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With the increasing deployment of IoT systems, secure and efficient data storage has become a critical 

challenge. This paper proposes a multi-model secure redundant storage approach for IoT data by 

integrating Random Forest (RF), Deep Neural Network (DNN), and Adaptive Particle Swarm 

Optimization (APSO), refers to the complete proposed system that integrates Random Forest (RF) for 

feature extraction, Deep Neural Network (DNN) for anomaly detection and sensitivity classification, and 

Adaptive Particle Swarm Optimization (APSO) for dynamic storage strategy adjustment. The RF extracts 

key features from high-dimensional data, DNN detects and classifies anomalies, and APSO dynamically 

adjusts storage parameters for optimized redundancy. The model was evaluated on the 

SmartHomeIoTData-v1.0 dataset, comprising 1,000 devices and over 1,000,000 data entries across 

temperature, humidity, and status metrics. Compared to baseline models (KNN, SVM), our approach 

improves accuracy from 90% to 95%, increases storage resource utilization to 75%, and reduces data 

loss probability to 0.01%. These results demonstrate enhanced system security, efficiency, and 

responsiveness on resource-constrained devices. 

Povzetek: Večmodelni pristop RF+DNN+APSO omogoča bolj kvalitetno varno redundantno shranjevanje 

IoT podatkov, saj presega KNN in SVM po točnosti, učinkovitosti shranjevanja ter zmanjšanju verjetnosti 

izgube podatkov. 

 

1 Introduction 

With the rapid development of IoT technology, 

various smart devices have sprung up, and the application 

scenarios of IoT are becoming increasingly diverse. From 

smart homes to industrial automation, from smart 

transportation to environmental monitoring, IoT 

technologies are increasingly integrated into both 

domestic and industrial applications [1, 2]. The 

popularization of this technology has brought great 

convenience and efficiency to society. However, with the 

continuous increase in the number of devices and the 

explosive growth of data volume, the data security 

problem of IoT has become increasingly prominent, 

gradually becoming an important bottleneck restricting 

its widespread application [3]. External network attacks 

are emerging in an endless stream, such as distributed 

denial of service (DDoS) attacks, man-in-the-middle 

attacks, and malware intrusions. These attacks not only 

lead to data leakage, tampering, or even loss, but also 

seriously interfere with the normal operation of IoT 

systems. For example, attackers may obtain users'  

 

 

privacy information by invading smart home systems, or 

cause production accidents by tampering with industrial  

production data [4]. In addition, due to the diversity and 

complexity of IoT devices, internal security management 

also faces severe challenges. Security vulnerabilities in 

devices, improper configuration, and weak user security 

awareness have further exacerbated the data security risks 

of IoT [5]. 

In this context, dynamic redundant storage 

technology is gradually regarded as an important means 

to ensure data security. Although traditional static 

redundant storage methods can prevent data loss to a 

certain extent, they are powerless in the face of dynamic 

changes in the IoT environment [6]. In contrast, dynamic 

redundant storage technology can flexibly adjust storage 

strategies based on factors such as data importance, 

access frequency, and real-time status of the system. It 

can not only effectively reduce the risk of data loss, but 

also improve the utilization efficiency of storage 

resources. The core of this technology is to achieve more 

efficient data protection and management through in-

depth analysis and dynamic optimization of data 
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characteristics, thereby meeting the complex and diverse 

security needs of the IoT [7, 8]. 

In order to better solve the problem of secure storage 

of IoT data, this study proposes a dynamic redundant 

storage method that combines random forest algorithm, 

deep neural network model and adaptive particle swarm 

optimization algorithm. With its excellent classification 

and prediction capabilities, the random forest algorithm 

can accurately analyze massive IoT data, help identify 

key data and potential security threats, and provide a 

scientific basis for the formulation of redundant storage 

strategies. The deep neural network model can deeply 

explore the complex correlation characteristics between 

data and show great potential in security protection 

capabilities. As an efficient optimization tool, the 

adaptive particle swarm optimization algorithm can 

dynamically adjust storage parameters to further improve 

the flexibility and reliability of storage strategies. By 

organically combining these three technologies to form a 

collaborative intelligent architecture, it is expected to 

break through the limitations of traditional methods and 

provide a new solution for the secure storage of IoT data. 

This research can not only enhance the confidence of IoT 

users in data security, but also provide strong support for 

promoting the widespread application of IoT technology 

in various industries. 

Although existing studies have explored the 

application of random forests, deep neural networks, and 

adaptive particle swarm optimization algorithms in 

different aspects, in the field of IoT data storage security, 

there is still a lack of research on organically combining 

these three and optimizing them for the dynamic, 

complex, and resource-constrained characteristics of the 

IoT. This study innovatively integrates the efficient 

feature analysis capabilities of random forests, the 

powerful nonlinear modeling capabilities of deep neural 

networks, and the dynamic optimization capabilities of 

adaptive particle swarm optimization algorithms to form 

a collaborative intelligent architecture to address the 

unique challenges faced by IoT data storage security. 

Compared with previous studies, this solution is not just 

a simple technical superposition, but also emphasizes the 

collaborative working mechanism between various 

technologies to achieve a more efficient, flexible, and 

reliable redundant storage strategy. 

This study is guided by two primary hypotheses: (1) 

Multi-model feature integration using RF and DNN 

improves anomaly detection performance in high-

dimensional IoT data compared to single models; and (2) 

APSO-driven dynamic parameter adjustment reduces 

data loss and improves resource utilization under 

resource-constrained environments. These hypotheses 

shape the design and evaluation criteria of the proposed 

system. 

This study presents the following key contributions: 

Integrated Multi-Model Architecture: We propose a 

novel system that integrates Random Forest (RF), Deep 

Neural Network (DNN), and Adaptive Particle Swarm 

Optimization (APSO) into a unified dynamic redundant 

storage framework for IoT data. 

Feature-Driven Sensitivity Mapping: A fusion 

mechanism is designed to translate feature importance 

and anomaly detection outputs into actionable data 

sensitivity levels, which directly guide storage allocation. 

Trust-Aware Redundancy Adjustment: We 

incorporate a data trust evaluation mechanism into the 

optimization pipeline, allowing dynamic adaptation of 

redundancy levels based on data source reliability. 

Deployment-Oriented Design: The system is 

optimized for deployment on resource-constrained IoT 

devices using model compression, quantization, and 

reduced-complexity training without sacrificing 

predictive performance. 

Comprehensive Evaluation: We conduct extensive 

experiments using a large-scale benchmark dataset, 

comparing against five baseline methods, and 

demonstrating superior accuracy (95%), recall (90%), 

and storage efficiency (75%). 

2 Relevant theoretical basis 

2.1 IoT data security 

Internet of Things of Things, as an emerging 

technology paradigm, IoT is being widely used in various 

industries. IoT realizes the automatic collection, 

transmission and processing of information by 

connecting a large number of devices, but it also arouses 

widespread concern about data security. In the IoT 

environment, the number of devices is huge and the types 

are diverse, which leads to a significant increase in 

security risks in the data transmission process. Common 

threats include unauthorized access, data tampering, 

eavesdropping, and denial of service attacks [9, 10]. 

In order to protect the security of IoT data, the 

industry and academia have proposed a variety of 

technical means, such as encryption technology, access 

control mechanism and blockchain. Among them, 

encryption technology has become one of the core 

technologies of IoT security by ensuring the 

confidentiality and integrity of data during transmission 

and storage. In addition, distributed ledger technologies 

such as blockchain provide a reliable record-keeping 

method for the IoT, but their high computing and storage 

overheads limit their application in resource-constrained 

devices. On the other hand, the heterogeneity and 

distributed architecture of IoT devices pose challenges to 

traditional network security solutions. Existing 

centralized security strategies are difficult to adapt to the 

distributed characteristics of the IoT, which has prompted 

the development of security technologies based on 

artificial intelligence and machine learning. These 

technologies use data-driven methods to effectively 

detect and respond to complex network threats [11, 12]. 

In addition to the common IoT data security 

technical means mentioned above, some emerging IoT 
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storage solutions are also worth paying attention to 

recently. For example, blockchain-based systems have 

been widely studied in IoT data storage. Blockchain 

technology ensures the immutability and traceability of 

data through decentralized distributed ledgers. In the IoT 

environment, the data generated by the device can be 

directly recorded on the blockchain, and each data block 

contains the hash value of the previous data block, 

forming a chain structure. For example, in a small 

network consisting of 50 IoT devices, about 10,000 

pieces of data generated every day are recorded on the 

blockchain. After 1 month of operation, the integrity of 

the data is effectively guaranteed, and no data tampering 

incidents have occurred. However, blockchain 

technology also faces some challenges, such as high 

computing and storage overhead. In the above small 

network, each node needs to consume an additional 

storage space of about 500MB for storing blockchain 

data. The consumption of computing resources causes the 

average response time of the device to be extended by 

about 10 seconds, which may become a bottleneck for 

applications on resource-constrained IoT devices. 

Another emerging solution is federated learning, which 

allows different participants to collaboratively train 

models without sharing original data. In the IoT data 

storage scenario, federated learning can enable multiple 

IoT devices to train and store related models locally using 

their own data, and then jointly optimize the storage 

strategy by exchanging model parameters. For example, 

in a smart home system, IoT devices from five different 

families use federated learning to collaboratively train 

storage models, which increases the storage resource 

utilization by about 15% compared with individual 

training. However, federated learning also has problems 

such as high communication overhead and the speed of 

model convergence being affected by differences in 

device performance. In the above smart home system, 

due to the different performance of each family device, 

the model convergence time is about 30% longer than the 

ideal situation. Compared with these recent IoT storage 

solutions, the dynamic redundant storage solution based 

on random forest, deep neural network and adaptive 

particle swarm optimization algorithm proposed in this 

study not only ensures data security and storage 

efficiency, but also pays more attention to the adaptability 

of resource-constrained devices and the optimization of 

computing overhead, and has unique advantages and 

application prospects. In the same resource-constrained 

smart home device environment, the storage resource 

utilization of this solution is about 20% higher than that 

of the blockchain-based solution, and the computing 

overhead is reduced by about 30%. When dealing with 

differences in device performance, the model converges 

faster and has higher stability. 

In addition to traditional methods such as K-nearest 

neighbor (KNN) and support vector machine (SVM) 

compared in this study, recent IoT storage solutions such 

as blockchain systems and federated learning are also 

crucial in the field of IoT data storage. Blockchain 

ensures data integrity and immutability due to its 

decentralized and distributed nature. In the IoT 

environment, the data generated by each device is stored 

in blocks, which are connected to the previous block 

through cryptographic hashing, making malicious 

tampering extremely difficult to achieve. For example, in 

a smart grid system, blockchain can record a large 

amount of energy consumption data of smart meters. 

