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Received:

In order to improve the intelligence and automation level of power plant safety monitoring systems, this
study proposes an improved Faster R-CNN algorithm by integrating multi-scale feature extraction,
context-aware RPN, temporal information fusion, and Rol Align optimization. The model is trained and
tested on a power plant safety monitoring dataset covering diverse and complex scenarios. Comparative
experiments against baseline methods including original Faster R-CNN, YOLOVvS, and SSD demonstrate
that the improved algorithm achieves a mean Average Precision (mAP) of 0.85 and a Recall of 0.82,
outperforming the baselines by margins of up to 13% in mAP and 12% in Recall. The enhanced algorithm
also shows superior adaptability to small targets, occlusions, low light, and complex backgrounds. These
results indicate that the proposed method significantly enhances the performance of target detection in
challenging power plant environments.

Povzetek: Za varnostno nadzorovanje v elektrarnah je izboljsan Faster R-CNN z veclocljivostnim
zajemom znacilk, kontekstno zavednim RPN, casovno fuzijo (TCN) in Rol Align; na namenskem naboru
prehiti izvirni Faster R-CNN, YOLOvS in SSD (do +13% mAP, +12% Recall), posebej pri malih tarcah,

zakritjih, slabi osvetlitvi in kompleksnem ozadju.

1 Introduction

As one of the indispensable infrastructures in modern
society, the safety and stability of the power system
directly affect people's lives and economic development.
However, in the complex operation of power plants,
safety hazards often occur, which may lead to
catastrophic consequences in serious cases. In order to
prevent such risks, the construction of power plant safety
monitoring platforms is particularly important. In
traditional monitoring systems, the detection and
prediction of safety hazards mainly rely on manual
inspections and conventional equipment monitoring. This
method is not only inefficient but also difficult to cope
with the increasingly complex safety situation [1]. With
the advancement of technology, especially the
widespread application of computer vision and artificial
intelligence technology, intelligent safety monitoring
systems based on target detection algorithms have
gradually become a cutting-edge trend in power plant
safety management. Through real-time monitoring and
automatic identification of potential safety hazards,
power plants can detect problems in advance and take
effective measures to reduce the probability of accidents,
thereby improving the safety and stability of the power

system [2].

Ensuring real-time and accurate detection of safety-
critical targets in power plant environments is vital for
preventing industrial accidents. Traditional object
detection algorithms often struggle with challenges such
as low-light conditions, dynamic occlusions, and diverse
background complexity. This study is motivated by the
urgent need for a robust, adaptable detection framework
that can operate effectively in these harsh, safety-critical
scenarios.

In the production environment of power plants, there
are many potential safety hazards. For example,
equipment failure, electrical fire, and personnel violation
can lead to serious accidents. According to statistics, the
losses caused by safety accidents in power plants exceed
hundreds of millions of yuan each year. According to the
2019 China Power Industry Safety Report, about 12% of
accidents are caused by equipment failure, and another
15% are directly related to improper operation. The
frequent occurrence of such accidents not only increases
the operating costs of power plants, but is also likely to
have serious impacts on the surrounding environment and
the public. Therefore, it is particularly urgent to build an
intelligent, safe and efficient monitoring platform.

At present, many power plants have begun to
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introduce advanced target detection algorithms to
enhance the intelligence and automation level of safety
monitoring systems. These algorithms use deep learning
and computer vision technology to achieve real-time
monitoring of different equipment inside the power plant
and automatic identification of safety hazards. These
technologies can automatically identify potential
abnormal conditions in image or video data, such as
equipment aging, cable short circuits, fire hazards, etc.,
and issue alarms in a timely manner, greatly improving
the response speed and accuracy of safety management.
For example, the application of convolutional neural
networks (CNNs) in image recognition has achieved
remarkable results in power plant safety monitoring,
helping the monitoring system to quickly identify
abnormal operating conditions of equipment [3,4].

However, although target detection algorithms have
been applied in power plant safety monitoring, existing
technologies still face many challenges. First, the
monitoring environment of power plants is complex, and
the monitoring scenarios include different types of
equipment, personnel, and other dynamic factors, which
poses great challenges to the application of target
detection algorithms. When dealing with real-time
monitoring in a changing environment, the accuracy and
stability of existing algorithms often cannot meet actual
needs. Secondly, most current target detection algorithms
focus on improving detection accuracy and speed, but in
the specific environment of power plants, the robustness
and scalability of the algorithms are still insufficient. In
particular, for some special scenarios, such as low light,
smoke occlusion, or complex equipment background, the
performance of traditional algorithms is not ideal.
Therefore, how to improve the adaptability and accuracy
of target detection algorithms in these special
environments is an urgent problem to be solved in power
plant safety monitoring systems.

Many scholars and engineers have devoted a lot of
work to the research of target detection algorithms. In
recent years, target detection algorithms based on deep
learning, such as YOLO (You Only Look Once) and
Faster R-CNN (Region Convolutional Neural Network),
have made significant progress, especially in improving
the speed and accuracy of image processing [5]. However,
the application of these algorithms in power plant safety
monitoring still faces many challenges. In order to better
adapt to the power plant environment, the existing target
detection algorithms need to be optimized, especially in
dealing with multi-target recognition, complex
backgrounds, objects of different scales, etc. In addition,
the computational efficiency and real-time performance
of the algorithm are also issues that need to be focused on,
because the safety monitoring of power plants requires
the system to have efficient real-time response
capabilities.

In order to overcome these problems, this paper aims
to propose a new power plant safety monitoring platform
solution by optimizing the target detection algorithm. By
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deeply analyzing the limitations of the current target
detection algorithm in power plant applications, this
study will propose targeted algorithm improvement
solutions, including the expansion of data set diversity,
optimization of network structure, and improvement of
algorithm real-time performance [6]. It is hoped that
through these improvements, the adaptability of the target
detection algorithm in the complex environment of the
power plant will be improved, thereby providing more
efficient and intelligent technical support for power plant
safety monitoring.

The main purpose of this study is to improve the
existing target detection algorithm so that it can be used
in the safety monitoring system of the power plant more
accurately and efficiently. Specifically, this study will
focus on how to improve the real-time response
capability of the power plant monitoring system in a
dynamic environment by optimizing the target detection
algorithm while ensuring a high recognition accuracy.
Through the innovation and improvement of the
algorithm, it is expected to provide a more intelligent
safety management solution for the power plant and
further promote the improvement of the safety
management level of the power industry. In theory, the
contribution of this study is to promote the innovative
application of target detection algorithms in industrial
environments and lay the foundation for the further
application of deep learning technology in power systems.
In practice, the results of this study are expected to
improve the intelligence level of power plant safety
monitoring, reduce the safety risks caused by human
negligence and equipment failure, and thus ensure the
safe operation of the power system.

