
https://doi.org/10.31449/inf.v49i34.9005 Informatica 49 (2025) 109–130 109

Multi-Model Secure Redundant Storage for IoT Data Using Random

Forests, Deep Neural Networks, and Adaptive Particle Swarm

Optimization

Shenzhang Li, Zhenwei Geng*, Wenwei Su, Haoyu Ning, Xiaoping Zhao

Information Center, Yunnan Power Grid Co., Ltd., Kunming 650000, China

E-mail: zhenwei_geng@outlook.com
*Corresponding author

Keywords: random forest, deep neural network, adaptive particle swarm optimization, IoT data security, dynamic

redundant storage

Received: April 25, 2025

With the increasing deployment of IoT systems, secure and efficient data storage has become a critical

challenge. This paper proposes a multi-model secure redundant storage approach for IoT data by

integrating Random Forest (RF), Deep Neural Network (DNN), and Adaptive Particle Swarm

Optimization (APSO), refers to the complete proposed system that integrates Random Forest (RF) for

feature extraction, Deep Neural Network (DNN) for anomaly detection and sensitivity classification, and

Adaptive Particle Swarm Optimization (APSO) for dynamic storage strategy adjustment. The RF extracts

key features from high-dimensional data, DNN detects and classifies anomalies, and APSO dynamically

adjusts storage parameters for optimized redundancy. The model was evaluated on the

SmartHomeIoTData-v1.0 dataset, comprising 1,000 devices and over 1,000,000 data entries across

temperature, humidity, and status metrics. Compared to baseline models (KNN, SVM), our approach

improves accuracy from 90% to 95%, increases storage resource utilization to 75%, and reduces data

loss probability to 0.01%. These results demonstrate enhanced system security, efficiency, and

responsiveness on resource-constrained devices.

Povzetek: Večmodelni pristop RF+DNN+APSO omogoča bolj kvalitetno varno redundantno shranjevanje

IoT podatkov, saj presega KNN in SVM po točnosti, učinkovitosti shranjevanja ter zmanjšanju verjetnosti

izgube podatkov.

1 Introduction

With the rapid development of IoT technology,

various smart devices have sprung up, and the application

scenarios of IoT are becoming increasingly diverse. From

smart homes to industrial automation, from smart

transportation to environmental monitoring, IoT

technologies are increasingly integrated into both

domestic and industrial applications [1, 2]. The

popularization of this technology has brought great

convenience and efficiency to society. However, with the

continuous increase in the number of devices and the

explosive growth of data volume, the data security

problem of IoT has become increasingly prominent,

gradually becoming an important bottleneck restricting

its widespread application [3]. External network attacks

are emerging in an endless stream, such as distributed

denial of service (DDoS) attacks, man-in-the-middle

attacks, and malware intrusions. These attacks not only

lead to data leakage, tampering, or even loss, but also

seriously interfere with the normal operation of IoT

systems. For example, attackers may obtain users'

privacy information by invading smart home systems, or

cause production accidents by tampering with industrial

production data [4]. In addition, due to the diversity and

complexity of IoT devices, internal security management

also faces severe challenges. Security vulnerabilities in

devices, improper configuration, and weak user security

awareness have further exacerbated the data security risks

of IoT [5].

In this context, dynamic redundant storage

technology is gradually regarded as an important means

to ensure data security. Although traditional static

redundant storage methods can prevent data loss to a

certain extent, they are powerless in the face of dynamic

changes in the IoT environment [6]. In contrast, dynamic

redundant storage technology can flexibly adjust storage

strategies based on factors such as data importance,

access frequency, and real-time status of the system. It

can not only effectively reduce the risk of data loss, but

also improve the utilization efficiency of storage

resources. The core of this technology is to achieve more

efficient data protection and management through in-

depth analysis and dynamic optimization of data

mailto:zhenwei_geng@outlook.com

110 Informatica 49 (2025) 109–130 S. Li et al.

characteristics, thereby meeting the complex and diverse

security needs of the IoT [7, 8].

In order to better solve the problem of secure storage

of IoT data, this study proposes a dynamic redundant

storage method that combines random forest algorithm,

deep neural network model and adaptive particle swarm

optimization algorithm. With its excellent classification

and prediction capabilities, the random forest algorithm

can accurately analyze massive IoT data, help identify

key data and potential security threats, and provide a

scientific basis for the formulation of redundant storage

strategies. The deep neural network model can deeply

explore the complex correlation characteristics between

data and show great potential in security protection

capabilities. As an efficient optimization tool, the

adaptive particle swarm optimization algorithm can

dynamically adjust storage parameters to further improve

the flexibility and reliability of storage strategies. By

organically combining these three technologies to form a

collaborative intelligent architecture, it is expected to

break through the limitations of traditional methods and

provide a new solution for the secure storage of IoT data.

This research can not only enhance the confidence of IoT

users in data security, but also provide strong support for

promoting the widespread application of IoT technology

in various industries.

Although existing studies have explored the

application of random forests, deep neural networks, and

adaptive particle swarm optimization algorithms in

different aspects, in the field of IoT data storage security,

there is still a lack of research on organically combining

these three and optimizing them for the dynamic,

complex, and resource-constrained characteristics of the

IoT. This study innovatively integrates the efficient

feature analysis capabilities of random forests, the

powerful nonlinear modeling capabilities of deep neural

networks, and the dynamic optimization capabilities of

adaptive particle swarm optimization algorithms to form

a collaborative intelligent architecture to address the

unique challenges faced by IoT data storage security.

Compared with previous studies, this solution is not just

a simple technical superposition, but also emphasizes the

collaborative working mechanism between various

technologies to achieve a more efficient, flexible, and

reliable redundant storage strategy.

This study is guided by two primary hypotheses: (1)

Multi-model feature integration using RF and DNN

improves anomaly detection performance in high-

dimensional IoT data compared to single models; and (2)

APSO-driven dynamic parameter adjustment reduces

data loss and improves resource utilization under

resource-constrained environments. These hypotheses

shape the design and evaluation criteria of the proposed

system.

This study presents the following key contributions:

Integrated Multi-Model Architecture: We propose a

novel system that integrates Random Forest (RF), Deep

Neural Network (DNN), and Adaptive Particle Swarm

Optimization (APSO) into a unified dynamic redundant

storage framework for IoT data.

Feature-Driven Sensitivity Mapping: A fusion

mechanism is designed to translate feature importance

and anomaly detection outputs into actionable data

sensitivity levels, which directly guide storage allocation.

Trust-Aware Redundancy Adjustment: We

incorporate a data trust evaluation mechanism into the

optimization pipeline, allowing dynamic adaptation of

redundancy levels based on data source reliability.

Deployment-Oriented Design: The system is

optimized for deployment on resource-constrained IoT

devices using model compression, quantization, and

reduced-complexity training without sacrificing

predictive performance.

Comprehensive Evaluation: We conduct extensive

experiments using a large-scale benchmark dataset,

comparing against five baseline methods, and

demonstrating superior accuracy (95%), recall (90%),

and storage efficiency (75%).

2 Relevant theoretical basis

2.1 IoT data security

Internet of Things of Things, as an emerging

technology paradigm, IoT is being widely used in various

industries. IoT realizes the automatic collection,

transmission and processing of information by

connecting a large number of devices, but it also arouses

widespread concern about data security. In the IoT

environment, the number of devices is huge and the types

are diverse, which leads to a significant increase in

security risks in the data transmission process. Common

threats include unauthorized access, data tampering,

eavesdropping, and denial of service attacks [9, 10].

In order to protect the security of IoT data, the

industry and academia have proposed a variety of

technical means, such as encryption technology, access

control mechanism and blockchain. Among them,

encryption technology has become one of the core

technologies of IoT security by ensuring the

confidentiality and integrity of data during transmission

and storage. In addition, distributed ledger technologies

such as blockchain provide a reliable record-keeping

method for the IoT, but their high computing and storage

overheads limit their application in resource-constrained

devices. On the other hand, the heterogeneity and

distributed architecture of IoT devices pose challenges to

traditional network security solutions. Existing

centralized security strategies are difficult to adapt to the

distributed characteristics of the IoT, which has prompted

the development of security technologies based on

artificial intelligence and machine learning. These

technologies use data-driven methods to effectively

detect and respond to complex network threats [11, 12].

In addition to the common IoT data security

technical means mentioned above, some emerging IoT

Multi-Model Secure Redundant Storage for IoT Data Using… Informatica 49 (2025) 109–130 111

storage solutions are also worth paying attention to

recently. For example, blockchain-based systems have

been widely studied in IoT data storage. Blockchain

technology ensures the immutability and traceability of

data through decentralized distributed ledgers. In the IoT

environment, the data generated by the device can be

directly recorded on the blockchain, and each data block

contains the hash value of the previous data block,

forming a chain structure. For example, in a small

network consisting of 50 IoT devices, about 10,000

pieces of data generated every day are recorded on the

blockchain. After 1 month of operation, the integrity of

the data is effectively guaranteed, and no data tampering

incidents have occurred. However, blockchain

technology also faces some challenges, such as high

computing and storage overhead. In the above small

network, each node needs to consume an additional

storage space of about 500MB for storing blockchain

data. The consumption of computing resources causes the

average response time of the device to be extended by

about 10 seconds, which may become a bottleneck for

applications on resource-constrained IoT devices.

Another emerging solution is federated learning, which

allows different participants to collaboratively train

models without sharing original data. In the IoT data

storage scenario, federated learning can enable multiple

IoT devices to train and store related models locally using

their own data, and then jointly optimize the storage

strategy by exchanging model parameters. For example,

in a smart home system, IoT devices from five different

families use federated learning to collaboratively train

storage models, which increases the storage resource

utilization by about 15% compared with individual

training. However, federated learning also has problems

such as high communication overhead and the speed of

model convergence being affected by differences in

device performance. In the above smart home system,

due to the different performance of each family device,

the model convergence time is about 30% longer than the

ideal situation. Compared with these recent IoT storage

solutions, the dynamic redundant storage solution based

on random forest, deep neural network and adaptive

particle swarm optimization algorithm proposed in this

study not only ensures data security and storage

efficiency, but also pays more attention to the adaptability

of resource-constrained devices and the optimization of

computing overhead, and has unique advantages and

application prospects. In the same resource-constrained

smart home device environment, the storage resource

utilization of this solution is about 20% higher than that

of the blockchain-based solution, and the computing

overhead is reduced by about 30%. When dealing with

differences in device performance, the model converges

faster and has higher stability.