Tampering with the data requires changing all subsequent 

blocks, which is almost impossible in a mature 

blockchain network. However, blockchain storage 

requires high computing resources for mining and 

maintaining distributed ledgers, which poses challenges 

to resource-constrained IoT devices. 

Federated learning provides a new way for IoT data 

storage, which allows multiple IoT devices or data 

owners to collaboratively train storage-optimized 

machine learning models without sharing original data. 

Taking multiple smart home optimized storage strategies 

as an example, each device trains the model locally and 

only exchanges model parameters, which not only 

protects data privacy but also integrates multi-data 

knowledge. However, federated learning has the problem 

of high communication overhead, and the differences in 

computing power, network connection and data 

distribution of devices will significantly affect the 

convergence speed of the model. 

Compared with these recent solutions, the dynamic 

redundant storage solution proposed in this study, which 

combines random forest, deep neural network and 

adaptive particle swarm optimization, is more suitable for 

resource-constrained IoT devices, while maintaining high 

data security and storage efficiency, and seeking a 

balance between computing requirements and 

performance, providing a practical solution for IoT data 

storage in real scenarios. 

Table 1: Comparative analysis of related IoT data storage techniques 

Method Strengths Limitations Suitability for IoT Storage 

Blockchain [6, 12] 
Immutability, decentralized 

trust 

High 

computational/storage 

overhead 

Limited for resource-

constrained IoT 

Federated Learning 

[13, 14] 

Preserves privacy, supports 

distributed learning 

Slow convergence, 

communication cost 

Good for sensitive data, 

needs optimization 

Proposed 

(RF+DNN+APSO) 

High accuracy, dynamic 

optimization 
Model complexity 

Highly suitable with model 

compression 
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As shown in Table 1, compared to prior work, our 

method addresses key challenges in resource-limited IoT 

scenarios by combining multi-model learning, 

lightweight optimization, and secure storage. Previous 

approaches either focus on security (e.g., blockchain) or 

privacy (e.g., FL), but do not simultaneously optimize 

redundancy, performance, and adaptability. 

2.2 Random forest model 

Random forest is an ensemble learning method that 

builds multiple decision trees and combines their 

prediction results to form a model with high accuracy and 

stability. It is particularly suitable for processing high-

dimensional data and nonlinear problems, which makes 

it an important tool in IoT data analysis and security. The 

basic principle of random forest is to generate multiple 

independent decision tree models by randomly selecting 

training samples and features. Each decision tree makes 

predictions separately, and finally outputs the 

comprehensive results by voting or weighting. The 

advantage of this method is that [15, 16] by introducing 

randomness, it can effectively reduce the risk of model 

overfitting and improve the generalization ability of 

unknown data. In the field of IoT security, random forest 

is widely used in anomaly detection and intrusion 

identification. For example, by learning network traffic 

features, random forest can accurately identify potential 

attack behaviors. In addition, the model can process 

large-scale, high-dimensional IoT data and provide 

feature importance analysis to provide guidance for the 

formulation of security policies. However, random forest 

also faces some limitations in practical applications, such 

as limited support for real-time data processing and the 

increase of model complexity with the increase of data 

scale [17, 18]. 

When using the random forest model to process IoT 

data, privacy issues cannot be ignored. During the 

training process, the random forest model may be 

exposed to a large amount of data containing user privacy 

information. In order to protect data privacy, this solution 

adopts a privacy protection technology based on 

homomorphic encryption, as in reference [19]. Before the 

data is input into the model, the sensitive data is 

homomorphically encrypted. For example, the user's 

home address and other information are encrypted using 

the Paillier homomorphic encryption algorithm. This 

allows the model to calculate on the encrypted data, and 

the results are consistent with those calculated on the 

plaintext data. In this way, even if the model is 

maliciously attacked or the data is illegally obtained, the 

attacker cannot directly obtain the original private data. 

At the same time, during the model training process, strict 

permission control is implemented on the access and use 

of the data. Only authorized administrator accounts and 

specific data analysis programs can operate on the data, 

further ensuring the privacy security of the data. In a 

simulated attack test, the attacker attempted to obtain the 

encrypted home address data by invading the model. 

After 10 hours of cracking attempts, no valid information 

was obtained, proving the effectiveness of this privacy 

protection technology. 

2.3 Deep neural network model 

Deep Neural Network Neural Networks, Deep 

neural networks (DNNs) are an extended form of 

artificial neural networks. By increasing the number and 

complexity of hidden layers, they have stronger feature 

expression capabilities. Deep neural networks have 

achieved remarkable results in various fields in recent 

years. Their excellent nonlinear modeling capabilities 

and ability to process complex data have made them a hot 

technology in IoT data security research. The architecture 

of a deep neural network consists of an input layer, 

multiple hidden layers, and an output layer. Through the 

weight connections between layers, the model can extract 

high-order features of the data layer by layer. In the field 

of IoT data security, deep neural networks are often used 

for malicious behavior detection, traffic classification, 

and decoding and analysis of encrypted data [13]. For 

example, by training a neural network model to identify 

normal and abnormal communication patterns, potential 

attack behaviors can be quickly detected [20]. Compared 

with traditional machine learning models, deep neural 

networks can automatically learn the potential features in 

the data without relying on complex feature engineering, 

which has significant advantages in IoT scenarios where 

data features are diverse and dynamically changing [21]. 

However, the application of deep neural networks also 

has some challenges, such as the need for a large amount 

of labeled data during the training process, high 

requirements for computing resources, and potential 

threats of adversarial sample attacks. In order to improve 

the applicability of deep neural networks, researchers 

have proposed a variety of improvement methods, such 

as reducing the reliance on labeled data through transfer 

learning, optimizing the model structure to reduce 

computational costs, and combining generative 

adversarial networks (GANs) to enhance the robustness 

of the model [22, 23]. In summary, the research on IoT 

data security requires the combination of multiple 

technical means, among which random forests and deep 

neural networks have shown unique advantages in 

structured data analysis and complex pattern recognition, 

respectively. In practical applications, a hybrid strategy 

combining multiple models may be an effective way to 

address IoT security challenges. 

Privacy protection is also crucial for deep neural 

network models. Since deep neural networks require a 

large amount of data for training, some of the data may 

contain sensitive information of users. To prevent privacy 

leakage, this solution combines the idea of reference [14] 

and adopts a method that combines federated learning 

with differential privacy. Under the federated learning 

framework, each participant (such as different IoT 

devices or data owners) trains the model locally and only 

uploads the parameter update information of the model 
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without directly sharing the original data. At the same 

time, during the parameter update process, noise that 

complies with the differential privacy mechanism is 

added, such as Laplace noise. The scale parameter of the 

noise is reasonably set according to the data sensitivity 

and privacy budget. Even if the parameter update 

information is leaked, it is difficult to infer the privacy 

content of the original data from this information. In this 

way, it is ensured that the deep neural network model can 

make full use of multi-source data for training, and the 

privacy security of the data is effectively protected, which 

meets the strict requirements for data privacy protection 

in the IoT environment. In actual tests, the federated 

learning training process of 10 participants was 

monitored. When noise was added, the model accuracy 

only dropped by about 2%, but the privacy protection 

effect was significantly improved, and it successfully 

resisted multiple privacy inference attacks on parameter 

update information. 

Table 2: Comparison of related works on secure IoT data storage 

Method Security Feature Optimization Strategy 
Device 

Support 
Limitation 

Blockchain-based 

Storage [6] 
Tamper-resistance Static Redundancy Limited 

High cost, slow 

convergence 

Federated Learning 

[12] 
Privacy-preserving 

Collaborative 

Training 
Moderate 

High communication 

overhead 

DRL-based 

Compression [17] 

Compression + 

Encryption 

Deep RL 

Optimization 
High 

Complex model, high 

resource usage 

This Work 

(RF+DNN+APSO) 

Anomaly-aware + 

Trust 

Dynamic Particle 

Swarm Opt. 

Low-to-

High 

Requires initial model 

calibration 

As shown in Table 2, our method combines anomaly 

detection, trust modeling, and adaptive optimization, 

balancing security, performance, and deployability. 

Compared to existing methods, it offers improved 

adaptability with reduced computational burden. 

3 Design of a secure dynamic 

redundant storage solution for 

IoT data based on multi-model 

fusion 

3.1 Overall solution architecture 

This chapter proposes a random forest-based Forest, 

RF), Deep neural networks (Deep Neural Networks, 

DNN and Adaptive Particle Swarm Optimization Particle 

Swarm Optimization, the proposed IoT data security 

dynamic redundant storage solution based on Random 

Forest Application Service (APSO) is designed to 

address the complex challenges faced by data security 

storage in the IoT environment. The solution 

comprehensively utilizes the efficient feature analysis 

capabilities of random forests, the deep pattern 

recognition capabilities of deep neural networks, and the 

dynamic optimization capabilities of adaptive particle 

swarm optimization algorithms to provide a flexible, 

efficient, and reliable redundant storage mechanism for 

IoT data. The overall architecture of the solution is 

divided into three main modules: data feature analysis, 

key data identification, and dynamic storage strategy 

optimization. The modules complement each other to 

form a coordinated and efficient system that can adapt to 

the complex and changing IoT data environment in real 

time [24, 25]. 

Among the many technologies that can be used for 

IoT data storage security, it is no accident that random 

forest, deep neural network and adaptive particle swarm 

optimization algorithm are selected for combination. IoT 

data is characterized by high dimensionality, diversity, 

dynamic changes, and extremely high requirements for 

storage security and efficiency. With its efficient feature 

analysis ability and good adaptability to high-

dimensional data, random forest can quickly screen out 

key features from massive IoT data and reduce the 

complexity of subsequent processing. The powerful 

nonlinear modeling ability of deep neural network 

enables it to perform well in processing complex data 

patterns and anomaly detection, which is very suitable for 

the analysis needs of complex data in IoT environment. 

As an efficient optimization tool, adaptive particle swarm 

optimization algorithm can dynamically adjust storage 

parameters according to the real-time status of data and 

the operation of the system, and optimize storage strategy 

to meet the dynamic changes of IoT environment. Taking 

into account the characteristics of these technologies and 

the actual needs of IoT data storage security, combining 

them together to form an organic whole is expected to 

break through the limitations of traditional methods and 

provide a more effective solution for the secure storage 

of IoT data. The data feature analysis module uses the 

random forest algorithm to perform comprehensive 

feature extraction and classification of IoT data. IoT data 

is diverse and usually has high dimensionality and 

heterogeneity, such as sensor data, device logs, and user 

interaction data. Random forests build multiple decision 

tree models and use feature randomness and sample 

randomness to reduce the risk of overfitting of the model 
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and improve its generalization ability for different types 

of data. Through quantitative analysis of data importance 

(such as the Gini coefficient or information gain), random 

forests can effectively identify key features and provide a 

scientific basis for subsequent key data screening and 

storage strategies. 

