30].

Learning Rate Avg RMSE (5-fold) Training Time 532

0.1812 + 0.0023 42.7

0.1825 + 0.0028 58.3

0.1831 + 0.0031 43.9

0.1847 + 0.0035 78.2

0.1853 + 0.0041 65.4

y tE « Solution:
/’/ { 0 minl”w2
* B 2
% i « Constraints :
/* f’ V= (wx, + b)l <e Vi
X

Figure 2: SVR model.

The Support Vector Regression (SVR) is essentially a
special form of support vector machine. It allows a certain
deviation € between the predicted value f(x) and the actual
value y. Loss is computed only if the absolute difference
between f(x) and y exceeds . This mechanism helps SVR
focus on minimizing the prediction error while
maintaining a certain generalization ability. The structure
of the SVR model is shown in Figure 2.

3.1 Hyperparameter optimization

To determine the optimal hyperparameters for the SVR
model with Gaussian kernel, we conducted a
comprehensive grid search over three key parameters: the
regularization parameter C, the kernel coefficient y, and
the ¢- tube width ¢. The search ranges were set as follows:
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Ce{0.1, 1, 10, 100}, ye{0.001, 0.01, 0.1, 1}, and
£e€{0.001, 0.005, 0.01, 0.05, 0.1}. Each combination was
evaluated using 5-fold cross-validation on the training set
(6,000 samples) and the RMSE was used as the evaluation
metric.

As shown in Table 6, The optimal hyperparameters
were found to be C=10, y=0.1, and £=0.01, achieving an
RMSE of 0.1996 on the test set. To analyze the sensitivity
of the model to, we fixed ¢ and y at their optimal values
and varied e.

3.2 Analysis of hyperparameter sensitivity

As shown in Table 7, the sensitivity analysis reveals
critical insights into the robustness of the optimal SVR
configuration;

(1) C (Regularization) Stability:

(a) Minimal RMSE change (+0.8%/-0.3%) with +20%
variation;
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(b) Demonstrates excellent tolerance to regularization
strength adjustments;

(c) Failure modes: Underfitting at low C (<8),
overfitting at high C (>12).

(2) y (Kernel Coefficient) Asymmetry:

(a) Greater sensitivity to increase (+1.2%) than
decrease (-0.9%);

(b) High y (>0.12) causes kernel oversmoothing -
misses wind ramp events;

(c) Low y (<0.08) induces noise amplification during
turbulenc.

(3) & (Tube Width) Criticality:

(@) Highest sensitivity
(+1.5%/+2.1%);

(b) Small & (<0.008) amplifies meteorological sensor
noise;

(c) Large & (>0.012) delays response to wind speed
jumps (>3m/s).

among parameters

Table 6: Top 10 hyperparameter combinations by cross-validation RMSE.

Rank C y & 5-Fold CV RMSE (Mean + SD) Test RMSE
1 10 0.1 0.01 0.2001 + 0.0023 0.1996
2 10 0.01 0.01 0.2013 + 0.0028 0.2010
3 1 0.1 0.01 0.2038 + 0.0031 0.2035
4 10 0.1 0.005 0.2042 + 0.0035 0.2040
5 100 0.1 0.01 0.2057 + 0.0039 0.2053
6 10 0.05 0.01 0.2065 + 0.0041 0.2061
7 5 0.1 0.01 0.2070 + 0.0043 0.2068
8 10 0.1 0.02 0.2072 + 0.0042 0.2070
9 20 0.1 0.01 0.2075 + 0.0045 0.2072
10 10 0.2 0.01 0.2080 + 0.0048 0.2077

Table 7: Hyperparameter sensitivity analysis.
Parameter Optimal RMSE 1+20% Failure Mode
C 10 +0.8%/-0.3% Under/overfitting
y 0.1 +1.2%/-0.9% Kernel over/under-smoothing
e 0.01 +1.5%/+2.1% Noise sensitivity/lag

3.3 SVR Model Implementation

The process of using the SVR model for short-term wind
power prediction is similar to the BP neural network
prediction described earlier. The data are saved in MySQL
during data preprocessing at the beginning of the
experiment, so the data can be directly removed from
MySQL to train the SVR model at this time, again using
the first 6,000 data points for training and then using the
last 100 data points to simulate the data. The model is
validated by simulating weather forecast data.

The support vector machine's main job is to divide
samples linearly in the feature space, so the quality of the
feature space directly affects how well it works. The
kernel function, which defines the feature space, affects
the support vector machine. The kernel function is an
important part of model training, and Table 8 shows the
training accuracy of the model when different kernel
functions are selected.

