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Received:  

In order to improve the intelligence and automation level of power plant safety monitoring systems, this 

study proposes an improved Faster R-CNN algorithm by integrating multi-scale feature extraction, 

context-aware RPN, temporal information fusion, and RoI Align optimization. The model is trained and 

tested on a power plant safety monitoring dataset covering diverse and complex scenarios. Comparative 

experiments against baseline methods including original Faster R-CNN, YOLOv5, and SSD demonstrate 

that the improved algorithm achieves a mean Average Precision (mAP) of 0.85 and a Recall of 0.82, 

outperforming the baselines by margins of up to 13% in mAP and 12% in Recall. The enhanced algorithm 

also shows superior adaptability to small targets, occlusions, low light, and complex backgrounds. These 

results indicate that the proposed method significantly enhances the performance of target detection in 

challenging power plant environments. 

Povzetek: Za varnostno nadzorovanje v elektrarnah je izboljšan Faster R-CNN z večločljivostnim 

zajemom značilk, kontekstno zavednim RPN, časovno fuzijo (TCN) in RoI Align; na namenskem naboru 

prehiti izvirni Faster R-CNN, YOLOv5 in SSD (do +13% mAP, +12% Recall), posebej pri malih tarčah, 

zakritjih, slabi osvetlitvi in kompleksnem ozadju. 

 

1 Introduction 

As one of the indispensable infrastructures in modern 

society, the safety and stability of the power system 

directly affect people's lives and economic development. 

However, in the complex operation of power plants, 

safety hazards often occur, which may lead to 

catastrophic consequences in serious cases. In order to 

prevent such risks, the construction of power plant safety 

monitoring platforms is particularly important. In 

traditional monitoring systems, the detection and 

prediction of safety hazards mainly rely on manual 

inspections and conventional equipment monitoring. This 

method is not only inefficient but also difficult to cope 

with the increasingly complex safety situation [1]. With 

the advancement of technology, especially the 

widespread application of computer vision and artificial 

intelligence technology, intelligent safety monitoring 

systems based on target detection algorithms have 

gradually become a cutting-edge trend in power plant 

safety management. Through real-time monitoring and 

automatic identification of potential safety hazards, 

power plants can detect problems in advance and take 

effective measures to reduce the probability of accidents, 

thereby improving the safety and stability of the power  

 

 

system [2]. 

Ensuring real-time and accurate detection of safety-

critical targets in power plant environments is vital for  

preventing industrial accidents. Traditional object 

detection algorithms often struggle with challenges such 

as low-light conditions, dynamic occlusions, and diverse 

background complexity. This study is motivated by the 

urgent need for a robust, adaptable detection framework 

that can operate effectively in these harsh, safety-critical 

scenarios. 

In the production environment of power plants, there 

are many potential safety hazards. For example, 

equipment failure, electrical fire, and personnel violation 

can lead to serious accidents. According to statistics, the 

losses caused by safety accidents in power plants exceed 

hundreds of millions of yuan each year. According to the 

2019 China Power Industry Safety Report, about 12% of 

accidents are caused by equipment failure, and another 

15% are directly related to improper operation. The 

frequent occurrence of such accidents not only increases 

the operating costs of power plants, but is also likely to 

have serious impacts on the surrounding environment and 

the public. Therefore, it is particularly urgent to build an 

intelligent, safe and efficient monitoring platform. 

At present, many power plants have begun to 
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introduce advanced target detection algorithms to 

enhance the intelligence and automation level of safety 

monitoring systems. These algorithms use deep learning 

and computer vision technology to achieve real-time 

monitoring of different equipment inside the power plant 

and automatic identification of safety hazards. These 

technologies can automatically identify potential 

abnormal conditions in image or video data, such as 

equipment aging, cable short circuits, fire hazards, etc., 

and issue alarms in a timely manner, greatly improving 

the response speed and accuracy of safety management. 

For example, the application of convolutional neural 

networks (CNNs) in image recognition has achieved 

remarkable results in power plant safety monitoring, 

helping the monitoring system to quickly identify 

abnormal operating conditions of equipment [3,4]. 

However, although target detection algorithms have 

been applied in power plant safety monitoring, existing 

technologies still face many challenges. First, the 

monitoring environment of power plants is complex, and 

the monitoring scenarios include different types of 

equipment, personnel, and other dynamic factors, which 

poses great challenges to the application of target 

detection algorithms. When dealing with real-time 

monitoring in a changing environment, the accuracy and 

stability of existing algorithms often cannot meet actual 

needs. Secondly, most current target detection algorithms 

focus on improving detection accuracy and speed, but in 

the specific environment of power plants, the robustness 

and scalability of the algorithms are still insufficient. In 

particular, for some special scenarios, such as low light, 

smoke occlusion, or complex equipment background, the 

performance of traditional algorithms is not ideal. 

Therefore, how to improve the adaptability and accuracy 

of target detection algorithms in these special 

environments is an urgent problem to be solved in power 

plant safety monitoring systems. 

Many scholars and engineers have devoted a lot of 

work to the research of target detection algorithms. In 

recent years, target detection algorithms based on deep 

learning, such as YOLO (You Only Look Once) and 

Faster R-CNN (Region Convolutional Neural Network), 

have made significant progress, especially in improving 

the speed and accuracy of image processing [5]. However, 

the application of these algorithms in power plant safety 

monitoring still faces many challenges. In order to better 

adapt to the power plant environment, the existing target 

detection algorithms need to be optimized, especially in 

dealing with multi-target recognition, complex 

backgrounds, objects of different scales, etc. In addition, 

the computational efficiency and real-time performance 

of the algorithm are also issues that need to be focused on, 

because the safety monitoring of power plants requires 

the system to have efficient real-time response 

capabilities. 

In order to overcome these problems, this paper aims 

to propose a new power plant safety monitoring platform 

solution by optimizing the target detection algorithm. By 

deeply analyzing the limitations of the current target 

detection algorithm in power plant applications, this 

study will propose targeted algorithm improvement 

solutions, including the expansion of data set diversity, 

optimization of network structure, and improvement of 

algorithm real-time performance [6]. It is hoped that 

through these improvements, the adaptability of the target 

detection algorithm in the complex environment of the 

power plant will be improved, thereby providing more 

efficient and intelligent technical support for power plant 

safety monitoring. 

The main purpose of this study is to improve the 

existing target detection algorithm so that it can be used 

in the safety monitoring system of the power plant more 

accurately and efficiently. Specifically, this study will 

focus on how to improve the real-time response 

capability of the power plant monitoring system in a 

dynamic environment by optimizing the target detection 

algorithm while ensuring a high recognition accuracy. 

Through the innovation and improvement of the 

algorithm, it is expected to provide a more intelligent 

safety management solution for the power plant and 

further promote the improvement of the safety 

management level of the power industry. In theory, the 

contribution of this study is to promote the innovative 

application of target detection algorithms in industrial 

environments and lay the foundation for the further 

application of deep learning technology in power systems. 

In practice, the results of this study are expected to 

improve the intelligence level of power plant safety 

monitoring, reduce the safety risks caused by human 

negligence and equipment failure, and thus ensure the 

safe operation of the power system. 

2 Literature Review 

2.1 Development and challenges of power 

plant safety monitoring system 
As a key facility in heavy industry, power plants are 

responsible for ensuring the supply of electricity. 