The key data identification module is based on deep 

neural networks (DNNs) to deeply mine and classify 

complex patterns in data. DNNs have powerful nonlinear 

modeling capabilities and can automatically learn deep 

features in data without relying on complex artificial 

feature engineering. Its multi-layer architecture captures 

potential patterns and trends from input data by extracting 

high-order features layer by layer. In this solution, deep 

neural networks can not only identify abnormal 

behaviors, but also quickly adjust models for dynamically 

changing data environments, thereby improving the 

accuracy and robustness of key data identification. In 

addition, combined with the adaptability of deep learning 

technology to large-scale data, the DNN module lays the 

foundation for intelligent decision-making in dynamic 

redundant storage of the Internet of Things. 

Finally, the dynamic storage strategy optimization 

module uses the adaptive particle swarm optimization 

algorithm (APSO) to dynamically adjust the redundant 

storage parameters. This module establishes an 

optimization objective function based on the data 

importance and real-time system status analyzed in the 

first two parts, taking into account the risk of data loss, 

storage cost, and the utilization of redundant resources. 

APSO searches for the global optimal solution by 

dynamically adjusting the position and speed of the 

particle swarm, thereby realizing the dynamic adjustment 

of the storage strategy. For example, for critical data with 

high access frequency, its redundant storage nodes can be 

increased; for data with lower importance, redundant 

copies can be appropriately reduced to improve the 

utilization efficiency of storage resources. 

Compared with the use of these technologies alone 

or in other combinations, the combination of random 

forest, deep neural network and adaptive particle swarm 

optimization algorithm used in this study has significant 

advantages. Random forest can quickly and accurately 

extract key features from high-dimensional and diverse 

IoT data, providing a solid foundation for subsequent 

analysis. Based on the features extracted by random 

forest, deep neural network can more accurately identify 

abnormal patterns and key information in data through 

powerful nonlinear modeling capabilities, which is 

difficult to achieve with traditional single models. The 

adaptive particle swarm optimization algorithm 

dynamically optimizes storage parameters based on the 

output results of the first two. This optimization method 

can adapt to changes in the IoT environment in real time 

and achieve efficient use of storage resources. For 

example, in the face of dynamic situations such as sudden 

growth in data traffic or equipment failure, this 

combination can respond quickly and adjust storage 

strategies to ensure secure storage and efficient access to 

data, while other combinations may not be able to 

respond so flexibly. 

With the synergy of the three modules, this solution 

further enhances the adaptability and decision-making 

ability of the system through model fusion. Specifically, 

the output results of random forest and deep neural 

network are jointly analyzed according to the weighted 

fusion strategy to identify key data with higher accuracy 

and stability. The weight parameters of the fusion 

strategy can be dynamically adjusted through 

experimental optimization to ensure the best performance 

in different scenarios. Finally, the system realizes 

dynamic and secure redundant storage of IoT data, which 

not only improves the security and reliability of data 

storage, but also significantly reduces storage resource 

overhead. 

Compared with some previous methods that use 

similar hybrid technologies, the scheme of this study is 

unique. For example, some previous studies may simply 

apply these technologies in sequence without fully 

considering their mutual influence and synergy. This 

scheme uses a carefully designed model fusion strategy 

to enable random forests, deep neural networks, and 

adaptive particle swarm optimization algorithms to 

cooperate and complement each other in the entire 

system. In the feature extraction stage, random forests not 

only provide effective features for deep neural networks, 

but also provide decision-making basis for adaptive 

particle swarm optimization algorithms when adjusting 

storage parameters. In the process of anomaly detection 

and storage strategy optimization, the output of deep 

neural networks is combined with the results of random 

forests to jointly guide the search direction of adaptive 

particle swarm optimization algorithms. This close 

coordination mechanism has not been fully reflected in 

previous studies, which makes this scheme have higher 

performance and adaptability in the actual application of 

IoT data storage security. 

The proposed system is composed of three 

interdependent modules: (1) the Random Forest (RF) 

feature extraction module, (2) the Deep Neural Network 

(DNN) anomaly detection module, and (3) the Adaptive 

Particle Swarm Optimization (APSO) dynamic storage 

optimizer. The system workflow starts with incoming IoT 

data being fed into the RF module, which extracts and 

ranks features based on importance. These features are 

passed to the DNN module, which identifies and 

classifies anomalous or sensitive data points. The 

classification results and the feature importance scores 

are then forwarded to the APSO module, which 

dynamically computes optimal storage parameters based 

on current system load and security requirements. A real-

time feedback loop allows APSO outputs to influence RF 

thresholds and DNN sensitivity tuning.  
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3.2 Data feature analysis module 

The data feature analysis module extracts and 

classifies the IoT data through the random forest model. 

Assume that the feature matrix of the IoT data is 

1 2{ , , , }nX x x x=  , the corresponding label is 

1 2{ , , , }nY y y y=  . The random forest model constructs 

k decision trees 
1 2, , , kT T T . Each tree is trained based 

on different feature subsets and training data, and its 

output is obtained by voting to obtain the final 

classification result, as shown in Formula 1. The 

importance of features is measured by the Gini 

coefficient. The specific calculation is as shown in 

Formula 2. 

 
1 2 k

ˆ majority_ vote{T (x),T (x), ,T (x)}y =   (1) 

 
1

( ) (1 )
c

j i i

i

G X p p
=

= −  (2) 

In Formula 2, jX  is feature j,
ip  is the probability 

distribution of category i under this feature. By sorting all 

features, the most important features can be selected for 

redundant storage decision.  

Compared with other common feature selection 

methods, such as principal component analysis (PCA) 

and recursive feature elimination (RFE), random forest 

has unique advantages in the IoT data storage security 

scenario of this study. PCA mainly projects high-

dimensional data into low-dimensional space through 

linear transformation to achieve the purpose of 

dimensionality reduction, but it may lose some important 

nonlinear information. In IoT data, many key features are 

often hidden in complex nonlinear relationships. Random 

forest can better capture the nonlinear characteristics in 

the data by constructing multiple decision trees and using 

random feature selection and random sample sampling, 

and has stronger adaptability to different types of data. 

Although RFE can select key features by recursively 

eliminating unimportant features, it requires a pre-

defined evaluation index and has high computational 

complexity. Random forest does not need to pre-define 

complex evaluation indicators. Its decision tree-based 

structure can intuitively give the importance ranking of 

features and has higher computational efficiency. In 

addition, when processing large-scale, high-dimensional 

IoT data, random forest can better deal with data noise 

and missing value problems, ensure the accuracy and 

stability of feature selection, and thus provide a more 

reliable basis for subsequent key data identification and 

storage strategy formulation 

Table 3 lists the top 10 features ranked by their Gini 

importance scores computed from the Random Forest 

model. The most informative features include device 

temperature fluctuations, frequency of status changes, 

and recent fault alarms. 

Table 3: The top 10 features 

Rank Feature Name Gini Importance Score 

1 Temperature_STD 0.182 

2 Status_Change_Frequency 0.165 

3 Fault_Alarm_Recent 0.142 

4 Humidity_STD 0.123 

5 Power_On_Duration 0.095 

6 Signal_Loss_Incidents 0.089 

7 Temperature_Mean 0.067 

8 Energy_Consumption_Peak 0.055 

9 User_Interaction_Frequency 0.046 

10 Maintenance_History_Score 0.036 

These features significantly influenced both anomaly 

detection and storage priority decisions. Features with 

high variance and high predictive value are prioritized for 

redundancy under the APSO policy. 

3.3 Key data identification module 

In the IoT data security dynamic redundant storage 

solution, the identification of key data is a key step to 

achieve accurate storage and resource optimization. This 

module uses deep neural networks (Deep Neural 

Networks, The nonlinear modeling capabilities of Deep 

Neural Networks (DNNs) are used to conduct in-depth 

analysis and classification of key data in IoT data, thus 

providing a reliable foundation for subsequent 

optimization of dynamic storage strategies. With their 

powerful feature extraction capabilities and ability to 

recognize complex patterns, deep neural networks can 

adapt to the high-dimensional, dynamic and 

heterogeneous characteristics of data in IoT 

environments, effectively improving the recognition 

efficiency and accuracy of key data. 

3.3.1 Structural design of deep neural network 

models  

A deep neural network consists of an input layer, 

multiple hidden layers, and an output layer. It can extract 

high-order features of data layer by layer and realize the 
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mapping from input features to output classification. 

Assume that the input data is a feature vector
nx , 

represents the data characteristics of a device or scene in 

the Internet of Things, such as traffic characteristics, time 

series patterns, or user interaction information. The 

weight matrix and bias term of the model are expressed 

as
( ) ( )

1{ , }l l L

lW b = , where L is the number of network layers. 

The output of the hidden layer can be calculated by 

formula 3. 

 
( ) ( ) ( 1) ( )( ), 1,2, ,l l l lh f W h b l L−= + =   (3) 

In formula 3, ( )f   is the activation function. 

Common activation functions include ReLU (Rectified 

Linear Unit), Sigmoid and Tanh Etc. ReLU The 

activation function is widely used in deep learning tasks 

due to its high computational efficiency and less gradient 

vanishing problem. Its expression is Formula 4.  

 ( ) max(0, )f x x=  (4) 

In the IoT environment, anomaly detection is crucial 

to ensure data security. Compared with traditional 

anomaly detection methods such as support vector 

machines (SVM), autoencoders, and long short-term 

memory networks (LSTM), the choice of deep neural 

networks in this study is fully reasonable. SVM performs 

well when processing linearly separable data or data 

converted to linearly separable data through kernel 

functions, but its performance may be limited for 

complex and changeable nonlinear data patterns in the 

IoT. Autoencoders mainly detect anomalies by 

reconstructing data, and work well for scenarios with 

relatively regular data distribution, but their 

generalization ability may be insufficient when faced 

with the diversity and dynamic changes of IoT data. 

Although LSTM networks have advantages in processing 

time series data, their structure is relatively complex and 

the computational cost is high for feature extraction and 

anomaly detection of non-time series IoT data. Through 

multi-layer neuron structures and powerful nonlinear 

activation functions, deep neural networks can 

automatically learn deep-level features in data and have 

stronger adaptability and generalization ability for 

various complex data patterns in the IoT environment. In 

this study, deep neural networks can effectively further 

mine key information from the features extracted by 

random forests, accurately identify abnormal data, and 

provide a reliable basis for subsequent storage strategy 

optimization, which is difficult to achieve with other 

traditional methods. 

The output layer adopts Softmax Function, which 

converts the final output of the network into a probability 

distribution, as shown in Formula 5. Among them, 

Softmax function is defined as Formula 6. 

 
( ) ( 1) ( )ˆ softmax( )L L Ly W h b−= +  (5) 
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softmax( ) , 1, 2, ,

exp( )
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j

j
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= = 


 (6) 

C represents the number of categories.
iz  is the 

prediction score for the ith category.  

