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The data collection and processing technology of orbit detectors and global navigation satellite systems 

in driving conditions is of great significance. A positioning method based on the fusion of inertial 

navigation system and global navigation satellite system is proposed to address the signal acquisition and 

fusion issues between the track inspection instrument and the global navigation satellite system during 

driving. This method achieves effective fusion of multi-source data through synchronous acquisition 

technology and time alignment algorithm, and further optimizes the data processing flow of the track 

inspection instrument, enhancing positioning accuracy and robustness. The experiments tested the 

performance of different methods in terms of positioning error, redundancy detection rate, sampling 

accuracy, and resource consumption by simulating three typical scenarios: open environment, urban rail 

transit, and mountain track. The results showed that the proposed method had an average positioning 

error of only 2.5 mm in an open environment, which was significantly better than the 6.2 mm error of 

GNSS-RTK and the 12.5 mm error of GNSS. The redundancy detection rate could reach 95.2%, which 

was nearly 10% higher than GNSS-RTK and 30% higher than GNSS. In urban and mountainous 

environments, positioning errors are kept within 6.8 and 8.5 mm, respectively. Meanwhile, the research's 

proposed method has improved its signal-to-noise ratio to 45.8 dB and decreased its mean square error 

by over 40%. This demonstrates its excellent anti-interference and denoising capabilities. The 

experimental results demonstrate that the proposed method significantly improves the positioning 

accuracy and real-time performance of the orbit detection system under complex operating conditions. 

The method is applicable to engineering and has significant promotional value. 

Povzetek: Razvita jei metoda združevanja GNSS in INS za natančnejše pozicioniranje pri železniških 

tirnih pregledih, ki z večnitenim zajemom, časovno poravnavo in Kalmanovim filtrom poveča robustnost. 

 

1 Introduction 
With the rapid development of rail transportation, track 

inspection technology plays a crucial role in ensuring the 

safety of train operation and the efficiency of track 

maintenance [1]. Accurate and real-time track inspection 

can not only identify geometric changes and structural 

damage of the track, but also effectively predict potential 

safety hazards [2]. However, in complex track scenarios, 

track inspection technology faces many challenges. 

Especially in high-speed train operation or complex 

environments, signal occlusion, interference, and 

multipath effects can significantly degrade the 

performance of the localization system, resulting in large 

positioning error and data processing delays for orbit 

detectors. Traditional track detection methods rely on a 

single sensor or global navigation satellite system (GNSS) 

technology to detect the geometric characteristics of the 

track using independent positioning means [3]. Ma et al. 

proposed a correlation coefficient-based position 

calibration method designed to address position errors and 

offsets in multi-source orbit detection data. The method  

 

was divided into three parts, all of which were realized by  

a two-step procedure. Tests indicated that the method 

could effectively reduce the position error and improve the 

data alignment, and the processing time for a 1-kilometer 

section was 0.66s on average [4]. Sun et al. proposed a 

virtual track inspection technique integrating a multi-body 

system model for analyzing the performance of high-

speed trains passing through turnouts on main lines and 

branch lines. The technique was validated in the spatial 

and wavelength domains based on inertial measurements 

and vehicle turnout dynamics analysis. The results 

indicated that zero-phase filters at 3-25 m and 1-5 m 

wavelengths were essential for eliminating long-wave 

interference and identifying turnouts [5]. Chen et al. 

constructed a mathematical model of the track geometry 

vehicle path optimization problem for periodic demand 

and used the modal algorithm, a meta-heuristic method, to 

solve it efficiently. The application of this method in a real 

case revealed that it was able to reduce 295.016 kilometers 

of ineffective mileage and significantly improve the 

efficiency of the maintenance cycle [6]. Zvirblis et al. 

examined the use of time series deep learning for conveyor 
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belt monitoring. They focused on analyzing how data 

augmentation techniques affect the accuracy of tension 

signal classification. By introducing various enhancement 

methods such as Laplacian noise, Gaussian drift noise, 

uniform noise, and amplitude distortion, combined with 

TimeVAE to generate synthetic data, experiments 

indicated that these techniques could effectively improve 

the classification performance of the model [7]. 
In recent years, GNSS has a wide range of 

applications in track detection and positioning, the core of 

which lies in the realization of accurate spatial positioning 

through satellite signals, which provides key support for 

the safe operation and maintenance of rail transportation 

[8]. A method for RF interference suppression of GNSS 

signals based on non-negative matrix decomposition was 

proposed by da Silva F B et al. The method was able to 

separate the interference from the GNSS signal and 

supported both supervised and semi-blind deployment 

modes. Experimental results confirmed that both schemes 

could effectively reduce the impact of RF interference on 

GNSS signals [9]. Zou et al. proposed an adaptive motion-

constrained microelectromechanical system (MEMS)-

assisted signal tracking technique designed to quickly 

restore navigation services. The technique improved the 

accuracy of motion state identification through fuzzy 

reasoning and generated virtual measurements to maintain 

the loose integration of GNSS/inertial navigation system 

(INS). Experimental results revealed that this technique 

recognized motion states more accurately and stayed 

within the tracking capability of the GNSS receiver [10]. 