However, with the aging of equipment, the complexity of 

the operating environment and the negligence of 

operators, the safety of power plants faces huge 

challenges. Therefore, it is particularly important to build 

an effective power plant safety monitoring platform. 

Traditional power plant safety monitoring systems rely 

heavily on manual inspections and simple sensor 

technology, which has great limitations. First, manual 

inspections are not only inefficient, but also prone to 

missed inspections or delayed detection of problems due 

to human factors. Second, traditional sensor technology 

is limited by the accuracy and coverage of sensors, and is 

often unable to fully monitor all potential safety hazards 

in power plants. These problems have prompted the 

development of power plant safety monitoring systems 

towards intelligence and automation [7]. 

In recent years, with the rapid development of 
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artificial intelligence technology, especially the 

widespread application of computer vision and deep 

learning technology, power plant safety monitoring 

systems have gradually ushered in changes. Target 

detection algorithms have become one of the core 

technologies in intelligent safety monitoring systems. 

These algorithms can monitor the equipment, personnel 

and environment inside the power plant in real time 

through image processing and pattern recognition 

technology, effectively improving the speed and accuracy 

of hidden danger identification [8]. Nevertheless, these 

algorithms still face a series of problems when applied in 

complex power plant environments. For example, target 

detection algorithms often have difficulty coping with 

changing environmental factors, such as insufficient light, 

smoke interference, and the complexity of equipment 

appearance. These problems directly affect the accuracy 

and reliability of the target detection system. Therefore, 

target detection technology in power plant safety 

monitoring still needs to be continuously optimized and 

innovated to adapt to more complex working 

environments [9]. 

In existing research, many scholars have proposed 

different solutions to the challenges of power plant safety 

monitoring systems. By combining multiple sensors and 

target detection technologies, some studies have 

proposed more comprehensive monitoring systems that 

include not only visual monitoring but also multimodal 

sensors such as infrared and ultrasonic waves. However, 

these solutions often face the problems of data fusion 

complexity and large algorithm computation, which 

limits their application in actual power plants. In order to 

overcome these challenges, researchers have begun to 

focus on how to optimize target detection algorithms to 

make them more accurate and reliable, especially when 

dealing with dynamically changing environments [10]. 

 

2.2 Evolution and current status of object 

detection algorithms 
As an important part of computer vision, target detection 

algorithms have made significant progress in recent years. 

Traditional target detection methods mostly rely on 

manual feature extraction, such as HOG (Histogram of 

Oriented Gradients) and SIFT (Scale-Invariant Feature 

Transform). Although these methods have achieved 

certain results in some applications, they are not effective 

when dealing with complex backgrounds and tasks with 

high real-time requirements. With the rise of deep 

learning, target detection algorithms based on 

convolutional neural networks (CNNs) have quickly 

become mainstream. CNNs automatically extract 

features through deep neural networks and can be trained 

on large-scale data sets, thereby greatly improving the 

accuracy and robustness of target detection. 

Among them, YOLO (You Only Look Once) and 

Faster R-CNN are the two most widely used deep 

learning target detection algorithms. The YOLO 

algorithm has significant advantages in real-time target 

detection due to its high-speed detection feature. By 

converting the target detection task into a regression 

problem, it realizes a direct mapping from the image to 

the detection box. This feature enables YOLO to 

significantly improve the detection speed while ensuring 

the detection accuracy. Faster R-CNN optimizes the 

accuracy of target detection by introducing the region 

proposal network (RPN), especially when dealing with 

complex backgrounds and multi-scale targets. However, 

although these two algorithms have achieved excellent 

performance in the field of image recognition, their 

application in power plant safety monitoring faces many 

challenges [11]. For example, the performance of the 

YOLO algorithm in complex power plant environments 

is often affected by factors such as occlusion and low 

light, which limits its applicability in power plant safety 

monitoring. Although Faster R-CNN is more prominent 

in target detection accuracy, its high computational 

overhead and slow processing speed also limit its 

application in real-time monitoring systems. Therefore, 

how to improve computational efficiency and real-time 

performance while ensuring algorithm accuracy has 

become a key issue faced by target detection algorithms 

in power plant safety monitoring systems [12]. 

In order to deal with these problems, scholars have 

proposed a variety of improvement schemes. For 

example, some researchers have enhanced the ability of 

target detection algorithms to identify targets of different 

scales by introducing multi-scale feature fusion 

technology, especially making certain progress in 

complex equipment backgrounds and multi-target 

recognition. In addition, in order to solve the 

computational efficiency problem of target detection 

algorithms, some studies have reduced the amount of 

calculation and improved the processing speed by 

optimizing the network structure. Nevertheless, the actual 

application effect of these optimization schemes in the 

complex environment of power plants still needs further 

verification. 

 

2.3 Application and optimization of target 

detection algorithms in power plant 

safety monitoring 
The application of target detection algorithms in power 

plant safety monitoring, especially in intelligent and 

automated systems, has become a hot topic in current 

research. With the continuous advancement of deep 

learning and computer vision technology, more and more 

power plants have begun to try to use target detection 

algorithms to realize the automatic identification of safety 

hazards. At present, target detection in power plant safety 

monitoring systems is mainly concentrated in the fields 

of equipment fault detection, personnel behavior 

monitoring, and fire hazard identification [13, 14]. In 

terms of equipment fault detection, through image 

recognition technology, the monitoring system can detect 
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abnormal conditions of power plant equipment in real 

time, such as equipment aging, oil leakage, cracks, etc., 

so as to issue alarms in time to avoid safety accidents 

caused by equipment failure. Personnel behavior 

monitoring ensures that employees comply with 

operating procedures and avoid potential risks caused by 

illegal operations by identifying the operating behaviors 

of power plant employees. In terms of fire hazard 

identification, target detection algorithms can quickly 

identify abnormal conditions such as fire sources and 

smoke, providing reliable technical support for fire 

prevention and control. However, target detection 

technology in power plant safety monitoring still faces 

many challenges. Although target detection algorithms 

have made some progress in the application of equipment 

fault detection and personnel behavior monitoring, the 

performance of existing algorithms is still difficult to 

meet actual needs when facing complex environments 

(such as low light, smoke occlusion, etc.) [15, 16]. 

Therefore, in response to these challenges, many 

researchers have proposed different optimization 

strategies. For example, some researchers have enhanced 

the robustness of target detection algorithms in complex 

environments by improving network architecture and 

training methods. In addition, the diversity and coverage 

of the data set are also an important factor affecting the 

performance of the algorithm. In order to improve the 

adaptability of the algorithm in the complex environment 

of power plants, some studies have begun to focus on how 

to build more comprehensive and diverse training data 

sets to improve the performance of the algorithm in 

different scenarios [17, 18]. 

To provide a clearer overview of the strengths and 

weaknesses of key target detection algorithms in 

industrial safety monitoring, we include Table 1, which 

compares representative methods such as YOLO, SSD, 

and the original Faster R-CNN across five critical 

dimensions: detection speed, accuracy, application in 

industrial safety scenarios, adaptability to complex 

environments (e.g., occlusion, low light), and support for 

dynamic target tracking. This comparative analysis helps 

highlight the need for algorithmic improvements in real-

world power plant applications and provides context for 

the motivation behind enhancing Faster R-CNN. As 

shown in Table 1. 

