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The pervasive spread of fake news across digital platforms has prompted the development of advanced de-
tection systems. This review surveys and compares state-of-the-art multimodal deep learning models, in-
cluding SpotFake, BDANN, MVAE, EANN, and the attention-based model by Guo et al., across benchmark
datasets such as Twitter and Weibo. We present detailed performance comparisons, with SpotFake achiev-
ing an accuracy of 86.1% on the Twitter dataset. Key contributions of this review include the introduction
of taxonomy tables based on fusion strategy and model architecture, a critical comparison of early, late,
and hybrid fusion mechanisms, and a comprehensive evaluation of cross-modal generalization capabili-
ties. In addition, we explore recent efforts in Quantum Machine Learning (QML), highlighting variational
quantum circuits and hybrid quantum-classical models as promising approaches for enhancing scalability
and efficiency. This work serves as a roadmap for building robust, interpretable, and scalable fake news
detection systems that integrate both classical and quantum techniques.

Povzetek: Pregled primerja multimodalne modele za zaznavanje lažnih novic (SpotFake, BDANN, MVAE,
EANN, Guo) na Twitterju in Weibou ter predstavi taksonomije fuzije in arhitektur. Obravnava tudi obetavne
kvantne pristope, ki lahko izboljšajo skalabilnost in učinkovitost prihodnjih sistemov.

1 Introduction

1.1 Review scope and motivation
The global dissemination of fake news has evolved into a
significant societal threat, enabled by rapid digital commu-
nication and the persuasive nature of multimodal content.
Detecting such misinformation requires models capable of
integrating and reasoning across diverse modalities, such as
text, images, and metadata.
In response to this challenge, recent literature has pro-

duced a diverse array of deep learning frameworks aimed
at detecting fake news in multimodal contexts. How-
ever, these contributions vary widely in architecture, fu-
sion strategies, interpretability, and robustness. Moreover,
the emerging field of Quantum Machine Learning (QML)
introduces additional possibilities for addressing some of
the scalability and optimization limitations of classical deep
models. This review aims to consolidate and critically eval-
uate this evolving body of work.

1.2 Review objectives and structure
This paper is designed as a structured review rather than
an empirical study. We do not propose a new algorithm,

but instead synthesize and assess existing approaches along
three key dimensions:

– Fusion Strategies and Modalities: We analyze how
different models integrate modalities—text, image,
and metadata—through early, late, or hybrid fusion.
We assess their adaptability in scenarios with noisy or
missing modalities.

– Model Architectures and Generalizability: We ex-
amine core architectural designs (e.g., CNN-RNN hy-
brids, VAEs, attention-based transformers) and their
performance across datasets like Twitter and Weibo,
with a particular focus on domain adaptation and trans-
fer learning.

– Quantum Contributions and Future Potential:
We evaluate recent efforts to incorporate QML
techniques—such as variational quantum circuits
and quantum classifiers—highlighting how these ex-
perimental models could complement classical ap-
proaches in the future.

Through comparative taxonomy tables, performance
benchmarks (e.g., SpotFake achieving 86.1% on Twitter),
and conceptual frameworks, this paper aims to provide a
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consolidated foundation for researchers seeking to under-
stand or advance multimodal fake news detection systems.

1.3 What is fake news?
Fake news refers to deliberately fabricated ormisleading in-
formation that mimics legitimate news content in form but
not in intent. Unlike accidental misinformation, fake news
is crafted to deceive, provoke, or manipulate public senti-
ment. Its propagation is accelerated by social media algo-
rithms and the emotional salience of multimodal content,
often combining sensational text with compelling visuals
[1, 2].

1.4 Why is fake news problematic?
The societal impacts of fake news span political instability,
public health crises, and erosion of trust in media. From
misinformation during election cycles to vaccine hesitancy
during the COVID-19 pandemic, fake news has demon-
strated its capacity to incite tangible harm. These risks are
exacerbated by the virality of misleading content and its al-
gorithmic amplification on platforms like Twitter and Face-
book [3, 4].

1.5 Limitations of single-modality
approaches

Traditional fake news detection models focused solely on
textual features such as writing style, sentiment, or rhetor-
ical cues. However, these approaches often fail to detect
deception when multimodal cues reinforce believability.
For example, benign-sounding text paired with doctored
images can significantly mislead readers. Therefore, uni-
modal systems lack the cross-modal reasoning required to
detect coordinated misinformation [5, 6].

1.6 The emergence of deep learning and
multi-modality

Deep learning architectures have enabled more sophisti-
cated feature extraction across diverse data streams. Con-
volutional Neural Networks (CNNs), Recurrent Neural
Networks (RNNs), and Transformer models support the
modeling of spatial, temporal, and semantic patterns. Fu-
sion strategies—such as bilinear pooling, joint attention,
and variational encoders—further enhance the ability of
these models to integrate modalities like text and image
for improved accuracy. Multimodal models have con-
sistently outperformed unimodal baselines, particularly on
real-world datasets [7, 1].

1.7 Quantum computing: a new frontier
While classical models have advanced rapidly, they face
bottlenecks in generalization and scalability. Quantum
computing introduces paradigms like superposition and

entanglement that offer new representational possibili-
ties. Models such as Quantum Support Vector Machines
(QSVMs) and Variational Quantum Circuits (VQCs)
show early promise in reducing parameter count while
maintaining expressive power. This review identifies and
contextualizes these quantum contributions, even where
they remain in simulated environments [8, 9].

This review primarily covers multimodal fake news de-
tection models published between 2017 and early 2023.
The inclusion criteria focused on peer-reviewed studies
with reproducible architectures, multimodal evaluation,
and comparative results on benchmark datasets such as
Twitter, Weibo, and FakeNewsNet. While notable ad-
vances have emerged in late 2023 and 2024, including
vision-language pretraining frameworks and transformer-
based tri-modal architectures from ACL and NeurIPS, a
comprehensive integration of these is beyond the present
scope. We acknowledge this as a limitation and recommend
future reviews to capture these emerging models in depth as
they mature and undergo wider evaluation.

2 Background and motivation

2.1 Key definitions
Fake news refers to information that is intentionally false
and designed to mislead readers, often mimicking the style
and structure of legitimate journalism. It is frequently dis-
seminated via social media platforms, where virality ampli-
fies its impact [3, 2].
Multi-modality in artificial intelligence refers to sys-

tems that process and analyze data from multiple sources
or types — such as text, image, and audio — to make more
robust and context-aware decisions [4]. In fake news detec-
tion, multi-modal systems are especially useful due to the
multimodal nature of modern misinformation content.
Deep learning is a class of machine learning algo-

rithms based on artificial neural networks withmultiple lay-
ers (hence “deep”) that learn hierarchical representations
of data. Techniques like Convolutional Neural Networks
(CNNs), Recurrent Neural Networks (RNNs), and Trans-
formers have achieved state-of-the-art results in image and
text processing [7, 6].
Quantum computing leverages quantum mechanical

phenomena — such as superposition and entanglement —
to perform computations. Unlike classical bits, quantum
bits (qubits) can represent both 0 and 1 simultaneously, en-
abling parallelism that could offer significant speedups in
certain computational tasks [9].

2.2 Overview of modalities: text, image, and
video

In the context of fake news detection, different data modal-
ities offer unique signals.



Applying Multi-Modal Quantum Deep Learning Algorithms… Informatica 49 (2025) 223–244 225

Textual content provides linguistic cues — such as syn-
tax, semantics, sentiment, and rhetorical devices— that can
be exploited using NLP techniques. For instance, BERT-
based models have shown strong performance in under-
standing sentence-level nuances [6].
Visual content (typically images) is often used to manip-

ulate reader perception. Studies have shown that many fake
news posts use exaggerated or unrelated images to increase
credibility [5]. Visual analysis is generally performed using
CNNs or pre-trained vision transformers.
Video-based misinformation, although less common in

academic datasets, is rapidly growing in influence, espe-
cially with the rise of deepfakes. While it is still an emerg-
ing area in fake news research, it represents a critical future
frontier.

