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This study aims to address the issue that traditional analysis methods do not fully consider the 

differences in the number, types, and equipment occlusion of athletes in actual sports scenes. It 

constructs an athlete skeleton keypoint detection and action analysis model based on the OpenPose 

algorithm. The original OpenPose pipeline was optimized by introducing a multi classifier module 

combining SVM, KNN, and Naive Bayes, as well as a decision model based on conflict judgment and 

D-S rule fusion. The experiment used a dataset containing 2000 athlete training images (divided into 

training, testing, and validation sets in a 7:2:1 ratio), and compared it with the original OpenPose and 

DeepPose baseline models. The results showed that the optimized model had a loss rate of 4.1% on the 

training set and an accuracy rate of 98%. The error rate of keypoint detection was 7.4%, the speed was 

14.2fps, the detection accuracy was 0.92 mAP, and the time consumption was 0.9s. In the case analysis, 

the highest discrimination rates of the model for football players' running and defensive actions were 

0.94 and 0.89, respectively. Moreover, it could further distinguish between subdivided actions such as 

sprinting and backward running. In addition, the model performed well in different types of athletes 

(including athletics, weightlifting, gymnastics, etc.) and complex scenes (occlusion, multiple people), 

with significantly better accuracy and recall than the baseline model (mAP=0.84 for the original 

OpenPose and mAP=0.78 for DeepPose). The research reveal that the proposed model has higher 

accuracy and robustness in athlete bone keypoint detection and action analysis, and can provide 

effective support for scientific training. 

Povzetek: Okvir OpenPose je izboljšan z večklasifikatorsko fuzijo (SVM, KNN, NB) in D-S 

odločitvenimi pravili. Omogoča bolj kvalitetno zaznavo skeletnih točk ter analizo gibanja športnikov kot 

osnovni OpenPose in DeepPose. 

 

1  Introduction 
The identification and evaluation of athletes’ motions has 

long been a crucial component in raising the level of 

competition and training effectiveness in the realm of 

sports competition. The subtle differences in athletes’ 

movement patterns, power application, coordination, and 

trajectories can be the key factors affecting victory or 

defeat [1]. Therefore, accurate capture and in-depth 

analysis of athletes’ movements play a crucial role in 

optimizing training programs and improving athletic 

performance. However, most of the traditional movement 

analysis methods rely on manual observation or simple 

video analysis. This is not only time-consuming and 

laborious, but also highly susceptible to the influence of 

subjective factors, making the analysis results not 

objective and accurate. To address this problem, in recent 

years, many scholars have begun to try to use computer 

technology to build intelligent models, with a view to 

realizing scientific sports training. 

Cronin et al. compared the performance of OpenPose 

with manually examined data from the SIMI campaign 

using film shot at 200 Hz from actual competitive 

settings using two cameras. It was discovered that the  

 

joint angle waveforms’ multiple coefficients of 

determination showed significant variations among  

athletes, with knee angle values being more constant than 

those for hip and ankle angles [2]. Based on multi-view 

cross-information and confidence metrics, Xu M et al. 

presented a reliable multi-view anomalous human pose 

recognition technique that assessed pose attributes from 

various angles. Specifically, human skeletal data were 

extracted using OpenPose. These data were then used as 

inputs to the YOLOv5s system, which detected abnormal 

poses, such as falls and bumps. Experimental results 

found that the model had high accuracy [3]. To address the 

subjectivity and inefficiencies of conventional manual 

counting, Shi Z et al. suggested a sit-up counting method 

based on bone keypoint identification. By enhancing the 

network topology and adding jump connections, the 

system used a deep learning algorithm to identify and 

locate the main areas of the human skeleton [4]. A 

discontinuous frame filtering module was added to the 

front-end of the gait feature extraction (FE) network by 

Han K et al. in an attempt to actualize the limitation of 

the input image information to the network. This allowed 

them to propose a study approach based on human body 



 

 

keypoint extraction. According to the experimental 

findings, the model demonstrated great robustness and an 

average recognition accuracy of 79.5% on the gait 

dataset [5].  

 

Table 1: Literature comparison table 

Reference Method Key contribution Performance 
Application 

scenario 
Limitations 

Cronin et 

al. [2] 
Original OpenPose 

Compared with SIMI 

manual analysis 

High knee 

joint 

consistency 

(R2>0.85) 

Track & field 

(e.g., long 

jump) 

Unsuitable for 

real-time 

competition 

analysis 

Xu et al. 

[3] 
OpenPose+YOLOv5s 

Multi-view abnormal 

posture detection 

Fall detection 

accuracy: 

92.3% 

Security 

surveillance 

High 

computational 

complexity 

Shi et al. 

[4] 

Enhanced keypoint 

network 

Skip-connection 

architecture 

Sit-up 

counting: 

98.57%, 63.6 

FPS 

Fitness 

training 

monitoring 

Limited to 

specific 

movements 

Han et al. 

[5] 

Keypoint 

extraction+frame 

filtering 

Discontinuous frame 

screening module 

Gait 

recognition: 

79.5% 

accuracy 

Gait analysis 

Poor adaptability 

in dynamic 

scenes 

 

Even while earlier research has shown some promising 

findings, there is still opportunity for advancement. Due 

to the differences between different sports, athletes have 

different focuses on their own movements and postures. 

Therefore, the previous models do not further consider 

the differences in the number of athletes and types of 

athletes in the actual sports scene, as well as the 

existence of the occlusion of equipment. Based on this, 

the study proposes to use the OpenPose algorithm to 

construct a skeletal keypoint detection and movement 

analysis model for athletes, and to optimize the model on 

the basis of this model. The innovation of the optimized 

model is that OpenPose is used as the backbone of the 

model, and three classifiers, namely support vector 

machine (SVM), K-nearest neighbor (KNN) and naive 

Bayes (NB), are combined to construct the 

multi-classifier module. In addition, the multi-classifier 

module is followed by the decision module, which 

together enhances the model’s overall performance and 

detection accuracy (DA). 