This table demonstrates that although YOLOv5 

offers high detection speed, it lacks robustness in 

complex industrial environments and dynamic tracking. 

On the other hand, the original Faster R-CNN performs 

better in accuracy but suffers from speed limitations. The 

proposed improvements address these gaps and make the 

algorithm more suitable for power plant safety 

monitoring. 

 

 

Table 1: Comparative analysis of mainstream object detection algorithms in industrial safety monitoring contexts 

Algorithm 
Detection 

Speed 
Accuracy 

Used in 

Industrial 

Safety 

Contexts 

Adaptability to 

Complex 

Environments 

Dynamic 

Target 

Tracking 

Support 

YOLOv5 Very High Moderate 
Commonly 

used 
Moderate Limited 

SSD High 
Low–

Moderate 

Occasionally 

used 
Low Not supported 

Original 

Faster R-CNN 
Low High Widely used Moderate Limited 

Improved 

Faster R-CNN 
Moderate Very High 

Proposed for 

this study 
Strong Supported 

 

3 Research Methods 

3.1 Research hypothesis 
To guide the design and evaluation of the proposed 

enhancements to the Faster R-CNN algorithm, this study 

explicitly formulates the following research hypotheses: 

H1: Augmenting the Faster R-CNN with context-

aware and temporal information fusion modules 

significantly improves detection robustness under 

occlusion conditions. 

H2: Integrating multi-scale feature extraction 

significantly enhances the detection accuracy of small-

scale, safety-critical objects in complex industrial 

environments. 

These hypotheses serve as the theoretical foundation 

for the experimental evaluation, which systematically 

compares the performance of the improved algorithm 

with baseline models across varied environmental 

conditions, including low light, occlusion, and dynamic 

target scenarios. The results presented in Section 4 are 

used to validate these hypotheses through comparative 
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analysis. 

 

3.2 Challenges and requirements of target 

detection in power plants 
One of the main challenges facing power plant safety 

monitoring platforms is the variability of the environment, 

including the complexity of equipment, dynamic changes 

in personnel, and possible safety hazards. Equipment in 

power plants usually has large physical sizes and 

complex shapes, and these devices are often blocked, 

deformed, or far away from the camera. In addition, the 

lighting environment of power plants is usually complex, 

and strong or low light conditions often occur, which 

increases the difficulty of target detection. 

To ensure the reliability of the power plant 

monitoring platform, the target detection system must be 

able to meet the following key requirements: 

(1) High-precision detection: Able to accurately 

detect targets inside the power plant, including equipment, 

personnel, and potential safety hazards. 

(2) Multi-scale processing: Since power plant 

equipment and personnel may have different scales, the 

target detection system should have the ability to 

effectively process targets of different scales. 

(3) Dynamic target recognition: The personnel and 

equipment in the power plant sometimes change 

dynamically, so the system must be able to handle 

dynamic targets. 

(4) Robustness: The complex background, lighting 

changes and possible occlusions in the power plant 

environment require the target detection system to have 

strong robustness. 

 

3.3 Improved faster R-CNN algorithm 

design 
In the safety monitoring scenario of power plants, 

traditional target detection methods, although they 

perform well in general environments, still have certain 

limitations when facing challenges such as complex 

industrial backgrounds, targets of different scales, 

occlusions, and lighting changes. To overcome these 

challenges, this study proposes a Faster R-CNN model 

optimized for power plant environments. By introducing 

a multi-scale feature extraction module, a context-aware 

region proposal network (RPN), a temporal information 

fusion mechanism, and RoI Align optimization, this 

algorithm can significantly improve detection accuracy, 

especially in complex environments and dynamic target 

tracking. 

 

3.3.1 Multi-scale feature extraction and object 

detection 

The objects in the power plant environment have 

significant size differences, especially the scale 

differences between equipment and workers, which 

easily leads to the decrease in the accuracy of traditional 

object detection methods when detecting small objects or 

distant objects. In order to meet the detection needs of 

multi-scale objects, this study proposes a multi-scale 

feature extraction method. By performing multi-scale 

convolution operations on the input image, we can extract 

features at different levels, thereby enhancing the model's 

perception of objects of different sizes. 

The core idea of this method is to extract feature 

maps of different scales through a multi-level 

convolutional network and dynamically adjust the 

candidate box according to the scale of the target. The 

specific implementation steps are as follows: 

(1) Multi-scale convolution feature map generation: 

The input image is fed into multiple convolution layers, 

each of which is responsible for extracting features from 

different scales (such as large, medium, and small scales). 

The convolution operation of each layer weights the 

feature map information through the weight matrix and 

bias term to obtain feature maps of different scales. For 

details, see formula 1. 

 multi input

1
i

n

i i

i

X W X b
=

= +  (1) 

where, ib  is the bias term, multiX  is the output of 

the multi-scale feature map. 

This operation effectively fuses low-level fine 

features (from smaller kernels) and high-level semantic 

features (from larger kernels), enhancing the model’s 

ability to detect both small and large objects. The formula 

represents a channel-wise linear combination that 

preserves spatial alignment across all branches, resulting 

in a unified multi-scale representation. 

(2) Candidate box generation and multi-scale 

adjustment: When generating candidate boxes through 

convolutional feature maps of different scales, the model 

will dynamically adjust the size and position of the 

candidate boxes based on their performance at each scale 

to improve the detection accuracy of objects of different 

scales. 

This method can not only effectively improve the 

detection accuracy of small targets and long-distance 

targets, but also avoid conflicts and redundancies 

between multi-scale targets, thereby improving the 

overall detection efficiency of the model. 

In the multi-scale feature extraction module, a set of 

anchor box scales — [32, 64, 128, 256, 512] — was 

adopted to match the varied object sizes in the power 

plant environment, ranging from small control knobs to 

large-scale equipment. These anchors were selected 

based on empirical analysis of object size distribution in 

the dataset.  To extract multi-scale features effectively, 

three parallel convolutional branches were added to the 

ResNet-50 backbone, each with kernel sizes of 3×3, 5×5, 

and 7×7 respectively. This configuration allows the 

network to capture both fine-grained details and coarse 

spatial context. The outputs of these branches are 
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concatenated and passed to subsequent layers, improving 

the model’s ability to detect small and large objects 

simultaneously with higher precision. 

 

 

 

3.3.2 Context-aware region proposal network (RPN) 

In power plant environments, targets are often obscured 

by complex backgrounds. Traditional RPNs often have 

difficulty accurately generating candidate boxes when 

processing these scenarios. To solve this problem, this 

study proposes a context-aware region proposal network 

(Context-Aware RPN) that improves the generation 

quality of candidate boxes by introducing background 

information of the area around the target. 

(1) Adding context convolutional layer: In order to 

enhance the model's understanding of the target's 

surrounding environment, we added a context 

convolutional layer to the RPN. This layer expands the 

receptive field, allowing the network to capture 

background information in a larger range and effectively 

suppress false detections caused by background clutter 

and target occlusion. 

(2) Dynamic candidate box adjustment: After the 

candidate box is generated, the model calculates the 

intersection over union (IoU) between the generated box 

and the real box, and then adjusts the size and position of 

the candidate box according to the IoU value. In this way, 

RPN can generate candidate boxes more accurately and 

avoid false detections caused by irrelevant backgrounds. 