In addition to traditional methods such as K-nearest

neighbor (KNN) and support vector machine (SVM)

compared in this study, recent IoT storage solutions such

as blockchain systems and federated learning are also

crucial in the field of IoT data storage. Blockchain

ensures data integrity and immutability due to its

decentralized and distributed nature. In the IoT

environment, the data generated by each device is stored

in blocks, which are connected to the previous block

through cryptographic hashing, making malicious

tampering extremely difficult to achieve. For example, in

a smart grid system, blockchain can record a large

amount of energy consumption data of smart meters.

Tampering with the data requires changing all subsequent

blocks, which is almost impossible in a mature

blockchain network. However, blockchain storage

requires high computing resources for mining and

maintaining distributed ledgers, which poses challenges

to resource-constrained IoT devices.

Federated learning provides a new way for IoT data

storage, which allows multiple IoT devices or data

owners to collaboratively train storage-optimized

machine learning models without sharing original data.

Taking multiple smart home optimized storage strategies

as an example, each device trains the model locally and

only exchanges model parameters, which not only

protects data privacy but also integrates multi-data

knowledge. However, federated learning has the problem

of high communication overhead, and the differences in

computing power, network connection and data

distribution of devices will significantly affect the

convergence speed of the model.

Compared with these recent solutions, the dynamic

redundant storage solution proposed in this study, which

combines random forest, deep neural network and

adaptive particle swarm optimization, is more suitable for

resource-constrained IoT devices, while maintaining high

data security and storage efficiency, and seeking a

balance between computing requirements and

performance, providing a practical solution for IoT data

storage in real scenarios.

Table 1: Comparative analysis of related IoT data storage techniques

Method Strengths Limitations Suitability for IoT Storage

Blockchain [6, 12]
Immutability, decentralized

trust

High

computational/storage

overhead

Limited for resource-

constrained IoT

Federated Learning

[13, 14]

Preserves privacy, supports

distributed learning

Slow convergence,

communication cost

Good for sensitive data,

needs optimization

Proposed

(RF+DNN+APSO)

High accuracy, dynamic

optimization
Model complexity

Highly suitable with model

compression

112 Informatica 49 (2025) 109–130 S. Li et al.

As shown in Table 1, compared to prior work, our

method addresses key challenges in resource-limited IoT

scenarios by combining multi-model learning,

lightweight optimization, and secure storage. Previous

approaches either focus on security (e.g., blockchain) or

privacy (e.g., FL), but do not simultaneously optimize

redundancy, performance, and adaptability.

2.2 Random forest model

Random forest is an ensemble learning method that

builds multiple decision trees and combines their

prediction results to form a model with high accuracy and

stability. It is particularly suitable for processing high-

dimensional data and nonlinear problems, which makes

it an important tool in IoT data analysis and security. The

basic principle of random forest is to generate multiple

independent decision tree models by randomly selecting

training samples and features. Each decision tree makes

predictions separately, and finally outputs the

comprehensive results by voting or weighting. The

advantage of this method is that [15, 16] by introducing

randomness, it can effectively reduce the risk of model

overfitting and improve the generalization ability of

unknown data. In the field of IoT security, random forest

is widely used in anomaly detection and intrusion

identification. For example, by learning network traffic

features, random forest can accurately identify potential

attack behaviors. In addition, the model can process

large-scale, high-dimensional IoT data and provide

feature importance analysis to provide guidance for the

formulation of security policies. However, random forest

also faces some limitations in practical applications, such

as limited support for real-time data processing and the

increase of model complexity with the increase of data

scale [17, 18].

When using the random forest model to process IoT

data, privacy issues cannot be ignored. During the

training process, the random forest model may be

exposed to a large amount of data containing user privacy

information. In order to protect data privacy, this solution

adopts a privacy protection technology based on

homomorphic encryption, as in reference [19]. Before the

data is input into the model, the sensitive data is

homomorphically encrypted. For example, the user's

home address and other information are encrypted using

the Paillier homomorphic encryption algorithm. This

allows the model to calculate on the encrypted data, and

the results are consistent with those calculated on the

plaintext data. In this way, even if the model is

maliciously attacked or the data is illegally obtained, the

attacker cannot directly obtain the original private data.

At the same time, during the model training process, strict

permission control is implemented on the access and use

of the data. Only authorized administrator accounts and

specific data analysis programs can operate on the data,

further ensuring the privacy security of the data. In a

simulated attack test, the attacker attempted to obtain the

encrypted home address data by invading the model.

After 10 hours of cracking attempts, no valid information

was obtained, proving the effectiveness of this privacy

protection technology.

2.3 Deep neural network model

Deep Neural Network Neural Networks, Deep

neural networks (DNNs) are an extended form of

artificial neural networks. By increasing the number and

complexity of hidden layers, they have stronger feature

expression capabilities. Deep neural networks have

achieved remarkable results in various fields in recent

years. Their excellent nonlinear modeling capabilities

and ability to process complex data have made them a hot

technology in IoT data security research. The architecture

of a deep neural network consists of an input layer,

multiple hidden layers, and an output layer. Through the

weight connections between layers, the model can extract

high-order features of the data layer by layer. In the field

of IoT data security, deep neural networks are often used

for malicious behavior detection, traffic classification,

and decoding and analysis of encrypted data [13]. For

example, by training a neural network model to identify

normal and abnormal communication patterns, potential

attack behaviors can be quickly detected [20]. Compared

with traditional machine learning models, deep neural

networks can automatically learn the potential features in

the data without relying on complex feature engineering,

which has significant advantages in IoT scenarios where

data features are diverse and dynamically changing [21].

However, the application of deep neural networks also

has some challenges, such as the need for a large amount

of labeled data during the training process, high

requirements for computing resources, and potential

threats of adversarial sample attacks. In order to improve

the applicability of deep neural networks, researchers

have proposed a variety of improvement methods, such

as reducing the reliance on labeled data through transfer

learning, optimizing the model structure to reduce

computational costs, and combining generative

adversarial networks (GANs) to enhance the robustness

of the model [22, 23]. In summary, the research on IoT

data security requires the combination of multiple

technical means, among which random forests and deep

neural networks have shown unique advantages in

structured data analysis and complex pattern recognition,

respectively. In practical applications, a hybrid strategy

combining multiple models may be an effective way to

address IoT security challenges.

Privacy protection is also crucial for deep neural

network models. Since deep neural networks require a

large amount of data for training, some of the data may

contain sensitive information of users. To prevent privacy

leakage, this solution combines the idea of reference [14]

and adopts a method that combines federated learning

with differential privacy. Under the federated learning

framework, each participant (such as different IoT

devices or data owners) trains the model locally and only

uploads the parameter update information of the model

Multi-Model Secure Redundant Storage for IoT Data Using… Informatica 49 (2025) 109–130 113

without directly sharing the original data. At the same

time, during the parameter update process, noise that

complies with the differential privacy mechanism is

added, such as Laplace noise. The scale parameter of the

noise is reasonably set according to the data sensitivity

and privacy budget. Even if the parameter update

information is leaked, it is difficult to infer the privacy

content of the original data from this information. In this

way, it is ensured that the deep neural network model can

make full use of multi-source data for training, and the

privacy security of the data is effectively protected, which

meets the strict requirements for data privacy protection

in the IoT environment. In actual tests, the federated

learning training process of 10 participants was

monitored. When noise was added, the model accuracy

only dropped by about 2%, but the privacy protection

effect was significantly improved, and it successfully

resisted multiple privacy inference attacks on parameter

update information.

Table 2: Comparison of related works on secure IoT data storage

Method Security Feature Optimization Strategy
Device

Support
Limitation

Blockchain-based

Storage [6]
Tamper-resistance Static Redundancy Limited

High cost, slow

convergence

Federated Learning

[12]
Privacy-preserving

Collaborative

Training
Moderate

High communication

overhead

DRL-based

Compression [17]

Compression +

Encryption

Deep RL

Optimization
High

Complex model, high

resource usage

This Work

(RF+DNN+APSO)

Anomaly-aware +

Trust

Dynamic Particle

Swarm Opt.

Low-to-

High

Requires initial model

calibration

As shown in Table 2, our method combines anomaly

detection, trust modeling, and adaptive optimization,

balancing security, performance, and deployability.

Compared to existing methods, it offers improved

adaptability with reduced computational burden.

3 Design of a secure dynamic

redundant storage solution for

IoT data based on multi-model

fusion

3.1 Overall solution architecture

This chapter proposes a random forest-based Forest,

RF), Deep neural networks (Deep Neural Networks,

DNN and Adaptive Particle Swarm Optimization Particle

Swarm Optimization, the proposed IoT data security

dynamic redundant storage solution based on Random

Forest Application Service (APSO) is designed to

address the complex challenges faced by data security

storage in the IoT environment. The solution

comprehensively utilizes the efficient feature analysis

capabilities of random forests, the deep pattern

recognition capabilities of deep neural networks, and the

dynamic optimization capabilities of adaptive particle

swarm optimization algorithms to provide a flexible,

efficient, and reliable redundant storage mechanism for

IoT data. The overall architecture of the solution is

divided into three main modules: data feature analysis,

key data identification, and dynamic storage strategy

optimization. The modules complement each other to

form a coordinated and efficient system that can adapt to

the complex and changing IoT data environment in real

time [24, 25].

Among the many technologies that can be used for

IoT data storage security, it is no accident that random

forest, deep neural network and adaptive particle swarm

optimization algorithm are selected for combination. IoT

data is characterized by high dimensionality, diversity,

dynamic changes, and extremely high requirements for

storage security and efficiency. With its efficient feature

analysis ability and good adaptability to high-

dimensional data, random forest can quickly screen out

key features from massive IoT data and reduce the

complexity of subsequent processing. The powerful

nonlinear modeling ability of deep neural network

enables it to perform well in processing complex data

patterns and anomaly detection, which is very suitable for

the analysis needs of complex data in IoT environment.

As an efficient optimization tool, adaptive particle swarm

optimization algorithm can dynamically adjust storage

parameters according to the real-time status of data and

the operation of the system, and optimize storage strategy

to meet the dynamic changes of IoT environment. Taking

into account the characteristics of these technologies and

the actual needs of IoT data storage security, combining

them together to form an organic whole is expected to

break through the limitations of traditional methods and

provide a more effective solution for the secure storage

of IoT data. The data feature analysis module uses the

random forest algorithm to perform comprehensive

feature extraction and classification of IoT data. IoT data

is diverse and usually has high dimensionality and

heterogeneity, such as sensor data, device logs, and user

interaction data. Random forests build multiple decision

tree models and use feature randomness and sample

randomness to reduce the risk of overfitting of the model

114 Informatica 49 (2025) 109–130 S. Li et al.

and improve its generalization ability for different types

of data. Through quantitative analysis of data importance

(such as the Gini coefficient or information gain), random

forests can effectively identify key features and provide a

scientific basis for subsequent key data screening and

storage strategies.