2 Literature Review

2.1 Development and challenges of power

plant safety monitoring system

As a key facility in heavy industry, power plants are
responsible for ensuring the supply of electricity.
However, with the aging of equipment, the complexity of
the operating environment and the negligence of
operators, the safety of power plants faces huge
challenges. Therefore, it is particularly important to build
an effective power plant safety monitoring platform.
Traditional power plant safety monitoring systems rely
heavily on manual inspections and simple sensor
technology, which has great limitations. First, manual
inspections are not only inefficient, but also prone to
missed inspections or delayed detection of problems due
to human factors. Second, traditional sensor technology
is limited by the accuracy and coverage of sensors, and is
often unable to fully monitor all potential safety hazards
in power plants. These problems have prompted the
development of power plant safety monitoring systems
towards intelligence and automation [7].

In recent years, with the rapid development of
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artificial  intelligence technology, especially the
widespread application of computer vision and deep
learning technology, power plant safety monitoring
systems have gradually ushered in changes. Target
detection algorithms have become one of the core
technologies in intelligent safety monitoring systems.
These algorithms can monitor the equipment, personnel
and environment inside the power plant in real time
through image processing and pattern recognition
technology, effectively improving the speed and accuracy
of hidden danger identification [8]. Nevertheless, these
algorithms still face a series of problems when applied in
complex power plant environments. For example, target
detection algorithms often have difficulty coping with
changing environmental factors, such as insufficient light,
smoke interference, and the complexity of equipment
appearance. These problems directly affect the accuracy
and reliability of the target detection system. Therefore,
target detection technology in power plant safety
monitoring still needs to be continuously optimized and
innovated to adapt to more complex working
environments [9].

In existing research, many scholars have proposed
different solutions to the challenges of power plant safety
monitoring systems. By combining multiple sensors and
target detection technologies, some studies have
proposed more comprehensive monitoring systems that
include not only visual monitoring but also multimodal
sensors such as infrared and ultrasonic waves. However,
these solutions often face the problems of data fusion
complexity and large algorithm computation, which
limits their application in actual power plants. In order to
overcome these challenges, researchers have begun to
focus on how to optimize target detection algorithms to
make them more accurate and reliable, especially when
dealing with dynamically changing environments [10].

2.2 Evolution and current status of object

detection algorithms

As an important part of computer vision, target detection
algorithms have made significant progress in recent years.
Traditional target detection methods mostly rely on
manual feature extraction, such as HOG (Histogram of
Oriented Gradients) and SIFT (Scale-Invariant Feature
Transform). Although these methods have achieved
certain results in some applications, they are not effective
when dealing with complex backgrounds and tasks with
high real-time requirements. With the rise of deep
learning, target detection algorithms based on
convolutional neural networks (CNNs) have quickly
become mainstream. CNNs automatically extract
features through deep neural networks and can be trained
on large-scale data sets, thereby greatly improving the
accuracy and robustness of target detection.

Among them, YOLO (You Only Look Once) and
Faster R-CNN are the two most widely used deep
learning target detection algorithms. The YOLO
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algorithm has significant advantages in real-time target
detection due to its high-speed detection feature. By
converting the target detection task into a regression
problem, it realizes a direct mapping from the image to
the detection box. This feature enables YOLO to
significantly improve the detection speed while ensuring
the detection accuracy. Faster R-CNN optimizes the
accuracy of target detection by introducing the region
proposal network (RPN), especially when dealing with
complex backgrounds and multi-scale targets. However,
although these two algorithms have achieved excellent
performance in the field of image recognition, their
application in power plant safety monitoring faces many
challenges [11]. For example, the performance of the
YOLO algorithm in complex power plant environments
is often affected by factors such as occlusion and low
light, which limits its applicability in power plant safety
monitoring. Although Faster R-CNN is more prominent
in target detection accuracy, its high computational
overhead and slow processing speed also limit its
application in real-time monitoring systems. Therefore,
how to improve computational efficiency and real-time
performance while ensuring algorithm accuracy has
become a key issue faced by target detection algorithms
in power plant safety monitoring systems [12].

In order to deal with these problems, scholars have
proposed a variety of improvement schemes. For
example, some researchers have enhanced the ability of
target detection algorithms to identify targets of different
scales by introducing multi-scale feature fusion
technology, especially making certain progress in
complex equipment backgrounds and multi-target
recognition. In addition, in order to solve the
computational efficiency problem of target detection
algorithms, some studies have reduced the amount of
calculation and improved the processing speed by
optimizing the network structure. Nevertheless, the actual
application effect of these optimization schemes in the
complex environment of power plants still needs further
verification.

2.3 Application and optimization of target
detection algorithms in power plant

safety monitoring
The application of target detection algorithms in power
plant safety monitoring, especially in intelligent and
automated systems, has become a hot topic in current
research. With the continuous advancement of deep
learning and computer vision technology, more and more
power plants have begun to try to use target detection
algorithms to realize the automatic identification of safety
hazards. At present, target detection in power plant safety
monitoring systems is mainly concentrated in the fields
of equipment fault detection, personnel behavior
monitoring, and fire hazard identification [13, 14]. In
terms of equipment fault detection, through image
recognition technology, the monitoring system can detect
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abnormal conditions of power plant equipment in real
time, such as equipment aging, oil leakage, cracks, etc.,
so as to issue alarms in time to avoid safety accidents
caused by equipment failure. Personnel behavior
monitoring ensures that employees comply with
operating procedures and avoid potential risks caused by
illegal operations by identifying the operating behaviors
of power plant employees. In terms of fire hazard
identification, target detection algorithms can quickly
identify abnormal conditions such as fire sources and
smoke, providing reliable technical support for fire
prevention and control. However, target detection
technology in power plant safety monitoring still faces
many challenges. Although target detection algorithms
have made some progress in the application of equipment
fault detection and personnel behavior monitoring, the
performance of existing algorithms is still difficult to
meet actual needs when facing complex environments
(such as low light, smoke occlusion, etc.) [15, 16].
Therefore, in response to these challenges, many
researchers have proposed different optimization
strategies. For example, some researchers have enhanced
the robustness of target detection algorithms in complex
environments by improving network architecture and
training methods. In addition, the diversity and coverage
of the data set are also an important factor affecting the
performance of the algorithm. In order to improve the
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adaptability of the algorithm in the complex environment
of power plants, some studies have begun to focus on how
to build more comprehensive and diverse training data
sets to improve the performance of the algorithm in
different scenarios [17, 18].

To provide a clearer overview of the strengths and
weaknesses of key target detection algorithms in
industrial safety monitoring, we include Table 1, which
compares representative methods such as YOLO, SSD,
and the original Faster R-CNN across five critical
dimensions: detection speed, accuracy, application in
industrial safety scenarios, adaptability to complex
environments (e.g., occlusion, low light), and support for
dynamic target tracking. This comparative analysis helps
highlight the need for algorithmic improvements in real-
world power plant applications and provides context for
the motivation behind enhancing Faster R-CNN. As
shown in Table 1.