Asshown in Table 8, the selection of a kernel function
significantly affects the accuracy of the prediction model
when SVR is used to forecast wind power. Poor selection
of the kernel function and incorrect mapping of the sample
to a feature space can result in suboptimal prediction
performance, potentially leading to significant deviations.
Hence, selecting the Gaussian kernel in this design is
essential to provide a minimal error that just satisfies the
required level of accuracy. There are two main reasons for
this.



296 Informatica 49 (2025) 289-300

Table 8: Training effect of SVR under different kernel

functions.
Model | Kernel Traindata | ¢ RMSE
SVR Linear 6000 0.01 | 0.2375
SVR | Poly 6000 0.01 | 0.2215
SVR | Gaussian | 6000 0.01 | 0.1996
SVR | Sigmoid | 6000 0.01 | 1.4310

(1) Nonlinear Mapping Capability: The Gaussian
kernel has a strong nonlinear mapping capability, which
allows it to transform nonlinear problems in the input
space into linear problems in the high-dimensional feature
space. This capability is crucial for handling the complex
nonlinear relationships present in wind power forecasting.

(2) Infinite Dimensional Feature Space: The Gaussian
kernel corresponds to an infinite dimensional feature
space, enabling it to capture all possible patterns in the
data without being limited by the feature dimensions.

In contrast, linear and polynomial kernels have
limited feature dimensions and may not adequately
capture complex nonlinear relationships. The linear kernel
is suitable for simple linear relationships in data. However,
in wind power forecasting, where the relationships are
often complex and nonlinear, it shows relatively poor
performance. The polynomial kernel can capture some
nonlinear relationships but is limited by its degree. Owing
to its strong nonlinear mapping ability and infinite-
dimensional feature space, the Gaussian kernel is more
suitable for handling complex data in wind power
prediction. The sigmoid kernel, as shown in the
experiment, is not suitable for this task because of its large
prediction error.

4 SVR versus neural network

prediction models

When the neural network is initialized with random
weights and thresholds, the results of each training vary
even under the same data, training times, and learning rate
conditions. This indicates that the neural network's
performance is highly sensitive to the initialization of
weights and thresholds.

The BP neural network model requires a long training
time, and since each update of weights and thresholds is
only for a single sample, the parameters may become
useless during the update process. On the other hand, in
SVR, as long as the input samples are the same, using the
same kernel function and loss function can yield the same
results. The training speed is fast, but the accuracy of the
SVR results is slightly lower. By combining the
advantages and disadvantages of both methods, the use of
the BP neural network (BPNN) and support vector
regression (SVR) methods can improve the accuracy of
wind power prediction.
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4.1 Methodology: integration of the BP
neural network and support vector
regression

4.1.1 Definition of hybrid model

The definition of a hybrid model is as follows:

(2) Initial training:

BP Neural Network: The BPNN is first trained on the
preprocessed dataset to capture the nonlinear relationships
between the input features and the wind power output. The
BPNN configuration has 5 neurons in a single hidden layer,
50 training iterations, and a learning rate #=0.1.

Support Vector Regression: Simultaneously, the SVR
model is trained on the same dataset. The SVR uses a
Gaussian kernel.

(2) Feature Extraction from the BPNN:

Once the BPNN s trained, it is used to transform the
input data into a higher-dimensional feature space. The
outputs from the hidden layers of the BPNN serve as new,
informative features that encapsulate complex patterns
and relationships present in the data.

(3) Hybrid Model Formation:

The new features extracted from the BPNN, along
with the original input features, are then fed into the SVR
model. This hybrid approach leverages the BPNN's ability
to capture nonlinearities and the SVR's robustness in
regression tasks. The combination enhances the model's
overall prediction capability.

(4) Final prediction:

The SVR model, which is enhanced with features
from the BPNN, performs the final prediction of the wind
power output. This two-step process ensures that the
model benefits from the strengths of both BPNN and SVR,
leading to improved accuracy.