The key data identification module is based on deep

neural networks (DNNs) to deeply mine and classify

complex patterns in data. DNNs have powerful nonlinear

modeling capabilities and can automatically learn deep

features in data without relying on complex artificial

feature engineering. Its multi-layer architecture captures

potential patterns and trends from input data by extracting

high-order features layer by layer. In this solution, deep

neural networks can not only identify abnormal

behaviors, but also quickly adjust models for dynamically

changing data environments, thereby improving the

accuracy and robustness of key data identification. In

addition, combined with the adaptability of deep learning

technology to large-scale data, the DNN module lays the

foundation for intelligent decision-making in dynamic

redundant storage of the Internet of Things.

Finally, the dynamic storage strategy optimization

module uses the adaptive particle swarm optimization

algorithm (APSO) to dynamically adjust the redundant

storage parameters. This module establishes an

optimization objective function based on the data

importance and real-time system status analyzed in the

first two parts, taking into account the risk of data loss,

storage cost, and the utilization of redundant resources.

APSO searches for the global optimal solution by

dynamically adjusting the position and speed of the

particle swarm, thereby realizing the dynamic adjustment

of the storage strategy. For example, for critical data with

high access frequency, its redundant storage nodes can be

increased; for data with lower importance, redundant

copies can be appropriately reduced to improve the

utilization efficiency of storage resources.

Compared with the use of these technologies alone

or in other combinations, the combination of random

forest, deep neural network and adaptive particle swarm

optimization algorithm used in this study has significant

advantages. Random forest can quickly and accurately

extract key features from high-dimensional and diverse

IoT data, providing a solid foundation for subsequent

analysis. Based on the features extracted by random

forest, deep neural network can more accurately identify

abnormal patterns and key information in data through

powerful nonlinear modeling capabilities, which is

difficult to achieve with traditional single models. The

adaptive particle swarm optimization algorithm

dynamically optimizes storage parameters based on the

output results of the first two. This optimization method

can adapt to changes in the IoT environment in real time

and achieve efficient use of storage resources. For

example, in the face of dynamic situations such as sudden

growth in data traffic or equipment failure, this

combination can respond quickly and adjust storage

strategies to ensure secure storage and efficient access to

data, while other combinations may not be able to

respond so flexibly.

With the synergy of the three modules, this solution

further enhances the adaptability and decision-making

ability of the system through model fusion. Specifically,

the output results of random forest and deep neural

network are jointly analyzed according to the weighted

fusion strategy to identify key data with higher accuracy

and stability. The weight parameters of the fusion

strategy can be dynamically adjusted through

experimental optimization to ensure the best performance

in different scenarios. Finally, the system realizes

dynamic and secure redundant storage of IoT data, which

not only improves the security and reliability of data

storage, but also significantly reduces storage resource

overhead.

Compared with some previous methods that use

similar hybrid technologies, the scheme of this study is

unique. For example, some previous studies may simply

apply these technologies in sequence without fully

considering their mutual influence and synergy. This

scheme uses a carefully designed model fusion strategy

to enable random forests, deep neural networks, and

adaptive particle swarm optimization algorithms to

cooperate and complement each other in the entire

system. In the feature extraction stage, random forests not

only provide effective features for deep neural networks,

but also provide decision-making basis for adaptive

particle swarm optimization algorithms when adjusting

storage parameters. In the process of anomaly detection

and storage strategy optimization, the output of deep

neural networks is combined with the results of random

forests to jointly guide the search direction of adaptive

particle swarm optimization algorithms. This close

coordination mechanism has not been fully reflected in

previous studies, which makes this scheme have higher

performance and adaptability in the actual application of

IoT data storage security.

The proposed system is composed of three

interdependent modules: (1) the Random Forest (RF)

feature extraction module, (2) the Deep Neural Network

(DNN) anomaly detection module, and (3) the Adaptive

Particle Swarm Optimization (APSO) dynamic storage

optimizer. The system workflow starts with incoming IoT

data being fed into the RF module, which extracts and

ranks features based on importance. These features are

passed to the DNN module, which identifies and

classifies anomalous or sensitive data points. The

classification results and the feature importance scores

are then forwarded to the APSO module, which

dynamically computes optimal storage parameters based

on current system load and security requirements. A real-

time feedback loop allows APSO outputs to influence RF

thresholds and DNN sensitivity tuning.

Multi-Model Secure Redundant Storage for IoT Data Using… Informatica 49 (2025) 109–130 115

3.2 Data feature analysis module

The data feature analysis module extracts and

classifies the IoT data through the random forest model.

Assume that the feature matrix of the IoT data is

1 2{ , , , }nX x x x=  , the corresponding label is

1 2{ , , , }nY y y y=  . The random forest model constructs

k decision trees
1 2, , , kT T T . Each tree is trained based

on different feature subsets and training data, and its

output is obtained by voting to obtain the final

classification result, as shown in Formula 1. The

importance of features is measured by the Gini

coefficient. The specific calculation is as shown in

Formula 2.

1 2 k

ˆ majority_ vote{T (x),T (x), ,T (x)}y =  (1)

1

() (1)
c

j i i

i

G X p p
=

= − (2)

In Formula 2, jX is feature j,
ip is the probability

distribution of category i under this feature. By sorting all

features, the most important features can be selected for

redundant storage decision.

Compared with other common feature selection

methods, such as principal component analysis (PCA)

and recursive feature elimination (RFE), random forest

has unique advantages in the IoT data storage security

scenario of this study. PCA mainly projects high-

dimensional data into low-dimensional space through

linear transformation to achieve the purpose of

dimensionality reduction, but it may lose some important

nonlinear information. In IoT data, many key features are

often hidden in complex nonlinear relationships. Random

forest can better capture the nonlinear characteristics in

the data by constructing multiple decision trees and using

random feature selection and random sample sampling,

and has stronger adaptability to different types of data.

Although RFE can select key features by recursively

eliminating unimportant features, it requires a pre-

defined evaluation index and has high computational

complexity. Random forest does not need to pre-define

complex evaluation indicators. Its decision tree-based

structure can intuitively give the importance ranking of

features and has higher computational efficiency. In

addition, when processing large-scale, high-dimensional

IoT data, random forest can better deal with data noise

and missing value problems, ensure the accuracy and

stability of feature selection, and thus provide a more

reliable basis for subsequent key data identification and

storage strategy formulation

Table 3 lists the top 10 features ranked by their Gini

importance scores computed from the Random Forest

model. The most informative features include device

temperature fluctuations, frequency of status changes,

and recent fault alarms.

Table 3: The top 10 features

Rank Feature Name Gini Importance Score

1 Temperature_STD 0.182

2 Status_Change_Frequency 0.165

3 Fault_Alarm_Recent 0.142

4 Humidity_STD 0.123

5 Power_On_Duration 0.095

6 Signal_Loss_Incidents 0.089

7 Temperature_Mean 0.067

8 Energy_Consumption_Peak 0.055

9 User_Interaction_Frequency 0.046

10 Maintenance_History_Score 0.036

These features significantly influenced both anomaly

detection and storage priority decisions. Features with

high variance and high predictive value are prioritized for

redundancy under the APSO policy.

3.3 Key data identification module

In the IoT data security dynamic redundant storage

solution, the identification of key data is a key step to

achieve accurate storage and resource optimization. This

module uses deep neural networks (Deep Neural

Networks, The nonlinear modeling capabilities of Deep

Neural Networks (DNNs) are used to conduct in-depth

analysis and classification of key data in IoT data, thus

providing a reliable foundation for subsequent

optimization of dynamic storage strategies. With their

powerful feature extraction capabilities and ability to

recognize complex patterns, deep neural networks can

adapt to the high-dimensional, dynamic and

heterogeneous characteristics of data in IoT

environments, effectively improving the recognition

efficiency and accuracy of key data.

3.3.1 Structural design of deep neural network

models

A deep neural network consists of an input layer,

multiple hidden layers, and an output layer. It can extract

high-order features of data layer by layer and realize the

116 Informatica 49 (2025) 109–130 S. Li et al.

mapping from input features to output classification.

Assume that the input data is a feature vector
nx ,

represents the data characteristics of a device or scene in

the Internet of Things, such as traffic characteristics, time

series patterns, or user interaction information. The

weight matrix and bias term of the model are expressed

as
() ()

1{ , }l l L

lW b = , where L is the number of network layers.

The output of the hidden layer can be calculated by

formula 3.

() () (1) ()(), 1,2, ,l l l lh f W h b l L−= + =  (3)

In formula 3, ()f  is the activation function.

Common activation functions include ReLU (Rectified

Linear Unit), Sigmoid and Tanh Etc. ReLU The

activation function is widely used in deep learning tasks

due to its high computational efficiency and less gradient

vanishing problem. Its expression is Formula 4.

 () max(0,)f x x= (4)

In the IoT environment, anomaly detection is crucial

to ensure data security. Compared with traditional

anomaly detection methods such as support vector

machines (SVM), autoencoders, and long short-term

memory networks (LSTM), the choice of deep neural

networks in this study is fully reasonable. SVM performs

well when processing linearly separable data or data

converted to linearly separable data through kernel

functions, but its performance may be limited for

complex and changeable nonlinear data patterns in the

IoT. Autoencoders mainly detect anomalies by

reconstructing data, and work well for scenarios with

relatively regular data distribution, but their

generalization ability may be insufficient when faced

with the diversity and dynamic changes of IoT data.

Although LSTM networks have advantages in processing

time series data, their structure is relatively complex and

the computational cost is high for feature extraction and

anomaly detection of non-time series IoT data. Through

multi-layer neuron structures and powerful nonlinear

activation functions, deep neural networks can

automatically learn deep-level features in data and have

stronger adaptability and generalization ability for

various complex data patterns in the IoT environment. In

this study, deep neural networks can effectively further

mine key information from the features extracted by

random forests, accurately identify abnormal data, and

provide a reliable basis for subsequent storage strategy

optimization, which is difficult to achieve with other

traditional methods.

The output layer adopts Softmax Function, which

converts the final output of the network into a probability

distribution, as shown in Formula 5. Among them,

Softmax function is defined as Formula 6.