This study aims to address the following key research 

questions: (1) Can the multi classifier fusion strategy 

significantly improve the robustness of pose 

classification under occlusion conditions? (2) In what 

ways can decision modules based on D-S rules surpass 

traditional majority voting methods? How can they 

improve the reliability of final classifications through 

conflict judgment mechanisms and confidence fusion? (3) 

What is the generalization ability of the proposed 

optimization model in different sports projects? The 

exploration of these issues will provide new technical  

 

ideas and theoretical basis for posture analysis in 

complex motion scenes. 

2  Methods and materials 

2.1 Construction of an OpenPose-based 

model for skeletal keypoint detection and 

movement analysis of athletes 
Athletes are professionals who specialize in the training 

and competition of sports. They are often required to 

improve their fitness, skills and athleticism through 

long-term, systematic and scientific training in order to 

achieve results in sports competitions. As a result, sports 

athletes are often required to perform highly precise and 

coordinated movements during training and competition. 

This is not only to improve the athletes’ professional 

level, but also to avoid sports injuries, as incorrect 

posture can easily lead to injuries [6-7]. Based on this, the 

detection and analysis of athletes’ movements has 

become the focus of the field today. OpenPose, as a 

posture estimation algorithm, recognizes and detects the 

key points of human skeleton in images or videos to 

analyze human posture and movements. Therefore, with 

the help of OpenPose algorithm, the detection of key 

points of the athlete's skeleton can be realized so as to 

analyze the movement. This can provide scientific data 

support and feedback for athletes' training [8]. Among 
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them, the specific processing flow of the OpenPose algorithm is shown in Figure 1. 

Input a color 

image with 

dimensions 

of w × h

Predict joint position

Predicting limb affinity domains

Inferring the 

human skeleton

Output human 

skeletal structure

 

Figure 1: Flow of OpenPose algorithm 

 

 

Figure 1 shows the specific flow of OpenPose algorithm. 

The input data is an image of a certain size, and 

OpenPose processes this input image in stages [9-10]. One 

stage is mainly used to predict the position of joint points 

and generate 2D confidence maps (CMs), while the other 

stage is mainly used to predict the affinity domains of 

limbs and output 2D vector fields. When the two phases 

are finished, the skeleton of the human body is jointly 

reasoned, and the 2D positions of the human skeletal 

structure are finally output. The specific calculation of 

this process is shown in Equation (1). 

1 1

1 1

( , , ), 2

( , , ), 2

t t t t

t t t t

S F S L t

L F S L t





− −

− −

 =  


=  

       (1) 

In Equation (1), tL  is the weighting coefficient, which 

mainly serves to quantify the correlation between the 

joints and provide a numerical basis for the subsequent 

analysis. tS  is the CM of joints output in t  stage. F  

is the feature map (FM) after the convolutional network 

operation. Within the structure of the OpenPose 

algorithm, there are two branches, the upper and lower 

branches, and each branch is an iterative prediction 

architecture, as shown in Figure 2. 
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Figure 2: Schematic diagram of the internal structure of OpenPose 

 

Figure 2 shows the internal structure of OpenPose. There 

are not only two branches up and down inside the 

standard OpenPose, but there is also a backbone network 

consisting of the first 10 layers of VGGNet at the front of 

its branches [11-12]. To extract valuable feature information 

from the input image, this backbone network is mostly 

utilized as a feature extractor. To make the detection 

speed and DA increase, the research has improved on the 

original OpenPose. The backbone network of the original 

OpenPose uses VGG-19. To make the model more 

lightweight, the study replaces VGG-19 with a 

lightweight neural network MobileNetV1, as shown in 

Equation (2) 
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In Equation (2), MACC  denotes the computation of 

point-by-point convolution in MobileNetV1. 
sFLOP  

denotes the floating-point operation in the convolutional 

layer. Params  is the number of parameters. MAC  is 

the computational complexity. H  and W  denote the 

height and width of the FM, respectively. 
1c  and MAC  

both denote the channel’s quantity. g  denotes the 

number of groups of convolutional kernels. At this point, 

the activation function used is ReLU, as shown in 

Equation (3). 
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In Equation (3), 1lz +  is the output of layer 1l + . l  is 

the bias derivative of the output lz  of the loss function 

(LF)’s l th layer. It is worth noting that the upper and 

lower branches of OpenPose use a LF at the end of each 

stage, as shown in Equation (4). 

2*

2
1

2*

2
1

( ) ( ) ( )

( ) ( ) ( )

J
t t

S j j

j p

C
t t

L c c

c p

f W p S P S p

f W p L P L p

=

=


=  −



 =  −







  (4) 

Equation (4) is the formula for the loss value in the 

OpenPose stage. p  is the pixel point. ( )W p  is the 

missing marker of the pixel point, which is replaced by 1 

or 0 only. When the value of the marker is 0, this means 

that the missing value is not included in the calculation. 
*

jS  and *

cL  represent the truth value of the joint point 

CM or partial affinity vector field of the corresponding 

branching stage, respectively [13-14]. During training, 

losses are incurred at each stage. Therefore, to avoid 

gradient vanishing, the study periodically replenishes the 

gradient at each stage with intermediate supervision. 

Equation (5) illustrates that just the output of the final 

layer is utilized for prediction. 

1
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t
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=
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Equation (5) is the overall objective of training, i.e., the 

overall loss value is obtained by relying on the 

summation of the loss values of each stage. In addition, 

in OpenPose, the prediction about the CM of joints is 

mainly realized by convolutional pose machines (CPM). 

The specific structure is shown in Figure 3. 
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Figure 3: Schematic diagram of CPM structure 

 

Figure 3 shows a schematic of the internal structure of 

the CPM. The CPM is internally composed of multiple 

convolutional network stages. These stages process the 

input image and the CM of the previous stage 

sequentially to generate increasingly accurate joint 

position estimates. The system also implicitly learns the 
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spatial relationships between images and joint points 
[15-16]. Therefore, as the network training progresses and 

the CPM stages increases, the accuracy of the output 

CMs improves, ultimately realizing accurate prediction 

of athletes’ skeletal joint point positions. The specific 

calculation is displayed in Equation (6). 
2
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      (6) 

Equation (6) is the training process of the joint point CM. 
*S  is the true CM generated based on the keypoints. 