4.1.2 Specific implementation of hybrid model

The implementation logic of the hybrid model is as
follows:

The key processes of BPNN-SVR hybrid model
include:

(1) Feature Fusion Equation

Z:[X” H]:[Xl’XZ'XS’X4’hl’h2'h3’h4’h5] (4)

(a) X: Original meteorological features (4D vector:
wind_speed, temperature, humidity, pressure)

Algorithm: BPNN-SVR Hybrid Prediction Model
Input:
X_train: Training meteorological data matrix [Nx4]
y_train: Training power output vector [Nx1]
X_test: Test meteorological data matrix [Mx4]
params: Hyperparameter set = {epochs:50, C:10,
v:0.1, €:0.01}
Output:
predictions: Test set predicted power [Mx1]
E: Test set RMSE loss
1: // Phase 1: Train BPNN
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2: bpn_model = train_ BPNN(X train, y_train,
params.epochs)

3:

4: // Phase 2: Feature Extraction and Fusion

5: H_train =]

6: fori=1toNdo

7: h=bpn_model.get_hidden_features(X_train[i]) //
heRrs

8: H_train[i]=h

9: end for

10: Z_train = [X_train || H_train] // Feature fusion;
[original@hidden]

11:

12: // Phase 3: Train SVR

13: svr_model = train_SVR(Z_train, y_train, params)
14:

15: // Phase 4: Test Prediction

16: predictions =[]

17:forj=1to M do

18: h =bpn_model.get_hidden_features(X_test[j])
19: Z test=[X_test[j] || h] // Feature fusion

20: pred = svr_model.predict(Z_test)

21: predictions[j] = pred

22: end for

23:

24: /I Calculate RMSE

25:E=0

26:forj=1to M do

27: E =E + (predictions[j] - y_test[j])?

28: end for

29: E = sqrt(E/M)

(b) H: BPNN hidden layer outputs (5D vector:
nonlinear transformations)

(c) |I: Concatenation operator combining original and
derived features

(2) BPNN Hidden Layer Computation

h; = (W, X+b,) (5)
(a) o: Sigmoid activation function: o(z) = 1/(1 + e*{-

z})
(b) Wi: 5x4 weight matrix (optimized during training)
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(c) bi: 5x1 bias vector (optimized during training)
(d) X: Input feature vector € R*
(3) SVR Prediction Function

pred = > (8, —a)K(Z,, [kl Z) +b (6)

(a) K(u,v): Gaussian kernel: exp(-y-|[u-v|[)

(b) Zsv[K]: k-th support vector (critical samples from
training)

©) (a-ad):
optimization

(d) b: Bias term

(4) RMSE Calculation

__ JZTl(pfedj -y,
M
(a) M: Number of test samples
(b) pred;: Predicted power for sample j
(c) yj: Actual power for sample j

Lagrangian multipliers from dual

U]

4.2 Theoretical justification and practical
benefits

The rationale behind this integrated approach is based on
the complementary strengths of BPNN and SVR:

(1) BP Neural Network

BPNNs are powerful in capturing complex, nonlinear
relationships in the data due to their multilayer structure
and nonlinear activation functions. However, they can
sometimes suffer from issues such as overfitting and local
minima.

(2) Support Vector Regression:

On the other hand, SVR excels in regression tasks by
maximizing the margin and minimizing the prediction
error, making it less prone to overfitting than traditional
neural networks are. SVR is particularly effective in high-
dimensional spaces, which complements the feature
extraction capabilities of BPNNSs.

By combining these two methods, the hybrid model
benefits from the deep feature extraction ability of the
BPNNs and the robust regression capability of SVR. This
synergy results in a model that is more accurate and
reliable for wind power forecasting.
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Figure 3: Extreme weather performance comparison.

Table 9: Model performance in extreme weather (>12m/s).

Metric BPNN | SVR Hybrid | Improvement over BPNN
RMSE 0.510 | 0.562 | 0.475 | +6.86%

MAE 0.421 | 0.483 | 0.388 | +7.84%

Error STD | 0.042 | 0.051 | 0.036 | +14.3%

Max Error | 1.82 2.15 1.49 +18.1%

Accuracy | 78.2% | 72.5% | 85.6% | +7.4%

For the test data, the hybrid model based on BP and
SVR achieved an RMSE of 0.18033, whereas the
standalone BPNN had an RMSE of 0.1796, and the
standalone SVR had an RMSE of 0.1996. For different
wind speeds and weather conditions, the hybrid model
also achieved more stable and accurate prediction
performance. The hybrid model demonstrates
transformative performance during extreme weather
events through its dual-path architecture.

When extreme weather conditions occur, as shown in
Figure 3, conventional BPNN exhibited dangerous
1.2MW overshoots while the hybrid model maintained
stable tracking with just 0.4MW deviation.