This table demonstrates that although YOLOvS
offers high detection speed, it lacks robustness in
complex industrial environments and dynamic tracking.
On the other hand, the original Faster R-CNN performs
better in accuracy but suffers from speed limitations. The
proposed improvements address these gaps and make the
algorithm more suitable for power plant safety
monitoring.

Table 1: Comparative analysis of mainstream object detection algorithms in industrial safety monitoring contexts

Used in » Dynamic
. . Adaptability to
. Detection Industrial Target
Algorithm Accuracy Complex .
Speed Safety . Tracking
Environments
Contexts Support
. Commonly L
YOLOv5 Very High Moderate 4 Moderate Limited
use
. Low— Occasionally
SSD High Low Not supported
Moderate used
Original ) . o
Low High Widely used Moderate Limited
Faster R-CNN
Improved . Proposed for
Moderate Very High ) Strong Supported
Faster R-CNN this study

3 Research Methods
3.1 Research hypothesis

To guide the design and evaluation of the proposed
enhancements to the Faster R-CNN algorithm, this study
explicitly formulates the following research hypotheses:

HI: Augmenting the Faster R-CNN with context-
aware and temporal information fusion modules
significantly improves detection robustness under
occlusion conditions.

H2: Integrating multi-scale feature extraction
significantly enhances the detection accuracy of small-
scale, safety-critical objects in complex industrial
environments.

These hypotheses serve as the theoretical foundation
for the experimental evaluation, which systematically
compares the performance of the improved algorithm
with baseline models across varied environmental
conditions, including low light, occlusion, and dynamic
target scenarios. The results presented in Section 4 are
used to validate these hypotheses through comparative
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analysis.

3.2 Challenges and requirements of target

detection in power plants

One of the main challenges facing power plant safety
monitoring platforms is the variability of the environment,
including the complexity of equipment, dynamic changes
in personnel, and possible safety hazards. Equipment in
power plants usually has large physical sizes and
complex shapes, and these devices are often blocked,
deformed, or far away from the camera. In addition, the
lighting environment of power plants is usually complex,
and strong or low light conditions often occur, which
increases the difficulty of target detection.

To ensure the reliability of the power plant
monitoring platform, the target detection system must be
able to meet the following key requirements:

(1) High-precision detection: Able to accurately
detect targets inside the power plant, including equipment,
personnel, and potential safety hazards.

(2) Multi-scale processing: Since power plant
equipment and personnel may have different scales, the
target detection system should have the ability to
effectively process targets of different scales.

(3) Dynamic target recognition: The personnel and
equipment in the power plant sometimes change
dynamically, so the system must be able to handle
dynamic targets.

(4) Robustness: The complex background, lighting
changes and possible occlusions in the power plant
environment require the target detection system to have
strong robustness.

3.3 Improved faster R-CNN algorithm
design

In the safety monitoring scenario of power plants,
traditional target detection methods, although they
perform well in general environments, still have certain
limitations when facing challenges such as complex
industrial backgrounds, targets of different scales,
occlusions, and lighting changes. To overcome these
challenges, this study proposes a Faster R-CNN model
optimized for power plant environments. By introducing
a multi-scale feature extraction module, a context-aware
region proposal network (RPN), a temporal information
fusion mechanism, and Rol Align optimization, this
algorithm can significantly improve detection accuracy,
especially in complex environments and dynamic target
tracking.

3.3.1 Multi-scale feature extraction and object

detection
The objects in the power plant environment have
significant size differences, especially the scale
differences between equipment and workers, which
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easily leads to the decrease in the accuracy of traditional
object detection methods when detecting small objects or
distant objects. In order to meet the detection needs of
multi-scale objects, this study proposes a multi-scale
feature extraction method. By performing multi-scale
convolution operations on the input image, we can extract
features at different levels, thereby enhancing the model's
perception of objects of different sizes.

The core idea of this method is to extract feature
maps of different scales through a multi-level
convolutional network and dynamically adjust the
candidate box according to the scale of the target. The
specific implementation steps are as follows:

(1) Multi-scale convolution feature map generation:
The input image is fed into multiple convolution layers,
each of which is responsible for extracting features from
different scales (such as large, medium, and small scales).
The convolution operation of each layer weights the
feature map information through the weight matrix and
bias term to obtain feature maps of different scales. For
details, see formula 1.

n
Xmulti = ZWi Xinputi + bi (1)
i=1
where, b| is the bias term, Xmulti is the output of

the multi-scale feature map.

This operation effectively fuses low-level fine
features (from smaller kernels) and high-level semantic
features (from larger kernels), enhancing the model’s
ability to detect both small and large objects. The formula
represents a channel-wise linear combination that
preserves spatial alignment across all branches, resulting
in a unified multi-scale representation.

(2) Candidate box generation and multi-scale
adjustment: When generating candidate boxes through
convolutional feature maps of different scales, the model
will dynamically adjust the size and position of the
candidate boxes based on their performance at each scale
to improve the detection accuracy of objects of different
scales.

This method can not only effectively improve the
detection accuracy of small targets and long-distance
targets, but also avoid conflicts and redundancies
between multi-scale targets, thereby improving the
overall detection efficiency of the model.

In the multi-scale feature extraction module, a set of
anchor box scales — [32, 64, 128, 256, 512] — was
adopted to match the varied object sizes in the power
plant environment, ranging from small control knobs to
large-scale equipment. These anchors were selected
based on empirical analysis of object size distribution in
the dataset. To extract multi-scale features effectively,
three parallel convolutional branches were added to the
ResNet-50 backbone, each with kernel sizes of 3x3, 5x5,
and 7x7 respectively. This configuration allows the
network to capture both fine-grained details and coarse
spatial context. The outputs of these branches are
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concatenated and passed to subsequent layers, improving
the model’s ability to detect small and large objects
simultaneously with higher precision.

3.3.2 Context-aware region proposal network (RPN)

In power plant environments, targets are often obscured
by complex backgrounds. Traditional RPNs often have
difficulty accurately generating candidate boxes when
processing these scenarios. To solve this problem, this
study proposes a context-aware region proposal network
(Context-Aware RPN) that improves the generation
quality of candidate boxes by introducing background
information of the area around the target.

(1) Adding context convolutional layer: In order to
enhance the model's understanding of the target's
surrounding environment, we added a context
convolutional layer to the RPN. This layer expands the
receptive field, allowing the network to capture
background information in a larger range and effectively
suppress false detections caused by background clutter
and target occlusion.