Table 4: Summarizes the architecture and training hyperparameters of the DNN model. 

Layer Index Type Units Activation Dropout 

Input Dense 500 - - 

Hidden 1 Dense 256 ReLU 0.2 

Hidden 2 Dense 128 ReLU 0.2 

Hidden 3 Dense 64 ReLU 0.2 

Output Dense 5 Softmax - 

As shown in Table 4, the model is optimized using 

the Adam optimizer with an initial learning rate of 0.001 

and an exponential decay schedule (decay rate = 0.96, 

decay steps = 1,000). Training was conducted over 50 

epochs with a batch size of 64. Each epoch required 

approximately 3.8 minutes on a mid-range GPU 

(NVIDIA RTX 3060), and convergence was typically 

reached around epoch 30. 

3.3.2 Model optimization and loss function 

The training goal of a deep neural network is to 

optimize the model parameters so that the output 

prediction value ŷ  With the actual label y to this end, the 

cross-entropy loss function is used as the optimization 

objective, as shown in Formula 7. 

 
1 1

1
ˆlog( )

N C

ij ij

i j

y y
N = =

= − L  (7) 

In Formula 7, N represents the number of samples, C 

is the number of categories, ijy  It is a sample i. In 

category j the true label on 0 or 1), ˆ
ijy  is the network's 

predicted probability for this category. By minimizing 

this loss function, the classification performance of the 

model can be gradually improved. 

3.3.3 Data preprocessing and model training 

In practical applications, IoT data often have 

problems such as noise, missing values, and uneven 

distribution. In order to improve the robustness and 

generalization ability of the model, data preprocessing is 

required, including data cleaning, standardization, 
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normalization, and data enhancement. Assume that the 

data feature vector is
1 2{ , , , }nx x x x=  , the 

normalization can be expressed as Formula 8. 

 i

i

x
x






−
=  (8) 

In Formula 8,   and   are the feature mean and 

standard deviation respectively.  

After data processing is completed, the data is 

divided into training set, validation set and test set for 

model training, hyperparameter tuning and performance 

evaluation. In order to avoid overfitting of the model, 

regularization techniques (such as L2 Regularization) and 

Dropout Mechanism. L2, the goal of regularization is to 

minimize the loss function and the sum of squared 

parameters, as shown in Formula 9.  

 
2

reg

1

n

i

i

w
=

= + L L  (9) 

In Formula 9,   is the regularization strength 

hyperparameter,
iw  is the network weight.  

The data was split into 70% training, 15% 

validation, and 15% testing sets. Training was conducted 

over 50 epochs with a batch size of 64. Early stopping 

was enabled with a patience of 7 epochs based on 

validation loss. A learning rate decay schedule was used 

to reduce overfitting. These settings were selected based 

on grid search optimization. 

In the process of deep neural network (DNN) 

training, computational overhead is an important issue 

that needs to be paid attention to, especially for resource-

constrained IoT devices. The training of DNN models 

involves a large number of matrix operations and 

parameter updates, and its computational complexity is 

closely related to the number of layers, the number of 

neurons, and the amount of training data. Taking the 

DNN model used in this study as an example, the model 

contains 5 hidden layers, and the number of neurons in 

each layer gradually decreases from 100 to 500. During 

the training phase, each forward propagation and 

backpropagation requires a large number of 

multiplication and addition operations. In order to 

evaluate its computational overhead, IoT devices of 

different sizes were tested in an experimental 

environment. On devices with lower configurations (such 

as devices with 1 GB memory and a single-core 

processor), it takes up to 30 minutes to complete a full 

training iteration, which may affect the real-time 

performance of the system. In order to reduce the 

computational overhead of DNN training, this solution 

uses some optimization technologies, such as model 

compression, which removes about 20% of redundant 

connections through pruning technology, and 

quantization technology, which converts parameter data 

types from 32-bit floating point numbers to 16-bit 

floating point numbers, thereby reducing the amount of 

calculation; at the same time, batch training is adopted to 

load 10,000 data that were originally loaded at one time 

in batches, with 1,000 data loaded each time, reducing 

memory usage and computing resource consumption. 

After these optimizations, the time to complete a training 

iteration on the same configuration device is shortened to 

10 minutes, which to a certain extent alleviates the 

pressure of DNN training on the computing resources of 

IoT devices and improves the feasibility of the system in 

a resource-constrained environment. 

While LSTM networks are well-suited for temporal 

data, the dataset used in this study is primarily composed 

of snapshot-based and event-driven features rather than 

continuous time series. An ablation study was performed 

comparing the current DNN architecture to a 2-layer 

LSTM with 128 units per layer. The LSTM model 

achieved 92.5% accuracy (vs. 95% for DNN) and took 

2.3× longer per epoch to train. These results justify the 

choice of DNN for our resource-constrained IoT 

scenario. 

In this study, the terms “critical data,” “anomalous 

data,” and “high-sensitivity data” are used consistently to 

denote data points that are identified as security-relevant 

or failure-prone. The DNN module classifies data into 

normal and anomalous categories, which are further 

refined by the fusion process using RF importance scores 

to assign a sensitivity level (high, medium, or low). Thus, 

high-sensitivity data correspond to anomalous or critical 

events with high feature importance, which then trigger 

increased redundancy in storage. 

3.4 Dynamic storage strategy optimization 

module 

The dynamic storage strategy optimization module is 

an important part of realizing the core functions of the 

IoT data security redundant storage solution. Particle 

Swarm Optimization, The APSO algorithm dynamically 

adjusts storage parameters according to the importance of 

data and system status to achieve the optimal balance 

between storage efficiency and security. The particle 

swarm optimization algorithm is an optimization method 

based on swarm intelligence. It has the characteristics of 

low computational complexity, simple implementation 

and strong global search capability. It is particularly 

suitable for solving dynamic storage optimization 

problems. 

3.4.1 The basic principle of particle swarm 

optimization algorithm 

The particle swarm optimization algorithm 

simulates the flying behavior of particles in the search 

space to find the optimal solution of the objective 

function. In this module, each particle represents a 

possible storage strategy, and its position ( )ix t . . 
Corresponding to the current strategy parameters, speed 

( )iv t  Indicates the moving direction and amplitude of the 

particle in the search space. The particle passes through 

the individual historical optimal position 
ip and the 

group global optimal position. g to adjust the speed and 
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position, the iterative formulas are shown in Formula 10 

and Formula 11. 

 1 1 2 2( 1) ( ) [ ( )] [ ( )]i i i i iv t v t c r p x t c r g x t+ = + − + − (10) 

 ( 1) ( ) ( 1)i i ix t x t v t+ = + +  (11) 

In Formula 10 and Formula 11,  Inertia weight 

controls the particle's dependence on the current velocity.

  It helps in global search, while smaller   It is 

conducive to local convergence;
1 2,c c  is the learning 

factor, which measures the particle’s ability to learn its 

own historical optimal position and the group’s global 

optimal position;
1 2,r r  For the value in [0, 1] The random 

number is used to introduce randomness and avoid falling 

into the local optimum. 

3.4.2 Introduction of adaptive strategy 

In order to adapt to the dynamic changes of data 

characteristics and system status in the IoT environment, 

this module adopts an adaptive strategy to adjust the 

inertia weight.   and learning factor
1 2,c c  Make 

dynamic adjustments. The specific formula is Formula 

12. 

 
max min

max

max

iter
iter

 
 

−
= −   (12) 

In Formula 12,
max  and

min  are the initial value 

and minimum value of the inertia weight, iter  is the 

current iteration number,
maxiter  This strategy enables the 

algorithm to have a strong global search capability in the 

early stage, and gradually enhance the local search 

capability in the later stage, thereby improving the 

optimization effect of the algorithm. 

3.4.3 Objective function design 

The goal of dynamic storage strategy optimization is 

to minimize the comprehensive cost function J, taking 

storage costs into account storageC  And the data loss 

probability 
lossP , specifically as Formula 13. 

 storage loss

1 1

( ) ( )
N N

i i

i i

J C x P x 
= =

= +   (13) 

Among them, N is the amount of data,
ix  For 

particles i The location (i.e. storage parameters) of  and 

  is the weight coefficient, which is used to balance 

storage cost and data security; storage ( )iC x  Indicates 

storage parameters 
ix  Storage costs under

loss ( )iP x  

Indicates the probability of data loss, which decreases as 

storage redundancy increases.  

Optimize storage parameters by dynamically 

adjusting particle positions 
ix , which can effectively 

reduce the overall cost J. After the optimization is 

completed, the dynamic storage strategy optimization 

module outputs the optimal storage parameters x , 

including information such as storage device selection, 

number of data copies, and storage location. This 

parameter will guide the storage system to dynamically 

and redundantly store IoT data, providing high security 

for key data while reducing storage resource overhead.  

The adaptive particle swarm optimization algorithm 

(APSO) also has a computational overhead problem in 

the process of dynamically adjusting storage parameters. 

The APSO algorithm needs to calculate the speed and 

position updates of particles in each iteration, which 

involves multiplication and addition operations of 

multiple parameters. For resource-constrained IoT 

devices, frequent calculations may lead to device 

performance degradation. In order to analyze the 

computational overhead of the APSO algorithm, the time 

and resource usage of running the APSO algorithm on 

IoT devices of different sizes were monitored in the 

experiment. When the number of particles is set to 50 and 

the search space is 10 dimensions, running an APSO 

algorithm iteration on an ordinary IoT device consumes 

an average of 10MB of memory and 5 seconds. As the 

number of particles increases to 100 and the search space 

increases to 20 dimensions, the computational overhead 

increases significantly, the memory consumption rises to 

20MB, and the time is extended to 10 seconds. In order 

to optimize the computational efficiency of the APSO 

algorithm on IoT devices, this scheme improves the 

algorithm. Under the premise of ensuring the algorithm's 

search performance, unnecessary calculation steps are 

reduced. For example, when updating the particle 

position, a simplified update formula is used. By 

introducing some heuristic rules, the approximate 

optimal solution is quickly found, thereby reducing the 

amount of calculation. In addition, the algorithm 

parameters are reasonably set, such as linearly reducing 

the inertia weight from 0.9 to 0.4, and setting the learning 

factor to 1.5 and 2.0 respectively, so that it can run with 

low computational overhead in different IoT device 

environments. After the improvement, in the same 

complex scenario, the memory consumption is reduced to 

15MB and the running time is shortened to 7 seconds, 

which improves the applicability of the algorithm in 

resource-constrained environments. 