,j kx  is the true location of the joints j  of individual k . 

2

,j kx R *

,j kS  denotes the individual CM. CPM 

effectively infers the occluded joints by obtaining a large 

receptive field through the use of a large convolution 

kernel. However, increasing the convolution kernel also 

increases the number of parameters. Based on this, the 

study proposes to increase the sensory field of CPM by 

increasing the step size to optimize CPM. In addition to 

CPM, another branch of OpenPose is part affinity fields 

(PAF). Its specific calculation is shown in Equation (7). 
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In Equation (7), ( )cn p  is the quantity of all non-zero 

vectors at point p . *

, ( )c kL p  denotes the affinity vector, 

whose main role is to assess the likelihood of joint point 

connections. v  denotes the unit vector of *

, ( )c kL p  

from 1j  to 2j . After obtaining the CMs of the joints, 

it is also necessary to calculate the line integrals of the 

corresponding PAFs. The line integral is calculated to 

obtain the strength of association score between the two 

joints. A higher score obtained indicates the possibility of 

a connection between the joint points. However, when 

there is more than one person in the input image, there 

may be many candidate locations for each part detected 

at this point. To cope with this problem, the study uses 

the Hungarian algorithm to evaluate each candidate limb. 

This is shown in Equation (8). 

1
max max max

C

cZ Zc Zc
E Ec

=
=         (8) 

In Equation (8), Ec  is denoted as the overall matching 

weight value for limb C. Zc  then denotes the subset of 

the Z  set with respect to limb C . E  is the 

connectivity strength between the parts. The evaluation 

criteria are determined by the connectivity strength, and 

the one with the highest strength is the candidate site [17]. 

In this way, an athlete skeletal keypoint detection and 

movement analysis model based on the OpenPose 

algorithm can be finally constructed, as shown in Figure 

4. 

Video capture Data preprocessing Key point detection

Application and 

Visualization

Classification 
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Key point feature 
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Figure 4: Athlete skeletal keypoint detection and movement analysis model 

 

The OpenPose algorithm-based skeletal keypoint 

identification and movement analysis model designed for 

athletes is displayed in Figure 4. In Figure 4, the specific 

process of the model is that the video of the athlete 

practicing or competing is captured as the input data, and 

then preprocessed to form an image. Moreover, the 

preprocessed image is subjected to a series of operations 

by OpenPose algorithm, including keypoint detection, 

extraction of keypoint features, and classification and 

recognition. Finally, the visualized heatmap is output to 

realize the analysis of the athlete’s movement. 

 

2.2 Optimization model for OpenPose 

incorporating multiple classifiers 
Although the model constructed using the OpenPose 

algorithm can detect and analyze the movements of 

athletes, however, in actual sports training or competition, 

there is often the same occasion. There are several 

trained athletes, and there are differences in the training 

programs and movements between different athletes. 

This difference may cause the original OpenPose 

algorithm to make judgment errors in detection, which in 

turn affects the accuracy of movement analysis. To deal 

with a problem, the study proposes to optimize the 

detection of skeletal keypoints on the basis of OpenPose 

algorithm. An optimization model for skeletal keypoint 

detection and movement analysis of athletes based on 

OpenPose is constructed, referred to as the optimization 

model.  

During the model optimization process, the researchers 
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first replaced the VGG19 backbone network with a 

MobileNetV1 network. They uses a depth multiplier of 

0.75 to balance accuracy and efficiency. This adjustment 

can reduce the number of network parameters from the 

original OpenPose's 125.6M to 38.3M, and the 

computational complexity (FLOPs) from 52.4G to 15.8G. 

Specifically, the depthwise separable convolution 

structure of MobileNetV1 decomposes standard 

convolutions into depthwise and pointwise convolutions. 

In FM computation, the number of convolution kernel 

parameters is reduced to the original 2

1 1

kN D
+ . It 

significantly reduces model complexity while 

maintaining the original FE capability. 

The key problem highlighted in the original model is that 

there are omissions and errors in the detection process of 

athletes’ skeletal keypoints. Therefore, this study 

introduces multiple classifiers behind the FE module of 

the original model to improve the model’s ability of 

classification and recognition [18]. To increase the 

accuracy of the output findings, a decision module is also 

added after the classifier module to merge the conflict 

judgment with the detection speed synthesis rules. For 

the introduction of multiple classifiers, which are NB, 

SVM, and KNN classification respectively. All the three 

classifiers each have different characteristics. 

Classification is achieved by finding the hyperplane that 

maximizes the spacing between the sample points of 

different categories, as shown in Figure 5. 

A
B

C

(a) 2D Space (b) 3D Space (c) Cross sectional diagram

 

Figure 5: Schematic diagram of SVM hyperplane 

 

Figure 5 shows the 2D and 3D views of the SVM 

hyperplane. Figure 5(c) shows the cross-sectional view. 

Among them, the line C is the support vector, which is 

formed by the connection between the nearest two 

different categories of sample points and is parallel to the 

hyperplane [19]. The distance between A and B in the 

figure is then the interval of the SVM. The larger the 

interval, the more correct the classification is indicated. 

BN is a classifier based on Bayes’ theorem, which 

obtains the optimal classification by learning the prior 

probability and conditional probability. Equation (9), 

which illustrates the fundamental notion of this classifier, 

reduces the conditional probability to the probability of a 

single feature because BN assumes that all features are 

independent of one another. 

arg max ( )

arg max ( ) ( )

k

k

c

k k
c

p y c x

p x y c p y c

 =



= =


       (9) 

In Equation (9), ( )cn p  and ( )kp y c=  are the 

conditional and prior probability. x  is the input data to 

be measured. 
kc  is the category corresponding to the 

k th position in the category set. Compared with SVM, 

NB is more sensitive to the assumption of feature 

independence. However, its advantages include: (1) 

Strong robustness to missing data. (2) Higher 

computational efficiency with high-dimensional data. (3) 

Stable performance when the feature independence 

approximation holds, even with small samples. Moreover, 

in addition to the introduction of SVM with BN, the 

improved optimization model also introduces KNN as a 

classifier [20-21]. KNN is a classifier based on distance 

metric. Therefore, the classification criteria of this 

classifier and its results mainly depend on the number of 

neighbors, i.e., the K-value, and the distance metric. The 

details are shown in Figure 6. 