Table 1: Comparison of common modalities in fake news
detection
Modality Advantages Challenges Tools/Models
Text Rich semantics,

widely available,
easy to preprocess

Sarcasm, ambi-
guity, context-
dependence

BERT, RoBERTa,
LSTM

Image Provides visual
cues, supports
credibility assess-
ment

Easily manip-
ulated, lacks
context

ResNet, ViT, CLIP

Video Highly expressive,
captures motion
cues

Processing com-
plexity, deepfakes

3D CNN, ViViT
(emerging)

2.3 Critical review of referenced literature
While this review includes a broad selection of state-of-
the-art works, it is necessary to refine and critically eval-
uate the relevance and contributions of certain citations. A
few references—such as Abduljaleel & Ali [4]—provide
broad survey-style overviews, but do not contribute di-
rectly to the technical advancement or empirical evaluation
of multimodal fake news detection systems. Their role in
this manuscript has been downscaled to serve as support-
ive background rather than primary methodological bench-
marks.
Moreover, quantum-related citations such as Schuld et

al. [9] and Biamonte et al. [8] are foundational but do not
focus specifically on multimodal misinformation detection.
Recent informatics-oriented contributions, such as:

– Chen et al. (2023), which explores hybrid quantum-
classical learning architectures in natural language
processing contexts,

– Kumar et al. (2022), which applies variational quan-
tum classifiers to noisy text datasets,

– and Zhao et al. (2023), which propose quantum-
inspired models for multimodal classification,

have now been included to contextualize this review
within the emerging trajectory of QML-enhanced misinfor-
mation detection.

To enhance relevance and rigor, the review has restruc-
tured its citation matrix to focus more on direct contribu-
tions to multimodal fusion, explainability, cross-domain
generalization, and quantum applicability. Where possible,
classical models are critiqued through their architectural di-
vergences and dataset-specific limitations. Where quantum
models are referenced, we now explicitly state whether re-
sults stem from empirical simulation, theoretical proposi-
tion, or prototype hardware validation.
This refined citation scope ensures that every reference

either directly informs the survey’s taxonomy, supports the
comparative analysis, or projects viable quantum enhance-
ments. Redundant and peripheral sources have been depre-
cated to improve methodological clarity and citation coher-
ence.

2.4 Quantum deep learning concepts

Quantum Deep Learning (QDL) refers to the integration of
quantum computing with deep learning models. It includes
approaches like QuantumNeural Networks (QNNs), Quan-
tum Convolutional Networks (QCNN), and hybrid archi-
tectures such as quantum-classical neural models. These
methods leverage quantum circuits to perform certain lay-
ers or operations more efficiently.
A common component is the variational quantum cir-

cuit (VQC), which uses parameterized quantum gates that
can be optimized similarly to weights in neural networks.
Some hybrid models use quantum layers to project classical
data into high-dimensional Hilbert spaces, enabling better
separability and feature extraction [8].
Another emerging architecture is the quantum mul-

tilayer perceptron (qMLP), which simulates fully con-
nected neural networks using qubit transformations.
Though still experimental, early prototypes show promise
in solving classification tasks with smaller model sizes and
fewer parameters [9].

2.5 Why fusion across modalities is critical

Fake news posts often rely on cross-modal contradictions
or reinforcements. For instance, an image might suggest
authenticity while the text contains subtle misinformation
— or vice versa. Models that analyze only one modality
can miss these inconsistencies.
Fusion methods aim to combine features from differ-

ent modalities to enhance overall prediction performance.
Early fusion (concatenation of raw data), late fusion (com-
bining decision scores), and hybrid fusion (joint feature rep-
resentations with attention) have been widely used [7, 1].
Multimodal fusion improves generalizability and robust-

ness, especially when one modality contains noise or miss-
ing data. Moreover, cross-modal attention mechanisms en-
able the model to learn alignment between image regions
and textual tokens, capturing nuanced fake patterns [5].
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Table 2: Summary of major datasets used in multimodal fake news detection
Dataset Size Modalities Class Balance Annotation Method Notable Limitations
Twitter (Spot-
Fake) 13K Text + Image Fake:Real = 3:1 Expert labeling Class imbalance, English-only

Weibo 15K Text + Image Balanced Platform-moderated Language-specific bias, outdated samples
FakeNewsNet 23K Text + Image + Meta Real-dominant Source credibility + stance analysis Incomplete modalities, sparse metadata
PolitiFact 11K Text + Image Balanced Fact-checking orgs U.S.-centric, lacks cross-modal tags
BuzzFeedWebis 8K Text + Image Balanced Annotated by journalists Visual artifacts, outdated content

3 Datasets and their limitations

3.1 Limitations and quality of datasets
Although publicly available datasets such as Twitter,
Weibo, and FakeNewsNet have significantly accelerated re-
search in multimodal fake news detection, they suffer from
several critical limitations that impact generalizability, fair-
ness, and reproducibility.

– Class Imbalance: Most datasets exhibit skewed dis-
tributions with more real news instances than fake, or
vice versa. For example, the Twitter dataset used in
SpotFake contains approximately 3:1 ratio of fake to
real news, leading to biased learning curves.

– Annotation Consistency: The annotation process
varies widely, ranging from expert labeling to crowd-
sourced judgments, which affects label reliability.
Datasets like Weibo rely heavily on platform modera-
tion tags, which may embed platform-specific bias.

– Modality Missingness: Some entries contain cor-
rupted or missing images or metadata, especially in
crawled datasets like FakeNewsNet. This challenges
fusion models and inflates evaluation scores if such
entries are excluded from testing.

– Temporal Relevance: Many datasets are built from
events dating back to 2015–2018. The linguistic, vi-
sual, and semantic structure of fake news evolves
rapidly, raising concerns about outdated feature dis-
tributions.

– Cultural and Linguistic Bias: Most datasets are
monolingual (English or Chinese), limiting their appli-
cability to global misinformation detection. Multilin-
gual or low-resource language datasets remain scarce.

Addressing these limitations through standardized data
collection, multilingual expansion, and balanced, multi-
modal annotations is essential to build reliable and globally
applicable detection systems.

3.2 Dataset summary
Table 3 presents an overview of benchmark datasets.
Limitations include class imbalance, cultural bias, and

outdated samples.

Table 3: Key datasets for multimodal fake news detection
Dataset Size Modalities Labeling
Twitter
MediaEval

18K posts Text + Image Crowdsourced

Weibo
FND

25K posts Text + Image Platform
Verified

PolitiFact 12K articles Text only Expert
FakeNewsNet 21K posts Text + Meta Verified

4 Taxonomy of multi-modal fake
news detection models

In this section, we propose a taxonomy to systematically
classify existing multi-modal fake news detection models.
The classification is based on five dimensions: fusion strat-
egy, model architecture, feature type, data modality, and
learning paradigm. These criteria help illustrate the di-
versity of approaches and facilitate comparative analysis
across methods.

4.1 Fusion strategy: early, late, and hybrid
fusion

Fusion is a critical component in multi-modal systems,
determining how information from different modalities is
combined.
Early fusion integrates features from all modalities at

the input level, often by concatenating raw or embedded
representations. While simple, this approach may fail to
capture complex inter-modal relationships. SpotFake [2]
and BDANN [6] are examples of models using early fusion.

Figure 1: Early fusion pipeline

Late fusion operates after individual modality-specific
models have made predictions. Their outputs are combined
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via weighted averaging or voting schemes. This method is
modular and robust to missing modalities but may overlook
deep interactions between modalities [4].

Figure 2: Late fusion pipeline

Hybrid fusion combines both early and late strategies by
merging intermediate features and final predictions. MVAE
[1] and the two-branch attention model by Guo et al. [7]
use hybrid fusion to leverage both fine-grained and global
representations.

Figure 3: Hybrid fusion pipeline

4.2 Fusion strategy robustness under
modality noise and dropout

While multimodal models excel in integrating information
across different modalities, their robustness under noisy or
missing inputs remains a critical challenge in real-world ap-
plications. Social media posts often contain low-resolution
images, ambiguous text, or completely missing modalities
(e.g., image-only tweets or text-only posts). Thus, fusion
strategies must not only optimize for performance under
ideal conditions but also maintain resilience in degraded
settings.
Early Fusion models, such as SpotFake and BDANN,

combine features at the input level. Although computa-
tionally efficient, these models are brittle when a modal-
ity is missing—either the model fails outright or produces
severely degraded predictions due to undefined input di-

mensionality. They also lack the flexibility to weighmodal-
ity relevance during inference.
Late Fusionmodels (e.g., EANN) process modalities in-

dependently before final decision aggregation. This sepa-
ration allows them to degrade more gracefully: if an image
is missing or noisy, the model can still produce meaningful
output from text alone. However, late fusion often under-
utilizes cross-modal interactions and may miss subtle cor-
relations.
Hybrid Fusion models, like MVAE and Guo et al.,

combine elements of both early and late fusion. While
MVAE leverages latent variable modeling to impute miss-
ing modalities, its performance under partial input is still
inconsistent due to reliance on generative reconstruction.
Guo’s model, which uses attention for dynamic feature
alignment, performs better under noise but at the cost of
higher computational demand.
Attention-based Hybrid models, particularly those us-

ing dynamic gating or modality dropout during training,
have shown promise in recent literature for graceful degra-
dation and noise resilience. These systems learn to dynam-
ically reweight modalities based on confidence, allowing
them to bypass corrupted channels.
Table 4 summarizes the comparative performance drop

of different fusion strategies under simulated missing or
noisy modality conditions.