The mathematical formula is as follows: Formula 2 

 
| |

IoU
| |

A B

A B


=


 (2) 

where, A  is the generated candidate box, B  is 

the real frame, IoU  The higher the value, the better the 

match between the candidate box and the real box. The 

dynamic candidate box adjustment mechanism ensures 

the accuracy of the candidate box by optimizing IoU. 

Through the context-aware RPN, the model can 

generate more accurate and robust candidate boxes in 

environments with complex backgrounds and target 

occlusions, significantly improving detection accuracy. 

where predB  is the predicted box and gtB  is the 

ground truth. This IoU value is then used in a feedback 

loop to iteratively adjust box coordinates. Specifically, 

when IoU falls below a learned threshold, the model 

backpropagates the localization error and refines the 

proposal using the context-enhanced feature map. This 

mechanism tightly integrates the contextual signal with 

the localization loss, enabling the RPN to generate 

higher-quality proposals in cluttered or occluded scenes. 

 

3.3.3 Time series information fusion and dynamic 

target tracking 

The targets in power plants are not only static, but also 

have a large number of dynamic targets that need to be 

tracked. For example, the movement trajectory of 

workers or the operating status of equipment are dynamic 

targets. In order to improve the detection and tracking 

accuracy of dynamic targets, this study introduced a 

temporal information fusion module in Faster R-CNN to 

enhance the model's dynamic target perception ability 

through the temporal relationship between video frames. 

The temporal convolutional network (TCN) is used 

to extract the temporal features of continuous frame 

images and capture the changes of the target in the time 

dimension. TCN can effectively handle dynamic targets, 

especially the movement trajectory of people or 

equipment, ensuring that the model can still accurately 

identify the target when it is deformed or moving. 

The mathematical representation of the temporal 

convolutional network is formula 3 

 
TCN input( )TCN XX =  (3) 

where, 
inputX  is the input continuous frame image 

sequence, TCN  is a temporal convolutional network, 

TCNX  is the extracted temporal feature map. TCN can 

capture the temporal changes between consecutive 

frames through convolution operations, thereby 

enhancing the ability to track dynamic targets. 

By introducing timing information, the model can 

effectively reduce the detection errors caused by target 

motion or deformation, and improve the ability to 

accurately identify and track dynamic targets. 

These temporal features TCNX
 are then fused with 

the current spatial features tF
  from the backbone by 

concatenation along the channel dimension, followed by 

a 1×1 convolution to align dimensions.  The fused 

representation is passed into the Region Proposal 

Network (RPN), enabling it to generate proposals that 

account not only for spatial appearance but also for 

motion continuity across frames.  This integration 

allows the system to better detect and track dynamic 

targets such as moving personnel or rotating equipment 

in power plant environments. 

Temporal Convolutional Network (TCN) was 

chosen over alternatives like GRU and LSTM due to its 

advantages in parallelism and temporal stability. Unlike 

sequential models, TCN allows for simultaneous 

processing of entire sequences, which significantly 

reduces inference latency—a critical requirement for 

real-time safety monitoring systems. Additionally, TCN's 

dilated convolution design enables a wide receptive field 

with fewer layers, allowing it to capture long-term 

temporal dependencies without gradient vanishing 

problems. These characteristics make TCN particularly 

well-suited for modeling the dynamic movements of 

personnel or equipment in power plant scenarios where 

real-time decision-making is essential. 

 

3.3.4 RoI align optimization and refined positioning 

In a power plant environment, the shapes of targets are 
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often irregular and complex. The traditional RoI Pooling 

method cannot accurately align the regional feature maps, 

which may lead to target positioning deviation. To solve 

this problem, this study introduces the RoI Align 

technology, which processes the candidate regions 

through precise bilinear interpolation to ensure that the 

spatial accuracy of the regional feature maps is not lost. 

RoI Align remaps the regional features within the 

candidate box through precise interpolation methods, so 

that each pixel in the feature map can correctly 

correspond to the actual position in the image. This 

refined alignment method significantly improves the 

accuracy of target positioning. The mathematical formula 

is Formula 4 

 
1

ˆ interp( , )
n

ij

i

X X
=

= T  (4) 

where, 
ijX  is the feature in the RoI area, T  is the 

target transformation matrix, X̂  is the feature map after 

RoI Align processing. In this way, RoI Align can improve 

the positioning accuracy of the target without losing 

accuracy. 

where , ,( , )i j i jx y  are the sampling coordinates for 

the grid cell ( , )i j  , and interp   denotes bilinear 

interpolation. The transformation matrix T  mentioned 

earlier is used to map the original RoI box to the 

normalized grid coordinates but does not contribute to a 

summation. This grid-wise interpolation preserves the 

spatial correspondence between features and original 

image regions and eliminates the quantization issues 

present in RoI Pooling, leading to more accurate object 

localization. 

The backbone network is based on ResNet-50, 

extended with three parallel convolutional branches (3×3, 

5×5, 7×7) for multi-scale feature extraction. The context-

aware RPN includes an additional 5×5 convolution layer 

to expand the receptive field. The TCN module comprises 

two 1D dilated convolutional layers (kernel size = 3, 

dilation = [1, 2], channels = 128). RoI Align replaces 

standard RoI Pooling for accurate spatial mapping. 

The training was conducted using the Adam 

optimizer with an initial learning rate of 0.0001, batch 

size of 16, and weight decay of 1e-5. A cosine annealing 

learning rate schedule was applied, and early stopping 

was triggered after 10 epochs without improvement on 

validation loss. 

Due to industrial confidentiality, the full dataset 

cannot be publicly released. However, a sanitized subset 

and implementation code will be made available upon 

request to academic researchers under a data-use 

agreement. 

A deliberate sampling strategy is incorporated 

during dataset construction to maximize variation across 

lighting conditions, equipment types, viewing angles, and 

occlusion levels. Data augmentation techniques such as 

brightness jitter, Gaussian noise injection, random 

occlusion masks, and affine transformations were also 

applied during training to simulate rare and edge-case 

scenarios that improve model generalization in real-

world deployments.  Regarding real-time performance 

improvements, while the core enhancements focus on 

detection accuracy, several optimizations were also 

implemented to reduce computational latency. These 

include shared convolution blocks across scales to 

minimize redundant feature extraction, replacing some 

heavy backbone layers with lightweight convolutional 

units (e.g., depth wise separable convolutions), and 

pruning less contributive channels based on feature map 

sensitivity analysis. These changes reduced inference 

latency by ~18% compared to the original Faster R-CNN, 

as measured on the same hardware configuration, without 

compromising mAP. 

4 Experimental evaluation 

4.1 Experimental setup 
The experiments were conducted on a workstation 

equipped with an NVIDIA RTX 3090 GPU (24GB), Intel 

i9-12900K CPU, and 64GB RAM. The software 

environment included Ubuntu 20.04, Python 3.8, and 

PyTorch 1.13 with CUDA 11.6. Training and inference 

were executed using standard PyTorch data loaders and 

evaluation scripts. The same environment was used 

across all compared models to ensure consistency and 

fairness in performance measurements. 

This experiment aims to comprehensively evaluate 

the performance of the improved Faster R-CNN 

algorithm compared with other advanced target detection 

algorithms in the power plant safety monitoring scenario. 