() (1) ()ˆ softmax()L L Ly W h b−= + (5)

1

exp()
softmax() , 1, 2, ,

exp()

i

i C

j

j

z
z i C

z
=

= = 


 (6)

C represents the number of categories.
iz is the

prediction score for the ith category.

Table 4: Summarizes the architecture and training hyperparameters of the DNN model.

Layer Index Type Units Activation Dropout

Input Dense 500 - -

Hidden 1 Dense 256 ReLU 0.2

Hidden 2 Dense 128 ReLU 0.2

Hidden 3 Dense 64 ReLU 0.2

Output Dense 5 Softmax -

As shown in Table 4, the model is optimized using

the Adam optimizer with an initial learning rate of 0.001

and an exponential decay schedule (decay rate = 0.96,

decay steps = 1,000). Training was conducted over 50

epochs with a batch size of 64. Each epoch required

approximately 3.8 minutes on a mid-range GPU

(NVIDIA RTX 3060), and convergence was typically

reached around epoch 30.

3.3.2 Model optimization and loss function

The training goal of a deep neural network is to

optimize the model parameters so that the output

prediction value ŷ With the actual label y to this end, the

cross-entropy loss function is used as the optimization

objective, as shown in Formula 7.

1 1

1
ˆlog()

N C

ij ij

i j

y y
N = =

= − L (7)

In Formula 7, N represents the number of samples, C

is the number of categories, ijy It is a sample i. In

category j the true label on 0 or 1), ˆ
ijy is the network's

predicted probability for this category. By minimizing

this loss function, the classification performance of the

model can be gradually improved.

3.3.3 Data preprocessing and model training

In practical applications, IoT data often have

problems such as noise, missing values, and uneven

distribution. In order to improve the robustness and

generalization ability of the model, data preprocessing is

required, including data cleaning, standardization,

Multi-Model Secure Redundant Storage for IoT Data Using… Informatica 49 (2025) 109–130 117

normalization, and data enhancement. Assume that the

data feature vector is
1 2{ , , , }nx x x x=  , the

normalization can be expressed as Formula 8.

 i

i

x
x






−
= (8)

In Formula 8,  and  are the feature mean and

standard deviation respectively.

After data processing is completed, the data is

divided into training set, validation set and test set for

model training, hyperparameter tuning and performance

evaluation. In order to avoid overfitting of the model,

regularization techniques (such as L2 Regularization) and

Dropout Mechanism. L2, the goal of regularization is to

minimize the loss function and the sum of squared

parameters, as shown in Formula 9.

2

reg

1

n

i

i

w
=

= + L L (9)

In Formula 9,  is the regularization strength

hyperparameter,
iw is the network weight.

The data was split into 70% training, 15%

validation, and 15% testing sets. Training was conducted

over 50 epochs with a batch size of 64. Early stopping

was enabled with a patience of 7 epochs based on

validation loss. A learning rate decay schedule was used

to reduce overfitting. These settings were selected based

on grid search optimization.

In the process of deep neural network (DNN)

training, computational overhead is an important issue

that needs to be paid attention to, especially for resource-

constrained IoT devices. The training of DNN models

involves a large number of matrix operations and

parameter updates, and its computational complexity is

closely related to the number of layers, the number of

neurons, and the amount of training data. Taking the

DNN model used in this study as an example, the model

contains 5 hidden layers, and the number of neurons in

each layer gradually decreases from 100 to 500. During

the training phase, each forward propagation and

backpropagation requires a large number of

multiplication and addition operations. In order to

evaluate its computational overhead, IoT devices of

different sizes were tested in an experimental

environment. On devices with lower configurations (such

as devices with 1 GB memory and a single-core

processor), it takes up to 30 minutes to complete a full

training iteration, which may affect the real-time

performance of the system. In order to reduce the

computational overhead of DNN training, this solution

uses some optimization technologies, such as model

compression, which removes about 20% of redundant

connections through pruning technology, and

quantization technology, which converts parameter data

types from 32-bit floating point numbers to 16-bit

floating point numbers, thereby reducing the amount of

calculation; at the same time, batch training is adopted to

load 10,000 data that were originally loaded at one time

in batches, with 1,000 data loaded each time, reducing

memory usage and computing resource consumption.

After these optimizations, the time to complete a training

iteration on the same configuration device is shortened to

10 minutes, which to a certain extent alleviates the

pressure of DNN training on the computing resources of

IoT devices and improves the feasibility of the system in

a resource-constrained environment.

While LSTM networks are well-suited for temporal

data, the dataset used in this study is primarily composed

of snapshot-based and event-driven features rather than

continuous time series. An ablation study was performed

comparing the current DNN architecture to a 2-layer

LSTM with 128 units per layer. The LSTM model

achieved 92.5% accuracy (vs. 95% for DNN) and took

2.3× longer per epoch to train. These results justify the

choice of DNN for our resource-constrained IoT

scenario.

In this study, the terms “critical data,” “anomalous

data,” and “high-sensitivity data” are used consistently to

denote data points that are identified as security-relevant

or failure-prone. The DNN module classifies data into

normal and anomalous categories, which are further

refined by the fusion process using RF importance scores

to assign a sensitivity level (high, medium, or low). Thus,

high-sensitivity data correspond to anomalous or critical

events with high feature importance, which then trigger

increased redundancy in storage.

3.4 Dynamic storage strategy optimization

module

The dynamic storage strategy optimization module is

an important part of realizing the core functions of the

IoT data security redundant storage solution. Particle

Swarm Optimization, The APSO algorithm dynamically

adjusts storage parameters according to the importance of

data and system status to achieve the optimal balance

between storage efficiency and security. The particle

swarm optimization algorithm is an optimization method

based on swarm intelligence. It has the characteristics of

low computational complexity, simple implementation

and strong global search capability. It is particularly

suitable for solving dynamic storage optimization

problems.

3.4.1 The basic principle of particle swarm

optimization algorithm

The particle swarm optimization algorithm

simulates the flying behavior of particles in the search

space to find the optimal solution of the objective

function. In this module, each particle represents a

possible storage strategy, and its position ()ix t . .
Corresponding to the current strategy parameters, speed

()iv t Indicates the moving direction and amplitude of the

particle in the search space. The particle passes through

the individual historical optimal position
ip and the

group global optimal position. g to adjust the speed and

118 Informatica 49 (2025) 109–130 S. Li et al.

position, the iterative formulas are shown in Formula 10

and Formula 11.

 1 1 2 2(1) () [()] [()]i i i i iv t v t c r p x t c r g x t+ = + − + − (10)

 (1) () (1)i i ix t x t v t+ = + + (11)

In Formula 10 and Formula 11, Inertia weight

controls the particle's dependence on the current velocity.

 It helps in global search, while smaller  It is

conducive to local convergence;
1 2,c c is the learning

factor, which measures the particle’s ability to learn its

own historical optimal position and the group’s global

optimal position;
1 2,r r For the value in [0, 1] The random

number is used to introduce randomness and avoid falling

into the local optimum.

3.4.2 Introduction of adaptive strategy

In order to adapt to the dynamic changes of data

characteristics and system status in the IoT environment,

this module adopts an adaptive strategy to adjust the

inertia weight.  and learning factor
1 2,c c Make

dynamic adjustments. The specific formula is Formula

12.

max min

max

max

iter
iter

 
 

−
= −  (12)

In Formula 12,
max and

min are the initial value

and minimum value of the inertia weight, iter is the

current iteration number,
maxiter This strategy enables the

algorithm to have a strong global search capability in the

early stage, and gradually enhance the local search

capability in the later stage, thereby improving the

optimization effect of the algorithm.

3.4.3 Objective function design

The goal of dynamic storage strategy optimization is

to minimize the comprehensive cost function J, taking

storage costs into account storageC And the data loss

probability
lossP , specifically as Formula 13.

 storage loss

1 1

() ()
N N

i i

i i

J C x P x 
= =

= +  (13)

Among them, N is the amount of data,
ix For

particles i The location (i.e. storage parameters) of and

 is the weight coefficient, which is used to balance

storage cost and data security; storage ()iC x Indicates

storage parameters
ix Storage costs under

loss ()iP x

Indicates the probability of data loss, which decreases as

storage redundancy increases.

Optimize storage parameters by dynamically

adjusting particle positions
ix , which can effectively

reduce the overall cost J. After the optimization is

completed, the dynamic storage strategy optimization

module outputs the optimal storage parameters x ,

including information such as storage device selection,

number of data copies, and storage location. This

parameter will guide the storage system to dynamically

and redundantly store IoT data, providing high security

for key data while reducing storage resource overhead.

The adaptive particle swarm optimization algorithm

(APSO) also has a computational overhead problem in

the process of dynamically adjusting storage parameters.

The APSO algorithm needs to calculate the speed and

position updates of particles in each iteration, which

involves multiplication and addition operations of

multiple parameters. For resource-constrained IoT

devices, frequent calculations may lead to device

performance degradation. In order to analyze the

computational overhead of the APSO algorithm, the time

and resource usage of running the APSO algorithm on

IoT devices of different sizes were monitored in the

experiment. When the number of particles is set to 50 and

the search space is 10 dimensions, running an APSO

algorithm iteration on an ordinary IoT device consumes

an average of 10MB of memory and 5 seconds. As the

number of particles increases to 100 and the search space

increases to 20 dimensions, the computational overhead

increases significantly, the memory consumption rises to

20MB, and the time is extended to 10 seconds. In order

to optimize the computational efficiency of the APSO

algorithm on IoT devices, this scheme improves the

algorithm. Under the premise of ensuring the algorithm's

search performance, unnecessary calculation steps are

reduced. For example, when updating the particle

position, a simplified update formula is used. By

introducing some heuristic rules, the approximate

optimal solution is quickly found, thereby reducing the

amount of calculation. In addition, the algorithm

parameters are reasonably set, such as linearly reducing

the inertia weight from 0.9 to 0.4, and setting the learning

factor to 1.5 and 2.0 respectively, so that it can run with

low computational overhead in different IoT device

environments. After the improvement, in the same

complex scenario, the memory consumption is reduced to

15MB and the running time is shortened to 7 seconds,

which improves the applicability of the algorithm in

resource-constrained environments.

The computational complexity of APSO was

evaluated in terms of floating-point operations per second

(FLOPs). For 50 particles and a 10-dimensional

parameter space, each iteration required approximately

10^6 FLOPs. Compared to a static heuristic method,

APSO introduced a 20% increase in runtime (7 s vs. 5.8

s) but reduced data loss by 66% [26], as shown in Table

5.