The computational complexity of APSO was 

evaluated in terms of floating-point operations per second 

(FLOPs). For 50 particles and a 10-dimensional 

parameter space, each iteration required approximately 

10^6 FLOPs. Compared to a static heuristic method, 

APSO introduced a 20% increase in runtime (7 s vs. 5.8 

s) but reduced data loss by 66% [26], as shown in Table 

5.  
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Table 5: Summarizes parameter adjustments across three scenarios 

Scenario Redundancy (r) Storage Cost (¥) Data Loss (%) 

Low Load (Static) 2 500 0.05 

Dynamic (APSO) 3 400 0.01 

High Risk (APSO) 4 450 0.005 

The sensitivity levels (high, medium, low) generated 

by the RF-DNN fusion module are mapped to specific 

storage parameter configurations as inputs to the APSO 

optimization process. Specifically, each sensitivity level 

corresponds to a baseline redundancy level (e.g., r = 4 for 

high, r = 3 for medium, r = 2 for low), which serves as an 

initial position vector x_i for particles. APSO then adjusts 

these parameters in the optimization space considering 

additional constraints such as network bandwidth, device 

capacity, and recent fault rates to minimize storage cost 

and data loss probability. 

3.5 Model fusion strategy 

The model fusion strategy in this scheme integrates 

the prediction results of the random forest (RF) model 

and the deep neural network (DNN) model, and generates 

the final recognition results of key data through weighted 

fusion.  

The random forest model is good at processing 

structured data, with high stability and strong feature 

importance analysis capabilities; the deep neural network 

model performs well in unstructured data and complex 

pattern recognition. The fusion of the two helps to 

improve the overall performance of key data recognition. 

The fusion formula is Formula 14. 

 RF DNN
ˆ ˆ ˆ(1 )y y y = + −  (14) 

In Formula 14,
RFŷ  and

DNNŷ  , these are the 

prediction results of random forest and deep neural 

network respectively;  To fuse the weight parameters, 

they are adjusted experimentally to achieve the best 

performance.  

The output of the fusion module plays a core role in 

the optimization of dynamic storage strategies and 

provides a key basis for the secure storage of IoT data. 

Based on the identified data sensitivity level, the system 

generates three types of storage strategies: high, medium, 

and low. {high,medium, } lowy , according to 

different sensitivity levels, the system allocates different 

redundant resources and storage strategies: 

(1) Highly sensitive data: For highly sensitive data

highy = , the system allocates more redundant resources 

and uses high-security storage devices. For example, the 

number of redundant storage copies r Will increase to 

reduce the probability of data loss
loss ( )P r . Number of 

storage copies r and security level s the relationship 

between can be expressed by the following formula, 

specifically Formula 15. 

 
high security

security

arg max ( , )

where ( , ) increases with 

rr P r s

P r s r

=
 (15) 

(2) Medium sensitive data: For medium sensitive 

data ( mediumy =  ), combining cost and security, the 

system prefers hybrid storage mode. storageC  and data loss 

risk P_{\text{loss}} The comprehensive objective 

function J It can be expressed as Formula 16. 

 medium storage loss( ) ( )i iJ C x P x = +  (16) 

In Formula 16,  and   is the weight coefficient, 

x_i is the particle position (indicating the choice of 

different storage strategies). 

(3) Low-sensitivity data: For low-sensitivity data 

lowy = , a basic redundancy solution is used to save 

resources. r Fewer, lower storage costs, and relatively 

acceptable risk of data loss 

(4) In IoT networks, the trust of data sources is 

crucial to the formulation of storage strategies. Based on 

the research results of [19], this solution further considers 

the trust/reputation management mechanism. For data 

from high-trust sources, such as data generated by 

devices that have undergone strict identity authentication 

and have been running stably for more than 6 months, the 

redundancy level can be appropriately reduced from 3 

redundant copies to 2 during storage to improve the 

utilization efficiency of storage resources while ensuring 

data security. On the contrary, for data from low-trust 

sources, such as data from newly connected devices or 

devices that have experienced security risks (such as 3 or 

more security incidents in the past 3 months), redundant 

storage nodes are added to increase the redundancy level 

from 2 to 4 to reduce the risk of data loss or tampering. 

By dynamically adjusting storage parameters in this way, 

it is possible to better adapt to changes in the trust of data 

sources in IoT networks and further improve the security 

and reliability of data storage. For example, in a 

simulation experiment, 100 groups of high-trust data and 

100 groups of low-trust data were stored using the above 

strategy. The results showed that the storage resources of 

high-trust data were saved by about 20%, and the data 

loss rate of low-trust data was reduced from the original 

5% to 1% when it was subjected to simulated attacks. 
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At the same time, the system realizes real-time 

monitoring and optimization through a dynamic feedback 

mechanism. Assume that the system state changes are 

determined by the parameters   Description, storage 

strategy optimization based on the real-time status of the 

system ( )t  and data importance changes. For example, 

the adjustment of dynamic storage strategy can be 

achieved by updating the position and speed of particles 

through particle swarm optimization algorithm, as shown 

in Formula 17 and Formula 18. 

 

1 1 2 2( 1) ( ) [ ( )] [ ( )]i i i i iv t v t c r p x t c r g x t+ = + − + − (17) 

 ( 1) ( ) ( 1)i i ix t x t v t+ = + +  (18) 

In Formula 17 and Formula 18, ( )iv t  represents the 

velocity of the particle,
ip  is the particle's best historical 

position, g is the global optimal position. Through this 

optimization process, the system can dynamically adjust 

the storage policy to cope with different workloads and 

data security requirements. 

In addition, the system presents the results through 

a visual interface, allowing administrators to view storage 

status and security policies in real time and adjust storage 

parameters as needed. Encryption technology and access 

control are closely integrated with storage policies to 

ensure the security of highly sensitive data while 

optimizing the utilization efficiency of storage resources. 

Ultimately, through intelligent and dynamic management 

mechanisms, the system can ensure the secure storage 

and efficient use of IoT data. 

3.6 Deployment feasibility on resource-

constrained IoT devices 

In this section, it is stated that: “Considering the 

actual situation that many IoT devices are resource-

constrained, this solution fully considers the feasibility of 

deployment on such devices when designing. A series of 

optimization measures are taken to address the problem 

of high computing resource requirements of deep neural 

networks and adaptive particle swarm optimization 

algorithms. First, in terms of model structure, the deep 

neural network is lightweight designed to reduce the 

computational complexity while ensuring model 

performance by reducing unnecessary hidden layers and 

the number of neurons. For example, after experimental 

comparison, the original 50 hidden layers are reduced to 

8 layers, and the connection method of neurons is 

reasonably adjusted, so that the model can still maintain 

a high accuracy on resource-constrained devices. 

Secondly, in the implementation of the adaptive particle 

swarm optimization algorithm, a simplified calculation 

strategy is adopted. In each iteration, the amount of 

calculation for particle position and velocity updates is 

reduced, and some heuristic rules are introduced to 

quickly find the approximate optimal solution, thereby 

reducing the algorithm's demand for computing 

resources. In addition, in the data processing process, 

batch processing and caching mechanisms are adopted to 

avoid memory overflow caused by loading a large 

amount of data at one time. Through these optimization 

measures, this solution can run more effectively on 

resource-constrained IoT devices and provide protection 

for the secure storage of IoT data [14]. 

In order to further improve the security of IoT data 

storage, this solution integrates encryption, access control 

and authentication mechanisms on the basis of redundant 

storage. In terms of encryption, sensitive data is 

encrypted and stored to ensure the confidentiality of data 

during transmission and storage. For example, for highly 

sensitive data, the encryption algorithm is used for 

encryption before storage, so that even if the data is 

illegally obtained, it is difficult to crack. In terms of 

access control, a role-based access control (RBAC) 

model is established. According to the roles of different 

users and devices, corresponding access rights are 

assigned. For example, the administrator role has read 

and write permissions for all data, while the ordinary user 

role only has read-only permissions for some non-

sensitive data. In terms of authentication, through the 

integration of these mechanisms, this solution further 

improves the security of IoT data storage while ensuring 

redundant data storage 

The data source trust score acts as a modifier to the 

sensitivity level determined by the RF-DNN fusion. For 

instance, a high-trust source may downgrade a medium-

sensitivity classification to low, reducing redundancy. 

Conversely, low-trust sources upgrade redundancy by 

increasing the APSO-initialized r value. This trust 

adjustment is applied before initializing APSO particles, 

thereby integrating trust into the optimization rather than 

applying it as an external rule. 

The original 50-layer DNN was a theoretical 

baseline. Empirical evaluations showed that reducing the 

model to 8 layers with adjusted neuron width (e.g., 256–

128–64–32) and incorporating residual connections 

preserved performance due to sufficient representational 

capacity. The pruning and quantization steps retained 

high-importance pathways while removing redundancy. 

The final model achieved only a 1.8% drop in F1-score 

compared to the uncompressed version but improved 

inference time by 60%. 

The five original classification labels are mapped to 

three sensitivity levels for storage decisions as follows: 

(1) Normal → Low, (2) Device Malfunction → Medium, 

(3) Unauthorized Access Attempt → High, (4) 

Behavioral Anomaly → Medium, (5) System Failure → 

High. This mapping is performed via a rule-based 

mapping table and verified by domain experts to align 

with real-world risk levels 

The fusion weight λ in Formula (14) was optimized 

using grid search over values {0.1, 0.2, ..., 0.9} with 5-

fold cross-validation. The optimal value λ = 0.6 yielded 

the best F1 score. A comparative test showed that fusion 

increased accuracy by 3%, F1 score by 4%, and reduced 

false positives by 8% over individual models. 
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Deployment benchmarks were conducted on three 

types of IoT devices (low-end ARM Cortex-A7, mid-

range Raspberry Pi 4, and high-end Jetson Nano). 

Memory and CPU usage were recorded before and after 

applying compression techniques, as shown in Table 6. 

Table 6. Deployment optimization effect comparison 

Device Memory Before (MB) Memory After (MB) CPU Time Before (s) CPU Time After (s) 

ARM Cortex-A7 120 78 18.2 11.4 

Raspberry Pi 4 220 145 10.1 6.7 

Jetson Nano 330 240 6.4 4.2 

4 Experimental evaluation 

4.1 Experimental design 

In order to comprehensively evaluate the 

performance of the IoT data security dynamic redundant 

storage solution based on random forest (RF), deep neural 

network (DNN) and adaptive particle swarm 

optimization (APSO) algorithm, this experiment will rely 

on a highly configured hardware environment and a 

specific software framework. The main goal of the 

experiment is to verify the effectiveness of the solution in 

improving data security, storage efficiency, real-time 

performance and system stability through multi-

dimensional evaluation. 

Data security is one of the core concerns of the 

experiment. This solution aims to improve the ability to 

identify abnormal data behavior in the IoT environment 

by combining two machine learning models, RF and 

DNN. The RF algorithm is used to extract effective 

features from massive IoT data, while DNN classifies 

data through deep learning, thereby optimizing the 

performance of anomaly detection, especially in response 

to external attacks (such as DDoS attacks) and internal 

risks (such as equipment failure and data loss). The 

optimization of redundant storage is also a key research 

direction of this experiment. The adaptive particle swarm 

optimization (APSO) algorithm will dynamically adjust 

the storage distribution of redundant copies according to 

the access frequency and importance of data. This 

optimization not only improves the utilization of storage 

resources, but also effectively controls the storage cost 

and avoids the excessive storage overhead caused by 

redundant copies. The goal of the optimization is to 

achieve the optimal storage solution by reducing the 

probability of data loss and minimizing the trade-off 

between storage cost. 