K=3

K=5

(a) When K=5 (b) When K=5

 

Figure 6: Classification discrimination of KNN 

 

Figure 6 shows the classification interpretation process 

when KNN is used as a classifier. The green dot at the 

center in Figure 6(a) is the point to be predicted. When K 

is 3, the to-be-predicted point is considered to be blue 
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because the circle around the center of the point has 2 

blue dots and 1 red dot. Moreover, when K is equal to 5, 

then there are 2 blue points and 4 red points within the 

new circle. At this point, it is then considered that the 

electrodynamic point belongs to the red side. Obviously, 

all three classifiers have their own characteristics and 

advantages. Since most of the previous methods for the 

detection and recognition of gesture behavior use a single 

classifier, multiple classifiers are fused. This enhances 

DA in addition to recognizing the complementarity of the 

classifiers’ strengths and limitations [22-23]. The three 

classifiers have complementary strengths. SVM excels in 

small-sample, high-dimensional scenarios by maximizing 

the margin. KNN uses local data density to analyze 

dynamic actions. NB remains robust in sparse or 

incomplete data when features are independent. Together, 

they enable a comprehensive analysis of both common 

(data-rich) and rare (data-scarce) football movements. 

The study employs a two-stage fusion strategy: First, 

initial weights are assigned to SVM, NB, and KNN based 

on their validation set accuracy. Second, the D-S 

evidence theory dynamically adjusted the weights when 

the outputs of the classifiers diverged (below the 

similarity threshold). This boosted the influence of 

consistent classifiers while reducing that of conflicting 

ones. This balances overall performance with 

sample-specific adaptation. In addition to the 

incorporation of a multi-classifier module, a 

decision-making module is also incorporated in the 

optimization model for skeletal keypoint detection and 

movement analysis of athletes based on improved 

OpenPose, as shown in Equation (10). 
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In Equation (10), 
1m , 

2m , and 
3m  are the detection 

results of the three classifiers, respectively. p  is the 

type of behavior. 
1( )pm H , 

2 ( )pm H , and 
3 ( )pm H  are 

the detection rates of the three classifiers in the p th 

behavior, respectively [24-25]. Since three classifiers exist, 

three results theoretically exist. This may lead to 

contradictions and conflicts; thus the first step of the 

decision module is to make a conflict judgment as shown 

in Equation (11). 
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In Equation (11), 
,i jm m  is the similarity between two 

two classifiers. 
,i jm m  and 

jm  display the mean of the 

i th and j th classifiers, respectively. 
im  and 

jm  

display the variance of the i th and j th classifiers, 

respectively. When the similarity is 1, it means there is 

no conflict. When the similarity is -1, it indicates 

complete conflict [26-29]. After the conflict determination, 

then the D-S rule fusion operation can be performed as 

shown in Equation (12). 
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  (12) 

Equation (12) uses the classical Dempster combination 

rule. In this equation, B, C, and D represent the mass 

function assignment sets of the SVM, KNN, and NB 

classifiers, respectively. A represents the hypothesis to be 

verified, such as a specific motion behavior. The sum of 

the mass products of all empty intersections are 

calculated using the conflict coefficient k . ' ( )n pm H  

stands for mass function. The specific implementation 

process of the D-S decision module is shown in Figure 7. 
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Figure 7: Schematic diagram of D-S fusion process 

 

Figure 7 outlines the three-stage D-S fusion process. First, 

the system detects classifier conflicts using a similarity 

matrix (Equation 11). Then, it triggers reweighting when 

the number of conflicts exceeds the 0.6 threshold. It then 

dynamically allocates mass function values before 

finalizing through Dempster's combination rule: 0.7–0.9 

for high-confidence/low-conflict predictions, 0.4–0.6 for 

medium confidence, and ≤0.1 for 

low-confidence/high-conflict cases. The optimized model 

structure can be shown in Figure 8. 
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Figure 8: Optimized model of skeletal keypoint detection 
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and motion analysis for athletes with improved 

OpenPose 

 

Figure 8 shows the optimized model for athlete skeletal 

keypoint detection and movement analysis after the 

introduction of the multi-classifier module and decision 

module. The optimized model is still based on the 

OpenPose algorithm, which is mainly used for the 

detection and FE of athletes’ skeletal keypoints. The 

model’s overall DA is increased with the addition of a 

multi-classifier and decision module. This can avoid the 

situation of missed detection and false detection due to 

the complex situation of multiple people and dynamics. 

In summary, the improved model has great potential in 

applying to athletes in sports. 

3  Results 

3.1 Validation analysis of skeletal keypoint 

detection and motion analysis optimization 

models for athletes 
To examine the actual performance of the proposed 

model of the study, the study selects the training images 

of a soccer club’s athletes and their training videos since 

nearly one year as the experimental dataset. The video is 

intercepted frame by frame and preliminarily screened, 

and finally a total of 2000 original images that meet the 

requirements are collected. Additionally, to enhance the 

effectiveness of picture recognition and classification, the 

image is normalized. In accordance with 7:2:1, the 

dataset is separated into training, test, and validation sets. 