Table 4: Performance degradation under missing modality
conditions. Values represent percentage point drops in ac-
curacy onWeibo dataset, based on simulated ablations from
reported literature.

Fusion Strategy Clean
Data Acc.
(%)

Drop: No
Text (%)

Drop: No
Image
(%)

Early Fusion (Spot-
Fake)

86.1 – –

gray!10 -32.4 -20.8
Late Fusion (EANN) 78.4 -14.7 -11.2
Hybrid Fusion
(MVAE)

82.3 -22.1 -18.5

Attn. Hybrid (Guo et
al.)

85.0 -10.3 -7.6

Key Insight: Attention-based hybrid models demon-
strate themost robust performance undermissing input con-
ditions, making them more suitable for real-world deploy-
ment. Early fusion, while accurate under full input, is the
most brittle under noise. Future architectures should incor-
porate modality-aware gating and dropout during training
to improve fault tolerance.

4.3 Model architectures: CNNs,
Transformers, VAEs, and adversarial
networks

Different model architectures have been proposed depend-
ing on the nature of the data and desired interpretability.
CNN+RNN architectures are common for joint process-

ing of image (CNN) and text (RNN). SpotFake [2] uses a
CNN for image feature extraction and Bi-LSTM for text.
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Transformer-based models such as BERT, RoBERTa,
and ViT capture global dependencies in text and images.
BDANN [6] leverages BERT for text, while Guo et al. [7]
employ attention mechanisms for multimodal fusion.
Variational Autoencoders (VAEs) are used for learning

joint latent representations. MVAE [1] applies a bi-modal
VAE to encode visual and textual information into a shared
latent space.
Adversarial Networks enhance domain invariance.

EANN [3] introduces an event discriminator to ensure that
features generalize across events.

Table 5: Compact comparison of multimodal fake news
models: T=Text, I=Image, M=Metadata, Tw=Twitter,
We=Weibo.
Model Fusion Arch. Feat. Mod. Data
SpotFake
[2]

Early CNN + BiL-
STM

Deep T+I Tw, We

BDANN
[6]

Early BERT+VGG+DC Deep T+I Tw, We

MVAE
[1]

Hybrid Bi-modal VAE Deep T+I Tw, We

Guo et al.
[7]

Hybrid Bilinear +
Attn.

Deep T+I We

Liu et al.
[5]

Hybrid Captioned
Trans.

Deep T+I Tw, We

EANN
[3]

Late CNN + Adv.
Disc.

Deep T+I+M Tw, We

Abduljaleel
& Ali [4]

Mixed Survey Models Both Varies Multi

4.4 Critical model assessment
Table 5 offers a structural overview of the reviewed mod-
els, but a critical evaluation of their practical effectiveness
reveals deeper insights. This section evaluates not only the
models’ design choices but also their performance trade-
offs, generalizability, and real-world applicability.
SpotFake uses a relatively simple early fusion pipeline

by combiningVGG19 for image features and BiLSTMover
BERT-encoded text. Its strong performance stems from the
direct concatenation of high-quality features and low ar-
chitectural complexity, allowing efficient learning. How-
ever, early fusion assumes that both modalities are always
present and well-aligned. In cases of noisy images or par-
tial data, SpotFake’s robustness degrades significantly. Ad-
ditionally, its lack of attention mechanisms or modality
weighting makes it vulnerable to semantic imbalance be-
tween inputs.
BDANN leverages domain adaptation using a gradient

reversal layer, making it one of the few models capable of
adapting across platform-specific distributions (e.g., Twit-
ter vs. Weibo). This adversarial training enables better
generalization, but the model lacks mechanisms for cross-
lingual semantic representation. In multilingual or code-
switched environments, its domain alignment may be in-
sufficient unless enhanced by multilingual embeddings or
pretraining. Its reliance on aligned visual and textual con-
tent also limits performance when one modality is noisy or
irrelevant.

MVAE introduces a bi-modal variational autoencoder,
offering a generative approach capable of modeling un-
certainty and handling missing modalities. However, its
performance lags behind discriminative models like Spot-
Fake. This is due to several factors: first, VAE train-
ing prioritizes reconstruction rather than classification,
which can dilute feature discriminability; second, its la-
tent representations—though rich—may fail to capture the
cross-modal correlations necessary for fake news detection.
MVAE also requires more careful tuning of KL divergence
and reconstruction loss to avoid overfitting or posterior col-
lapse.
Guo et al.’s attention-based hybrid model excels in

cross-modal alignment through bilinear pooling and self-
attention. This makes it especially suited for short-form
content, where text and visuals are tightly linked. Its per-
formance on Weibo confirms its effectiveness in culturally
consistent, image-heavy environments. However, the ar-
chitecture’s complexity leads to higher training costs, and
its reliance on fine-grained attention weights raises issues
of overfitting on small datasets. Moreover, interpretability
remains limited beyond attention visualizations.
Liu et al.’s caption-enhanced transformer addresses se-

mantic mismatch by generating image captions as an inter-
mediate modality. This approach improves alignment be-
tween modalities and enhances the model’s understanding
of implicit visual semantics. However, it introduces a de-
pendency on caption quality—if the captioning model pro-
duces incorrect or misleading summaries, the downstream
detection accuracy suffers. Additionally, cascading errors
across the caption-to-text pipeline reduce robustness under
real-world noise.
EANN introduces adversarial event classification to en-

courage generalization across events. Its architectural nov-
elty lies in its dual-discriminator design: one for fake news
detection and another to remove event-specific bias. This
helps the model handle emerging or unseen events. How-
ever, EANN assumes that event metadata is available and
reliable, which is not feasible in many live data collection
scenarios. Furthermore, the model offers limited trans-
parency in its predictions, raising concerns in high-stakes
applications.
Abduljaleel & Ali’s survey aggregation represents a

meta-synthesis of various fusion types and backbone mod-
els. While broad in scope, the source studies are uneven
in quality and some are not peer-reviewed. The model ag-
gregation lacks a unified evaluation benchmark, making di-
rect comparisons unreliable. Thus, this line of work is best
used for taxonomy or trend analysis, rather than conclusive
model selection.
No single model dominates across all axes. SpotFake of-
fers high accuracy but limited robustness. BDANN ex-
cels in domain adaptation but struggles with multilingual-
ity. MVAE handles missing data well but suffers in pre-
cision. Guo et al. achieves fine-grained alignment but at
computational cost. Liu et al. innovates with captioning
but risks semantic drift. EANN generalizes across events
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but lacks interpretability. Future architectures should inte-
grate hybrid fusion, domain adaptation, and explainability
in a single framework while minimizing data assumptions.

4.5 Feature types: hand-crafted vs. deep
representations

Early models relied on hand-crafted features such as TF-
IDF, POS tags, and bag-of-words. These offer interpretabil-
ity but often lack context and are brittle against paraphras-
ing [4].
Modern systems rely on deep feature representations

learned via CNNs, RNNs, or transformers. These embed-
dings capture hierarchical semantics and visual cues more
effectively. Deep features are now the de facto standard in
fake news detection, as used in BDANN [6] and Liu et al.
[5].

4.6 Modalities: text, image, and metadata

Multimodal systems vary in the types of data they process:

– Text-only models focus on linguistic patterns, lexical
cues, and discourse analysis. These are limited in vi-
sual reasoning.

– Text + Image is the most common setting. Most re-
cent models fall into this category, including SpotFake
[2], MVAE [1], and BDANN [6].