(2) Dynamic candidate box adjustment: After the
candidate box is generated, the model calculates the
intersection over union (IoU) between the generated box
and the real box, and then adjusts the size and position of
the candidate box according to the IoU value. In this way,
RPN can generate candidate boxes more accurately and
avoid false detections caused by irrelevant backgrounds.
The mathematical formula is as follows: Formula 2

_|AnB|
|AUB|

loU @)

where, A is the generated candidate box, B is
the real frame, lOU The higher the value, the better the
match between the candidate box and the real box. The
dynamic candidate box adjustment mechanism ensures
the accuracy of the candidate box by optimizing IoU.

Through the context-aware RPN, the model can
generate more accurate and robust candidate boxes in
environments with complex backgrounds and target
occlusions, significantly improving detection accuracy.

where Bpred is the predicted box and Bgt is the
ground truth. This IoU value is then used in a feedback
loop to iteratively adjust box coordinates. Specifically,
when IoU falls below a learned threshold, the model
backpropagates the localization error and refines the
proposal using the context-enhanced feature map. This
mechanism tightly integrates the contextual signal with
the localization loss, enabling the RPN to generate
higher-quality proposals in cluttered or occluded scenes.

3.3.3 Time series information fusion and dynamic

target tracking
The targets in power plants are not only static, but also
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have a large number of dynamic targets that need to be
tracked. For example, the movement trajectory of
workers or the operating status of equipment are dynamic
targets. In order to improve the detection and tracking
accuracy of dynamic targets, this study introduced a
temporal information fusion module in Faster R-CNN to
enhance the model's dynamic target perception ability
through the temporal relationship between video frames.

The temporal convolutional network (TCN) is used
to extract the temporal features of continuous frame
images and capture the changes of the target in the time
dimension. TCN can effectively handle dynamic targets,
especially the movement trajectory of people or
equipment, ensuring that the model can still accurately
identify the target when it is deformed or moving.

The mathematical representation of the temporal
convolutional network is formula 3

XTCN :TCN(Xinput) 3)

where, Xmput is the input continuous frame image
sequence, 1CN' is a temporal convolutional network,
XTCN is the extracted temporal feature map. TCN can
capture the temporal changes between consecutive
frames through convolution operations, thereby
enhancing the ability to track dynamic targets.

By introducing timing information, the model can
effectively reduce the detection errors caused by target
motion or deformation, and improve the ability to
accurately identify and track dypamic targets.

These temporal features — T°N  are then fused with
the current spatial features ! from the backbone by
concatenation along the channel dimension, followed by
a 1x1 convolution to align dimensions. The fused
representation is passed into the Region Proposal
Network (RPN), enabling it to generate proposals that
account not only for spatial appearance but also for
motion continuity across frames.  This integration
allows the system to better detect and track dynamic
targets such as moving personnel or rotating equipment
in power plant environments.

Temporal Convolutional Network (TCN) was
chosen over alternatives like GRU and LSTM due to its
advantages in parallelism and temporal stability. Unlike
sequential models, TCN allows for simultaneous
processing of entire sequences, which significantly
reduces inference latency—a critical requirement for
real-time safety monitoring systems. Additionally, TCN's
dilated convolution design enables a wide receptive field
with fewer layers, allowing it to capture long-term
temporal dependencies without gradient vanishing
problems. These characteristics make TCN particularly
well-suited for modeling the dynamic movements of
personnel or equipment in power plant scenarios where
real-time decision-making is essential.

3.3.4 Rol align optimization and refined positioning
In a power plant environment, the shapes of targets are
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often irregular and complex. The traditional Rol Pooling
method cannot accurately align the regional feature maps,
which may lead to target positioning deviation. To solve
this problem, this study introduces the Rol Align
technology, which processes the candidate regions
through precise bilinear interpolation to ensure that the
spatial accuracy of the regional feature maps is not lost.

Rol Align remaps the regional features within the
candidate box through precise interpolation methods, so
that each pixel in the feature map can correctly
correspond to the actual position in the image. This
refined alignment method significantly improves the
accuracy of target positioning. The mathematical formula
is Formula 4

X = interp(X;, T) )
i=1

where, X, ; is the feature in the Rol area, T isthe

target transformation matrix, X is the feature map after

Rol Align processing. In this way, Rol Align can improve
the positioning accuracy of the target without losing

accuracy.

where (XI j ,_yih.) are the sampling coordinates for
the grid cell (i, ]) , and interp denotes bilinear
interpolation. The transformation matrix T mentioned
earlier is used to map the original Rol box to the
normalized grid coordinates but does not contribute to a
summation. This grid-wise interpolation preserves the
spatial correspondence between features and original
image regions and eliminates the quantization issues
present in Rol Pooling, leading to more accurate object
localization.

The backbone network is based on ResNet-50,
extended with three parallel convolutional branches (3%3,
5x5, 7x7) for multi-scale feature extraction. The context-
aware RPN includes an additional 5x5 convolution layer
to expand the receptive field. The TCN module comprises
two 1D dilated convolutional layers (kernel size = 3,
dilation = [1, 2], channels = 128). Rol Align replaces
standard Rol Pooling for accurate spatial mapping.

The training was conducted using the Adam
optimizer with an initial learning rate of 0.0001, batch
size of 16, and weight decay of le-5. A cosine annealing
learning rate schedule was applied, and early stopping
was triggered after 10 epochs without improvement on
validation loss.

Due to industrial confidentiality, the full dataset
cannot be publicly released. However, a sanitized subset
and implementation code will be made available upon
request to academic researchers under a data-use
agreement.

A deliberate sampling strategy is incorporated
during dataset construction to maximize variation across
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lighting conditions, equipment types, viewing angles, and
occlusion levels. Data augmentation techniques such as
brightness jitter, Gaussian noise injection, random
occlusion masks, and affine transformations were also
applied during training to simulate rare and edge-case
scenarios that improve model generalization in real-
world deployments. Regarding real-time performance
improvements, while the core enhancements focus on
detection accuracy, several optimizations were also
implemented to reduce computational latency. These
include shared convolution blocks across scales to
minimize redundant feature extraction, replacing some
heavy backbone layers with lightweight convolutional
units (e.g., depth wise separable convolutions), and
pruning less contributive channels based on feature map
sensitivity analysis. These changes reduced inference
latency by ~18% compared to the original Faster R-CNN,
as measured on the same hardware configuration, without
compromising mAP.

4 Experimental evaluation

4.1 Experimental setup

The experiments were conducted on a workstation
equipped with an NVIDIA RTX 3090 GPU (24GB), Intel
19-12900K CPU, and 64GB RAM. The software
environment included Ubuntu 20.04, Python 3.8, and
PyTorch 1.13 with CUDA 11.6. Training and inference
were executed using standard PyTorch data loaders and
evaluation scripts. The same environment was used
across all compared models to ensure consistency and
fairness in performance measurements.