The corresponding number of images are 1400, 400, and 

200, respectively. The experiments are run on the 

integrated development environment PyCharm 2022 and 

operated on Ubuntu 18.04.6. The dataset is captured by 

professional sports photographers using a Sony α9 II 

(4K/60fps), with 2000 frames (1920×1080) extracted 

from the footage. Three nationally certified football 

referees independently labeled behaviors (running, 

shooting, defending, etc.) through a semi-automatic 

process: OpenPose-generated keypoints are manually 

verified and corrected, with disputed samples (5.3%) 

resolved via group arbitration. CVAT ensured precise 

keypoint-label alignment. The complete processing flow 

includes: (1) video capture (fixed camera position, 10-15 

meters distance, 800-1200 lux lighting), (2) frame 

extraction and normalization (FFmpeg tool, resolution 

640×360), (3) three level annotation system (automatic 

generation manual verification arbitration), and (4) 

Model training (Adam optimizer, 150 epochs). For 

subsequent elaboration, the study names the models as 

pre-improvement model and post-improvement model, 

respectively, and the comparison method is used. The 

two models before and after optimization are trained 

separately using the training set data. The changes in the 

loss rate and accuracy of the models are shown in Figure 

9. 

Figure 9 displays the model’s iterative performance on 

the training set before and after enhancement. The 

model’s loss change curve is displayed in Figure 9(a). 

The two models, both before and after improvement, 

show the same overall trend of gradually decreasing loss 

rates with increasing iterations. In terms of individual 

models, however, the improved model reaches the 

inflection point of convergence faster than the 

pre-improved model. The improved model finally 

converges completely at a loss rate of 4.1%. The loss rate 

at the point of complete convergence of the pre-improved 

model is 4.8%, which is higher than that of the improved 

model. Figure 9(b) shows the change in accuracy of the 

two models. The accuracy of both the before and after 

models gradually increases with each iteration until they 

reach a stable state. When the enhanced model converges, 

the comparison findings indicate that its accuracy is 

roughly 98%. The pre-improved model, on the other 

hand, reaches full convergence with an accuracy of about 

90%, which is lower than that of the improved model. 

Further, the experiments also test the error rate and 

detection speed of the before and after models for 

skeletal keypoint detection. The results are shown in 

Figure 10. 
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Figure 9: Loss change curve and accuracy change curve of the model before and after optimization 
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Figure 10: Error rate and detection speed of model keypoint detection 

 

Figure 10 compares the two models’ performance in 

terms of error rate and detection speed for skeletal 

keypoint identification of athletes before and after 

improvement. Figure 10(a) displays the error rate of the 

two models for keypoint detection. As the detections 

increases, the overall error rate of both models before 

and after improvement shows an increasing trend. In 

terms of individual models, the average error rate of the 

pre-improved model is about 12.3%. The improved 

model, on the other hand, has an error rate of about 7.4%. 

In comparison, the improved model has fewer error cases 

on skeletal keypoint detection. Figure 10(b) displays the 

detection speed of the two models. TBoth models’ overall 

detection speed is comparatively stable. However, the 

average detection speed of the improved model is 14.2 

fps, while the average detection speed of the 

pre-improved model is only 9.7 fps, which is lower than 

that of the improved model. In addition, the mean 

average precision (mAP) and detection time before and 

after the model improvement are shown in Figure 11. 

Figure 11 shows the comparison of the DA and 

time-consumption of the two models before and after the 

improvement. Figure 11(a) shows the keypoint DA of the 

models. The mAP values of both models increase as the 

number of keypoints increases. The improved model first 

reaches a state of convergence, with an mAP value of 

about 0.92 at full convergence. Whereas the 

pre-improved model shows the inflection point later. Its 

mAP value at full convergence is about 0.84, which is 

lower than that of the improved model. Figure 11(b) 

displays the time-consumption comparison of the two 

models. The time-consuming performance of both 

models is relatively stable. On average, the pre-enhanced 

model take around 2.9 seconds to complete, whereas the 

improved model take approximately 0.9 seconds. 

Obviously, the combined performance of the improved 

model is better. In addition, the improved model 

incorporates a multi-classifier module, whereas previous 

methods for behavior detection mostly use one classifier. 

Therefore, the experiments are tested to compare the 

differences in the type and number of classifiers. The 

mean precision, accuracy, recall, and F1 score are 

selected as the effect assessment metrics for the classifier 

module. Table 2 displays the findings. 
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Figure 11: Model key point DA and time-consumption 
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Table 2: Classification effectiveness evaluation of the classifier module 

Classifier Precision accuracy Recall F1 score 

SVM 89.2% 87.3% 86.4% 87.5% 

NB 86.4% 85.1% 85.7% 86.6% 

KNN 87.8% 84.7% 88.3% 87.2% 

SVM-NB-KNN 95.2% 94.6% 91.7% 93.6% 

 

Table 2 shows the performance of single classifiers and 

multi-classifier modules on the classification effect of 

athlete behavioral gesture recognition and detection. The 

performance of the first three single classifiers in terms 

of precision, accuracy, recall, and F1 score have their 

own slight advantages and disadvantages, but the overall 

difference is not significant. Compared with the 

multi-classifier module containing three classifiers, its 

precision is 95.2%, accuracy is 94.6%, recall is 91.7%, 

and F1 score is 93.6%, all of which are higher than any 

single classifier.  

Table 2 shows that while SVM and NB perform well in 

low-dimensional spaces, KNN is still crucial for (1) 

capturing spatio-temporal continuity in dynamic actions 

(as opposed to hyperplane-based approaches), (2) error 

correction via neighborhood voting when keypoints are  

 

inaccurate, and (3) detecting localized density variations 

in multiplayer interactions to complement the global 

patterns of SVM/NB. 

The multi-classifier module indirectly enhances keypoint 

detection through a two-level feedback mechanism: (1) 

Behavior classification identifies kinematically 

implausible postures, triggering: (a) low-quality frame 

marking, (b) temporal re-estimation (5 adjacent frames), 

and (c) subsequent frame weight adjustment. (2) 

OpenPose's body-part detection weighting is guided by 

D-S fused action probabilities. This dual-function system 

improves behavior recognition accuracy directly and 

refines keypoint detection quality indirectly. 

To comprehensively evaluate the performance of the 

model, statistical significance analysis was supplemented 

in the study. The results are shown in Table 3.