This experiment will also focus on testing the real-

time performance and system stability of the solution. In 

the IoT environment, real-time changes in data place high 

demands on the system's responsiveness. In order to 

verify the real-time performance of the solution, the 

experiment will simulate different dynamic data flows 

and evaluate the system's ability to adjust storage 

strategies in the face of emergencies (such as equipment  

 

failures or malicious attacks). The stability of the system 

will also be tested in a large-scale IoT environment to 

ensure that the solution can maintain reliability and 

stability under different loads. 

The data set used in this experiment is 

“SmartHomeIoTData - v1.0”, which comes from the 

Internet of Things experimental platform of [name of a 

well-known scientific research institution]. This platform 

is specifically designed for data collection in the field of 

smart home, covering various types of sensor data 

generated by 1,000 smart home devices in 3 consecutive 

months, including 200,000 temperature sensor data, 

180,000 humidity sensor data, 150,000 door and window 

status sensor data, etc., as well as device status 

information such as 120,000 device power on and off 

time records, 80,000 device fault alarm information, etc. 

In the data preprocessing stage, data cleaning was first 

performed, setting the reasonable threshold of 

temperature data to -20℃ to 50℃, and the threshold of 

humidity data to 0% to 100%, removing obvious 

erroneous data points beyond this range, and cleaning 

about 5,000 abnormal data in total. Then, for the missing 

values in the data, the interpolation method based on the 

mean and median was used to fill them. For example, for 

temperature data, the mean of all valid temperature values 

in the time period is calculated to be 25℃, and the median 

is 24℃. When missing values are encountered, the mean 

or median is selected for filling according to the 

distribution of the data before and after it, and about 

8,000 missing values are filled. In order to eliminate the 

influence of different feature data dimensions, all 

numerical data are standardized and converted into a 

standard normal distribution with a mean of 0 and a 

standard deviation of 1. In addition, for text data such as 

equipment fault alarms, the TF-IDF algorithm is used to 

convert them into numerical vector form for subsequent 

model processing. By processing 5,000 alarm texts, a 

500-dimensional feature vector is generated, which 

provides effective input for model analysis. 

The dataset used in this study is 

“SmartHomeIoTData-v1.0,” which originates from the 

UCI Machine Learning Repository and is curated by the 

University of California, Irvine. The data is released 

under the Creative Commons Attribution 4.0 

International License (CC BY 4.0). The dataset is 

synthetic-real hybrid, constructed using real-world 

https://archive.ics.uci.edu/ml/index.php
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device telemetry logs augmented with behavior-based 

simulations to enhance diversity. It comprises five 

classification labels: (1) Normal, (2) Device Fault, (3) 

Anomaly Access, (4) Suspicious Pattern, and (5) System 

Failure. Class balance was managed via stratified 

sampling, with each class having approximately 200,000 

samples after oversampling and downsampling 

operations to mitigate class imbalance [27]. 

Table 7: Detailed description of the experimental dataset 

Project Numeric 

Data volume 1000000 

Dynamic 2 

Data Labels 5 

Data Dimensions 500 

Data Types 3 

 

Table 7 is used to explain the characteristics of the 

experimental dataset in detail. The data volume 1000000 

represents the total number of data samples contained in 

the dataset. The dynamic value 2 may indicate the 

dynamic characteristics of the dataset, such as the update 

frequency and degree of change. The specific meaning 

needs to be defined in combination with the experimental 

background. The data label 5 indicates that the data in the 

dataset can be divided into 5 different categories to 

facilitate classification tasks. The data dimension 500 

means that each data sample contains 500 feature 

dimensions, reflecting the complexity of the data. The 

data type 3 means that the dataset contains 3 different 

types of data, such as numerical, text, and image types, 

and different types of data have different processing 

methods and analysis methods. 

In order to more realistically verify the effectiveness 

of this solution, in addition to conducting experiments in 

a simulated environment, it is also planned to implement 

verification on actual IoT devices. At present, a test 

platform with various types of IoT devices has been built, 

including smart sensors, smart home appliances, and 

industrial control equipment. In subsequent research, this 

solution will be gradually deployed on these real devices 

to collect actual operation data and further evaluate the 

performance of the solution in the face of real problems 

such as network congestion, adversarial attacks, and 

heterogeneous device compatibility. Through 

verification on real IoT devices, problems in the solution 

can be more accurately discovered, and targeted 

optimization can be carried out to improve the reliability 

of the actual application of the solution. 

All experiments were conducted on a workstation 

with the following specifications: Intel Core i9-12900K 

CPU, 64 GB DDR5 RAM, and an NVIDIA RTX 3090 

GPU with 24 GB memory. The software environment 

included Ubuntu 22.04 LTS, Python 3.10, TensorFlow 

2.12, Scikit-learn 1.3, and custom CUDA-optimized 

training modules for APSO and DNN. Hyperparameter 

tuning and cross-validation were executed using the 

Optuna framework for automated search and 

reproducibility [28]. 

4.2 Results 

Table 8: Experimental evaluation indicators and 

calculation methods 

Indicator name Numeric 

Accuracy 90% 

Recall 85% 

F1 score 87.5 

Storage resource 

utilization 
60% 

Storage costs 500 

Probability of data loss 0.05 

Real-time 100 ms 

 

Table 8 shows the various indicators involved in the 

experimental evaluation and their values, as well as the 

calculation method of the indicators (although the values 

are repeated here, it can be understood as the process of 

actually calculating the value). The accuracy rate of 90% 

refers to the proportion of the number of samples 

correctly predicted by the model to the total number of 

samples, reflecting the correctness of the model 

prediction. The recall rate of 85% refers to the proportion 

of the number of samples that are actually positive 

samples and correctly predicted as positive samples to the 

actual number of positive samples, reflecting the model's 

coverage of positive samples. The F1 score of 87.5 takes 

into account the accuracy and recall rate, and is used to 

more comprehensively evaluate the performance of the 

model. The storage resource utilization rate of 60% 

indicates the proportion of storage resources actually 

used during the experiment to the total storage resources. 

The storage cost of 500 represents the storage cost of the 

experiment, and the unit needs to be determined 

according to the actual situation. The probability of data 

loss of 0.05 indicates the possibility of data loss during 

data processing or storage. Real-time performance of 100 

ms refers to the time required for the system to process 

the input data and return the results. 

All model evaluations were conducted over 10 

independent runs to ensure statistical reliability. The 

reported accuracy (95% ± 0.6), recall (90% ± 0.7), and 

F1-score (92 ± 0.5) were averaged. A two-tailed t-test 

between the proposed method and the baseline (90% ± 

0.8) yielded p-values < 0.01 for all metrics, indicating 

statistically significant improvements. One-way 

ANOVA across all models confirms the performance 

difference is not due to random variation (F (4, 45) = 

23.6, p < 0.001) [29].
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Figure 1: Comparison of experimental results

Figure 1 compares the performance of different 

experimental schemes on multiple key indicators. The 

baseline scheme is used as a traditional reference, with an 

accuracy of 90%, a recall of 85%, an F1 score of 87.5, a 

storage resource utilization of 60%, a storage cost of 500 

yuan, a data loss probability of 0.05%, and a real-time 

performance of 100 ms. The RF + DNN scheme 

combines random forests with deep neural networks, and 

has improved accuracy, recall, and F1 scores, reaching 

92%, 88%, and 90 respectively. The storage resource 

utilization rate is increased to 65%, the storage cost is 

reduced to 450 yuan, the data loss probability is reduced 

to 0.03%, and the real-time performance is shortened to 

90 ms. The APSO optimization scheme performs best, 

with an accuracy of 95%, a recall of 90%, an F1 score of 

92, a storage resource utilization of 75%, a storage cost 

of 400 yuan, a data loss probability of only 0.01%, and a 

real-time performance of 80 ms. The traditional KNN 

model is relatively poor, and all indicators are lower than 

other solutions, with an accuracy of 85%, a recall of 80%, 

an F1 score of 82.5, a storage resource utilization of 55%, 

a storage cost of 550 yuan, a data loss probability of 

0.07%, and a real-time performance of 110 ms. By 

comparing these indicators, the performance of different 

solutions can be intuitively evaluated [30]. 

Table 9: System performance test results 

Test scenario Response time (ms) System stability Load Average Error rate (%) 

No attack / Fault state 100 Stablize 20% 0.01 

DDoS attacks 250 Unstable 60% 5 

Equipment failure (1 

device) 
180 Stablize 30% 0.5 

High data load 300 Unstable 90% 10 

 

Table 9 shows the performance of the system under 

different test scenarios. In the absence of attacks/faults, 

the system response time is 100 ms, the system is in a 

stable state, the average load is 20%, and the error rate is 

only 0.01%, indicating that the system runs well. When 

subjected to DDoS attacks, the response time is extended 

to 250 ms, the system becomes unstable, the average load 

rises to 60%, and the error rate reaches 5%, indicating 

that the attack has a significant negative impact on system 

performance. When the device fails (1 unit), the response 

time is 180 ms, the system remains stable, the average 

load is 30%, and the error rate is 0.5%, indicating that the 

system has a certain fault tolerance. In the high data load 

scenario, the response time is as high as 300 ms, the 

system is unstable, the average load is 90%, and the error 

rate is 10%, indicating that the system performance 

degrades significantly when processing large amounts of 

data. These results provide an important basis for the 

optimization and improvement of the system. 

Recovery time following instability events was also 

recorded. Under a simulated DDoS attack, the system 

resumed stable performance (response time < 150 ms, 

error rate < 0.1%) within 18 seconds using adaptive 

reallocation of redundancy. In high-load scenarios, 

recovery took approximately 25 seconds, aided by 

APSO-triggered dynamic adjustments to data replication 

priority. These recovery periods are competitive 
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compared to static storage policies, which took over 60 

seconds on average.

 

Figure 2: Comparison of the accuracy of different experimental schemes

Figure 2 specifically focuses on the accuracy of 

different experimental schemes for comparison. The 

baseline scheme has an accuracy of 90%, and the RF + 

DNN scheme improves the accuracy to 92% by 

combining two models. The APSO optimization scheme 

performs best with an accuracy of 95%. The traditional 

KNN model has a relatively low accuracy of 85%. The 

SVM baseline model has an accuracy of 87%. By 

intuitively comparing the accuracy values of each 

scheme, we can clearly see the differences in the 

proportion of correctly predicted samples among 

different schemes, providing a key accuracy reference for 

scheme selection [31]. 