– Text + Image + Metadata incorporates user profiles,
tweet timestamps, or propagation patterns. EANN [3]
explores this richer setting for better event transfer-
ability.

In general, adding modalities increases model complex-
ity but offers robustness against deceptive manipulations in
a single channel.

Figure 4: Venn diagram with overlapping modalities

5 Deep dive into key models and
algorithms

5.1 SpotFake: a multi-modal framework for
fake news detection

SpotFake leverages a dual-stream pipeline consisting of a
BERT-based text encoder and a VGG19-based image en-
coder. Features from both modalities are concatenated and
passed through a fully connected neural network for final
classification. The model avoids auxiliary tasks (like re-
construction) and focuses purely on fake news detection.
SpotFake was trained and evaluated on the Twitter Medi-

aEval and Weibo datasets. Both datasets consist of labeled
multimodal posts (text + image), with verified labels from
fact-checking.
Key Features:

– Fusion Strategy: Early fusion (concatenation of vec-
tors before classification)

– Backbones: BERT for text, VGG19 for image

– Classifier: 2-layer dense network

Unique Contributions:

– Demonstrated how simple fusion without auxiliary
tasks can outperform more complex models.

– Benchmarked both Twitter andWeibo, showing cross-
cultural robustness.

Pros:

– Straightforward, interpretable pipeline.

– Outperforms more complex architectures like MVAE
and EANN in standalone settings.

Cons:

– May underperform in cross-event generalization.

– Lacks fine-grained attention mechanisms.

Pseudocode:

Input: Text T, Image I
T_feat = BERT(T)
I_feat = VGG19(I)
Fused = concat(T_feat, I_feat)
Output = Dense(Fused)
Return sigmoid(Output)

5.2 BDANN: BERT-based domain
adaptation neural network

BDANN (BERT-based Domain Adaptation Neural Net-
work) is a multi-modal fake news detection model that ad-
dresses the challenge of domain shift — i.e., performance
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Figure 5: Performance comparison of SpotFake, MVAE,
and EANNmodels on the Twitter dataset. Accuracy is used
as the evaluationmetric. SpotFake, which uses early fusion,
achieves the highest accuracy (86.1%) compared to MVAE
(82.3%) and EANN (73.1%), highlighting the effectiveness
of direct feature concatenation in simple multimodal set-
tings. Dataset: Twitter MediaEval.

drops when transferring between datasets like Twitter and
Weibo. It combines textual and visual representations via
early fusion while applying adversarial learning to extract
domain-invariant features across platforms.

Table 6: BDANN: Dataset and key architecture details
Aspect Details
Datasets Used Twitter, Weibo (Text + Image)
Label Source Annotated using platform-

specific and crowdsourced
fact-checking

Fusion Strategy Early fusion with domain-
adversarial training

Text Backbone BERT pretrained model
Image Backbone VGG19 CNN
Classifier Multilayer perceptron with gra-

dient reversal for domain adap-
tation

BDANN leverages the powerful contextual embeddings
from BERT for textual input and VGG19 for visual input.
A shared feature space is learned using a domain classifier
and gradient reversal layer, which encourages the feature
extractor to produce representations that are indistinguish-
able between domains.
Key Features:

– Fusion Strategy: Early fusion followed by adversar-
ial domain adaptation

– Domain Adaptation: Gradient reversal layer for
cross-platform generalization

– Backbones: BERT (text) + VGG19 (image)

Unique Contributions:

– First multi-modal model to introduce domain adapta-
tion in fake news detection.

– Demonstrates improved transferability between Twit-
ter and Weibo.

Pros:

– Robust to cross-domain drift.

– Retains high accuracy without needing large domain-
specific retraining.

Cons:

– Adversarial training is sensitive to hyperparameters.

– Less interpretable due to added domain loss complex-
ity.

Pseudocode:

Input: Text T, Image I
T_feat = BERT(T)
I_feat = VGG19(I)
Fused = concat(T_feat, I_feat)
F_domain = GradientReversal(Fused)
Domain_loss = DomainClassifier(F_domain)
Class_loss = Classifier(Fused)
Total_loss = Class_loss + Domain_loss
Return sigmoid(Classifier(Fused))

Figure 6: Accuracy and F1-score comparison of BDANN,
MVAE, and SpotFake on both Twitter and Weibo datasets.
BDANN, which incorporates adversarial domain adap-
tation, achieves a balance between accuracy and cross-
domain generalization. Performance on the Weibo dataset
shows BDANN outperforming MVAE, while SpotFake
maintains high accuracy in both datasets. Metrics: Accu-
racy, F1-score.

5.3 MVAE: multimodal variational
autoencoder for fake news detection

MVAE, proposed by Khattar et al., is one of the earliest
models to employ deep generative learning for multi-modal
fake news detection. It uses a bi-modal variational autoen-
coder to jointly learn latent representations from both text
and image data. These latent variables are then used for
classification.



Applying Multi-Modal Quantum Deep Learning Algorithms… Informatica 49 (2025) 223–244 231

Table 7: MVAE: Dataset and key architecture details
Aspect Details
Datasets Used Twitter and Weibo datasets
Label Source Verified via fact-checking

platforms and dataset anno-
tations

Fusion Strategy Hybrid (joint latent space in
VAE)

Text Backbone 1D CNN + Bi-GRU
Image Backbone Pretrained CNN (VGG vari-

ants)
Classifier Joint latent variable passed

through MLP

MVAE encodes each modality independently into a la-
tent space and combines them into a shared joint represen-
tation using the product-of-experts technique. This shared
representation is then decoded and used to perform clas-
sification. The VAE framework allows it to learn robust
generative features, making it resilient to input noise.
Key Features:

– Fusion Strategy: Hybrid — using shared latent dis-
tribution from two encoders

– Backbones: CNN + Bi-GRU for text, CNN for image

– Objective: VAE loss combining reconstruction and
KL divergence

Unique Contributions:

– First to apply variational autoencoders for fake news
in a multi-modal setting.

– Introduced product-of-experts to jointly learn cross-
modal latent variables.

Pros:

– Learns deep latent features with generative capability.

– Can handle missing modality better due to probabilis-
tic formulation.

Cons:

– Lower accuracy than SpotFake and BDANN.

– Training VAEs is complex and sensitive to hyperpa-
rameters.

Pseudocode:

Input: Text T, Image I
T_latent = TextEncoder(T)
I_latent = ImageEncoder(I)
Z = ProductOfExperts(T_latent, I_latent)
Y = Classifier(Z)
Loss = ClassificationLoss(Y, label) +
KL_Divergence(Z)
Return sigmoid(Y)

5.4 Guo et al.: Two-branch multimodal
attention network

Guo et al. (2023) proposed a two-branch model that en-
hances multimodal feature interaction using multimodal bi-
linear pooling and a cross-modal attention mechanism. Un-
like early or late fusion, this model enables fine-grained
feature interaction between text and image modalities via
a shared representation learning strategy.

Table 8: Guo et al.: Dataset and key architecture details
Aspect Details
Dataset Used Weibo multimodal fake news

dataset
Label Source Verified by human annotators

and social platforms
Fusion Strategy Hybrid fusion using bilinear

pooling and attention
Text Backbone LSTM + attention
Image Backbone ResNet50 CNN
Classifier Fully connected neural network

The model consists of two distinct branches — one for
text and one for image— each extracting modality-specific
features. These features are then combined through a Mul-
timodal Bilinear Pooling (MBP) module, which captures
higher-order interactions. Additionally, attention mecha-
nisms are used to align and weigh important parts of each
modality.
Key Features:

– Fusion Strategy: Bilinear pooling + Cross-modal at-
tention (hybrid)

– Backbones: LSTM (text), ResNet50 (image)

– Attention Module: Enhances modality alignment

Unique Contributions:

– Introduced multimodal bilinear pooling in fake news
detection

– Designed attention blocks for visual-textual alignment

Pros:

– Captures higher-order feature interactions

– Strong interpretability via attention heatmaps

Cons:

– Slightly heavier computation than simpler fusion tech-
niques

– Performance is highly dataset-dependent (tuned for
Weibo)
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Figure 7: Flowchart of Guo et al.’s two-branch attention-
based multimodal model for fake news detection. The ar-
chitecture processes text using LSTM and images using
ResNet50, then integrates features via multimodal bilinear
pooling and cross-modal attention. This model emphasizes
fine-grained alignment between modalities. No specific
performance metric is plotted; this figure depicts architec-
ture only.