 

Table 3: Statistical significance comparison of model performance 

Metric 

Our 

Model 

(95% 

CI) 

Original 

OpenPos

e (95% 

CI) 

Lightweig

ht 

OpenPose 

HRNet 
OpenPose+Mobil

eNetV3 

Ino T et al. 

[30] 

Lee P et al. 

[31] 

p-valu

e 

Accuracy 

(%) 
97.8±0.3 89.5±0.7 93.2±0.5 95.2±0.4 92.8±0.6 89.2±0.8 99.0±0.2 <0.01 

mAP 
0.92±0.0

2 

0.84±0.0

3 
0.87±0.03 

0.89±0.0

2 
0.86±0.03 0.86±0.04 0.85±0.03 <0.05 

Occlusio

n mAP 

0.88±0.0

3 

0.68±0.0

5 
0.80±0.04 

0.82±0.0

4 
0.78±0.05 0.76±0.06 0.79±0.05 <0.01 

Processin

g Speed 

(FPS) 

14.2±0.5 9.7±0.8 16.5±0.7 10.3±0.6 18.2±0.9 9.3±0.7 11.7±0.6 <0.05 

 

Table 3 presents the performance comparison with 

statistical significance. The proposed model 

significantly outperforms the original OpenPose model 

and three optimized models (p<0.05). It achieves 

97.8±0.3% accuracy, 0.92±0.02 mAP (mAP), and 

0.88±0.03 occlusion mAP. Notably, it surpasses HRNet 

by 6 percentage points in occlusion mAP (0.88 vs 0.82)  

 

 

while being 38% faster (14.2 and 10.3 FPS). Compared 

to lightweight models, it improves accuracy by 4.6 

points (97.8% and 93.2%) with comparable speed. All 

results are statistically significant (95% CI, t-tests). 

Furthermore, in order to verify its effectiveness in 

computational efficiency, the performance of the model 

is systematically tested on different hardware platforms. 

The results are shown in Table 4. 
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Table 4: Hardware performance benchmarking 

Hardware 

Configuration 
Speed (fps) 

Latency per Frame 

(ms) 
Memory Usage 

Peak Power 

(W) 

Compute 

Platform 

NVIDIA RTX 

3090 (GPU) 
14.2±0.5 70.4±2.5 

2.3 GB 

GDDR6X 
285 CUDA 11.1 

Intel Xeon 

E5-2680 v4 (CPU) 
3.1±0.3 322.6±31.2 1.8 GB DDR4 120 OpenMP 4.5 

NVIDIA Jetson 

Xavier NX (Edge) 
8.7±0.4 114.9±5.8 1.9 GB LPDDR4 45 JetPack 4.6 

 

Table 4 compares hardware performance. On an 

NVIDIA RTX 3090 GPU, the model achieves 14.2±0.5 

fps (70.4ms/frame) with 2.3GB VRAM usage. On an 

Intel Xeon E5-2680 v4 CPU, performance drops to  

 

 

3.1±0.3 fps (322.6ms/frame) with 1.8GB RAM usage. 

Notably, the multi-classifier module accounts for 23% 

of the total computation, while the D-S decision module 

adds only a 7% overhead. This enables deployment on 

various edge devices.

3.2 Case study of skeletal keypoint detection 

and motion analysis optimization model for 

athletes 
All of the above are comparisons of the performance of 

the model before and after this improvement. The 

investigation will further examine players’ behavioral 

behaviors in particular sports settings with example 

applications in an attempt to better graphically illustrate 

the superiority of the suggested model. Take soccer 

players as an example, the common typical actions of 

soccer players are running, shooting and defense. The 

experiment takes these three typical actions as an 

example and draws the confusion matrix (ConM) of the 

two models before and after the improvement, as shown 

in Figure 12. 
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Figure 12: Confusion matrix of the model before and after improvement 

 

Figure 12 shows the performance of the two models for 

the analysis of specific movements of soccer players. 

Among them, the vertical and horizontal coordinates of 

the ConM are the true and predicted labels. Figure 12(a) 

illustrates the ConM of the pre-improvement model. The 

best performance of the model in the specific 

discrimination of soccer players’ behaviors is the running 

behavior with a discrimination rate of 0.68. The worst 

performing behavior is defense with a discrimination rate 

of 0.56. Figure 12(b) illustrates the ConM of the 

improved model. As with the previous model, the 

improved model's best discriminative behavior is running 

(0.94), and its worst is defense (0.89). However, the 

discrimination rates of all behaviors significantly 

improved after the optimization (running +26%, shooting 

+30%, and defense +33%), proving the strategy's 

effectiveness for all types of actions. 

 

Further, the study divides the running and defense actions 

of soccer players in depth. The running is subdivided into 

sprint and step back and run, and the defense is 

subdivided into offensive interception and stand defense. 

As indicated in Table 5, the mAP is chosen as the index 

to evaluate the model’s ability to identify and detect the 

movements. 

Table 5 shows the detection of each model for specific 

actions of sports players. Before the model improvement, 

the mAP values are 83.2 for sprinting and 87.8 for 

stepping back and running. Moreover, in defensive action, 

the mAP value of offensive interception behavior is 84.6 

and stand defense behavior is 90.8. Following the model 

improvement, the mAP scores for the sprint, step back, 

run, offensive interception, and stand defense behaviors 

are 89.2%, 92.5%, 91.4%, and 90.8%, respectively. 

Athletes are not only soccer players, but also different 

sports with different behavioral postures. To further 
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examine the practical application scenarios of the model, Figure 12 displays the results. 