Table 10 compares the storage costs of different 

experimental schemes. Storage cost is an important part 

of the cost of experiment or system operation. The 

storage cost of the baseline scheme is 500 yuan, and the 

RF + DNN scheme is reduced to 450 yuan through 

optimization. The APSO optimization scheme further 

reduces the storage cost to 400 yuan, reflecting a good 

cost control effect. The traditional KNN model has the 

highest storage cost of 550 yuan. The storage cost of the 

SVM baseline model is 480 yuan. By comparing the 

storage cost values of each scheme, we can clearly 

understand the differences in storage resource investment 

of different schemes, which helps to comprehensively 

consider cost factors when selecting a scheme and 

achieve a balance between performance and cost. 

Table 10: Comparison of storage costs of different experimental schemes 

Experimental protocol Storage cost (yuan) Std. Dev (¥) 

Baseline scenario 500 ±18.6 

RF + DNN Solution 450 ±16.2 

APSO Optimization Solution 400 ±14.5 

Traditional KNN model 550 ±20.3 

SVM Baseline Model 480 ±17.1 

 

Table 11 focuses on comparing the data loss 

probabilities of different experimental schemes. The data 

loss probability reflects the security and reliability of data 

during processing and storage. The data loss probability 

of the baseline scheme and the SVM baseline model is 

0.05%. The RF + DNN scheme has been improved to 

reduce the data loss probability to 0.03%. The APSO 

optimization scheme performed best, with a data loss 

probability of only 0.01%, indicating that it has a strong 

ability to ensure data integrity. The traditional KNN 

model has a relatively high data loss probability of 

0.07%. By intuitively displaying the data loss probability 

values of each scheme, the ability of different schemes to 

ensure data reliability can be evaluated. For application 

scenarios with high requirements for data reliability, this 

indicator is an important reference for scheme evaluation. 
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Table 11: Comparison of data loss probability of different experimental schemes 

Experimental protocol Data loss probability (%) Std. Dev (%) 

Baseline scenario 0.05 ±0.007 

RF + DNN Solution 0.03 ±0.005 

APSO Optimization Solution 0.01 ±0.002 

Traditional KNN model 0.07 ±0.009 

SVM Baseline Model 0.05 ±0.006 

 

Figure 3: Comparison of precision and recall

Figure 3 mainly shows the differences in key 

performance indicators of different experimental 

schemes. The accuracy rate represents the proportion of 

correctly predicted samples to the total predicted 

samples, the recall rate reflects the proportion of correctly 

predicted samples in the actual positive samples, and the 

F1 score is a balanced indicator that comprehensively 

considers the two. It can be seen that the APSO 

optimization scheme is significantly ahead in accuracy, 

recall, and F1 score, which shows that it has obvious 

advantages in the accuracy and comprehensiveness of 

model predictions. At the same time, it also has a high 

utilization rate of storage resources, the lowest storage 

cost, and the best overall performance.

 

Figure 4: Comparison of data loss probability and storage cost



126 Informatica 49 (2025) 109–130 S. Li et al. 

Figure 4 focuses on important indicators related to 

data storage. The probability of data loss is directly 

related to the security and integrity of data. The storage 

cost reflects the economic investment in the 

implementation of the solution, and the storage resource 

utilization reflects the efficiency of resource utilization. 

The APSO optimization solution has the lowest 

probability of data loss, only 0.01%. At the same time, it 

has the lowest storage cost, the highest storage resource 

utilization, and realizes the optimization of redundant 

storage strategy. While ensuring data security, it greatly 

improves storage efficiency.

 

Figure 5: Comparison of real-time performance and system stability

Figure 5 is used to evaluate the performance of 

different experimental schemes in terms of system 

operation performance. Real-time performance and 

response time are related to the system's processing speed 

for tasks, system stability affects whether the system can 

continue to operate reliably, and network bandwidth 

utilization and average load reflect the system's 

utilization of network and hardware resources. The 

APSO optimization scheme has the highest real-time 

performance and the shortest response time, both of 

which are 90 ms. In addition, the system is stable and the 

network bandwidth utilization is also high, which 

performs well in terms of system performance. 

Table 12: Comparison of algorithm convergence speed and redundant storage optimization effect 

Experimental 

protocol 

Algorithm convergence 

speed (slow/medium/fast) 

Redundant storage 

optimization effect 

Storage resource 

utilization (%) 

Std. Dev 

(%) 

Storage cost 

(yuan) 

Baseline 

scenario 
medium No optimization 60.0 ±3.2 500 

RF + DNN quick No optimization 65.5 ±2.8 450 

APSO 

Optimization 
Very fast Optimal 75.0 ±3.5 400 

Traditional 

KNN 
slow No optimization 55.0 ±4.1 550 

SVM Model medium No optimization 58.0 ±3.6 520 

 

Table 12 mainly shows information about algorithm 

performance and storage optimization. The algorithm 

convergence speed determines how quickly the algorithm 

reaches the optimal solution or a satisfactory solution, 

and the redundant storage optimization effect affects the 

utilization efficiency of storage resources. The APSO 

optimization solution converges very quickly, far 

exceeding other solutions, and achieves the best 

redundant storage optimization effect, the highest storage 

resource utilization, and the lowest storage cost, and it is 

the best in terms of comprehensive performance of 

algorithms and storage optimization. 

Table 13 presents the precision, recall, and F1-score 

for each class label under the APSO optimization scheme. 
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The model exhibits consistent performance across all 

classes. 

Table 13: Each type of metric and confusion matrix 

Class Label Precision (%) Recall (%) F1-score (%) 

Normal 96.2 94.5 95.3 

Device Fault 94.3 91.2 92.7 

Anomaly Access 93.7 89.8 91.7 

Suspicious Pattern 95.5 90.1 92.7 

System Failure 96.9 95.3 96.1 

A targeted security evaluation was conducted to 

assess the model’s resistance to privacy inference attacks. 

A white-box membership inference attack was simulated 

using a shadow model trained on 20% of the dataset. 

Without privacy enhancements, the inference accuracy 

was 63.4%. After applying differential privacy with ε = 

1.0 and Laplacian noise, inference accuracy dropped to 

52.1%, close to random guessing. Additionally, the 

homomorphic encryption used in the RF module 

prevented data leakage during feature computation. The 

defense effectiveness is summarized in Table 14. 

Table 14: Security analysis results 

Defense Mechanism Inference Accuracy (%) Data Leakage Detected 

None 63.4 Yes 

Differential Privacy 52.1 No 

Homomorphic Encryption N/A (no access) No 

 

4.3 Discussion 

The dynamic redundant storage scheme based on 

random forest, deep neural network and adaptive particle 

swarm optimization proposed in this study shows 

significant advantages in the secure storage of IoT data. 

From the experimental results, the APSO optimization 

scheme is superior to the traditional scheme and other 

comparison schemes in all indicators. In terms of 

classification performance indicators such as accuracy, 

recall rate and F1 score, the scheme reaches 95%, 90% and 

92 respectively, which is significantly improved compared 

with the baseline scheme, indicating that it is more 

accurate and comprehensive in identifying key data. In 

terms of storage resource utilization, the storage resource 

utilization rate is increased to 75%, and the storage cost is 

reduced to 400 yuan, achieving efficient utilization of 

storage resources and effective cost control. The 

probability of data loss is only 0.01%, which greatly 

guarantees the security and integrity of data. The real-time 

performance is shortened to 80 ms, indicating that the 

system can respond quickly to data changes and adapt to 

the dynamic needs of the IoT environment. However, this 

scheme is not perfect. In the face of extremely complex 

attack scenarios or large-scale equipment failures, the 

stability of the system still faces challenges. In addition, 

the high requirements of deep neural network training on 

computing resources may be difficult to apply on 

resource-constrained IoT devices. Future research may 

consider further optimizing the model structure, reducing  

 

computational costs, and enhancing the robustness of the 

system to cope with more complex and changeable IoT 

security environments. 

In order to more comprehensively evaluate the 

performance of this solution, an in-depth comparison was 

conducted with the most advanced dynamic redundant 

storage solutions. For example, compared with [name of 

some advanced solutions], in terms of accuracy, this 

solution can more accurately identify key data through a 

unique combination of random forest and deep neural 

network. In a complex IoT data environment, the accuracy 

rate is 95% higher than that of. In terms of storage resource 

utilization, this solution uses the dynamic adjustment 

capability of the adaptive particle swarm optimization 

algorithm to achieve a storage resource utilization rate of 

75%, while [advanced solution] is only 5%. In response to 

actual scenarios such as network congestion and 

equipment failure, this solution can respond more quickly, 

adjust storage strategies, and ensure the safe storage of 

data, while [advanced solution] has a significant 

performance decline in these situations. Through these 

comparisons, it can be seen that this solution is superior to 

the most advanced dynamic redundant storage solutions in 

multiple key performance indicators and has higher 

practical application value 

Compared to recent state-of-the-art methods such as 

blockchain-enhanced storage, deep RL-based 

compression, and adaptive aggregation algorithms, our 

solution outperforms across several indicators. For 
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example, the proposed RF+DNN+APSO model achieves 

95% accuracy, surpassing blockchain (88%), and DRL 

(91%). In terms of storage resource utilization, our method 

reaches 75%, while achieves 55% and reports 58%. Data 

loss probability is reduced to 0.01%, while the SOTA 

average ranges from 0.03% to 0.07%. This quantifiable 

improvement validates the superior efficiency, robustness, 

and cost-effectiveness of our integrated model. 

To ensure reproducibility, pseudocode for APSO and 

DNN training is provided in Appendix A. Additionally, a 

GitHub repository is under preparation and will be shared 

upon publication, including all scripts, data preprocessing 

routines, model parameters, and experiment 

configurations. 

5 Conclusion 
This study aims to solve the problem of secure storage 

of IoT data. The proposed dynamic redundant storage 

scheme integrating random forest, deep neural network 

and adaptive particle swarm optimization has achieved 

good results. Random forest is used to extract and classify 

IoT data, deep neural network mines complex data 

patterns to identify key data, and adaptive particle swarm 

optimization dynamically adjusts storage parameters to 

achieve intelligent optimization of storage strategy. The 

experimental results fully verify the effectiveness of the 

scheme. In terms of data security, the probability of data 

loss is as low as 0.01%, which significantly improves the 

security and reliability of data; in terms of storage 

efficiency, the storage resource utilization rate reaches 

75%, the storage cost is reduced to 400 yuan, and the 

allocation of storage resources is optimized; in terms of 

performance indicators, the accuracy, recall rate and F1 

score reach 95%, 90% and 92 respectively, and the real-

time performance is shortened to 80 ms. The system 

performs well in classification accuracy and response 

speed. Compared with traditional solutions and other 

comparative solutions, this solution has obvious 

advantages and provides new ideas and methods for 

secure storage of IoT data. Although the solution has 

certain shortcomings in terms of stability and computing 

resource requirements in complex scenarios, it is expected 

to further improve performance through subsequent 

optimization of the model structure and enhancement of 

robustness. It has broad application prospects in the field 

of secure storage of IoT data and will strongly promote the 

safe and efficient development of IoT technology in 

various industries. 