The experimental design is closely centered on the target 

detection task in the complex environment of the power 

plant, and an extremely rich and comprehensive power 

plant safety monitoring dataset is constructed. This 

dataset covers various and complex scenarios such as 

different lighting conditions (from strong direct light to 

extremely low light), various scales of equipment and 

personnel (small-sized electronic components to large-

scale power generation equipment), complex 

backgrounds (various types of equipment are intertwined, 

pipelines are crisscrossed), and occlusion between targets 

(some equipment is blocked by other objects, and 

personnel are blocked from each other), striving to 

simulate the real power plant environment to the greatest 

extent. 

The experimental baseline indicator selects the 

mean average precision (mAP) as the main evaluation 

indicator. mAP can comprehensively measure the 

performance of the model in detecting different 

categories of targets and fully reflect the detection 

accuracy of the model for various targets. At the same 
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time, the recall rate (Recall) indicator is introduced, 

which is used to evaluate the coverage of the model for 

real targets, that is, the proportion of the number of real 

targets that the model can correctly detect to the number 

of all real targets. In addition, special attention is paid to 

the accuracy of the model in detecting targets of different 

scales, so as to comprehensively measure the model 

performance from multiple dimensions and ensure that 

the evaluation of the algorithm performance is accurate 

and detailed. 

The experimental group was set to the improved 

Faster R-CNN algorithm, which integrates key 

improvement modules such as multi-scale feature 

extraction, context-aware region proposal network (RPN), 

temporal information fusion, and RoI Align optimization. 

The control group selected classic and representative 

object detection algorithms, including the original Faster 

R-CNN [19], which is a classic algorithm in the field of 

object detection and has laid the foundation for the 

improvement of many subsequent algorithms, YOLOv5 

[20], which is widely used in real-time object detection 

scenarios due to its fast detection speed and high 

detection accuracy, and SSD [21], which plays an 

important role in single-stage object detection algorithms. 

These algorithms were trained and tested on exactly the 

same power plant safety monitoring dataset. During the 

experiment, the hyperparameters of each algorithm were 

carefully tuned, and different parameter combinations 

were tried through multiple experiments to ensure that 

each algorithm could achieve its best performance on the 

dataset. By comparing the various indicators of different 

algorithms on the same test set, the advantages and 

possible shortcomings of the improved Faster R-CNN 

algorithm were deeply analyzed. 

Specifically, objects are divided into three groups 

according to their bounding box pixel area: 

Small: area < 32×32 pixels 

Medium: 32×32 ≤ area ≤ 96×96 pixels 

Large: area > 96×96 pixels 

For each group, we compute the mAP using standard 

IoU thresholds (e.g., 0.5 and 0.75), following the COCO 

evaluation protocol. Thus, "Small Obj Acc", "Medium 

Obj Acc", and "Large Obj Acc" as shown in Section 4.2 

and corresponding figures represent scale-specific mean 

average precision, not classification accuracy or raw 

detection rate. 

Training was conducted for a total of 250 epochs; 

however, model performance metrics such as validation 

mAP and loss showed clear signs of convergence after 

approximately 200 epochs. The decision to use 200 

epochs as the stopping point was based on the observation 

that the improvement in validation metrics over the final 

20 epochs was less than 0.5%, indicating saturation. 

Although early stopping was enabled with a patience of 

10 epochs on validation loss, training was manually 

capped at 200 epochs across all configurations to ensure 

consistency and fair comparison between variants 

The power plant safety monitoring dataset 

constructed for this study contains a total of 12,000 

labeled image instances, covering 7 object classes 

relevant to safety scenarios: electrical panels, 

transformers, pipelines, safety helmets, human operators, 

fire sources, and warning signs. Each class has between 

1,200 to 2,500 annotated instances, ensuring balanced 

representation.  The annotations were performed 

manually by domain experts using the LabelImg tool, 

following VOC-format standards.  The dataset is not 

publicly released due to industrial confidentiality 

agreements but may be shared with academic partners 

upon request and approval. 

Lighting conditions in the dataset include four 

levels—bright daylight, moderate indoor, low light, and 

near-dark—simulated using high-dynamic-range (HDR) 

image augmentation and synthetic shadow rendering. 

Occlusion conditions were recreated by overlapping 

equipment and personnel in real-world captures, 

combined with controlled synthetic overlays for testing 

robustness. 

 

Table 2: Distribution of complex environmental conditions in the dataset 

Environmental Condition Subcategory Number of Images Percentage (%) 

Lighting 

Normal 4836 40.30% 

Low light 3576 29.80% 

Strong light/glare 1837 15.30% 

Shadowed 1748 14.60% 

Background Complexity 

Simple 4212 35.10% 

Moderately complex 4832 40.30% 

Highly complex 2956 24.60% 

Occlusion Level 

None 6112 50.90% 

Partial 4213 35.10% 

Severe 1675 14.00% 

Motion State Static 7136 59.50% 
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Moderate movement 3602 30.00% 

Fast movement/blur 1267 10.50% 

 

 

Figure 1: Comprehensive performance comparison of different algorithms on the overall data set 

 

Additionally, class-wise performance metrics were 

computed to provide more granular insight into detection 

behavior. The improved Faster R-CNN model achieved 

the following class-wise precision and recall scores: 

 

Electrical Panel: Precision 0.88, Recall 0.85 

Transformer: Precision 0.84, Recall 0.81 

Pipelines: Precision 0.86, Recall 0.83 

Safety Helmets: Precision 0.89, Recall 0.87 

Human Operators: Precision 0.90, Recall 0.88 

Fire Sources: Precision 0.80, Recall 0.76 

Warning Signs: Precision 0.83, Recall 0.80 

 

These results confirm high per-class consistency, 

with slightly lower scores for fire sources and warning 

signs, likely due to their smaller size and frequent 

occlusions. These four categories—lighting, background 

complexity, occlusion level, and motion state—were 

annotated using a combination of manual labeling and 

heuristic image scoring based on entropy, contrast 

variation, and optical flow analysis. As shown in Table 2. 

These distributions ensure a balanced yet realistic 

representation of industrial safety monitoring conditions. 

For instance, low light and strong glare were created 

using high dynamic range augmentation, while occlusion 

levels were defined by object overlap ratios. Motion 

categories were inferred via optical flow thresholds and 

manual video review. 

 

4.2 Results 
As shown in Figure 1, the test results on the overall data 

set show that the improved Faster R-CNN algorithm has 

obvious advantages in all key indicators. Figure 1 

illustrates overall mAP, Recall, and scale-specific mAPs 

on a unified y-axis; these metrics reflect different 

detection aspects and are not intended for direct vertical 

value comparison. Its mean average precision (mAP) 

reaches 0.85, which is significantly ahead of the original 

Faster R-CNN's 0.72, YOLOv5's 0.78, and SSD's 0.69. 