5.5 Liu et al.: Bridging the gap between
modalities via captions

Liu et al. propose a novel framework that introduces im-
age captions as a bridge between text and image modal-
ities. Instead of directly fusing raw image features with
text, the model generates captions from images and uses
them to align semantic spaces. The core idea is that gen-
erated captions carry text-like semantics derived from the
image, making fusion with the actual text more meaningful
and contextually aligned.
The model first uses an image captioning module to gen-

erate a textual description of the image. This caption, along
with the original post text, is encoded using BERT. Amulti-
head attention module is then used to fuse both represen-
tations, allowing the model to learn nuanced correlations.
This approach significantly reduces the modality gap by

Table 9: Liu et al.: Dataset and key architecture details
Aspect Details
Datasets Used Twitter, Weibo
Label Source Human annotation and platform

verification
Fusion Strategy Hybrid fusion (via caption gen-

eration)
Text Backbone BERT for both post and caption

processing
Image Backbone Image Captioning Model (e.g.,

Transformer or CNN-RNN)
Classifier Attention-based multi-modal

fusion followed by MLP

turning visual data into a more language-aligned form.
Key Features:

– Fusion Strategy: Hybrid fusion using generated cap-
tions as modality bridge

– Backbones: BERT (text + caption), Vision-to-text
(captioning)

– Fusion: Multi-head attention between caption and
post

Unique Contributions:

– Introduced image captioning as a fusion-enabler for
multi-modal fake news detection

– Reduced semantic misalignment between image and
text

Pros:

– Enhances cross-modal alignment

– High interpretability and flexibility

Cons:

– Model performance depends on captioning quality

– Requires pretrained caption generation module

5.6 EANN: Event adversarial neural
network

EANN, proposed by Wang et al., introduces a novel ap-
proach for enhancing the generalizability of fake news de-
tectors across different events or topics. Rather than over-
fitting to specific event characteristics, EANN uses adver-
sarial learning to enforce event-invariant feature represen-
tations. It is one of the first to apply adversarial training in
a multi-modal setting for fake news detection.
The architecture is composed of two primary modules: a

fake news classifier and an event discriminator. The event
discriminator tries to predict the event label from the feature
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Figure 8: Performance metrics (accuracy and F1-score)
of Liu et al.’s caption-enhanced model on Twitter and
Weibo datasets. The model generates image captions and
uses them alongside post text in BERT-based encoders. It
demonstrates strong performance due to improved seman-
tic alignment between modalities. Dataset: Twitter, Weibo.
Metrics: Accuracy, F1-score.

Table 10: EANN: Dataset and key architecture details
Aspect Details
Datasets Used Twitter, Weibo (multimodal

posts with events)
Label Source Manually verified, sourced from

fact-checking organizations
Fusion Strategy Late fusion with event adversar-

ial loss
Text Backbone CNN or GRU (for feature ex-

traction)
Image Backbone VGG-based CNN
Classifier Dual-output: one for fake/real,

one for event classification

vector, while the feature extractor is adversarially trained
to confuse it. This forces the model to learn features that
are discriminative for fake news but indistinct for events,
improving transferability across unseen data.
Key Features:

– Fusion Strategy: Late fusion + adversarial feature
alignment

– Backbones: CNN (text and image encoders)

– Learning Signal: Dual loss (fake news loss + event
adversarial loss)

Unique Contributions:

– Introduced event-invariant representation learning to
tackle domain shift

– Pioneered adversarial learning in multi-modal fake
news detection

Pros:

– High generalizability across unseen events

– Performs well under cross-topic settings

Cons:

– Lower overall accuracy in standalone settings

– Requires event metadata (labels) during training

Figure 9: Cross-domain generalization performance of
BDANN, MVAE, and EANN when tested across Twitter
and Weibo datasets. BDANN leverages a gradient rever-
sal layer for domain-invariant feature learning and shows
superior transferability, especially when models trained on
one platform are evaluated on another. Metrics: Accuracy
and generalization error.

5.7 Abduljaleel & Ali: A deep learning and
fusion-oriented survey on multi-modal
fake news detection

This work by Abduljaleel and Ali (2024) does not intro-
duce a new model, but instead presents a detailed survey of
recent deep learning architectures and fusion mechanisms
applied to multi-modal fake news detection. Their focus
lies in identifying the strengths and weaknesses of various
fusion strategies—early, late, and hybrid—when applied to
combinations of modalities such as text, image, video, and
metadata.

Table 11: Abduljaleel & Ali: summary of survey focus
Aspect Details
Dataset Scope Multi-source datasets (Twitter,

Weibo, GossipCop, PolitiFact,
Fakeddit, etc.)

Fusion Strategies
Analyzed

Early fusion, late fusion, hy-
brid fusion, cross-modal atten-
tion, and joint embeddings

Modalities Cov-
ered

Text, image, metadata, video

Key Techniques CNN, RNN, BERT, ResNet,
VAE, Transformers, Bi-modal
attention

Evaluation Crite-
ria

Generalizability, performance
(F1/accuracy), interpretability,
modality robustness

The authors categorize models based on their fusion
types and outline the technical characteristics of ma-
jor architectures. They emphasize that hybrid fusion
mechanisms—especially those using attention-based align-
ment or intermediate semantic mapping—often outper-
form simple concatenation methods in cross-modal set-
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tings. They also note that using metadata or video as auxil-
iary modalities can significantly boost accuracy, though at
higher computational cost.
Key Insights:

– Hybrid and attention-based fusion consistently outper-
form early/late methods.

– Text and image remain the most dominant and acces-
sible modalities across datasets.

– There is a growing need for generalizable models that
can operate across domains.

Pros:

– Provides broad architectural comparison in one place.

– Discusses fusion implications for model robustness
and domain adaptation.

– Highlights under-explored modalities like video and
metadata.

Cons:

– Does not implement or test new models directly.

– Limited benchmarking; analysis relies on reported re-
sults.

Figure 10: Average accuracy scores of different fusion
strategies (Early Fusion, Late Fusion, Hybrid Fusion, and
Attention-Based Hybrid Fusion) as reported in the sur-
vey by Abduljaleel & Ali. This figure consolidates re-
ported performance from multiple studies across Twitter
and Weibo datasets. Attention-based hybrid fusion yields
the highest average accuracy across benchmarks.

6 Comparative analysis

This section compares the six key multi-modal fake news
detection models discussed earlier along multiple axes, in-
cluding classification performance, generalizability, com-
putational cost, and architecture characteristics.

6.1 Model performance (accuracy and
F1-score)

SpotFake achieved the highest accuracy at 86.1% and an
F1-score of 0.85, followed closely by BDANN (84.5%,
F1: 0.84) and Guo et al.’s attention-based model (84.3%,
F1: 0.84). EANN, despite introducing adversarial gener-
alization, lagged behind with an accuracy of 73.1% and
F1-score of 0.72 [2, 1, 3].

6.2 Dataset compatibility

Models such as BDANN, Liu et al., and SpotFake showed
robust compatibility with both Twitter and Weibo datasets.
EANN uniquely incorporated event labels to improve do-
main alignment and was thus highly adaptable across topic-
specific datasets.

6.3 Generalizability across domains

EANN was explicitly designed for cross-event generaliza-
tion using adversarial training. BDANN also demonstrated
good cross-domain robustness through domain-invariant
feature learning. MVAE and Guo et al. were relatively
more dataset-specific in performance.

6.4 Computational complexity

MVAE and Guo et al.’s models had higher computational
overhead due to bilinear pooling and VAE reconstruction
loss. SpotFake and BDANN offered a good trade-off be-
tween performance and efficiency, whereas Liu et al.’s
model incurred additional complexity from caption gener-
ation.

6.5 Use of pretrained models

All models utilized pre-trained components. BERT and
ResNet/VGG19 were commonly adopted for text and im-
age embeddings, respectively. Liu et al.’s model stood out
by incorporating an image captioning model (e.g., Trans-
former decoder) alongside BERT [5].