This experiment aims to comprehensively evaluate
the performance of the improved Faster R-CNN
algorithm compared with other advanced target detection
algorithms in the power plant safety monitoring scenario.
The experimental design is closely centered on the target
detection task in the complex environment of the power
plant, and an extremely rich and comprehensive power
plant safety monitoring dataset is constructed. This
dataset covers various and complex scenarios such as
different lighting conditions (from strong direct light to
extremely low light), various scales of equipment and
personnel (small-sized electronic components to large-
scale power generation equipment), complex
backgrounds (various types of equipment are intertwined,
pipelines are crisscrossed), and occlusion between targets
(some equipment is blocked by other objects, and
personnel are blocked from each other), striving to
simulate the real power plant environment to the greatest
extent.

The experimental baseline indicator selects the
mean average precision (mAP) as the main evaluation
indicator. mAP can comprehensively measure the
performance of the model in detecting different
categories of targets and fully reflect the detection
accuracy of the model for various targets. At the same
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time, the recall rate (Recall) indicator is introduced,
which is used to evaluate the coverage of the model for
real targets, that is, the proportion of the number of real
targets that the model can correctly detect to the number
of all real targets. In addition, special attention is paid to
the accuracy of the model in detecting targets of different
scales, so as to comprehensively measure the model
performance from multiple dimensions and ensure that
the evaluation of the algorithm performance is accurate
and detailed.

The experimental group was set to the improved
Faster R-CNN algorithm, which integrates key
improvement modules such as multi-scale feature
extraction, context-aware region proposal network (RPN),
temporal information fusion, and Rol Align optimization.
The control group selected classic and representative
object detection algorithms, including the original Faster
R-CNN [19], which is a classic algorithm in the field of
object detection and has laid the foundation for the
improvement of many subsequent algorithms, YOLOvVS
[20], which is widely used in real-time object detection
scenarios due to its fast detection speed and high
detection accuracy, and SSD [21], which plays an
important role in single-stage object detection algorithms.
These algorithms were trained and tested on exactly the
same power plant safety monitoring dataset. During the
experiment, the hyperparameters of each algorithm were
carefully tuned, and different parameter combinations
were tried through multiple experiments to ensure that
each algorithm could achieve its best performance on the
dataset. By comparing the various indicators of different
algorithms on the same test set, the advantages and
possible shortcomings of the improved Faster R-CNN
algorithm were deeply analyzed.

Specifically, objects are divided into three groups
according to their bounding box pixel area:

Small: area < 32x32 pixels

Medium: 32x32 < area < 96x96 pixels

Large: area > 96x96 pixels

Q. Deng et al.

For each group, we compute the mAP using standard
IoU thresholds (e.g., 0.5 and 0.75), following the COCO
evaluation protocol. Thus, "Small Obj Acc", "Medium
Obj Acc", and "Large Obj Acc" as shown in Section 4.2
and corresponding figures represent scale-specific mean
average precision, not classification accuracy or raw
detection rate.

Training was conducted for a total of 250 epochs;
however, model performance metrics such as validation
mAP and loss showed clear signs of convergence after
approximately 200 epochs. The decision to use 200
epochs as the stopping point was based on the observation
that the improvement in validation metrics over the final
20 epochs was less than 0.5%, indicating saturation.
Although early stopping was enabled with a patience of
10 epochs on validation loss, training was manually
capped at 200 epochs across all configurations to ensure
consistency and fair comparison between variants

The power plant safety monitoring dataset
constructed for this study contains a total of 12,000
labeled image instances, covering 7 object classes
relevant to safety scenarios: electrical panels,
transformers, pipelines, safety helmets, human operators,
fire sources, and warning signs. Each class has between
1,200 to 2,500 annotated instances, ensuring balanced
representation. The annotations were performed
manually by domain experts using the Labellmg tool,
following VOC-format standards. The dataset is not
publicly released due to industrial confidentiality
agreements but may be shared with academic partners
upon request and approval.

Lighting conditions in the dataset include four
levels—bright daylight, moderate indoor, low light, and
near-dark—simulated using high-dynamic-range (HDR)
image augmentation and synthetic shadow rendering.
Occlusion conditions were recreated by overlapping
equipment and personnel in real-world captures,
combined with controlled synthetic overlays for testing
robustness.

Table 2: Distribution of complex environmental conditions in the dataset

Environmental Condition Subcategory Number of Images Percentage (%)
Normal 4836 40.30%
Low light 3576 29.80%
Lighting
Strong light/glare 1837 15.30%
Shadowed 1748 14.60%
Simple 4212 35.10%
Background Complexity Moderately complex 4832 40.30%
Highly complex 2956 24.60%
None 6112 50.90%
Occlusion Level Partial 4213 35.10%
Severe 1675 14.00%
Motion State Static 7136 59.50%
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Figure 1: Comprehensive performance comparison of different algorithms on the overall data set

Additionally, class-wise performance metrics were
computed to provide more granular insight into detection
behavior. The improved Faster R-CNN model achieved
the following class-wise precision and recall scores:

Electrical Panel: Precision 0.88, Recall 0.85
Transformer: Precision 0.84, Recall 0.81
Pipelines: Precision 0.86, Recall 0.83

Safety Helmets: Precision 0.89, Recall 0.87
Human Operators: Precision 0.90, Recall 0.88
Fire Sources: Precision 0.80, Recall 0.76
Warning Signs: Precision 0.83, Recall 0.80

These results confirm high per-class consistency,
with slightly lower scores for fire sources and warning
signs, likely due to their smaller size and frequent
occlusions. These four categories—Ilighting, background
complexity, occlusion level, and motion state—were
annotated using a combination of manual labeling and
heuristic image scoring based on entropy, contrast
variation, and optical flow analysis. As shown in Table 2.

These distributions ensure a balanced yet realistic
representation of industrial safety monitoring conditions.
For instance, low light and strong glare were created
using high dynamic range augmentation, while occlusion
levels were defined by object overlap ratios. Motion
categories were inferred via optical flow thresholds and
manual video review.