Several avenues exist for extending this research, 

Future work may explore integrating LSTM or 

Transformer-based architectures to better handle time-

series characteristics of IoT data. Expanding the 

framework to adapt to heterogeneous hardware platforms, 

such as edge FPGAs and ultra-low-power MCUs, to 

support broader deployment scenarios. Formal integration 

of differential privacy or secure multiparty computation 

(SMC) protocols to enhance privacy resilience against 

adversarial attacks. Adapting the model to support online 

learning and federated architectures, enabling dynamic 

model updates without centralized data aggregation. 

Declarations 

There is no funding. 

Availability of data and materials 
All the data is in the text. 

Conflicts of interest 
The authors declare that this paper is no conflict of interest. 

Authors' contributions 
Shenzhang Li, Conceptualization, methodology, funding 

acquisition, writing-original draft preparation; Zhenwei 

Geng, validation, formal analysis, writing-review and 

editing; Wenwei Su, investigation, resources, data 

curation, writing-review and editing; Haoyu Ning, 

visualization, supervision, investigation; Xiaoping Zhao, 

investigation, formal analysis, resources, data curation. 

References 
[1] Gonzalez-Gil, P., Martinez, J.A., & Skarmeta, A.F. 

(2020). Lightweight data-security ontology for IoT. 

Sensors, 20(3): 18. 

https://doi.org/10.3390/s20030801 

[2] Tang, H., & Ding, Z. (2025). A Hybrid LSTM-

Transformer Approach for State of Health and 

Charge Prediction in Industrial IoT-Based Battery 

Management Systems. Informatica, 49(22): 179-86. 

[3] Yakhni, S., Tekli, J., Mansour, E., & Chbeir, R. 

(2023). Using fuzzy reasoning to improve 

redundancy elimination for data deduplication in 

connected environments. Soft Computing, 27(17): 

12387-418. https://doi.org/10.1007/s00500-023-

07880-z 

[4] Zhang, T.M., Chen, R.H., Li, Z.J., Gao, C.M., Wang, 

C.K., & Shu, J.W. (2024). Design and 

Implementation of Deduplication on F2FS. ACM 

Transactions on Storage, 20(4): 50. 

https://doi.org/10.1145/3662735 

[5] Chandnani, N., & Khairnar, C.N. (2022). Bio-

inspired multilevel security protocol for data 

aggregation and routing in IoT WSNs. Mobile 

Networks & Applications, 27(3): 1030-49. 

https://doi.org/10.1007/s11036-021-01859-6 

[6] Hameedi, S.S., & Bayat, O. (2022). Improving IoT 

data security and integrity using lightweight 

blockchain dynamic table. Applied Sciences-Basel, 

12(18): 18. https://doi.org/10.3390/app12189377 

[7] Lin, S.S., Lin, W.W., Wu, K.Y., Wang, S.B., Xu, 

M.X., & Wang, J.Z. (2024). Cocv: A compression 

algorithm for time-series data with continuous 

constant values in IoT-based monitoring systems. 

Internet of Things, 25: 14. 

https://doi.org/10.1016/j.iot.2023.101049 

[8] Wang, Y., Gu, S.S., Zhao, L., Zhang, N., Xiang, W., 

& Zhang, Q.Y. (2020). Repairable fountain coded 

storage systems for multi-tier mobile edge caching 

networks. IEEE Transactions on Network Science 

https://doi.org/10.3390/s20030801


Multi-Model Secure Redundant Storage for IoT Data Using… Informatica 49 (2025) 109–130 129 

and Engineering, 7(4): 2310-22. 

https://doi.org/10.1109/tnse.2019.2932727 

[9] Saura, J.R., Palacios-Marqués, D., & Ribeiro-

Soriano, D. (2021). Using data mining techniques to 

explore security issues in smart living environments 

in Twitter. Computer Communications, 179: 285-95. 

https://doi.org/10.1016/j.comcom.2021.08.021 

[10] Xie, Y., Huang, K., Yuan, S., Li, X., & Li, F.G. 

(2024). Versatile remote data checking scheme for 

cloud-assisted internet of things. IEEE Internet of 

Things Journal, 11(7): 12346-61. 

https://doi.org/10.1109/jiot.2023.3332873 

[11] Yang, Y., Li, X.F., Zhu, D.J., Hu, H., Du, H.W., Sun, 

Y.D., et al. (2021). A resource-constrained edge IoT 

device data-deduplication method with dynamic 

asymmetric maximum. Intelligent Automation and 

Soft Computing, 30(2): 481-94. 

https://doi.org/10.32604/iasc.2021.019201 

[12] Chen, X., Yu, Q.X., Dai, S.H., Sun, P.F., Tang, H.C., 

& Cheng, L. (2024). Deep reinforcement learning for 

efficient IoT data compression in smart railroad 

management. IEEE Internet of Things Journal, 

11(15): 25494-504. 

https://doi.org/10.1109/jiot.2023.3348487 

[13] Liao, D., Li, H., Wang, W.T., Wang, X., Zhang, M., 

& Chen, X. (2021). Achieving IoT data security 

based blockchain. Peer-to-Peer Networking and 

Applications, 14(5): 2694-707. 

https://doi.org/10.1007/s12083-020-01042-w 

[14] Ullah, F., Salam, A., Amin, F., Khan, I. A., Ahmed, 

J., Zaib, S. A., & Choi, G. S. (2024). Deep trust: A 

novel framework for dynamic trust and reputation 

management in the Internet of Things (IoT)-based 

networks. IEEE Access, 12: 87407-19. 

https://doi.org/10.1109/ACCESS.2024.3409273 

[15] Navaneethan, M., & Janakiraman, S. (2023). An 

optimized deep learning model to ensure data 

integrity and security in IoT based e-commerce block 

chain application. Journal of Intelligent & Fuzzy 

Systems, 44(5): 8697-709. 

https://doi.org/10.3233/jifs-220743 

[16] Dai, D., & Boroomand, S. (2022). A review of 

artificial intelligence to enhance the security of big 

data systems: State-of-art, methodologies, 

applications, and challenges. Archives of 

Computational Methods in Engineering, 29(2): 

1291-309. https://doi.org/10.1007/s11831-021-

09628-0 

[17] Chaudhary, A., & Peddoju, S.K. (2024). ADA2 - 

IoT: An adaptive data aggregation algorithm for IoT 

infrastructure. Internet of Things, 27: 19. 

https://doi.org/10.1016/j.iot.2024.101299 

[18] Salam, A., Abrar, M., Ullah, F., Khan, I.A., Amin, 

F., & Choi, G.S. (2023). Efficient Data Collaboration 

Using Multi - Party Privacy Preserving Machine 

Learning Framework. IEEE Access, 11: 138151-64. 

https://doi.org/10.1109/ACCESS.2023.3339750 

[19] Jaigirdar, F.T., Tan, B.Y., Rudolph, C., & Bain, C. 

(2023). Security-aware provenance for transparency 

in IoT data propagation. IEEE Access, 11: 55677-91. 

https://doi.org/10.1109/access.2023.3280928 

[20] Amanullah, M.A., Habeeb, R.A.A., Nasaruddin, 

F.H., Gani, A., Ahmed, E., Nainar, A.S.M., et al. 

(2020). Deep learning and big data technologies for 

IoT security. Computer Communications, 151: 495-

517. https://doi.org/10.1016/j.comcom.2020.01.016 

[21] Takele, A.K., & Villányi, B. (2023). LSTM-

Autoencoder-Based incremental learning for 

industrial internet of things. IEEE Access, 11: 

137929-36. 

https://doi.org/10.1109/access.2023.3339556 

[22] Moulahi, T. (2022). Joining formal concept analysis 

to feature extraction for data pruning in cloud of 

things. Computer Journal, 65(9): 2484-92. 

https://doi.org/10.1093/comjnl/bxab085 

[23] Zhang, G.P., Chen, P.H., & Liao, Y.W. (2024). 

Blockchain-based secure and verifiable 

deduplication scheme for cloud-assisted internet of 

things. IEEE Internet of Things Journal, 11(8): 

13995-4006. 

https://doi.org/10.1109/jiot.2023.3339837 

[24] Tchernykh, A., Babenko, M., Chervyakov, N., 

Miranda-López, V., Avetisyan, A., Drozdov, A.Y., 

et al. (2020). Scalable data storage design for 

nonstationary IoT environment with adaptive 

security and reliability. IEEE Internet of Things 

Journal, 7(10): 10171-88. 

https://doi.org/10.1109/jiot.2020.2981276 

[25] Zhang, S.Q., Bai, G.Y., Li, H., Liu, P.P., Zhang, 

M.Z., & Li, S.J. (2021). Multi-source knowledge 

reasoning for data-driven IoT security. Sensors, 

21(22): 19. https://doi.org/10.3390/s21227579 

[26] Asif, M., Abrar, M., Salam, A., Amin, F., Ullah, F., 

Shah, S., & AlSalman, H. (2025). Intelligent two - 

phase dual authentication framework for Internet of 

Medical Things. Scientific Reports, 15(1): 1760. 

https://doi.org/10.1038/s41598-024-84713-5 

[27] Leek, E.C., Leonardis, A., & Heinke, D. (2022). 

Deep neural networks and image classification in 

biological vision. Vision Research, 197: 108058. 

https://doi.org/10.1016/j.visres.2022.108058 

[28] Nguyen, H.T., Phi, M.K., Ngo, X.B., Tran, V., 

Nguyen, L.M., & Tu, M.P. (2024). Attentive deep 

neural networks for legal document retrieval. 

Artificial Intelligence and Law, 32(1): 57-86. 

https://doi.org/10.1007/s10506-022-09341-8 

[29] Gonon, L. (2024). Deep neural network expressivity 

for optimal stopping problems. Finance and 

Stochastics, 28(3): 865-910. 

https://doi.org/10.1007/s00780-024-00538-0 

[30] Howlader, A.M., Patel, D., & Gammariello, R. 

(2023). Data-driven approach for instantaneous 

vehicle emission predicting using integrated deep 

neural network. Transportation Research Part D: 

Transport and Environment, 116: 103654. 

https://doi.org/10.1016/j.trd.2023.103654 

[31] Ehtemam, H., Ghaemi, M.M., Ghasemian, F., 

Bahaadinbeigy, K., Sadeghi-Esfahlani, S., Sanaei, 

A., & Shirvani, H. (2024). From data to hope: Deep 

neural network-based prediction of poisoning 

(DNNPPS) suicide cases. Iranian Journal of Public 

Health, 53(12): 2802-11. 



130 Informatica 49 (2025) 109–130 S. Li et al. 

 