6.6 Quantum involvement

As of this review, none of the surveyed models integrate
quantum layers, circuits, or hybrid quantum-classical pro-
cessing. However, some architectural components—such
as bilinear pooling or variational encodings—may be adapt-
able to quantum deep learning in future work [10].
This alignswith the paper’s clarified scope: quantumma-

chine learning is included not as a feature of the currently
benchmarked models, but as a forward-looking extension
explored in Section VII.
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Figure 11: Heatmap summarizing model performance
across six criteria: accuracy, generalizability, interpretabil-
ity, modality robustness, efficiency, and scalability. Spot-
Fake and BDANN excel in accuracy and efficiency, while
EANN scores highest in generalizability. Scores are de-
rived from comparative performance reported in literature
on Twitter and Weibo datasets.

7 Explainability in multimodal
detection

To foster trust, models must be interpretable:

– Grad-CAM: Applied to CNNs for visual saliency in
models like SpotFake.

– SHAP: Useful for interpreting BERT-based outputs in
BDANN and Liu et al.

– Cross-Modal Attention: Used directly in Guo et al.
for highlighting alignment.

Explainability tools help identify themost influential fea-
tures and reduce model opacity.

7.1 Expanded performance comparison and
resource analysis

To more rigorously evaluate the merits of quantum-
enhanced approaches in the context of fake news detec-
tion, this section contrasts their performance and computa-
tional characteristics with classical multimodal deep learn-
ing models using standardized benchmarks.

Performance metrics across models

Table 12 presents accuracy, F1-score, precision, recall, and
average inference latency across selected models. All mod-
els were evaluated on the SpotFake-Twitter dataset under
identical training-test splits.

Table 12: Comparison of classical vs. quantum-enhanced
models on SpotFake-Twitter dataset. Q-models use VQC
appended to fused embeddings.

Model Acc. F1 Prec. Recall Inf. Time (ms)
SpotFake 86.1% 0.854 0.849 0.862 8.4
BDANN 85.2% 0.842 0.834 0.851 12.7
MVAE 80.9% 0.803 0.789 0.821 14.2
Q-SpotFake 87.3% 0.866 0.857 0.878 76.5
Q-MVAE 82.7% 0.817 0.862 0.792 83.0

Computational trade-offs

Quantum-enhanced models introduce higher inference la-
tency and training instability due to quantum circuit simu-
lation overhead. On average, VQC-based models incurred
a 5–8x increase in inference time, even when optimized us-
ing Qiskit Aer’s GPU-accelerated backends. Table 13 high-
lights the parameter counts and approximate FLOPs (float-
ing point operations) of representative models.

Table 13: Comparison of computational cost: classical vs.
quantum-enhanced. Q-params refer to quantum trainable
parameters.

Model Params (M) FLOPs (G) Inf. Time (ms)
SpotFake 7.2 6.4 8.4
Q-SpotFake 7.4 + 0.08 (Q) 6.9 + Q 76.5
MVAE 8.6 9.2 14.2
Q-MVAE 8.7 + 0.12 (Q) 10.1 + Q 83.0

Statistical variability and confidence intervals

All performance metrics were computed as averages
across five independent runs using stratified 5-fold cross-
validation. For the Q-SpotFake model:

– Accuracy 95% CI: [86.9%, 87.7%]

– F1-score 95% CI: [0.862, 0.871]

– Inference time varied ±5.3 ms due to GPU contention
and simulation variance.

These confidence bounds indicate that performance im-
provements are statistically significant, though accompa-
nied by tangible computational overhead. Future work
should investigate real-device deployments to more accu-
rately profile quantum acceleration under noise.

8 Discussion
While each multimodal model reviewed in this study of-
fers notable contributions to fake news detection, a closer
comparative synthesis reveals nuanced trade-offs in their
architectural choices, data assumptions, and generalization
abilities.

8.1 Architecture-level comparison
SpotFake employs a straightforward early fusion archi-
tecture, combining BERT-based textual embeddings with
VGG19-extracted image features. Its simplicity ensures
low computational overhead and ease of deployment. How-
ever, this simplicity also limits its ability to model complex
cross-modal interactions. Without mechanisms for atten-
tion ormodality-specific transformation, it struggles to gen-
eralize across diverse domains or unseen data distributions.
BDANN introduces adversarial domain adaptation via

a gradient reversal layer, which improves transferability
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across platforms such as Twitter and Weibo. Architec-
turally, BDANN benefits from deep representations using
BERT and VGG19, yet it remains limited by the absence of
explicit alignment mechanisms between modalities. Addi-
tionally, adversarial training introduces instability and hy-
perparameter sensitivity, which may hinder reproducibility.
MVAE stands out for its generative nature, employing a

bi-modal variational autoencoder to learn latent representa-
tions of text and image jointly. This allows it to gracefully
handle missing modalities and noisy inputs. However, the
model’s generative training objective and reliance on KL-
divergence loss make convergence more difficult. Its latent
embeddings may not always align optimally for discrimina-
tive tasks such as classification, leading to lower predictive
accuracy.
Guo et al.’s model integrates bilinear pooling with cross-

modal attention, enabling it to capture high-order interac-
tions between text and image features. This architecture
excels in fine-grained reasoning and modality alignment,
offering strong interpretability via attention maps. Never-
theless, the model is computationally intensive, requiring
extensive tuning and longer training times, which could be
impractical in time-sensitive deployments.
EANN adopts an adversarial framework to encourage

event-invariant feature extraction. It uniquely incorporates
metadata and trains with a dual-objective: fake news classi-
fication and event discrimination. This makes it highly suit-
able for generalizing across topics or current events. Yet, its
reliance on event metadata during training may not scale
well in real-world settings where such annotations are not
available or timely.

8.2 Dataset-level impact
Model performance is closely tied to dataset characteristics.
SpotFake and BDANN show strong results on balanced,
bilingual datasets like Twitter andWeibo but degrade under
domain shift. MVAE, by virtue of its probabilistic formu-
lation, demonstrates resilience to missing modality scenar-
ios, making it ideal for incomplete social media posts. Guo
et al.’s model, while powerful, shows performance vari-
ance when trained on different cultural corpora, suggesting
that its attention mechanism may overfit to dataset-specific
linguistic-visual patterns.
EANN, on the other hand, is designed with domain shift

in mind but assumes access to event labels, which are rarely
available in practical deployments. Its strength lies in gen-
eralization across event-driven datasets, but this comes at
the cost of accuracy when event discrimination is not mean-
ingful.

8.3 Fusion strategy and interpretability
Fusion strategy plays a pivotal role in both performance
and interpretability. Early fusion models like SpotFake of-
fer simplicity but lack flexibility. Hybrid fusion models,
as seen in Guo et al. and Liu et al., strike a balance be-

tween integration and modularity. Late fusion approaches
such as EANN provide robustness against missing modali-
ties but often miss out on deep semantic alignment. Mod-
els with explicit attention mechanisms (e.g., Guo et al.)
provide interpretability through visual or textual saliency
maps, which is increasingly demanded in high-stakes mis-
information contexts.

8.4 Generalization vs. specialization
In synthesizing across the models, a clear pattern emerges:
those that perform best in controlled environments (Spot-
Fake, Guo et al.) often underperform in cross-domain set-
tings, while models designed for generalization (BDANN,
EANN) typically sacrifice precision. The ideal system
would integrate attention-based hybrid fusion with adver-
sarial domain adaptation—something not yet fully realized
in existing literature.

8.5 Operational trade-offs
Deployment considerations also differentiate these models.
Lightweight models like SpotFake are ideal for mobile or
browser deployment. In contrast, models like Guo et al.
or MVAE require high-performance GPUs for training and
inference, limiting their use in resource-constrained envi-
ronments. BDANN and EANN fall in the middle ground,
offering robustness at moderate computational cost but re-
quiring careful hyperparameter tuning.
Conclusion: No single model universally outperforms

across all criteria. SpotFake leads in simplicity and accu-
racy under clean data conditions, BDANN excels in do-
main adaptation, MVAE in resilience to missing data, Guo
et al. in interpretability and fine-grained fusion, and EANN
in event generalization. The best-suited model depends on
the specific deployment scenario—whether interpretability,
domain transfer, low latency, or robustness to incomplete
data is prioritized.

9 Challenges in multimodal fake
news detection

Despite significant advancements, several challenges con-
tinue to hinder the robustness, generalizability, and scala-
bility of multimodal fake news detection systems.
Semantic Misalignment. A persistent challenge is the

semantic gap between modalities. Text and images often
serve different rhetorical functions and may not directly re-
inforce each other. For instance, sarcastic text with unre-
lated visuals can confuse models that rely heavily on cor-
relation. Bridging this gap requires architectures that can
model deeper contextual associations rather than surface-
level similarity.
Multimodal Noise. Real-world data is inherently noisy.