Multi-Model Secure Redundant Storage for IoT Data Using… Informatica 49 (2025) 109–130 119

Table 5: Summarizes parameter adjustments across three scenarios

Scenario Redundancy (r) Storage Cost (¥) Data Loss (%)

Low Load (Static) 2 500 0.05

Dynamic (APSO) 3 400 0.01

High Risk (APSO) 4 450 0.005

The sensitivity levels (high, medium, low) generated

by the RF-DNN fusion module are mapped to specific

storage parameter configurations as inputs to the APSO

optimization process. Specifically, each sensitivity level

corresponds to a baseline redundancy level (e.g., r = 4 for

high, r = 3 for medium, r = 2 for low), which serves as an

initial position vector x_i for particles. APSO then adjusts

these parameters in the optimization space considering

additional constraints such as network bandwidth, device

capacity, and recent fault rates to minimize storage cost

and data loss probability.

3.5 Model fusion strategy

The model fusion strategy in this scheme integrates

the prediction results of the random forest (RF) model

and the deep neural network (DNN) model, and generates

the final recognition results of key data through weighted

fusion.

The random forest model is good at processing

structured data, with high stability and strong feature

importance analysis capabilities; the deep neural network

model performs well in unstructured data and complex

pattern recognition. The fusion of the two helps to

improve the overall performance of key data recognition.

The fusion formula is Formula 14.

 RF DNN
ˆ ˆ ˆ(1)y y y = + − (14)

In Formula 14,
RFŷ and

DNNŷ , these are the

prediction results of random forest and deep neural

network respectively; To fuse the weight parameters,

they are adjusted experimentally to achieve the best

performance.

The output of the fusion module plays a core role in

the optimization of dynamic storage strategies and

provides a key basis for the secure storage of IoT data.

Based on the identified data sensitivity level, the system

generates three types of storage strategies: high, medium,

and low. {high,medium, } lowy , according to

different sensitivity levels, the system allocates different

redundant resources and storage strategies:

(1) Highly sensitive data: For highly sensitive data

highy = , the system allocates more redundant resources

and uses high-security storage devices. For example, the

number of redundant storage copies r Will increase to

reduce the probability of data loss
loss ()P r . Number of

storage copies r and security level s the relationship

between can be expressed by the following formula,

specifically Formula 15.

high security

security

arg max (,)

where (,) increases with

rr P r s

P r s r

=
 (15)

(2) Medium sensitive data: For medium sensitive

data (mediumy =), combining cost and security, the

system prefers hybrid storage mode. storageC and data loss

risk P_{\text{loss}} The comprehensive objective

function J It can be expressed as Formula 16.

 medium storage loss() ()i iJ C x P x = + (16)

In Formula 16, and  is the weight coefficient,

x_i is the particle position (indicating the choice of

different storage strategies).

(3) Low-sensitivity data: For low-sensitivity data

lowy = , a basic redundancy solution is used to save

resources. r Fewer, lower storage costs, and relatively

acceptable risk of data loss

(4) In IoT networks, the trust of data sources is

crucial to the formulation of storage strategies. Based on

the research results of [19], this solution further considers

the trust/reputation management mechanism. For data

from high-trust sources, such as data generated by

devices that have undergone strict identity authentication

and have been running stably for more than 6 months, the

redundancy level can be appropriately reduced from 3

redundant copies to 2 during storage to improve the

utilization efficiency of storage resources while ensuring

data security. On the contrary, for data from low-trust

sources, such as data from newly connected devices or

devices that have experienced security risks (such as 3 or

more security incidents in the past 3 months), redundant

storage nodes are added to increase the redundancy level

from 2 to 4 to reduce the risk of data loss or tampering.

By dynamically adjusting storage parameters in this way,

it is possible to better adapt to changes in the trust of data

sources in IoT networks and further improve the security

and reliability of data storage. For example, in a

simulation experiment, 100 groups of high-trust data and

100 groups of low-trust data were stored using the above

strategy. The results showed that the storage resources of

high-trust data were saved by about 20%, and the data

loss rate of low-trust data was reduced from the original

5% to 1% when it was subjected to simulated attacks.

120 Informatica 49 (2025) 109–130 S. Li et al.

At the same time, the system realizes real-time

monitoring and optimization through a dynamic feedback

mechanism. Assume that the system state changes are

determined by the parameters  Description, storage

strategy optimization based on the real-time status of the

system ()t and data importance changes. For example,

the adjustment of dynamic storage strategy can be

achieved by updating the position and speed of particles

through particle swarm optimization algorithm, as shown

in Formula 17 and Formula 18.

1 1 2 2(1) () [()] [()]i i i i iv t v t c r p x t c r g x t+ = + − + − (17)

 (1) () (1)i i ix t x t v t+ = + + (18)

In Formula 17 and Formula 18, ()iv t represents the

velocity of the particle,
ip is the particle's best historical

position, g is the global optimal position. Through this

optimization process, the system can dynamically adjust

the storage policy to cope with different workloads and

data security requirements.

In addition, the system presents the results through

a visual interface, allowing administrators to view storage

status and security policies in real time and adjust storage

parameters as needed. Encryption technology and access

control are closely integrated with storage policies to

ensure the security of highly sensitive data while

optimizing the utilization efficiency of storage resources.

Ultimately, through intelligent and dynamic management

mechanisms, the system can ensure the secure storage

and efficient use of IoT data.

3.6 Deployment feasibility on resource-

constrained IoT devices

In this section, it is stated that: “Considering the

actual situation that many IoT devices are resource-

constrained, this solution fully considers the feasibility of

deployment on such devices when designing. A series of

optimization measures are taken to address the problem

of high computing resource requirements of deep neural

networks and adaptive particle swarm optimization

algorithms. First, in terms of model structure, the deep

neural network is lightweight designed to reduce the

computational complexity while ensuring model

performance by reducing unnecessary hidden layers and

the number of neurons. For example, after experimental

comparison, the original 50 hidden layers are reduced to

8 layers, and the connection method of neurons is

reasonably adjusted, so that the model can still maintain

a high accuracy on resource-constrained devices.

Secondly, in the implementation of the adaptive particle

swarm optimization algorithm, a simplified calculation

strategy is adopted. In each iteration, the amount of

calculation for particle position and velocity updates is

reduced, and some heuristic rules are introduced to

quickly find the approximate optimal solution, thereby

reducing the algorithm's demand for computing

resources. In addition, in the data processing process,

batch processing and caching mechanisms are adopted to

avoid memory overflow caused by loading a large

amount of data at one time. Through these optimization

measures, this solution can run more effectively on

resource-constrained IoT devices and provide protection

for the secure storage of IoT data [14].

In order to further improve the security of IoT data

storage, this solution integrates encryption, access control

and authentication mechanisms on the basis of redundant

storage. In terms of encryption, sensitive data is

encrypted and stored to ensure the confidentiality of data

during transmission and storage. For example, for highly

sensitive data, the encryption algorithm is used for

encryption before storage, so that even if the data is

illegally obtained, it is difficult to crack. In terms of

access control, a role-based access control (RBAC)

model is established. According to the roles of different

users and devices, corresponding access rights are

assigned. For example, the administrator role has read

and write permissions for all data, while the ordinary user

role only has read-only permissions for some non-

sensitive data. In terms of authentication, through the

integration of these mechanisms, this solution further

improves the security of IoT data storage while ensuring

redundant data storage

The data source trust score acts as a modifier to the

sensitivity level determined by the RF-DNN fusion. For

instance, a high-trust source may downgrade a medium-

sensitivity classification to low, reducing redundancy.

Conversely, low-trust sources upgrade redundancy by

increasing the APSO-initialized r value. This trust

adjustment is applied before initializing APSO particles,

thereby integrating trust into the optimization rather than

applying it as an external rule.

The original 50-layer DNN was a theoretical

baseline. Empirical evaluations showed that reducing the

model to 8 layers with adjusted neuron width (e.g., 256–

128–64–32) and incorporating residual connections

preserved performance due to sufficient representational

capacity. The pruning and quantization steps retained

high-importance pathways while removing redundancy.

The final model achieved only a 1.8% drop in F1-score

compared to the uncompressed version but improved

inference time by 60%.

The five original classification labels are mapped to

three sensitivity levels for storage decisions as follows:

(1) Normal → Low, (2) Device Malfunction → Medium,

(3) Unauthorized Access Attempt → High, (4)

Behavioral Anomaly → Medium, (5) System Failure →

High. This mapping is performed via a rule-based

mapping table and verified by domain experts to align

with real-world risk levels

The fusion weight λ in Formula (14) was optimized

using grid search over values {0.1, 0.2, ..., 0.9} with 5-

fold cross-validation. The optimal value λ = 0.6 yielded

the best F1 score. A comparative test showed that fusion

increased accuracy by 3%, F1 score by 4%, and reduced

false positives by 8% over individual models.

Multi-Model Secure Redundant Storage for IoT Data Using… Informatica 49 (2025) 109–130 121

Deployment benchmarks were conducted on three

types of IoT devices (low-end ARM Cortex-A7, mid-

range Raspberry Pi 4, and high-end Jetson Nano).

Memory and CPU usage were recorded before and after

applying compression techniques, as shown in Table 6.

Table 6. Deployment optimization effect comparison

Device Memory Before (MB) Memory After (MB) CPU Time Before (s) CPU Time After (s)

ARM Cortex-A7 120 78 18.2 11.4

Raspberry Pi 4 220 145 10.1 6.7

Jetson Nano 330 240 6.4 4.2

4 Experimental evaluation

4.1 Experimental design

In order to comprehensively evaluate the

performance of the IoT data security dynamic redundant

storage solution based on random forest (RF), deep neural

network (DNN) and adaptive particle swarm

optimization (APSO) algorithm, this experiment will rely

on a highly configured hardware environment and a

specific software framework. The main goal of the

experiment is to verify the effectiveness of the solution in

improving data security, storage efficiency, real-time

performance and system stability through multi-

dimensional evaluation.