Ichikawa et al. proposed a cost-effective GNSS 

interferometric reflection technique for monitoring 

significant wave heights and wave periods of moving 

vessels. The technique observed the GNSS signal 

amplitude by high sampling rate and estimated the lookup 

table using analog signal based on real wave spectrum. 

The method was successful in obtaining accurate 

estimates of wave height and wave period in practical 

GNSS observations of ferries [11]. Hassan et al. proposed 

a 3D modeling algorithm based on voluntary geographic 

information (VGI) for GNSS non line of sight signal 

detection and exclusion. This method used 

OpenStreetMap and Google Earth data to create a 3D 

building model, which is verified by observing the phase 

smoothing code. Experiments showed that this scheme 

could significantly improve horizontal positioning 

accuracy [12]. Finally, the study summarizes the research 

areas, results, and limitations of the literature review 

mentioned above, as shown in Table 1. 

Table 1 shows that significant progress has been made 

in recent years in the fields of orbit detection and GNSS 

signal processing. However, existing methods still have 

limitations regarding applicable environments, system 

integration, and positioning accuracy assurance. Most 

studies lack adaptive modeling for complex track 

scenarios, such as those involving cities, tunnels, and 

mountainous areas. The practicality and deployment of 

these studies in track geometry detection tasks is still 

limited. Moreover, the positioning accuracy of GNSS is 

easily affected by signal occlusion and multipath effects. 

It performs poorly in complex orbital environments, 

especially. Based on this background, the study 

innovatively fuses GNSS and INS for positioning, and 

realizes efficient multi-sensor collaboration through 

multi-threaded acquisition technology and time alignment 

algorithm. At the same time, in response to the orbit 

detection data collected by the orbit detector, the 

positioning fusion process between INS and GNSS is 

optimized using Kalman filtering technology, which 

effectively improves the accuracy and efficiency of the 

track inspector data processing. The research aims to 

provide new ideas for the fusion application of track 

inspection instrument and GNSS, and improve the 

reliability and accuracy of track inspection system in 

complex environment. 

Table 1: Literature summary table 

Authors Year Algorithms/methods used Key results Limitations 

Ma et al. [4] 2023 
Position calibration method based on 

correlation coefficient 

This method can significantly reduce 

the error between the detection data and 
the actual position, with an average time 

of only 0.66s per kilometer of road 

section 

Only validate railway 

operation data 

Sun et al. [5] 2023 
Virtual orbit detection technology 

integrating multi-body system models 

3-25m and 1-5m zero phase filters can 
effectively eliminate long wave 

interference and identify turnouts. 

Without considering 
system latency or 

processing efficiency. 

Chen et al. [6] 2024 
Mathematical model of track geometry 
vehicle routing problem with periodic 

demand 

Saved 295 kilometers of ineffective 
mileage and improved maintenance 

efficiency 

Only applicable to pre 
planned path optimization 

scenarios 

Zvirblis et al. [7] 2024 
Application of time series deep learning 

models in signal data enhancement 

Data augmentation has generally 

improved classification accuracy 

Not suitable for direct 

application to GNSS 

da Silva F B et 

al. [9] 
2022 

A GNSS signal RFI suppression method 

based on NMF. 

Effectively suppress the interference of 

multiple RFIs on GNSS signals. 

Focusing on anti-

interference capability at 

the signal demodulation 
level 

Zou et al. [10] 2023 
MEMS assisted signal tracking method 

based on adaptive motion constraints 

Improve the accuracy of state 

recognition 

Only applicable to urban 

GNSS occlusion issues 

Ichikawa et al. 
[11] 

2024 
GNSS interferometric reflection 
technology 

Effective estimation of wave height and 
wave period 

Only applicable to sea 
surface or surface platforms 

Hassan et al. 
[12] 

2022 

Combining VGI to construct 3D 

building models for detecting and 

eliminating non line of sight signals 

Improve horizontal positioning 
accuracy 

Unable to adapt to complex 

scenarios where GNSS is 

unavailable 
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2 Methods and materials 
Through multi-source data fusion technology, the research 

combines the high frequency and short-term accuracy of 

INS with the long-term reference position of GNSS to 

realize their complementary advantages. In addition, the 

Kalman filter is used to solve the results in the INS-GNSS 

fusion structure, achieving smooth compensation and 

accuracy enhancement for GNSS interruption scenarios. 