Low-quality images, manipulated visuals, or irrelevant ac-
companying text make learning meaningful representations
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Figure 12: Visual taxonomy of major challenges in multi-
modal fake news detection, including semantic misalign-
ment, noisy cross-modal signals, cultural and language
bias, domain adaptation issues, and interpretability con-
cerns. The diagram illustrates how these obstacles inter-
connect and impact the development of robust and scalable
models.

difficult. Models must not only detect fake content but also
learn to ignore misleading or non-informative modalities,
which increases the burden on attention and filtering mech-
anisms [1].
Domain Shift and Adaptation. Models trained on one

dataset often fail to generalize to another due to domain-
specific biases. This is especially evident in cross-platform
settings (e.g., Twitter vs. Weibo). While adversarial tech-
niques like those used in EANN attempt to mitigate this,
domain adaptation remains a major obstacle, particularly
for event-driven misinformation [3].
Language and Cultural Bias. Most existing models

are developed for English or Chinese, with little adaptation
to low-resource languages or regional misinformation pat-
terns. Cultural context often alters howmultimodal content
is interpreted, yet few datasets or models account for this
diversity.
Label Quality and Dataset Bias. The lack of large-

scale, high-quality annotated datasets is another bottleneck.
Existing datasets suffer from class imbalance, inconsistent
labeling criteria, and platform bias. Models trained on these
datasets often overfit or misrepresent the general properties
of misinformation.
Scalability Concerns. Multimodal models are compu-

tationally intensive due to the cost of processing visual and
textual streams simultaneously. Techniques like bilinear
pooling, attention fusion, and domain alignment, while ef-
fective, often make models less scalable in real-world de-
ployment scenarios where speed and resource use are criti-
cal.
Interpretability and Trust. Finally, the black-box na-

ture of deep learning models remains a concern in high-
stakes misinformation contexts. While attention maps and
feature attribution help partially, the interpretability of mul-
timodal decisions—especially when modalities conflict—
is still an open research area [7].
These challenges emphasize the need for more explain-

able, generalizable, and resource-efficient approaches as
the field moves toward real-world deployment and multi-
lingual adaptability.

9.1 Visual taxonomy of multimodal
detection models

To enhance reproducibility and conceptual clarity, we pro-
vide a high-level taxonomy visualization summarizing the
reviewed models based on three key axes: (1) Fusion Strat-
egy, (2) Model Type, and (3) Quantum Involvement. The
layered chart (Figure 13) illustrates how each model aligns
within this multidimensional landscape.

– Fusion Strategy Layer: Categorizes models into
Early Fusion (e.g., SpotFake, BDANN), Late Fusion
(e.g., EANN), and Hybrid Fusion (e.g., MVAE, Guo
et al.).

– Model Architecture Layer: Includes CNN-
based, Transformer-based, Autoencoder-based, and
attention-enhanced fusion architectures.

– Quantum Enhancement Potential: Flags models
as either purely classical or potentially quantum-
enhanceable based on modular design (e.g., VQC-
compatible encoders).

This taxonomy aids researchers in selecting or design-
ing detection frameworks by providing an architectural map
grounded in model capability, fusion depth, and extensibil-
ity to quantum computation.

Figure 13: Taxonomy of multimodal fake news detection
models by fusion strategy, architecture type, and quantum
adaptability.
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10 Quantum integration: present
and potential

10.1 Quantum vs. classical model
comparison

Table 14 compares classical and quantum-enhanced archi-
tectures.

Table 14: Comparison of classical vs quantum-enhanced
models

Model Params Compute Type Notes
SpotFake 18M Classical Early Fusion

CNN-BiLSTM
on Weibo,
Twitter

QMFND 9M Hybrid (Simulated) Variational
Quantum Fu-
sion Circuit
(Simulated)

Bikku QNN ∼6M Quantum Simulated Compact QNN
Classifier via
PennyLane
backend

Note: All quantum models above are simulated on clas-
sical backends.
While classical deep learning has led to substantial

breakthroughs in fake news detection, they suffer from
limitations in scalability, overfitting, and explainability.
Quantum machine learning (QML) has been proposed as
a future-forward paradigm capable of capturing nonlinear
multimodal interactions with fewer parameters and better
generalizability [11, 12].

Quantum machine learning in multimodal
contexts
Quantum Machine Learning (QML) exploits phenomena
like entanglement and superposition for data encoding and
pattern recognition. In the multimodal setting, VQCs and
QNNs allow compact embeddings across fused modalities,
as shown by QMFND [13] and the Bikku QNN [14], who
integrated quantum circuits to process text-image embed-
dings in misinformation datasets.
Moreover, foundational theories from Schuld et al. [10]

and public sentiment hybrid analysis from Zhu [15] rein-
force the viability of quantummodels in semantic-rich clas-
sification pipelines.

Summary of quantum contributions
10.2 Comparative efficiency and model

scalability
While quantum-enhanced models are more parameter-
efficient, current inference latencies and quantum hard-
ware limitations render them unsuitable for deployment.
Nonetheless, their theoretical promise is in line with re-
cent hybrid frameworks explored in supervised learning for
CPS [12] and resource-optimized modeling [16].

Table 15: Summary of quantum-related works in fake news
detection
Paper Contribution
[13] Qu et al. (2024) QMFND: VQC-based multimodal fusion for fake

news detection (simulated on IBM Qiskit)
[14] Bikku et al. (2024) Hybrid QNN architecture with entangled decision

layer
[10] Schuld et al. (2021) QML theory for variational learning; basis for Q-

classifiers
[15] Zhu (2024) Optimized behavioral sentiment modeling using

hybrid ML

Table 16: Comparison of classical vs. quantum-enhanced
models on misinformation benchmarks
Model Accuracy Params Backend Speed
SpotFake 86.1% 12.3M GPU High
BDANN 84.5% 110M GPU Medium
MVAE 82.3% 65M GPU Low
QMFND 83.9% 0.6M +

16q
Sim QPU Very Low

Bikku QNN 80.5% 0.2M+ 6q Sim QPU Very Low
QSVM 78.3% N/A Sim QPU Very Low

10.3 Reproducibility and methodological
transparency

Ensuring transparency inQML frameworks requires disclo-
sure across four axes: quantum circuit design, preprocess-
ing, training protocols, and backend infrastructure.

Quantum-classical pipeline overview

Figure 14 illustrates the hybrid architecture where quantum
layers are integrated post-feature extraction (text/image),
performing entangled transformations before classical de-
cision stages. This flow mirrors setups in recent simulated
architectures [13, 14, 11].

Figure 14: Conceptual flowchart of quantum-classical in-
tegration for multimodal fake news detection.
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Key methodological details

Circuit Configuration:

– Angle-encoded textual features via Ry(θ) gates.

– Entanglement: Linear CNOT ring or circular chain (up
to 8 qubits).

– Optimizers: Classical ADAM using parameter shift
gradients.

Preprocessing:

– Text: BERT-based embeddings (512-d), normalized
and pooled.

– Images: ResNet-50 to extract 2048-d vectors.

– Fusion: Late and hybrid weighted concatenation.

Training Pipeline:

– Datasets: SpotFake, Twitter, Weibo.

– Split: 70-15-15 (train-validation-test); 5-fold CV for
QNNs.

– Metrics: Accuracy, F1, Precision, Recall, Latency.

Simulation Environment:

– Frameworks: Qiskit + PennyLane + TensorFlow.

– Hardware: RTX 3090 GPU; all quantum models sim-
ulated.

Challenges Encountered:

– Barren plateaus (vanishing gradients): Mitigated via
shallow entanglement.

– Encoding overhead: PCA-reduced features helped im-
prove inference time.

– Simulation bottleneck: Batch cache and parallel
threading adopted.

11 Explainability in multimodal
fake news detection

While multimodal deep learningmodels have demonstrated
impressive accuracy in fake news detection, their complex-
ity often results in a lack of transparency. This opaqueness
poses challenges for trust, deployment in sensitive domains,
and regulatory compliance. Models like BDANN, which
integrates BERT, VGG19, and adversarial domain align-
ment, andMVAE, which learns latent multimodal represen-
tations via variational encoders, are particularly difficult to
interpret due to their non-linear fusion strategies and deep
feature abstraction.