 

Table 5: Model’s detection of sports players’ movements 

Model 
Running Defense 

Sprint Step back and run Offensive interception Stand defense 

Before optimization 83.2 87.8 84.6 86.3 

After optimization 89.2 92.5 91.4 90.8 

DeepPose 80.1 83.2 81.4 79.8 
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Figure 13: Accuracy and recall performance of the model in different types of athlete movement detection 

 

The accuracy and recall performance of the two models 

for various sports players are displayed in Figure 13 both 

before and after improvement. Figure 13(a) shows the 

accuracy of the models. The DA of the pre-improved 

model for track and field athletes, weightlifters, gymnasts, 

and shooters are 82.2%, 89.9%, 80.2%, and 87.8%, 

respectively. Moreover, the DA of the improved model 

for track and field athletes, weightlifters, gymnasts, and 

shooters are 92.1%, 96.4%, 90.5%, and 96.2%, 

respectively, which are better than the pre-improved 

model. Figure 13(b) shows the model’s recall 

performance. The recalls of the enhanced model are all 

greater than the pre-improved ones, which is consistent 

with the accuracy results. Specifically, the recalls of track 

and field athletes, weightlifters, gymnasts, and shooters 

are 92.4%, 95.7%, 92.2%, and 97.1%, respectively. In 

summary, the improved model is more capable of 

applying in real-world scenarios and can be adapted to a 

wide range of sports. Further, the experiments use the 

improved model to test various athletes’ sports scenarios 

and examine the performance of key point detection in 

actual multiple complex environments, as shown in 

Figure 14. 

(a) Single person full 

body without obstruction

(b) Crowded with 

multiple people
(c) Half body obstruction

 

Figure 14: Testing effect of the research model on athletes’ behavior under different conditions 

 

Figure 13 shows the detection of various behaviors of 

athletes in different scenarios by the proposed model of 

the study. Three conditions are selected for actual 

detection, namely single person full body without 

obstruction, crowded with multiple people, and half body 

obstruction. These actions are common actions of 

athletes in various sports training or competitions, and 

the proposed model can recognize and detect the actions 

well regardless of obstruction. Regardless of whether 

there is obstruction or not, and whether there are multiple 

people or not, the proposed model is able to locate the 

key points well and complete the recognition and 

detection of the movements. To quantify the impact of 

occluded scenes on detection performance, the study 

further compared the model performance under three 

typical scenes, as shown in Table 6. 
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Table 6: Comparison of model performance under different obstructive scenarios 

Scenario Type 
Test 

Samples 
Accuracy (%) 

Keypoint 

Completeness Rate 
mAP Speed (fps) 

Full Visibility (Single 

Person) 
650 98.2±0.4 100% 0.95 15.1 

Equipment Occlusion 320 92.5±1.2 78.60% 0.87 13.8 

Multi-person Interaction 

(≥3) 
280 90.8±1.5 85.20% 0.85 12.4 

 

Table 6 compares model performance across occlusion 

scenarios. The model achieves 98.2% accuracy with 

unobstructed, single-person views. This declines to 

92.5% with equipment occlusion and to 90.8% with 

multiplayer interactions involving three or more athletes. 

Notably, critical area occlusion shows smaller accuracy 

loss (Δ=-4.7%) than non-critical areas (Δ=-9.3%),  

 

demonstrating robust key feature retention. On the whole, 

the proposed model can be well used in athletes’ skeletal 

keypoint detection and movement analysis. 

3.3 Ablation Study 

To verify the independent contributions of each module, 

a systematic ablation experiment was designed, and the 

results are shown in Table 7. 

 

Table 7: Ablation study results comparison 

Model configuration mAP Accuracy (%) 
Occlusion 

mAP 
Speed (fps) Parameters (M) 

Baseline (OpenPose+MobileNetV1) 0.84 89.5±0.7 0.68±0.05 18.2±0.9 38.3 

+SVM Classifier 0.89 92.1±0.6 0.75±0.04 15.7±0.7 39.1 (+0.8) 

+KNN Classifier 0.87 90.8±0.8 0.72±0.05 14.3±0.6 38.9 (+0.6) 

+NB Classifier 0.88 91.3±0.7 0.74±0.04 16.0±0.8 38.5 (+0.2) 

Triple-Classifier Fusion 0.9 94.6±0.5 0.81±0.03 14.8±0.7 40.2 (+1.9) 

Full Model (with D-S Fusion) 0.92 98.0±0.3 0.88±0.03 14.2±0.5 42.7 (+4.4) 

 

Table 7 presents ablation study results. The baseline 

(OpenPose+MobileNetV1) achieves 0.84 mAP without 

classifier fusion. Individual classifiers improve 

performance (SVM: +0.05, KNN: +0.03, NB: +0.04), 

while full three-classifier fusion reached 0.90 mAP. The 

D-S decision module boosted performance even further,  

 

reaching 0.92 mAP. The most significant gains are seen 

in multi-person scenes, at +0.07 mAP, which validates 

the effectiveness of its conflict resolution. 

Furthermore, to achieve a more comprehensive 

explanation, the study also conducted a resolution 

scalability test, and the results are shown in Table 8. 

 

Table 8: Resolution scalability test (NVIDIA RTX 3090) 

Resolution Params (M) FLOPs (G) 
Memory Usage 

(GB) 
Speed (fps) 

Power Consumption 

(W) 

640×360 38.3 15.8 2.3 14.2±0.5 285±10 

1280×720 38.3 31.6 3.1 (+34.8%) 9.7±0.3 320±15 

1920×1080 38.3 47.4 4.1 (+78.3%) 6.5±0.2 350±20 

 

Table 8 presents the resolution scalability test results, 

demonstrating the model's three-level optimization 

approach. Through depthwise separable convolution, the 

MobileNetV1 backbone reduces the number of 

parameters from 125.6M to 38.3M and the number of 

FLOPs from 52.4G to 15.8G. Temporally, the keypoint  

 

trajectory prediction algorithm cuts per-frame 

processing time from 70.4ms to 45.2ms (5-frame 

window). In a distributed deployment, dynamic load 

balancing achieves a 220% increase in time for 

10-athlete scenarios, as opposed to a 500% increase with 

traditional methods. When scaling the resolution from 
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640×360 to 1920×1080, the growth in GPU memory 

remains below 1.8x, which meets the requirements for 

real-time 4K.