4.2 Results

As shown in Figure 1, the test results on the overall data
set show that the improved Faster R-CNN algorithm has
obvious advantages in all key indicators. Figure 1
illustrates overall mAP, Recall, and scale-specific mAPs
on a unified y-axis; these metrics reflect different
detection aspects and are not intended for direct vertical
value comparison. Its mean average precision (mAP)
reaches 0.85, which is significantly ahead of the original
Faster R-CNN's 0.72, YOLOvVS5's 0.78, and SSD's 0.69.
This means that the improved algorithm has excellent
accuracy in the comprehensive detection of various
targets, and can more accurately identify targets such as
equipment, personnel, and potential safety hazards in the
power plant environment. In terms of recall rate, the
improved Faster R-CNN is 0.82, which is also higher than
other algorithms, indicating that the algorithm can more
comprehensively detect the real targets in the data set and
reduce missed detections. In terms of the detection
accuracy of targets of different scales, the improved
algorithm has a small target detection accuracy of 0.78, a
large target detection accuracy of 0.88, and a medium
target detection accuracy of 0.84, all of which are higher
than the control group algorithm. This fully demonstrates
the effectiveness of the multi-scale feature extraction
module in the improved algorithm, which can adapt to the
features of targets of different scales and improve
detection accuracy.
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Figure 2: Performance comparison of different algorithms in small target detection scenarios
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Figure 3: Performance comparison of different algorithms in large target detection scenarios
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As shown in Figure 2, the improved Faster R-CNN
algorithm performs outstandingly for the extremely
challenging task of small target detection. In Figure 2,
mAP, Precision at different IoU thresholds, and Recall are
plotted together for visualization compactness, but their
numerical values represent different evaluation criteria
and should be interpreted separately. Its mean average
precision (mAP) reaches 0.78, which is significantly
higher than the original Faster R-CNN's 0.65, YOLOv5's
0.70, and SSD's 0.60. In terms of recall rate, the improved
algorithm is 0.75, which is also ahead of other algorithms,
indicating that the improved algorithm can more
effectively detect small targets and reduce the number of
missed detections of small targets. Under different IoU
thresholds, the improved algorithm has an accuracy of
0.85 at a 0.5 ToU threshold and an accuracy of 0.72 at a
0.75 ToU threshold, both of which are higher than the
control group algorithm, indicating that the improved
algorithm can maintain high detection accuracy under
different strict detection standards. In addition, under
different lighting conditions, the mAP fluctuation range
of the improved algorithm for small target detection is
only +0.03, while other algorithms have larger fluctuation
ranges, such as +0.08 for the original Faster R-CNN,
+0.06 for YOLOVS5, and £0.10 for SSD. This shows that
the improved algorithm has better robustness to lighting
changes and can stably detect small targets under
different lighting conditions, thanks to the improved
adaptability of its modules such as multi-scale feature
extraction and context-aware RPN to complex
environments.

As shown in Figure 3, in the large target detection
scenario, the improved Faster R-CNN algorithm also
shows excellent performance. Its mean average precision
(mAP) is as high as 0.88, far exceeding the original Faster
R-CNN's 0.75, YOLOv5's 0.82, and SSD's 0.72. In terms
of recall rate, the improved algorithm is 0.85, which is
higher than other algorithms, indicating that it can detect
large targets more comprehensively. In the case of target
occlusion, the detection accuracy of the improved
algorithm is 0.82, while the original Faster R-CNN is
0.65, YOLOVS5 is 0.70, and SSD is 0.60. This shows that
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the improved algorithm can better handle the situation of
large target occlusion through the context-aware RPN
and temporal information fusion mechanism, and
accurately identify the target features of the occluded part.
In the complex background, the detection accuracy of the
improved algorithm is 0.86, which is also ahead of other
algorithms, indicating that it has stronger anti-
interference ability against complex backgrounds. In
addition, the improved algorithm performs “high” in
terms of consistency in detection accuracy of large targets
of different scales, that is, for large targets of different
sizes, its detection accuracy fluctuates less and can stably
maintain a high detection level, while the consistency
performance of other algorithms is relatively poor, which
further proves the superiority of the improved algorithm
in dealing with large target detection.

As shown in Figure 4, facing the complex scene of
low light, the improved Faster R-CNN algorithm has
obvious advantages. Its mean average precision (mAP)
reaches 0.75, which is higher than 0.60 of the original
Faster R-CNN, 0.65 of YOLOVS5 and 0.55 of SSD. Figure
4 combines mAP, Recall, and scale-specific mAPs across
algorithms on a shared axis; the plotted heights illustrate
trends rather than enable direct metric-to-metric
numerical comparison. In terms of recall rate, the
improved algorithm is 0.70, which is also ahead of other
algorithms, which means that in low light environment,
the improved algorithm can detect various types of
targets more effectively. In the detection of targets of
different scales, the improved algorithm has a small target
detection accuracy of 0.70, a large target detection
accuracy of 0.80, and a medium target detection accuracy
of 0.74 in low light, all of which are higher than the
control group algorithm. This is mainly due to the
context-aware region proposal network (RPN), which
enhances the ability to capture target features in low light
environment by introducing background information of
the surrounding area of the target, thereby improving the
detection accuracy. In contrast, the performance of other
algorithms in low light scenes is more obvious, indicating
that the improved algorithm has better adaptability to low
light environment.
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Figure 4: Performance comparison of different algorithms in low-light scenes
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Figure 5: Performance comparison of different algorithms in target occlusion scenarios
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As shown in Figure 5, in the target occlusion
scenario, the improved Faster R-CNN algorithm
performs well. Its mean average precision (mAP) is 0.70,
which is higher than the original Faster R-CNN's 0.55,
YOLOVS5's 0.60, and SSD's 0.50. In terms of recall rate,
the improved algorithm is 0.65, which is ahead of other
algorithms, indicating that the improved algorithm can
detect targets more comprehensively when the target is
occluded. The lines in Figure 5 present mAP, Recall, and
IoU-specific precision for different occlusion levels;
although displayed on the same axis for clarity, these
metrics convey distinct performance dimensions. For
partially occluded targets, the detection accuracy of the
improved algorithm is 0.75, while the original Faster R-
CNN is 0.60, YOLOVS is 0.65, and SSD is 0.55. For
severely occluded targets, the detection accuracy of the
improved algorithm is 0.60, which is also higher than
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other algorithms. In addition, the difference in detection
accuracy of targets of different scales under target
occlusion is "small", that is, regardless of the size of the
target, the detection accuracy is relatively stable when it
is occluded, while the accuracy of other algorithms varies
greatly. This is due to the context-aware RPN and
temporal information fusion mechanism of the improved
algorithm. The context-aware RPN captures the
background information around the target by expanding
the receptive field and reduces false detections caused by
occlusion. The temporal information fusion mechanism
uses the temporal relationship between video frames and
can still make accurate judgments based on the
information of the previous and next frames when the
target is occluded, thereby improving the detection
performance of targets of different scales in target
occlusion scenarios.
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Figure 6: Performance comparison of different algorithms in dynamic target detection scenarios

As shown in Figure 6, in the dynamic target
detection scenario, the improved Faster R-CNN
algorithm has significant advantages. Its mean average
precision (mAP) reaches 0.80, which is higher than the
original Faster R-CNN's 0.68, YOLOVS5's 0.73, and SSD's
0.65. In terms of recall rate, the improved algorithm is
0.78, which is ahead of other algorithms, indicating that
the improved algorithm can more comprehensively cover
real targets when detecting dynamic targets. When the

target moves quickly, the detection accuracy of the
improved algorithm is 0.75, while the original Faster R-
CNN is 0.60, YOLOVS is 0.65, and SSD is 0.55. When
the target direction changes, the detection accuracy of the
improved algorithm is 0.78, which is also higher than
other algorithms. In addition, the improved algorithm is
"high" in terms of the stability of dynamic target
detection accuracy over time, that is, over time, the
detection accuracy of dynamic targets fluctuates less, and
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it can continuously and stably detect dynamic targets,
while other algorithms have relatively poor stability. This
is mainly due to the temporal information fusion module
introduced in the improved algorithm. By using the
temporal convolutional network (TCN) to extract the

Q. Deng et al.

temporal features of continuous frame images, it can
effectively capture the changes of the target in the time
dimension, so that it can still accurately identify the target
when it moves or deforms, greatly improving the
dynamic target detection performance.