This stability stems from the SVR layer's g-constraint
mechanism, which suppresses anomalous fluctuations by
disregarding errors within the +0.05 tolerance band during
feature fusion.

As shown in Table 9, quantitative analysis of 427
extreme-condition  samples  confirms  systematic
improvements: 6.86% RMSE reduction, 14.3% lower

error volatility, and 18.1% smaller maximum errors
compared to standalone BPNN.

The hybrid architecture thus transforms the traditional
accuracy-stability tradeoff into a complementary
advantage during critical operating conditions.

The hybrid model is comparable to the complex
optimal BP model yet significantly superior to the optimal
SVR model. This model effectively combines the ability
of BP to capture nonlinear relationships in the data with
the advantages of SVM in handling high-dimensional data
and preventing overfitting, thereby enhancing predictive
accuracy.

4.3 Statistical verification

Comprehensive statistical validation confirms the hybrid
model's operational advantages through three paired t-test
comparisons of 5-fold cross-validation results, as shown
in Figure 4 and Table 10.
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Figure 4: Comparison of RMSE Distribution (5-fold Cross Validation).
Table 10: Three paired t-test using 5-fold cross-validation.
Comparison t-value | p-value | Cohen’sd | Interpretation
BPNN vs Hybrid | 1.08 0.315 0.12 No significant difference
SVR vs Hybrid 1532 | <0.001 | 1.78 Massive improvement
BPNN vs SVR 16.40 | <0.001 | 1.90 Very large difference

The BPNN-Hybrid comparison (p=0.315, Cohen's
d=0.12) demonstrates statistical equivalence in overall
accuracy, confirming successful feature preservation
during integration.

Conversely, the Hybrid-SVR comparison reveals
massive improvement (p<0.001, Cohen's d=1.78),
validating the architecture's ability to overcome
standalone SVR limitations.

Extreme-weather-specific tests on 427 high-wind
samples show even more pronounced benefits: prediction
stability improvements are statistically significant (error
STD reduction p=0.008) and practically substantial (14.3%
lower volatility).

These results collectively prove that the hybrid model
maintains baseline accuracy while delivering crucial
stability enhancements during grid-critical weather
scenarios.

The statistical findings necessitate reframing the
hybrid model's value proposition: Rather than raw
accuracy gains, its core innovation lies in preserving
BPNN-level precision (p=0.315) while fundamentally
transforming stability characteristics.

This represents a paradigm shift from "accuracy-
centric" to "reliability-focused" forecasting, addressing
the industry's operational need for consistent performance
during extreme conditions.

We specifically establish that the feature extraction +
robust regression fusion architecture solves the "accuracy
cliff" problem - where conventional models fail abruptly
during weather transitions - by maintaining prediction
integrity at wind speed thresholds (>12 m/s) where grid
security decisions are most critical.

The 14.3% error volatility reduction (p=0.008)
demonstrates this architecture's unique ability to convert
theoretical robustness into measurable grid security
benefits.

5 Conclusion and discussion

5.1 Conclusion

This study establishes that the BPNN-SVR hybrid model
maintains prediction accuracy statistically equivalent to
optimized BPNN  (p=0.315) while delivering
transformative stability improvements during critical
operating conditions.

Quantitative evidence confirms 14.3% error volatility
reduction (p=0.008) and 18.1% lower maximum errors
during extreme weather, directly addressing the "accuracy
cliff* phenomenon in conventional forecasting.

The hybrid architecture's real-world value lies not in
marginal accuracy gains, but in its ability to maintain
prediction integrity during typhoons, storms, and abrupt
wind transitions - precisely when grid operators require
reliable forecasts for security decisions.

This constitutes a paradigm shift from accuracy-
centric to reliability-oriented wind power forecasting, with
direct implications for renewable integration in national
power systems.

5.2 Discussion

Although the RMSE of the hybrid model is slightly higher
than that of the BPNN (0.18033 vs. 0.1796), its stability
under extreme weather conditions is significantly
improved (error fluctuation reduced by 14.3%, maximum
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error reduced by 18.1%). Power grid dispatch prioritizes
prediction stability over absolute accuracy, as sudden
fluctuations could lead to power outages. Therefore, the
hybrid model sacrifices an RMSE of 0.0007 to achieve
reliability in critical scenarios, aligning with practical
engineering requirements.

Future work will explore ensemble methods to
stabilize ANN outputs, test the model on unseen weather
regimes, and compare with attention-based deep models
(e.g., Transformer) or graph neural networks for
spatiotemporal generalization.
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