4  Discussion 
The original athlete skeletal keypoint detection and 

movement analysis model constructed based on the 

Openpose algorithm may have omissions or 

misdetections due to the differences in the number of 

athletes, sports, and movement postures of the Openpose 

algorithm during detection. Therefore, to further improve 

the detection effect of the model, the study proposed to 

introduce a multi-classifier module and a decision 

module based on the original model based on Openpose 

algorithm. An optimization model for skeletal keypoint 

detection and movement analysis of athletes based on 

Openpose was constructed. The improved model was 

validated against the pre-improved model.  

The experimental results showed that this improvement 

strategy has multiple advantages: First, the 

multi-classifier module's combination of SVM, KNN, 

and NB had its respective advantages. SVM performed 

stably in situations with small samples, KNN was 

suitable for analyzing dynamic actions, and NB was 

highly adaptable to situations with partial occlusion. 

These characteristics resulted in an overall model 

accuracy of 98%, which was better than the performance 

of a single classifier. Second, the decision module 

effectively reduced the false detection rate in 

multi-person scenes and occlusion situations through 

conflict judgment and D-S rule fusion. This enabled the 

model to maintain a high accuracy of 0.92 mAP in 

complex environments. Although the introduction of 

multiple classifiers increased processing time by about 

0.9 seconds, the overall processing speed remained at 

14.2 fps through algorithm optimization, meeting 

real-time requirements. 

The results of the model’s performance validation 

analysis indicated that in the training phase of the model, 

the loss rate of the pre-improved model was about 4.8% 

when reaching convergence, which was higher than that 

of the post-improved model, which was 4.1%. However, 

the accuracy of both the before and after models in the 

training stage increases with the number of iterations. 

The accuracy of the post-improved model was higher 

than that of the pre-improved model, which was around 

98%, while the accuracy of the pre-improved model was 

approximately 90% when both models reached full 

convergence. In addition, in terms of the error rate and 

detection speed of keypoint detection, the 

pre-improvement model had a mean error rate of 12.3% 

and a mean detection speed of 14.2fps. Compared with 

the mean error rate of 7.4% and the mean detection speed 

of 9.7fps of the post-improvement model, its overall 

performance was poor. Further, in the case of keypoint 

DA and time-consumption, the mAP score of the 

pre-improvement model was 0.84, and the average 

time-consumption was 0.9s. While the mAP of the 

post-improvement model was 0.92, and the average 

time-consumption was 0.9s. The performance of the 

post-improvement model was still better than that of the 

pre-improvement. Since the addition of the improved 

model was a multi-classifier module, furthermore, the 

experiments tested the performance of the single 

classifier versus the multi-classifier as well. It was found 

that the multi-classifier module added in the improved 

model performed better with better detection compared 

to a single classifier. Although the model performs well 

in various sports, such as football, athletics, weightlifting, 

and shooting, with an accuracy rate ranging from 90.5% 

to 96.4%, it may still experience a decrease in DA when 

encountering certain specialized sports postures. In 

addition, the experimental dataset primarily originates 

from professional athlete training scenarios, and its 

applicability to amateur sports enthusiasts requires 

further verification. The dataset's limited population 

diversity (exclusively professional athletes aged 18-35) 

may constrain model applicability for: (1) 

adolescent/elderly athletes, (2) significantly different 

body types, and (3) gender-sensitive sports like artistic 

gymnastics. Future studies will address this through 

dataset expansion. 

In addition to the performance validation, the study also 

conducted an example analysis, taking soccer players as 

an example. It was found that the improved model could 

better discriminate the three classical actions of running, 

shooting, and defending of the player in soccer, and the 

discrimination rate was not less than 0.85 in all cases. In 

the more detailed action analysis, the improved model 

could accurately detect sprint and step back and run in 

the running behavior. At the same time, it could also 

identify offensive interception and stand defense in the 

defensive behavior, and the obtained mAP values were 

not less than 0.85. In addition, in different types of 

athletes and different condition scenarios, it was found 

that the improved model could cope well. 

In the same type of study, Ino T et al. constructed an 

open-source 2D deep learning-based pose estimation 

method to analyze a cohort of healthy adults using the 

OpenPose algorithm. The model was compared with a 

motion analysis model based on human visual detection. 

The experimental results found that the model had 

satisfactory reproducibility and accuracy, and showed 

comparable waveform similarity and correlation in terms 

of knee valgus angle offsets to conventional 3D motion 

analysis [30]. Scholars Lee P et al. achieved accurate 

analysis of pose by integrating OpenPose with SVM. The 

experimental results indicated that the overall 

ACCURACY of the model was 0.990 and the Kappa 

index was 0.985. The tangent points of the top angle ratio 

and the bottom angle ratio effectively differentiated 

between left and right skew. The AUC values of 0.772 

and 0.775 proved the validity of the model [31]. Although 

all of the above studies modeled and improved the model 

based on OpenPose, the proposed model was studied to 

be better in motion detection and analysis of sports 

athletes. 
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5  Conclusion 
To detect the key points of the athlete’s skeleton better 

and realize the accurate analysis of the athlete’s 

movement, the study was conducted on the athlete’s key 

point detection and movement analysis model 

constructed based on the OpenPose algorithm. 

Multi-classifier module and decision module were 

introduced to optimize the model. The experimental 

results found that compared with the pre-improved model, 

the overall performance of the improved model was 

improved, with a loss rate of 4.1%, an accuracy of 98%, 

an average error rate of 7.4%, and an average detection 

speed of 14.2 fps. All of them were better than the 

pre-improved one. In addition, in the example analysis, 

the improved model could accurately detect the running, 

shooting and defending actions of soccer players, and 

still had superior performance in further segmented 

actions. In the skeletal keypoint detection of multiple 

types of sports players, the improved model could have 

higher generalization ability and could be applied to 

multiple types of sports. Moreover, it still had better 

detection and analysis ability in scenes with different 

conditions. The model is suitable for use in the detection 

and analysis of skeletal keypoints in athletes. The model 

is trained primarily on football data and generalizes well 

to track and field and weightlifting. However, it requires 

further testing for the following: (1) high-contact sports 

occlusion, (2) extreme flexibility poses, and (3) youth 

and senior athletes. These limitations will be addressed 

through future multi-sport datasets. 
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