Table 3: Performance comparison of the improved Faster R-CNN algorithm under the action of different modules

Improvement in
Mean Small target Improvement
detection
Improved Average detection in large target
Recall accuracy under
Modules Precision accuracy detection
complex
(mAP) improvement accuracy
backgrounds
Multi-scale
feature 0.78 0.75 +0.10 +0.05 +0.06
extraction
Context-aware
0.80 0.76 +0.08 +0.06 +0.08
RPN
Time series
information 0.82 0.77 +0.06 +0.08 +0.05
fusion
Rol Align
0.83 0.78 +0.05 +0.07 +0.04
Optimization
All module
0.85 0.82 +0.13 +0.13 +0.16
improvements

As shown in Table 3, through the separate evaluation
of different modules of the improved Faster R-CNN
algorithm, it can be clearly seen that each module plays
an important role in improving performance. In terms of
mean average precision (mAP), the multi-scale feature
extraction module improves mAP to 0.78, the context-
aware RPN improves to 0.80, the temporal information
fusion improves to 0.82, the Rol Align optimization
improves to 0.83, and the full module improves to the
highest 0.85. The recall rate also gradually improves with
the improvement of the module, from 0.75 for multi-scale
feature extraction to 0.82 for the full module
improvement. In terms of the improvement of small
target detection accuracy, the multi-scale feature
extraction module improves by 0.10, the context-aware

RPN improves by 0.08, the temporal information fusion
improves by 0.06, the Rol Align optimization improves
by 0.05, and the improvement of the full module
improves by 0.13. In terms of the improvement of large
target detection accuracy, each module also makes a
positive contribution, and the improvement of the full
module is 0.13. In terms of the improvement of detection
accuracy under complex backgrounds, the improvement
of the whole module is 0.16. This fully demonstrates that
the modules work together, the multi-scale feature
extraction module enhances the feature capture capability
of targets of different scales, the context-aware RPN
improves the processing capability of complex
backgrounds and target occlusion, the temporal
information fusion improves the detection performance
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of dynamic targets, and the Rol Align optimization
ensures the accuracy of target positioning, which together
significantly improve the algorithm performance.

To eliminate ambiguity, we clarify that each
individual row in Table 3—representing "Multi-scale
feature extraction", "Context-aware RPN", "Time series
information fusion", and "Rol Align optimization" —
shows the performance of the model when only that
specific module is added on top of the original Faster R-
CNN, with no other enhancements applied. The "+
improvement" values in the table are calculated relative
to the baseline performance of the original Faster R-CNN,
which achieved an mAP of 0.72 and Recall of 0.70. The
"All module improvements" row reflects the full
configuration with all enhancements combined. This
modular evaluation design allows us to isolate the impact
of each module independently while also validating their
cumulative effectiveness when integrated together.

The baseline model (original Faster R-CNN) has
approximately 41.5 million parameters and requires
about 7.6 hours to train. When the multi-scale feature
extraction module is added, the parameter counts
increases to 45.2 million, with training time rising to 8.5
hours. The context-aware RPN raises the parameter count
to 47.1 million and requires 8.9 hours. The temporal
information fusion module contributes a moderate
increase to 48.6 million parameters and 9.5 hours of
training. The Rol Align optimization has minimal
parameter impact but slightly increases training time to
9.8 hours due to finer interpolation operations. When all
modules are combined, the total parameter count reaches
50.3 million, and training takes approximately 10.3 hours.
These incremental costs are reasonable given the
substantial gains in mAP (+13%) and recall (+12%),
demonstrating that the improvements are efficient in
terms of performance-to-cost ratio.

As shown in Table 4, the test results under
backgrounds of different complexity show that the
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improved Faster R-CNN algorithm has obvious
advantages in all kinds of backgrounds. Under simple
backgrounds, its mean average precision (mAP) reaches
0.90 and the recall rate is 0.88.

Additionally, the background complexity levels
were determined using a combination of manual
annotation and heuristic scoring. Annotators assessed
each image based on factors such as object density,
overlapping regions, presence of structural clutter (e.g.,
pipes, cables), and lighting variation. A weighted
heuristic score was calculated and used to classify scenes
into three levels:

Simple: Minimal overlapping, clean background,
consistent lighting.

Moderately Complex: Moderate overlap and mixed
lighting with some background equipment.

Highly Complex: High visual clutter, occlusion, and
low-contrast or noisy regions.

This classification ensures
reproducibility  of  evaluation
environmental complexities.

From Table 5, the improved Faster R-CNN
algorithm shows relatively good performance on
different hardware platforms. On the NVIDIA RTX 3090
GPU, its mAP reaches 0.85 and the recall rate is 0.82. On
the NVIDIA RTX 2080 Ti GPU, the mAP is 0.83 and the
recall rate is 0.80. Even on the Intel Xeon CPU, the mAP
can reach 0.75 and the recall rate is 0.70. Compared with
other algorithms, the improved Faster R-CNN can
maintain high detection accuracy and recall rate under
different hardware conditions, reflecting the good
adaptability of the algorithm to different hardware
platforms. However, the performance of the original
Faster R-CNN, YOLOVS5 and SSD fluctuates greatly on
different hardware platforms, and the overall
performance is lower than that of the improved Faster R-
CNN algorithm.

consistency and
under  different

Table 4: Performance comparison of different algorithms under different complexity backgrounds

. . Moderately Highly
. Moderately Highly Simple
. Simple complex complex
algorithm Complex Complex background
Background background background
Background Background recall
recall recall
Improving
Faster R- 0.90 0.85 0.80 0.88 0.83 0.78
CNN
Original
Faster R- 0.80 0.72 0.65 0.78 0.70 0.60
CNN
YOLOv5S 0.85 0.78 0.70 0.82 0.75 0.65
SSD 0.75 0.69 0.60 0.73 0.65 0.55
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Table 5: Performance comparison of different algorithms on different hardware platforms
Nvidia RTX Nvidia RTX Nvidia RTX Nvidia RTX Intel Xeon
algorithm 3090 GPU 2080 Ti GPU ICn:; i::; 3090 GPU 2080 Ti GPU | CPU Recall
mAP mAP recall rate recall rate Rate
Improving
Faster R- 0.85 0.83 0.75 0.82 0.80 0.70
CNN
Original
Faster R- 0.72 0.70 0.60 0.70 0.68 0.55
CNN
YOLOVS 0.78 0.76 0.65 0.75 0.73 0.60
SSD 0.69 0.67 0.58 0.65 0.63 0.53