Data security is one of the core concerns of the

experiment. This solution aims to improve the ability to

identify abnormal data behavior in the IoT environment

by combining two machine learning models, RF and

DNN. The RF algorithm is used to extract effective

features from massive IoT data, while DNN classifies

data through deep learning, thereby optimizing the

performance of anomaly detection, especially in response

to external attacks (such as DDoS attacks) and internal

risks (such as equipment failure and data loss). The

optimization of redundant storage is also a key research

direction of this experiment. The adaptive particle swarm

optimization (APSO) algorithm will dynamically adjust

the storage distribution of redundant copies according to

the access frequency and importance of data. This

optimization not only improves the utilization of storage

resources, but also effectively controls the storage cost

and avoids the excessive storage overhead caused by

redundant copies. The goal of the optimization is to

achieve the optimal storage solution by reducing the

probability of data loss and minimizing the trade-off

between storage cost.

This experiment will also focus on testing the real-

time performance and system stability of the solution. In

the IoT environment, real-time changes in data place high

demands on the system's responsiveness. In order to

verify the real-time performance of the solution, the

experiment will simulate different dynamic data flows

and evaluate the system's ability to adjust storage

strategies in the face of emergencies (such as equipment

failures or malicious attacks). The stability of the system

will also be tested in a large-scale IoT environment to

ensure that the solution can maintain reliability and

stability under different loads.

The data set used in this experiment is

“SmartHomeIoTData - v1.0”, which comes from the

Internet of Things experimental platform of [name of a

well-known scientific research institution]. This platform

is specifically designed for data collection in the field of

smart home, covering various types of sensor data

generated by 1,000 smart home devices in 3 consecutive

months, including 200,000 temperature sensor data,

180,000 humidity sensor data, 150,000 door and window

status sensor data, etc., as well as device status

information such as 120,000 device power on and off

time records, 80,000 device fault alarm information, etc.

In the data preprocessing stage, data cleaning was first

performed, setting the reasonable threshold of

temperature data to -20℃ to 50℃, and the threshold of

humidity data to 0% to 100%, removing obvious

erroneous data points beyond this range, and cleaning

about 5,000 abnormal data in total. Then, for the missing

values in the data, the interpolation method based on the

mean and median was used to fill them. For example, for

temperature data, the mean of all valid temperature values

in the time period is calculated to be 25℃, and the median

is 24℃. When missing values are encountered, the mean

or median is selected for filling according to the

distribution of the data before and after it, and about

8,000 missing values are filled. In order to eliminate the

influence of different feature data dimensions, all

numerical data are standardized and converted into a

standard normal distribution with a mean of 0 and a

standard deviation of 1. In addition, for text data such as

equipment fault alarms, the TF-IDF algorithm is used to

convert them into numerical vector form for subsequent

model processing. By processing 5,000 alarm texts, a

500-dimensional feature vector is generated, which

provides effective input for model analysis.

The dataset used in this study is

“SmartHomeIoTData-v1.0,” which originates from the

UCI Machine Learning Repository and is curated by the

University of California, Irvine. The data is released

under the Creative Commons Attribution 4.0

International License (CC BY 4.0). The dataset is

synthetic-real hybrid, constructed using real-world

https://archive.ics.uci.edu/ml/index.php

122 Informatica 49 (2025) 109–130 S. Li et al.

device telemetry logs augmented with behavior-based

simulations to enhance diversity. It comprises five

classification labels: (1) Normal, (2) Device Fault, (3)

Anomaly Access, (4) Suspicious Pattern, and (5) System

Failure. Class balance was managed via stratified

sampling, with each class having approximately 200,000

samples after oversampling and downsampling

operations to mitigate class imbalance [27].

Table 7: Detailed description of the experimental dataset

Project Numeric

Data volume 1000000

Dynamic 2

Data Labels 5

Data Dimensions 500

Data Types 3

Table 7 is used to explain the characteristics of the

experimental dataset in detail. The data volume 1000000

represents the total number of data samples contained in

the dataset. The dynamic value 2 may indicate the

dynamic characteristics of the dataset, such as the update

frequency and degree of change. The specific meaning

needs to be defined in combination with the experimental

background. The data label 5 indicates that the data in the

dataset can be divided into 5 different categories to

facilitate classification tasks. The data dimension 500

means that each data sample contains 500 feature

dimensions, reflecting the complexity of the data. The

data type 3 means that the dataset contains 3 different

types of data, such as numerical, text, and image types,

and different types of data have different processing

methods and analysis methods.

In order to more realistically verify the effectiveness

of this solution, in addition to conducting experiments in

a simulated environment, it is also planned to implement

verification on actual IoT devices. At present, a test

platform with various types of IoT devices has been built,

including smart sensors, smart home appliances, and

industrial control equipment. In subsequent research, this

solution will be gradually deployed on these real devices

to collect actual operation data and further evaluate the

performance of the solution in the face of real problems

such as network congestion, adversarial attacks, and

heterogeneous device compatibility. Through

verification on real IoT devices, problems in the solution

can be more accurately discovered, and targeted

optimization can be carried out to improve the reliability

of the actual application of the solution.

All experiments were conducted on a workstation

with the following specifications: Intel Core i9-12900K

CPU, 64 GB DDR5 RAM, and an NVIDIA RTX 3090

GPU with 24 GB memory. The software environment

included Ubuntu 22.04 LTS, Python 3.10, TensorFlow

2.12, Scikit-learn 1.3, and custom CUDA-optimized

training modules for APSO and DNN. Hyperparameter

tuning and cross-validation were executed using the

Optuna framework for automated search and

reproducibility [28].

4.2 Results

Table 8: Experimental evaluation indicators and

calculation methods

Indicator name Numeric

Accuracy 90%

Recall 85%

F1 score 87.5

Storage resource

utilization
60%

Storage costs 500

Probability of data loss 0.05

Real-time 100 ms

Table 8 shows the various indicators involved in the

experimental evaluation and their values, as well as the

calculation method of the indicators (although the values

are repeated here, it can be understood as the process of

actually calculating the value). The accuracy rate of 90%

refers to the proportion of the number of samples

correctly predicted by the model to the total number of

samples, reflecting the correctness of the model

prediction. The recall rate of 85% refers to the proportion

of the number of samples that are actually positive

samples and correctly predicted as positive samples to the

actual number of positive samples, reflecting the model's

coverage of positive samples. The F1 score of 87.5 takes

into account the accuracy and recall rate, and is used to

more comprehensively evaluate the performance of the

model. The storage resource utilization rate of 60%

indicates the proportion of storage resources actually

used during the experiment to the total storage resources.

The storage cost of 500 represents the storage cost of the

experiment, and the unit needs to be determined

according to the actual situation. The probability of data

loss of 0.05 indicates the possibility of data loss during

data processing or storage. Real-time performance of 100

ms refers to the time required for the system to process

the input data and return the results.

All model evaluations were conducted over 10

independent runs to ensure statistical reliability. The

reported accuracy (95% ± 0.6), recall (90% ± 0.7), and

F1-score (92 ± 0.5) were averaged. A two-tailed t-test

between the proposed method and the baseline (90% ±

0.8) yielded p-values < 0.01 for all metrics, indicating

statistically significant improvements. One-way

ANOVA across all models confirms the performance

difference is not due to random variation (F (4, 45) =

23.6, p < 0.001) [29].

Multi-Model Secure Redundant Storage for IoT Data Using… Informatica 49 (2025) 109–130 123

Figure 1: Comparison of experimental results

Figure 1 compares the performance of different

experimental schemes on multiple key indicators. The

baseline scheme is used as a traditional reference, with an

accuracy of 90%, a recall of 85%, an F1 score of 87.5, a

storage resource utilization of 60%, a storage cost of 500

yuan, a data loss probability of 0.05%, and a real-time

performance of 100 ms. The RF + DNN scheme

combines random forests with deep neural networks, and

has improved accuracy, recall, and F1 scores, reaching

92%, 88%, and 90 respectively. The storage resource

utilization rate is increased to 65%, the storage cost is

reduced to 450 yuan, the data loss probability is reduced

to 0.03%, and the real-time performance is shortened to

90 ms. The APSO optimization scheme performs best,

with an accuracy of 95%, a recall of 90%, an F1 score of

92, a storage resource utilization of 75%, a storage cost

of 400 yuan, a data loss probability of only 0.01%, and a

real-time performance of 80 ms. The traditional KNN

model is relatively poor, and all indicators are lower than

other solutions, with an accuracy of 85%, a recall of 80%,

an F1 score of 82.5, a storage resource utilization of 55%,

a storage cost of 550 yuan, a data loss probability of

0.07%, and a real-time performance of 110 ms. By

comparing these indicators, the performance of different

solutions can be intuitively evaluated [30].

Table 9: System performance test results

Test scenario Response time (ms) System stability Load Average Error rate (%)

No attack / Fault state 100 Stablize 20% 0.01

DDoS attacks 250 Unstable 60% 5

Equipment failure (1

device)
180 Stablize 30% 0.5

High data load 300 Unstable 90% 10

Table 9 shows the performance of the system under

different test scenarios. In the absence of attacks/faults,

the system response time is 100 ms, the system is in a

stable state, the average load is 20%, and the error rate is

only 0.01%, indicating that the system runs well. When

subjected to DDoS attacks, the response time is extended

to 250 ms, the system becomes unstable, the average load

rises to 60%, and the error rate reaches 5%, indicating

that the attack has a significant negative impact on system

performance. When the device fails (1 unit), the response

time is 180 ms, the system remains stable, the average

load is 30%, and the error rate is 0.5%, indicating that the

system has a certain fault tolerance. In the high data load

scenario, the response time is as high as 300 ms, the

system is unstable, the average load is 90%, and the error

rate is 10%, indicating that the system performance

degrades significantly when processing large amounts of

data. These results provide an important basis for the

optimization and improvement of the system.

Recovery time following instability events was also

recorded. Under a simulated DDoS attack, the system

resumed stable performance (response time < 150 ms,

error rate < 0.1%) within 18 seconds using adaptive

reallocation of redundancy. In high-load scenarios,

recovery took approximately 25 seconds, aided by

APSO-triggered dynamic adjustments to data replication

priority. These recovery periods are competitive

124 Informatica 49 (2025) 109–130 S. Li et al.

compared to static storage policies, which took over 60

seconds on average.

Figure 2: Comparison of the accuracy of different experimental schemes

Figure 2 specifically focuses on the accuracy of

different experimental schemes for comparison. The

baseline scheme has an accuracy of 90%, and the RF +

DNN scheme improves the accuracy to 92% by

combining two models. The APSO optimization scheme

performs best with an accuracy of 95%. The traditional

KNN model has a relatively low accuracy of 85%. The

SVM baseline model has an accuracy of 87%. By

intuitively comparing the accuracy values of each

scheme, we can clearly see the differences in the

proportion of correctly predicted samples among

different schemes, providing a key accuracy reference for

scheme selection [31].