This means that the improved algorithm has excellent 

accuracy in the comprehensive detection of various 

targets, and can more accurately identify targets such as 

equipment, personnel, and potential safety hazards in the 

power plant environment. In terms of recall rate, the 

improved Faster R-CNN is 0.82, which is also higher than 

other algorithms, indicating that the algorithm can more 

comprehensively detect the real targets in the data set and 

reduce missed detections. In terms of the detection 

accuracy of targets of different scales, the improved 

algorithm has a small target detection accuracy of 0.78, a 

large target detection accuracy of 0.88, and a medium 

target detection accuracy of 0.84, all of which are higher 

than the control group algorithm. This fully demonstrates 

the effectiveness of the multi-scale feature extraction 

module in the improved algorithm, which can adapt to the 

features of targets of different scales and improve 

detection accuracy. 
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Figure 2: Performance comparison of different algorithms in small target detection scenarios 

 

 

Figure 3: Performance comparison of different algorithms in large target detection scenarios 
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As shown in Figure 2, the improved Faster R-CNN 

algorithm performs outstandingly for the extremely 

challenging task of small target detection. In Figure 2, 

mAP, Precision at different IoU thresholds, and Recall are 

plotted together for visualization compactness, but their 

numerical values represent different evaluation criteria 

and should be interpreted separately. Its mean average 

precision (mAP) reaches 0.78, which is significantly 

higher than the original Faster R-CNN's 0.65, YOLOv5's 

0.70, and SSD's 0.60. In terms of recall rate, the improved 

algorithm is 0.75, which is also ahead of other algorithms, 

indicating that the improved algorithm can more 

effectively detect small targets and reduce the number of 

missed detections of small targets. Under different IoU 

thresholds, the improved algorithm has an accuracy of 

0.85 at a 0.5 IoU threshold and an accuracy of 0.72 at a 

0.75 IoU threshold, both of which are higher than the 

control group algorithm, indicating that the improved 

algorithm can maintain high detection accuracy under 

different strict detection standards. In addition, under 

different lighting conditions, the mAP fluctuation range 

of the improved algorithm for small target detection is 

only ±0.03, while other algorithms have larger fluctuation 

ranges, such as ±0.08 for the original Faster R-CNN, 

±0.06 for YOLOv5, and ±0.10 for SSD. This shows that 

the improved algorithm has better robustness to lighting 

changes and can stably detect small targets under 

different lighting conditions, thanks to the improved 

adaptability of its modules such as multi-scale feature 

extraction and context-aware RPN to complex 

environments. 

As shown in Figure 3, in the large target detection 

scenario, the improved Faster R-CNN algorithm also 

shows excellent performance. Its mean average precision 

(mAP) is as high as 0.88, far exceeding the original Faster 

R-CNN's 0.75, YOLOv5's 0.82, and SSD's 0.72. In terms 

of recall rate, the improved algorithm is 0.85, which is 

higher than other algorithms, indicating that it can detect 

large targets more comprehensively. In the case of target 

occlusion, the detection accuracy of the improved 

algorithm is 0.82, while the original Faster R-CNN is 

0.65, YOLOv5 is 0.70, and SSD is 0.60. This shows that 

the improved algorithm can better handle the situation of 

large target occlusion through the context-aware RPN 

and temporal information fusion mechanism, and 

accurately identify the target features of the occluded part. 

In the complex background, the detection accuracy of the 

improved algorithm is 0.86, which is also ahead of other 

algorithms, indicating that it has stronger anti-

interference ability against complex backgrounds. In 

addition, the improved algorithm performs “high” in 

terms of consistency in detection accuracy of large targets 

of different scales, that is, for large targets of different 

sizes, its detection accuracy fluctuates less and can stably 

maintain a high detection level, while the consistency 

performance of other algorithms is relatively poor, which 

further proves the superiority of the improved algorithm 

in dealing with large target detection. 

As shown in Figure 4, facing the complex scene of 

low light, the improved Faster R-CNN algorithm has 

obvious advantages. Its mean average precision (mAP) 

reaches 0.75, which is higher than 0.60 of the original 

Faster R-CNN, 0.65 of YOLOv5 and 0.55 of SSD. Figure 

4 combines mAP, Recall, and scale-specific mAPs across 

algorithms on a shared axis; the plotted heights illustrate 

trends rather than enable direct metric-to-metric 

numerical comparison. In terms of recall rate, the 

improved algorithm is 0.70, which is also ahead of other 

algorithms, which means that in low light environment, 

the improved algorithm can detect various types of 

targets more effectively. In the detection of targets of 

different scales, the improved algorithm has a small target 

detection accuracy of 0.70, a large target detection 

accuracy of 0.80, and a medium target detection accuracy 

of 0.74 in low light, all of which are higher than the 

control group algorithm. This is mainly due to the 

context-aware region proposal network (RPN), which 

enhances the ability to capture target features in low light 

environment by introducing background information of 

the surrounding area of the target, thereby improving the 

detection accuracy. In contrast, the performance of other 

algorithms in low light scenes is more obvious, indicating 

that the improved algorithm has better adaptability to low 

light environment. 
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Figure 4: Performance comparison of different algorithms in low-light scenes 

 

 

Figure 5: Performance comparison of different algorithms in target occlusion scenarios 
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As shown in Figure 5, in the target occlusion 

scenario, the improved Faster R-CNN algorithm 

performs well. Its mean average precision (mAP) is 0.70, 

which is higher than the original Faster R-CNN's 0.55, 

YOLOv5's 0.60, and SSD's 0.50. In terms of recall rate, 

the improved algorithm is 0.65, which is ahead of other 

algorithms, indicating that the improved algorithm can 

detect targets more comprehensively when the target is 

occluded. The lines in Figure 5 present mAP, Recall, and 

IoU-specific precision for different occlusion levels; 

although displayed on the same axis for clarity, these 

metrics convey distinct performance dimensions. For 

partially occluded targets, the detection accuracy of the 

improved algorithm is 0.75, while the original Faster R-

CNN is 0.60, YOLOv5 is 0.65, and SSD is 0.55. For 

severely occluded targets, the detection accuracy of the 

improved algorithm is 0.60, which is also higher than 

other algorithms. In addition, the difference in detection 

accuracy of targets of different scales under target 

occlusion is "small", that is, regardless of the size of the 

target, the detection accuracy is relatively stable when it 

is occluded, while the accuracy of other algorithms varies 

greatly. This is due to the context-aware RPN and 

temporal information fusion mechanism of the improved 

algorithm. The context-aware RPN captures the 

background information around the target by expanding 

the receptive field and reduces false detections caused by 

occlusion. The temporal information fusion mechanism 

uses the temporal relationship between video frames and 

can still make accurate judgments based on the 

information of the previous and next frames when the 

target is occluded, thereby improving the detection 

performance of targets of different scales in target 

occlusion scenarios. 

 

Figure 6: Performance comparison of different algorithms in dynamic target detection scenarios 

 

As shown in Figure 6, in the dynamic target 

detection scenario, the improved Faster R-CNN 

algorithm has significant advantages. Its mean average 

precision (mAP) reaches 0.80, which is higher than the 

original Faster R-CNN's 0.68, YOLOv5's 0.73, and SSD's 

0.65. In terms of recall rate, the improved algorithm is 

0.78, which is ahead of other algorithms, indicating that 

the improved algorithm can more comprehensively cover 

real targets when detecting dynamic targets. When the 

target moves quickly, the detection accuracy of the 

improved algorithm is 0.75, while the original Faster R-

CNN is 0.60, YOLOv5 is 0.65, and SSD is 0.55. When 

the target direction changes, the detection accuracy of the 

improved algorithm is 0.78, which is also higher than 

other algorithms. In addition, the improved algorithm is 

"high" in terms of the stability of dynamic target 

detection accuracy over time, that is, over time, the 

detection accuracy of dynamic targets fluctuates less, and 
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it can continuously and stably detect dynamic targets, 

while other algorithms have relatively poor stability. This 

is mainly due to the temporal information fusion module 

introduced in the improved algorithm. By using the 

temporal convolutional network (TCN) to extract the 

temporal features of continuous frame images, it can 

effectively capture the changes of the target in the time 

dimension, so that it can still accurately identify the target 

when it moves or deforms, greatly improving the 

dynamic target detection performance. 