On an NVIDIA RTX 3090 GPU, the improved
Faster R-CNN achieves an average inference latency of
48 ms/frame with ~220W power draw. On RTX 2080 Ti,
latency increases to 57 ms/frame with ~200W, and on
Intel Xeon CPU, latency reaches 189 ms/frame with
~135W consumption. Compared to YOLOvVS5, which runs
at ~24 ms/frame on RTX 3090 but with lower mAP, our
model demonstrates a trade-off between accuracy and
speed that favors safety-critical detection accuracy. In
terms of deployment suitability, the improved model
exceeds the memory and compute capacity of edge
devices such as Jetson Nano or TX2, which are limited in
both memory and power. On Jetson Xavier, the model can
run inference with trimmed architecture (e.g., shallower
backbone), achieving ~95 ms/frame latency but with
slight accuracy degradation (~2-3% drop in mAP).

As shown in Table 6, with the increase of the number

of training rounds, the performance of the improved
Faster R-CNN algorithm gradually improves. When the
number of training rounds increases to 100, the mAP is
0.78, the recall rate is 0.75, and the accuracy of object
detection at all scales is significantly improved. When the
number of training rounds increases to 150, the mAP
reaches 0.83 and the recall rate is 0.80. When the number
of training rounds reaches 200, the mAP reaches 0.85 and
the recall rate is 0.82. At this time, the accuracy of object
detection at all scales is basically stable, with a small
object detection accuracy of 0.78, a large object detection
accuracy of 0.88, and a medium object detection accuracy
of 0.84. When the number of training rounds reaches 250,
the performance indicators remain basically unchanged,
indicating that the model has basically converged around
200 rounds, and further increasing the number of training
rounds has little effect on performance improvement.

Table 6: Performance changes of the improved Faster R-CNN algorithm under different training rounds

Number Mean Small Large Moderate
of Average target object object
. . Recall . . .
training Precision detection detection detection
rounds (mAP) accuracy accuracy accuracy
50 0.70 0.68 0.65 0.75 0.70
100 0.78 0.75 0.72 0.80 0.76
150 0.83 0.80 0.78 0.85 0.82
200 0.85 0.82 0.78 0.88 0.84
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Number Mean Small Large Moderate
of Average target object object
. . Recall . . .
training Precision detection detection detection
rounds (mAP) accuracy accuracy accuracy
250 0.85 0.82 0.78 0.88 0.84

During the initial 100 epochs, the model exhibited a
sharp reduction in loss, reflecting rapid learning and
feature adjustment. Between epochs 100 and 200, the loss
continued to decrease but at a slower rate, indicating that
the model was approaching convergence. After epoch
200, the loss values stabilized with minimal fluctuations,
confirming that further training produced negligible
performance gains. This loss trajectory aligns with the
plateau observed in mAP and recall, validating that 200
epochs is an effective training cutoff for this
configuration.

To further validate the credibility of the results and
support the claims of algorithmic superiority, we
conducted statistical analysis using multiple repeated
runs (n = 5) for each algorithm under each test scenario.
The mean and standard deviation (SD) of the key
performance indicators—mAP and Recall—were
recorded. For example, under the overall test dataset, the
improved Faster R-CNN achieved an average mAP of
0.85 (£0.006) and Recall of 0.82 (£0.005), while the
original Faster R-CNN achieved 0.72 (£0.007) and 0.70
(£0.008), respectively. A two-tailed paired t-test was
conducted between the improved algorithm and each
baseline model. The p-values for differences in mAP and
Recall across all major scenarios (e.g., small target,
occlusion, low-light) were consistently < 0.01, indicating
that the observed improvements are statistically
significant.

4.3 Discussion

The improved Faster R-CNN algorithm demonstrates
strong overall performance, surpassing baseline models
in most evaluation metrics across diverse scenarios.
However, in certain cases—such as moderately complex
backgrounds or large object detection—YOLOVS
achieves comparable or slightly better results. These
exceptions highlight the trade-offs in performance under
specific conditions. The improved mAP observed in this
study can be attributed to the complementary
contributions of each enhancement module. The multi-
scale feature extraction module increases the model's
ability to detect objects of varying sizes, especially small
or distant targets, by preserving fine-grained spatial
details. The context-aware RPN enhances proposal
generation by incorporating surrounding environmental
features, which is particularly beneficial in cluttered

industrial backgrounds. The temporal convolutional
network (TCN) strengthens the model’s ability to track
dynamic targets by leveraging information across video
frames, effectively mitigating issues caused by temporary
occlusion or motion blur. Rol Align further refines
localization accuracy by eliminating quantization errors
during feature map pooling. However, under extreme
conditions—such as simultaneous severe occlusion and
low lighting—the model still shows some degradation in
both mAP and recall. This indicates the need for more
advanced modules capable of robust feature extraction in
low-visibility and high-noise environments. In terms of
practical deployment, although the improved model
performs well on various hardware platforms, latency
remains a concern for real-time systems. Integration with
existing power plant safety systems may also require
interface adaptation and real-time synchronization
protocols. Lastly, while the dataset used in this study is
designed to reflect diverse power plant scenarios, broader
generalizability should be validated through testing on
datasets from different industrial domains, such as
chemical plants or mining operations, to ensure the
model’s robustness in other complex environments.

5 Conclusion

This study focuses on the optimization of target detection
algorithms in power plant safety monitoring platforms.
By improving the Faster R-CNN algorithm through
multi-scale feature extraction, context-aware RPN,
temporal information fusion and Rol Align optimization,
its target detection performance in complex power plant
environments is effectively improved. Experimental
results show that the improved algorithm is significantly
better than classic algorithms such as the original Faster
R-CNN, YOLOvS5 and SSD in key indicators such as
average precision, recall rate and detection accuracy of
targets at different scales. In different scenarios such as
low light, target occlusion, dynamic target detection and
backgrounds of different complexity, the improved
algorithm shows stronger adaptability and accuracy. At
the same time, it can maintain good performance on
different hardware platforms, and the performance can be
effectively optimized by reasonably setting the number of
training rounds. However, the research still has
limitations, such as the experimental data set fails to
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cover all actual scene changes, and factors such as data
transmission delay need to be considered in actual
applications. In the future, it is necessary to further
explore actual deployment optimization strategies to
promote the widespread application of this algorithm in
power plant safety monitoring.

While the improved algorithm consistently performs
better in terms of overall mAP, small object detection, and
robustness under low light or occlusion, some
comparative results show near parity with YOLOVS in
large object detection and moderately complex
backgrounds. Therefore, the improvements are
substantial but not uniformly superior across all metrics.
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