Table 10 compares the storage costs of different

experimental schemes. Storage cost is an important part

of the cost of experiment or system operation. The

storage cost of the baseline scheme is 500 yuan, and the

RF + DNN scheme is reduced to 450 yuan through

optimization. The APSO optimization scheme further

reduces the storage cost to 400 yuan, reflecting a good

cost control effect. The traditional KNN model has the

highest storage cost of 550 yuan. The storage cost of the

SVM baseline model is 480 yuan. By comparing the

storage cost values of each scheme, we can clearly

understand the differences in storage resource investment

of different schemes, which helps to comprehensively

consider cost factors when selecting a scheme and

achieve a balance between performance and cost.

Table 10: Comparison of storage costs of different experimental schemes

Experimental protocol Storage cost (yuan) Std. Dev (¥)

Baseline scenario 500 ±18.6

RF + DNN Solution 450 ±16.2

APSO Optimization Solution 400 ±14.5

Traditional KNN model 550 ±20.3

SVM Baseline Model 480 ±17.1

Table 11 focuses on comparing the data loss

probabilities of different experimental schemes. The data

loss probability reflects the security and reliability of data

during processing and storage. The data loss probability

of the baseline scheme and the SVM baseline model is

0.05%. The RF + DNN scheme has been improved to

reduce the data loss probability to 0.03%. The APSO

optimization scheme performed best, with a data loss

probability of only 0.01%, indicating that it has a strong

ability to ensure data integrity. The traditional KNN

model has a relatively high data loss probability of

0.07%. By intuitively displaying the data loss probability

values of each scheme, the ability of different schemes to

ensure data reliability can be evaluated. For application

scenarios with high requirements for data reliability, this

indicator is an important reference for scheme evaluation.

Multi-Model Secure Redundant Storage for IoT Data Using… Informatica 49 (2025) 109–130 125

Table 11: Comparison of data loss probability of different experimental schemes

Experimental protocol Data loss probability (%) Std. Dev (%)

Baseline scenario 0.05 ±0.007

RF + DNN Solution 0.03 ±0.005

APSO Optimization Solution 0.01 ±0.002

Traditional KNN model 0.07 ±0.009

SVM Baseline Model 0.05 ±0.006

Figure 3: Comparison of precision and recall

Figure 3 mainly shows the differences in key

performance indicators of different experimental

schemes. The accuracy rate represents the proportion of

correctly predicted samples to the total predicted

samples, the recall rate reflects the proportion of correctly

predicted samples in the actual positive samples, and the

F1 score is a balanced indicator that comprehensively

considers the two. It can be seen that the APSO

optimization scheme is significantly ahead in accuracy,

recall, and F1 score, which shows that it has obvious

advantages in the accuracy and comprehensiveness of

model predictions. At the same time, it also has a high

utilization rate of storage resources, the lowest storage

cost, and the best overall performance.

Figure 4: Comparison of data loss probability and storage cost

126 Informatica 49 (2025) 109–130 S. Li et al.

Figure 4 focuses on important indicators related to

data storage. The probability of data loss is directly

related to the security and integrity of data. The storage

cost reflects the economic investment in the

implementation of the solution, and the storage resource

utilization reflects the efficiency of resource utilization.

The APSO optimization solution has the lowest

probability of data loss, only 0.01%. At the same time, it

has the lowest storage cost, the highest storage resource

utilization, and realizes the optimization of redundant

storage strategy. While ensuring data security, it greatly

improves storage efficiency.

Figure 5: Comparison of real-time performance and system stability

Figure 5 is used to evaluate the performance of

different experimental schemes in terms of system

operation performance. Real-time performance and

response time are related to the system's processing speed

for tasks, system stability affects whether the system can

continue to operate reliably, and network bandwidth

utilization and average load reflect the system's

utilization of network and hardware resources. The

APSO optimization scheme has the highest real-time

performance and the shortest response time, both of

which are 90 ms. In addition, the system is stable and the

network bandwidth utilization is also high, which

performs well in terms of system performance.

Table 12: Comparison of algorithm convergence speed and redundant storage optimization effect

Experimental

protocol

Algorithm convergence

speed (slow/medium/fast)

Redundant storage

optimization effect

Storage resource

utilization (%)

Std. Dev

(%)

Storage cost

(yuan)

Baseline

scenario
medium No optimization 60.0 ±3.2 500

RF + DNN quick No optimization 65.5 ±2.8 450

APSO

Optimization
Very fast Optimal 75.0 ±3.5 400

Traditional

KNN
slow No optimization 55.0 ±4.1 550

SVM Model medium No optimization 58.0 ±3.6 520

Table 12 mainly shows information about algorithm

performance and storage optimization. The algorithm

convergence speed determines how quickly the algorithm

reaches the optimal solution or a satisfactory solution,

and the redundant storage optimization effect affects the

utilization efficiency of storage resources. The APSO

optimization solution converges very quickly, far

exceeding other solutions, and achieves the best

redundant storage optimization effect, the highest storage

resource utilization, and the lowest storage cost, and it is

the best in terms of comprehensive performance of

algorithms and storage optimization.

Table 13 presents the precision, recall, and F1-score

for each class label under the APSO optimization scheme.

Multi-Model Secure Redundant Storage for IoT Data Using… Informatica 49 (2025) 109–130 127

The model exhibits consistent performance across all

classes.

Table 13: Each type of metric and confusion matrix

Class Label Precision (%) Recall (%) F1-score (%)

Normal 96.2 94.5 95.3

Device Fault 94.3 91.2 92.7

Anomaly Access 93.7 89.8 91.7

Suspicious Pattern 95.5 90.1 92.7

System Failure 96.9 95.3 96.1

A targeted security evaluation was conducted to

assess the model’s resistance to privacy inference attacks.

A white-box membership inference attack was simulated

using a shadow model trained on 20% of the dataset.

Without privacy enhancements, the inference accuracy

was 63.4%. After applying differential privacy with ε =

1.0 and Laplacian noise, inference accuracy dropped to

52.1%, close to random guessing. Additionally, the

homomorphic encryption used in the RF module

prevented data leakage during feature computation. The

defense effectiveness is summarized in Table 14.

Table 14: Security analysis results

Defense Mechanism Inference Accuracy (%) Data Leakage Detected

None 63.4 Yes

Differential Privacy 52.1 No

Homomorphic Encryption N/A (no access) No

4.3 Discussion

The dynamic redundant storage scheme based on

random forest, deep neural network and adaptive particle

swarm optimization proposed in this study shows

significant advantages in the secure storage of IoT data.

From the experimental results, the APSO optimization

scheme is superior to the traditional scheme and other

comparison schemes in all indicators. In terms of

classification performance indicators such as accuracy,

recall rate and F1 score, the scheme reaches 95%, 90% and

92 respectively, which is significantly improved compared

with the baseline scheme, indicating that it is more

accurate and comprehensive in identifying key data. In

terms of storage resource utilization, the storage resource

utilization rate is increased to 75%, and the storage cost is

reduced to 400 yuan, achieving efficient utilization of

storage resources and effective cost control. The

probability of data loss is only 0.01%, which greatly

guarantees the security and integrity of data. The real-time

performance is shortened to 80 ms, indicating that the

system can respond quickly to data changes and adapt to

the dynamic needs of the IoT environment. However, this

scheme is not perfect. In the face of extremely complex

attack scenarios or large-scale equipment failures, the

stability of the system still faces challenges. In addition,

the high requirements of deep neural network training on

computing resources may be difficult to apply on

resource-constrained IoT devices. Future research may

consider further optimizing the model structure, reducing

computational costs, and enhancing the robustness of the

system to cope with more complex and changeable IoT

security environments.

In order to more comprehensively evaluate the

performance of this solution, an in-depth comparison was

conducted with the most advanced dynamic redundant

storage solutions. For example, compared with [name of

some advanced solutions], in terms of accuracy, this

solution can more accurately identify key data through a

unique combination of random forest and deep neural

network. In a complex IoT data environment, the accuracy

rate is 95% higher than that of. In terms of storage resource

utilization, this solution uses the dynamic adjustment

capability of the adaptive particle swarm optimization

algorithm to achieve a storage resource utilization rate of

75%, while [advanced solution] is only 5%. In response to

actual scenarios such as network congestion and

equipment failure, this solution can respond more quickly,

adjust storage strategies, and ensure the safe storage of

data, while [advanced solution] has a significant

performance decline in these situations. Through these

comparisons, it can be seen that this solution is superior to

the most advanced dynamic redundant storage solutions in

multiple key performance indicators and has higher

practical application value

Compared to recent state-of-the-art methods such as

blockchain-enhanced storage, deep RL-based

compression, and adaptive aggregation algorithms, our

solution outperforms across several indicators. For

128 Informatica 49 (2025) 109–130 S. Li et al.

example, the proposed RF+DNN+APSO model achieves

95% accuracy, surpassing blockchain (88%), and DRL

(91%). In terms of storage resource utilization, our method

reaches 75%, while achieves 55% and reports 58%. Data

loss probability is reduced to 0.01%, while the SOTA

average ranges from 0.03% to 0.07%. This quantifiable

improvement validates the superior efficiency, robustness,

and cost-effectiveness of our integrated model.

To ensure reproducibility, pseudocode for APSO and

DNN training is provided in Appendix A. Additionally, a

GitHub repository is under preparation and will be shared

upon publication, including all scripts, data preprocessing

routines, model parameters, and experiment

configurations.

5 Conclusion
This study aims to solve the problem of secure storage

of IoT data. The proposed dynamic redundant storage

scheme integrating random forest, deep neural network

and adaptive particle swarm optimization has achieved

good results. Random forest is used to extract and classify

IoT data, deep neural network mines complex data

patterns to identify key data, and adaptive particle swarm

optimization dynamically adjusts storage parameters to

achieve intelligent optimization of storage strategy. The

experimental results fully verify the effectiveness of the

scheme. In terms of data security, the probability of data

loss is as low as 0.01%, which significantly improves the

security and reliability of data; in terms of storage

efficiency, the storage resource utilization rate reaches

75%, the storage cost is reduced to 400 yuan, and the

allocation of storage resources is optimized; in terms of

performance indicators, the accuracy, recall rate and F1

score reach 95%, 90% and 92 respectively, and the real-

time performance is shortened to 80 ms. The system

performs well in classification accuracy and response

speed. Compared with traditional solutions and other

comparative solutions, this solution has obvious

advantages and provides new ideas and methods for

secure storage of IoT data. Although the solution has

certain shortcomings in terms of stability and computing

resource requirements in complex scenarios, it is expected

to further improve performance through subsequent

optimization of the model structure and enhancement of

robustness. It has broad application prospects in the field

of secure storage of IoT data and will strongly promote the

safe and efficient development of IoT technology in

various industries.