 

Table 3: Performance comparison of the improved Faster R-CNN algorithm under the action of different modules 

Improved 

Modules 

Mean 

Average 

Precision 

(mAP) 

Recall 

Small target 

detection 

accuracy 

improvement 

Improvement 

in large target 

detection 

accuracy 

Improvement in 

detection 

accuracy under 

complex 

backgrounds 

Multi-scale 

feature 

extraction 

0.78 0.75 +0.10 +0.05 +0.06 

Context-aware 

RPN 
0.80 0.76 +0.08 +0.06 +0.08 

Time series 

information 

fusion 

0.82 0.77 +0.06 +0.08 +0.05 

RoI Align 

Optimization 
0.83 0.78 +0.05 +0.07 +0.04 

All module 

improvements 
0.85 0.82 +0.13 +0.13 +0.16 

 

As shown in Table 3, through the separate evaluation 

of different modules of the improved Faster R-CNN 

algorithm, it can be clearly seen that each module plays 

an important role in improving performance. In terms of 

mean average precision (mAP), the multi-scale feature 

extraction module improves mAP to 0.78, the context-

aware RPN improves to 0.80, the temporal information 

fusion improves to 0.82, the RoI Align optimization 

improves to 0.83, and the full module improves to the 

highest 0.85. The recall rate also gradually improves with 

the improvement of the module, from 0.75 for multi-scale 

feature extraction to 0.82 for the full module 

improvement. In terms of the improvement of small 

target detection accuracy, the multi-scale feature 

extraction module improves by 0.10, the context-aware 

RPN improves by 0.08, the temporal information fusion 

improves by 0.06, the RoI Align optimization improves 

by 0.05, and the improvement of the full module 

improves by 0.13. In terms of the improvement of large 

target detection accuracy, each module also makes a 

positive contribution, and the improvement of the full 

module is 0.13. In terms of the improvement of detection 

accuracy under complex backgrounds, the improvement 

of the whole module is 0.16. This fully demonstrates that 

the modules work together, the multi-scale feature 

extraction module enhances the feature capture capability 

of targets of different scales, the context-aware RPN 

improves the processing capability of complex 

backgrounds and target occlusion, the temporal 

information fusion improves the detection performance 
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of dynamic targets, and the RoI Align optimization 

ensures the accuracy of target positioning, which together 

significantly improve the algorithm performance. 

To eliminate ambiguity, we clarify that each 

individual row in Table 3—representing "Multi-scale 

feature extraction", "Context-aware RPN", "Time series 

information fusion", and "RoI Align optimization" — 

shows the performance of the model when only that 

specific module is added on top of the original Faster R-

CNN, with no other enhancements applied. The "+ 

improvement" values in the table are calculated relative 

to the baseline performance of the original Faster R-CNN, 

which achieved an mAP of 0.72 and Recall of 0.70. The 

"All module improvements" row reflects the full 

configuration with all enhancements combined. This 

modular evaluation design allows us to isolate the impact 

of each module independently while also validating their 

cumulative effectiveness when integrated together. 

The baseline model (original Faster R-CNN) has 

approximately 41.5 million parameters and requires 

about 7.6 hours to train. When the multi-scale feature 

extraction module is added, the parameter counts 

increases to 45.2 million, with training time rising to 8.5 

hours. The context-aware RPN raises the parameter count 

to 47.1 million and requires 8.9 hours. The temporal 

information fusion module contributes a moderate 

increase to 48.6 million parameters and 9.5 hours of 

training. The RoI Align optimization has minimal 

parameter impact but slightly increases training time to 

9.8 hours due to finer interpolation operations. When all 

modules are combined, the total parameter count reaches 

50.3 million, and training takes approximately 10.3 hours. 

These incremental costs are reasonable given the 

substantial gains in mAP (+13%) and recall (+12%), 

demonstrating that the improvements are efficient in 

terms of performance-to-cost ratio. 

As shown in Table 4, the test results under 

backgrounds of different complexity show that the 

improved Faster R-CNN algorithm has obvious 

advantages in all kinds of backgrounds. Under simple 

backgrounds, its mean average precision (mAP) reaches 

0.90 and the recall rate is 0.88. 

Additionally, the background complexity levels 

were determined using a combination of manual 

annotation and heuristic scoring. Annotators assessed 

each image based on factors such as object density, 

overlapping regions, presence of structural clutter (e.g., 

pipes, cables), and lighting variation. A weighted 

heuristic score was calculated and used to classify scenes 

into three levels: 

Simple: Minimal overlapping, clean background, 

consistent lighting. 

Moderately Complex: Moderate overlap and mixed 

lighting with some background equipment. 

Highly Complex: High visual clutter, occlusion, and 

low-contrast or noisy regions. 

This classification ensures consistency and 

reproducibility of evaluation under different 

environmental complexities. 

From Table 5, the improved Faster R-CNN 

algorithm shows relatively good performance on 

different hardware platforms. On the NVIDIA RTX 3090 

GPU, its mAP reaches 0.85 and the recall rate is 0.82. On 

the NVIDIA RTX 2080 Ti GPU, the mAP is 0.83 and the 

recall rate is 0.80. Even on the Intel Xeon CPU, the mAP 

can reach 0.75 and the recall rate is 0.70. Compared with 

other algorithms, the improved Faster R-CNN can 

maintain high detection accuracy and recall rate under 

different hardware conditions, reflecting the good 

adaptability of the algorithm to different hardware 

platforms. However, the performance of the original 

Faster R-CNN, YOLOv5 and SSD fluctuates greatly on 

different hardware platforms, and the overall 

performance is lower than that of the improved Faster R-

CNN algorithm. 

 

Table 4: Performance comparison of different algorithms under different complexity backgrounds 

algorithm 
Simple 

Background 

Moderately 

Complex 

Background 

Highly 

Complex 

Background 

Simple 

background 

recall 

Moderately 

complex 

background 

recall 

Highly 

complex 

background 

recall 

Improving 

Faster R-

CNN 

0.90 0.85 0.80 0.88 0.83 0.78 

Original 

Faster R-

CNN 

0.80 0.72 0.65 0.78 0.70 0.60 

YOLOv5 0.85 0.78 0.70 0.82 0.75 0.65 

SSD 0.75 0.69 0.60 0.73 0.65 0.55 
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Table 5: Performance comparison of different algorithms on different hardware platforms 

algorithm 

Nvidia RTX 

3090 GPU 

mAP 

Nvidia RTX 

2080 Ti GPU 

mAP 

Intel Xeon 

CPU mAP 

Nvidia RTX 

3090 GPU 

recall rate 

Nvidia RTX 

2080 Ti GPU 

recall rate 

Intel Xeon 

CPU Recall 

Rate 

Improving 

Faster R-

CNN 

0.85 0.83 0.75 0.82 0.80 0.70 

Original 

Faster R-

CNN 

0.72 0.70 0.60 0.70 0.68 0.55 

YOLOv5 0.78 0.76 0.65 0.75 0.73 0.60 

SSD 0.69 0.67 0.58 0.65 0.63 0.53 

 