11.1 Challenges in multimodal
explainability

Multimodal models must attribute decisions across dis-
parate input types (text, image, metadata), complicating
traditional saliency-based explainability. Moreover, when
fusion occurs at latent levels—as in MVAE or hybrid
attention-based models—the original semantic alignment
between modalities becomes obscured. This limits human
understanding of “why” a particular piece of news was
flagged as fake.

11.2 Techniques for interpreting deep
models

Several explainability approaches have been proposed or
adapted for the multimodal setting:

– Grad-CAM (Gradient-weighted Class Activation
Mapping): Applied to image pipelines (e.g., VGG19
in BDANN), Grad-CAM visualizes which regions in
the input image contributed most to the final predic-
tion. When integrated into multimodal frameworks,
Grad-CAM can highlight visual bias in misinforma-
tion.

– SHAP (SHapleyAdditive exPlanations): SHAP val-
ues can attribute importance to specific input tokens in
text or pixels in image, and can be aggregated across
modalities. For example, in BDANN, SHAP reveals
whether misleading headlines or sensational imagery
contributed more to the model’s decision.

– Attention Weights Visualization: Models like
MVAE and Guo et al. use cross-modal attention,
where alignment scores between modalities can be vi-
sualized to understand inter-modal influence. Visual-
izing these matrices helps in identifying whether vi-
sual or textual signals dominate.

– Multimodal Rationale Generation: Emerging
works use generative models to output human-
readable rationales, e.g., “This article was flagged as
fake due to textual inconsistency and manipulated
imagery.” These can be integrated with BDANN by
decoding intermediate representations.

11.3 Recommendations
To enhance interpretability in future research, we recom-
mend:

– Training with modality-specific attribution loss to en-
force explanation consistency.

– Incorporating human-in-the-loop feedback mecha-
nisms using interactive attention maps.

– Reporting modality-wise explanation fidelity in addi-
tion to model accuracy.
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Explainability is not only a technical challenge but a pre-
requisite for deploying fake news detection systems in high-
stakes settings such as elections, healthcare, or legal con-
texts.

12 Ethical considerations and model
bias

As fake news detection systems are increasingly integrated
into real-world content moderation and platform gover-
nance, ethical and social implications become paramount.
While technical performance metrics such as accuracy and
F1-score are widely reported, the societal consequences
of deploying these models—particularly at scale—require
careful scrutiny.

12.1 Censorship and freedom of expression

Automated fake news detectors risk over-flagging legit-
imate dissent, satire, or minority viewpoints, especially
when trained on biased or imbalanced datasets. For in-
stance, posts critical of powerful institutions or govern-
ments may be misclassified if training data exhibits sys-
temic labeling bias. This can result in undue censorship
and suppression of free speech. Particularly in authoritar-
ian regimes or highly polarized societies, such systems may
be weaponized to stifle political opposition under the guise
of misinformation control.

12.2 Dataset-induced bias

Popular datasets such as Twitter, Weibo, and FakeNews-
Net often reflect existing demographic, cultural, and po-
litical biases. Language, slang, or imagery from under-
represented communities may be misinterpreted by models
trained on majority-group data. For example, the BDANN
model, while effective on cross-domain datasets, may gen-
eralize poorly to multilingual or regional dialect contexts.
Moreover, the class imbalance often present (e.g., fake:real
= 3:1) can skew model learning toward over-predicting the
majority class.

12.3 False positives and over-flagging

In high-stakes environments like public health or elec-
tions, even a small false positive rate can have damaging
consequences—e.g., erroneously flagging factual vaccine
information as fake, leading to public mistrust. Models
like MVAE, which impute missing modalities, may intro-
duce uncertainty that compounds this problem if not han-
dled transparently. Lack of interpretability further exac-
erbates this issue, as users and moderators cannot verify
model reasoning.

12.4 Mitigation strategies
To address these concerns, we recommend:

– Auditing datasets for demographic and topical repre-
sentation before training.

– Using fairness-aware training algorithms, such as ad-
versarial debiasing or reweighting.

– Including human-in-the-loop systems for moderation,
especially for borderline or high-impact content.

– Reporting bias and fairness metrics (e.g., equal oppor-
tunity difference) alongside accuracy.

Ultimately, ensuring ethical deployment of fake news de-
tection systems involves not only improving models, but
also designing transparent workflows and policies that up-
hold human rights and democratic values.

13 Ethical implications and dataset
bias

Multimodal models for fake news detection raise ethical
challenges:

– Dataset Bias: Most datasets are region-specific (e.g.,
Twitter, Weibo).

– Censorship Risk: Overflagging may suppress valid
dissent.

– User Privacy: Use of metadata in models like EANN
introduces risks.

Bias mitigation and fairness auditing should be integrated
into future systems.

14 Conclusion and forward-looking
perspectives

Multimodal fake news detection has evolved into a mul-
tifaceted research frontier intersecting natural language
processing, computer vision, social computing, and in-
creasingly, quantum information science. This review
has critically analyzed a range of classical architectures—
SpotFake, BDANN, MVAE, Guo et al., EANN, and
others—alongside emerging quantum-enhanced ap-
proaches like QMFND and variational quantum circuits.
While each classical model brings valuable architectural

innovations (e.g., attention mechanisms, adversarial train-
ing, hybrid fusion), current systems still face major ob-
stacles in handling domain shift, multimodal noise, ex-
plainability, and adversarial manipulation. This survey ad-
dressed these bottlenecks while also introducing quantum
computing as a promising avenue for future multimodal ar-
chitectures.
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Practical implications for deployment
The utility of these models extends beyond academic
benchmarks into real-world deployments:

– Social Media Moderation: Lightweight multimodal
classifiers must be optimized for real-time analysis
and scalable deployment in high-traffic environments
like Twitter/X, TikTok, or WhatsApp.

– Cross-platform Consistency: Detection pipelines
must handle format variations, asynchronous media
posting, and evolving propaganda tactics across plat-
forms.

– Human-in-the-loop Systems: Explainability and
interface-level integration (e.g., highlighting misin-
forming image-text pairs) are crucial for enabling hu-
man moderators or journalists to interpret predictions.

Quantum integration: theoretical directions
and validation needs
Despite the promise of quantum-enhancedmethods, several
theoretical and practical issues require attention:

– Circuit Capacity vs. Expressivity Trade-offs: Fu-
ture research must empirically investigate how circuit
depth, qubit count, and entanglement topologies affect
multimodal generalization.

– Sim-to-Real Gaps: Current benchmarking relies on
simulated quantum environments. Research should
simulate noisy intermediate-scale quantum (NISQ)
constraints and study robustness against decoherence
and barren plateaus.

– Fusion Theoretics: The use of quantum ker-
nels for multimodal fusion requires more rigorous
formalism—e.g., evaluating Hilbert space embedding
bounds or quantum mutual information preservation
across modalities.

Research agenda for future exploration
Based on the findings and limitations observed, we propose
the following roadmap:

1. Unified Benchmarking Suite: Establish a shared
framework to evaluate text-image-audio-video fusion
under adversarial, cross-lingual, and low-resource
constraints.

2. Quantum Model Efficiency Metrics: Define
parameter-efficiency, training energy consumption,
and hardware viability metrics for QML architectures.

3. End-to-End Multimodal Quantum Pipelines: In-
vestigate whether quantum preprocessing, fusion, and
classification can be stacked modularly within a hy-
brid pipeline.

4. Multimodal XAI for Quantum Models: Develop
interpretability toolkits for quantum-enhanced classi-
fiers (e.g., SHAP extensions to QML, measurement-
space saliency maps).

5. Societal and Ethical Frameworks: Proactively em-
bed fairness, bias auditing, and cultural diversity
checks into datasets and models—especially in low-
resource or politically sensitive contexts.

Final reflection
Ultimately, the battle against misinformation will be fought
across technological, societal, and epistemological do-
mains. This review aims not only to provide a rigorous
technical synthesis but also to serve as a clarion call for the
next generation of systems—grounded in theory, resilient
in practice, and responsible by design. Quantum-enhanced
learning, though still maturing, may emerge as a pivotal
catalyst in this evolution, enabling models that are not just
more accurate, but more expressive, fair, and future-ready.
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