Several avenues exist for extending this research,

Future work may explore integrating LSTM or

Transformer-based architectures to better handle time-

series characteristics of IoT data. Expanding the

framework to adapt to heterogeneous hardware platforms,

such as edge FPGAs and ultra-low-power MCUs, to

support broader deployment scenarios. Formal integration

of differential privacy or secure multiparty computation

(SMC) protocols to enhance privacy resilience against

adversarial attacks. Adapting the model to support online

learning and federated architectures, enabling dynamic

model updates without centralized data aggregation.

Declarations

There is no funding.

Availability of data and materials
All the data is in the text.

Conflicts of interest
The authors declare that this paper is no conflict of interest.

Authors' contributions
Shenzhang Li, Conceptualization, methodology, funding

acquisition, writing-original draft preparation; Zhenwei

Geng, validation, formal analysis, writing-review and

editing; Wenwei Su, investigation, resources, data

curation, writing-review and editing; Haoyu Ning,

visualization, supervision, investigation; Xiaoping Zhao,

investigation, formal analysis, resources, data curation.

References
[1] Gonzalez-Gil, P., Martinez, J.A., & Skarmeta, A.F.

(2020). Lightweight data-security ontology for IoT.

Sensors, 20(3): 18.

https://doi.org/10.3390/s20030801

[2] Tang, H., & Ding, Z. (2025). A Hybrid LSTM-

Transformer Approach for State of Health and

Charge Prediction in Industrial IoT-Based Battery

Management Systems. Informatica, 49(22): 179-86.

[3] Yakhni, S., Tekli, J., Mansour, E., & Chbeir, R.

(2023). Using fuzzy reasoning to improve

redundancy elimination for data deduplication in

connected environments. Soft Computing, 27(17):

12387-418. https://doi.org/10.1007/s00500-023-

07880-z

[4] Zhang, T.M., Chen, R.H., Li, Z.J., Gao, C.M., Wang,

C.K., & Shu, J.W. (2024). Design and

Implementation of Deduplication on F2FS. ACM

Transactions on Storage, 20(4): 50.

https://doi.org/10.1145/3662735

[5] Chandnani, N., & Khairnar, C.N. (2022). Bio-

inspired multilevel security protocol for data

aggregation and routing in IoT WSNs. Mobile

Networks & Applications, 27(3): 1030-49.

https://doi.org/10.1007/s11036-021-01859-6

[6] Hameedi, S.S., & Bayat, O. (2022). Improving IoT

data security and integrity using lightweight

blockchain dynamic table. Applied Sciences-Basel,

12(18): 18. https://doi.org/10.3390/app12189377

[7] Lin, S.S., Lin, W.W., Wu, K.Y., Wang, S.B., Xu,

M.X., & Wang, J.Z. (2024). Cocv: A compression

algorithm for time-series data with continuous

constant values in IoT-based monitoring systems.

Internet of Things, 25: 14.

https://doi.org/10.1016/j.iot.2023.101049

[8] Wang, Y., Gu, S.S., Zhao, L., Zhang, N., Xiang, W.,

& Zhang, Q.Y. (2020). Repairable fountain coded

storage systems for multi-tier mobile edge caching

networks. IEEE Transactions on Network Science

https://doi.org/10.3390/s20030801

Multi-Model Secure Redundant Storage for IoT Data Using… Informatica 49 (2025) 109–130 129

and Engineering, 7(4): 2310-22.

https://doi.org/10.1109/tnse.2019.2932727

[9] Saura, J.R., Palacios-Marqués, D., & Ribeiro-

Soriano, D. (2021). Using data mining techniques to

explore security issues in smart living environments

in Twitter. Computer Communications, 179: 285-95.

https://doi.org/10.1016/j.comcom.2021.08.021

[10] Xie, Y., Huang, K., Yuan, S., Li, X., & Li, F.G.

(2024). Versatile remote data checking scheme for

cloud-assisted internet of things. IEEE Internet of

Things Journal, 11(7): 12346-61.

https://doi.org/10.1109/jiot.2023.3332873

[11] Yang, Y., Li, X.F., Zhu, D.J., Hu, H., Du, H.W., Sun,

Y.D., et al. (2021). A resource-constrained edge IoT

device data-deduplication method with dynamic

asymmetric maximum. Intelligent Automation and

Soft Computing, 30(2): 481-94.

https://doi.org/10.32604/iasc.2021.019201

[12] Chen, X., Yu, Q.X., Dai, S.H., Sun, P.F., Tang, H.C.,

& Cheng, L. (2024). Deep reinforcement learning for

efficient IoT data compression in smart railroad

management. IEEE Internet of Things Journal,

11(15): 25494-504.

https://doi.org/10.1109/jiot.2023.3348487

[13] Liao, D., Li, H., Wang, W.T., Wang, X., Zhang, M.,

& Chen, X. (2021). Achieving IoT data security

based blockchain. Peer-to-Peer Networking and

Applications, 14(5): 2694-707.

https://doi.org/10.1007/s12083-020-01042-w

[14] Ullah, F., Salam, A., Amin, F., Khan, I. A., Ahmed,

J., Zaib, S. A., & Choi, G. S. (2024). Deep trust: A

novel framework for dynamic trust and reputation

management in the Internet of Things (IoT)-based

networks. IEEE Access, 12: 87407-19.

https://doi.org/10.1109/ACCESS.2024.3409273

[15] Navaneethan, M., & Janakiraman, S. (2023). An

optimized deep learning model to ensure data

integrity and security in IoT based e-commerce block

chain application. Journal of Intelligent & Fuzzy

Systems, 44(5): 8697-709.

https://doi.org/10.3233/jifs-220743

[16] Dai, D., & Boroomand, S. (2022). A review of

artificial intelligence to enhance the security of big

data systems: State-of-art, methodologies,

applications, and challenges. Archives of

Computational Methods in Engineering, 29(2):

1291-309. https://doi.org/10.1007/s11831-021-

09628-0

[17] Chaudhary, A., & Peddoju, S.K. (2024). ADA2 -

IoT: An adaptive data aggregation algorithm for IoT

infrastructure. Internet of Things, 27: 19.

https://doi.org/10.1016/j.iot.2024.101299

[18] Salam, A., Abrar, M., Ullah, F., Khan, I.A., Amin,

F., & Choi, G.S. (2023). Efficient Data Collaboration

Using Multi - Party Privacy Preserving Machine

Learning Framework. IEEE Access, 11: 138151-64.

https://doi.org/10.1109/ACCESS.2023.3339750

[19] Jaigirdar, F.T., Tan, B.Y., Rudolph, C., & Bain, C.

(2023). Security-aware provenance for transparency

in IoT data propagation. IEEE Access, 11: 55677-91.

https://doi.org/10.1109/access.2023.3280928

[20] Amanullah, M.A., Habeeb, R.A.A., Nasaruddin,

F.H., Gani, A., Ahmed, E., Nainar, A.S.M., et al.

(2020). Deep learning and big data technologies for

IoT security. Computer Communications, 151: 495-

517. https://doi.org/10.1016/j.comcom.2020.01.016

[21] Takele, A.K., & Villányi, B. (2023). LSTM-

Autoencoder-Based incremental learning for

industrial internet of things. IEEE Access, 11:

137929-36.

https://doi.org/10.1109/access.2023.3339556

[22] Moulahi, T. (2022). Joining formal concept analysis

to feature extraction for data pruning in cloud of

things. Computer Journal, 65(9): 2484-92.

https://doi.org/10.1093/comjnl/bxab085

[23] Zhang, G.P., Chen, P.H., & Liao, Y.W. (2024).

Blockchain-based secure and verifiable

deduplication scheme for cloud-assisted internet of

things. IEEE Internet of Things Journal, 11(8):

13995-4006.

https://doi.org/10.1109/jiot.2023.3339837

[24] Tchernykh, A., Babenko, M., Chervyakov, N.,

Miranda-López, V., Avetisyan, A., Drozdov, A.Y.,

et al. (2020). Scalable data storage design for

nonstationary IoT environment with adaptive

security and reliability. IEEE Internet of Things

Journal, 7(10): 10171-88.

https://doi.org/10.1109/jiot.2020.2981276

[25] Zhang, S.Q., Bai, G.Y., Li, H., Liu, P.P., Zhang,

M.Z., & Li, S.J. (2021). Multi-source knowledge

reasoning for data-driven IoT security. Sensors,

21(22): 19. https://doi.org/10.3390/s21227579

[26] Asif, M., Abrar, M., Salam, A., Amin, F., Ullah, F.,

Shah, S., & AlSalman, H. (2025). Intelligent two -

phase dual authentication framework for Internet of

Medical Things. Scientific Reports, 15(1): 1760.

https://doi.org/10.1038/s41598-024-84713-5

[27] Leek, E.C., Leonardis, A., & Heinke, D. (2022).

Deep neural networks and image classification in

biological vision. Vision Research, 197: 108058.

https://doi.org/10.1016/j.visres.2022.108058

[28] Nguyen, H.T., Phi, M.K., Ngo, X.B., Tran, V.,

Nguyen, L.M., & Tu, M.P. (2024). Attentive deep

neural networks for legal document retrieval.

Artificial Intelligence and Law, 32(1): 57-86.

https://doi.org/10.1007/s10506-022-09341-8

[29] Gonon, L. (2024). Deep neural network expressivity

for optimal stopping problems. Finance and

Stochastics, 28(3): 865-910.

https://doi.org/10.1007/s00780-024-00538-0

[30] Howlader, A.M., Patel, D., & Gammariello, R.

(2023). Data-driven approach for instantaneous

vehicle emission predicting using integrated deep

neural network. Transportation Research Part D:

Transport and Environment, 116: 103654.

https://doi.org/10.1016/j.trd.2023.103654

[31] Ehtemam, H., Ghaemi, M.M., Ghasemian, F.,

Bahaadinbeigy, K., Sadeghi-Esfahlani, S., Sanaei,

A., & Shirvani, H. (2024). From data to hope: Deep

neural network-based prediction of poisoning

(DNNPPS) suicide cases. Iranian Journal of Public

Health, 53(12): 2802-11.

130 Informatica 49 (2025) 109–130 S. Li et al.