On an NVIDIA RTX 3090 GPU, the improved 

Faster R-CNN achieves an average inference latency of 

48 ms/frame with ~220W power draw. On RTX 2080 Ti, 

latency increases to 57 ms/frame with ~200W, and on 

Intel Xeon CPU, latency reaches 189 ms/frame with 

~135W consumption. Compared to YOLOv5, which runs 

at ~24 ms/frame on RTX 3090 but with lower mAP, our 

model demonstrates a trade-off between accuracy and 

speed that favors safety-critical detection accuracy. In 

terms of deployment suitability, the improved model 

exceeds the memory and compute capacity of edge 

devices such as Jetson Nano or TX2, which are limited in 

both memory and power. On Jetson Xavier, the model can 

run inference with trimmed architecture (e.g., shallower 

backbone), achieving ~95 ms/frame latency but with 

slight accuracy degradation (~2-3% drop in mAP). 

As shown in Table 6, with the increase of the number 

of training rounds, the performance of the improved 

Faster R-CNN algorithm gradually improves. When the 

number of training rounds increases to 100, the mAP is 

0.78, the recall rate is 0.75, and the accuracy of object 

detection at all scales is significantly improved. When the 

number of training rounds increases to 150, the mAP 

reaches 0.83 and the recall rate is 0.80. When the number 

of training rounds reaches 200, the mAP reaches 0.85 and 

the recall rate is 0.82. At this time, the accuracy of object 

detection at all scales is basically stable, with a small 

object detection accuracy of 0.78, a large object detection 

accuracy of 0.88, and a medium object detection accuracy 

of 0.84. When the number of training rounds reaches 250, 

the performance indicators remain basically unchanged, 

indicating that the model has basically converged around 

200 rounds, and further increasing the number of training 

rounds has little effect on performance improvement. 

 

Table 6: Performance changes of the improved Faster R-CNN algorithm under different training rounds 

Number 

of 

training 

rounds 

Mean 

Average 

Precision 

(mAP) 

Recall 

Small 

target 

detection 

accuracy 

Large 

object 

detection 

accuracy 

Moderate 

object 

detection 

accuracy 

50 0.70 0.68 0.65 0.75 0.70 

100 0.78 0.75 0.72 0.80 0.76 

150 0.83 0.80 0.78 0.85 0.82 

200 0.85 0.82 0.78 0.88 0.84 
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Number 

of 

training 

rounds 

Mean 

Average 

Precision 

(mAP) 

Recall 

Small 

target 

detection 

accuracy 

Large 

object 

detection 

accuracy 

Moderate 

object 

detection 

accuracy 

250 0.85 0.82 0.78 0.88 0.84 

 

During the initial 100 epochs, the model exhibited a 

sharp reduction in loss, reflecting rapid learning and 

feature adjustment. Between epochs 100 and 200, the loss 

continued to decrease but at a slower rate, indicating that 

the model was approaching convergence. After epoch 

200, the loss values stabilized with minimal fluctuations, 

confirming that further training produced negligible 

performance gains. This loss trajectory aligns with the 

plateau observed in mAP and recall, validating that 200 

epochs is an effective training cutoff for this 

configuration. 

To further validate the credibility of the results and 

support the claims of algorithmic superiority, we 

conducted statistical analysis using multiple repeated 

runs (n = 5) for each algorithm under each test scenario. 

The mean and standard deviation (SD) of the key 

performance indicators—mAP and Recall—were 

recorded. For example, under the overall test dataset, the 

improved Faster R-CNN achieved an average mAP of 

0.85 (±0.006) and Recall of 0.82 (±0.005), while the 

original Faster R-CNN achieved 0.72 (±0.007) and 0.70 

(±0.008), respectively. A two-tailed paired t-test was 

conducted between the improved algorithm and each 

baseline model. The p-values for differences in mAP and 

Recall across all major scenarios (e.g., small target, 

occlusion, low-light) were consistently < 0.01, indicating 

that the observed improvements are statistically 

significant. 

 

4.3 Discussion 
The improved Faster R-CNN algorithm demonstrates 

strong overall performance, surpassing baseline models 

in most evaluation metrics across diverse scenarios. 

However, in certain cases—such as moderately complex 

backgrounds or large object detection—YOLOv5 

achieves comparable or slightly better results. These 

exceptions highlight the trade-offs in performance under 

specific conditions. The improved mAP observed in this 

study can be attributed to the complementary 

contributions of each enhancement module. The multi-

scale feature extraction module increases the model's 

ability to detect objects of varying sizes, especially small 

or distant targets, by preserving fine-grained spatial 

details. The context-aware RPN enhances proposal 

generation by incorporating surrounding environmental 

features, which is particularly beneficial in cluttered 

industrial backgrounds. The temporal convolutional 

network (TCN) strengthens the model’s ability to track 

dynamic targets by leveraging information across video 

frames, effectively mitigating issues caused by temporary 

occlusion or motion blur. RoI Align further refines 

localization accuracy by eliminating quantization errors 

during feature map pooling. However, under extreme 

conditions—such as simultaneous severe occlusion and 

low lighting—the model still shows some degradation in 

both mAP and recall. This indicates the need for more 

advanced modules capable of robust feature extraction in 

low-visibility and high-noise environments. In terms of 

practical deployment, although the improved model 

performs well on various hardware platforms, latency 

remains a concern for real-time systems. Integration with 

existing power plant safety systems may also require 

interface adaptation and real-time synchronization 

protocols. Lastly, while the dataset used in this study is 

designed to reflect diverse power plant scenarios, broader 

generalizability should be validated through testing on 

datasets from different industrial domains, such as 

chemical plants or mining operations, to ensure the 

model’s robustness in other complex environments. 

5 Conclusion 

This study focuses on the optimization of target detection 

algorithms in power plant safety monitoring platforms. 

By improving the Faster R-CNN algorithm through 

multi-scale feature extraction, context-aware RPN, 

temporal information fusion and RoI Align optimization, 

its target detection performance in complex power plant 

environments is effectively improved. Experimental 

results show that the improved algorithm is significantly 

better than classic algorithms such as the original Faster 

R-CNN, YOLOv5 and SSD in key indicators such as 

average precision, recall rate and detection accuracy of 

targets at different scales. In different scenarios such as 

low light, target occlusion, dynamic target detection and 

backgrounds of different complexity, the improved 

algorithm shows stronger adaptability and accuracy. At 

the same time, it can maintain good performance on 

different hardware platforms, and the performance can be 

effectively optimized by reasonably setting the number of 

training rounds. However, the research still has 

limitations, such as the experimental data set fails to 
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cover all actual scene changes, and factors such as data 

transmission delay need to be considered in actual 

applications. In the future, it is necessary to further 

explore actual deployment optimization strategies to 

promote the widespread application of this algorithm in 

power plant safety monitoring. 

While the improved algorithm consistently performs 

better in terms of overall mAP, small object detection, and 

robustness under low light or occlusion, some 

comparative results show near parity with YOLOv5 in 

large object detection and moderately complex 

backgrounds. Therefore, the improvements are 

substantial but not uniformly superior across all metrics. 
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