2.1 Data acquisition and processing of 

railroad track inspector under 

traveling condition 

The core of the rail checker in the traveling state is the data 

acquisition subsystem, which consists of sensor modules, 

data acquisition control unit, data storage, transmission 

module, and multi-source data fusion [13]. Synchronizing 

the time of multi-sensor data is crucial for coordinating 

them. The core of achieving this synchronization is the 

synchronous acquisition and data alignment algorithms. 

The acquisition process is shown in Figure 1 [14]. 

In Figure 1, the multi sensor synchronous acquisition 

process includes the data acquisition process of INS, 

GNSS, A/D signal processor, acceleration measurement 

module (AMS), and gauge measurement system (GMS) 

[15]. The data from INS and GNSS are transmitted via 

RS232 interface at 200Hz and 20Hz, respectively, while 

the AMS and instrumentation measurement module are 

transmitted via ICP/IP interface at 2000Hz. All data are 

processed by the multi-threaded acquisition system to 

generate INS sampling data, GNSS sampling data, and 

AMS, instrumentation measurement module sampling 

data, respectively. The integration of multi-source data 

from track checker needs to solve the problem of 

unsynchronization between devices in terms of reference, 

sampling frequency, time starting point, data resolution, 

and transmission delay. The study proposes a soft 

synchronization method based on UTC time to unify the 

timestamps, as shown in Figure 2 [16]. 

INS GNSS Acceleration 
Measurement 

System

Gauge 
Measurement 

System

A/D data processor

Multi threaded collection

INS，GNSS，AMS，GMS 
sampled data

RS232 RS232 ICP/IP

 

Figure 1: Multi sensor synchronous acquisition process diagram. 
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Figure 2: Time alignment process. 
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Figure 2 shows that during the alignment process, the 

system uses a UTC timestamp and a local clock signal for 

dual-time reference synchronization. This allows the 

system to accurately align original data from sensors with 

different sampling frequencies to a unified time 

benchmark. Thus, the system ensures timing consistency 

and fusion of the overall data. By using a second-order 

digital signal holder for extrapolation, time differences 

can be eliminated. This method can also be applied to 

processing AMS and GMS data. By mapping the sampling 

data of each module simultaneously to a unified time base, 

performing delay compensation, and making 

extrapolation predictions, the system achieved high 

consistency among the four channel data sources of 

GNSS, INS, AMS, and GMS in the time domain. The time 

difference calculation process is shown in Equation (1) 

[17]. 
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In Equation (1), T  denotes the time difference 

between the INS time INST  and the UTC time UTCT . INSC  

denotes the count value of INS. UTCC  denotes the count 

value corresponding to the UTC time. UTCC  denotes the 

next count value of UTC time. T  denotes a correction 

factor, which is usually used to correct the error between 

the count values. Next, a standard linear Kalman filter is 

used to model the state estimation of the attitude, velocity, 

and position information of the INS module, thereby 

reducing sensor errors and drift accumulation. To reduce 

sensor errors, Kalman filtering technology is used to 

estimate the attitude and velocity states in the INS system, 

in order to enhance short-term navigation accuracy. A 

standard linear Kalman filter is selected due to the linear 

relationship between the state transition model and the 

observation model, as well as the fact that the system input 

is directly measurable Inertial Measurement Unit (IMU) 

acceleration. The state update equation is shown in 

Equation (2) [18]. 

1 1 1
ˆ ˆ

k k kk k k k
F B u

− − −
= +  (2) 

In Equation (2), k  denotes the moment. 1
ˆ

k k−  

denotes the predicted state vector. kF  is the state transfer 

matrix. 1 1
ˆ

k k− −  denotes the state estimate at the 1k −  

moment. 1 1
ˆ

k k− −  denotes the control input matrix. kB  

denotes the control input matrix. ku  is the control input 

vector, the actual collected data is the linear acceleration 

provided by IMU. The definition of ku  is shown in 

equation (3). 
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In equation (3), xa  represents the x -axis acceleration 

component measured by the IMU at time k . b represents 

the y -axis acceleration component measured by the IMU 

at time k . The prediction error covariance is shown in 

Equation (4). 

1 1 1k kk k k k
P F P Q

− − −
= +  (4) 

In Equation (4), 1k k
P

−  is the predicted error 

covariance matrix, combining process noise modeling 

system uncertainty. 1 1k k
P

− −  denotes the estimated error 

covariance matrix at the 1k −  moment. kQ  is the process 

noise covariance matrix, 

(0.01,0.01,0.1,0.1,0.5,0.5)kQ diag= . Kalman gain is 

calculated as shown in Equation (5). 
1

1 1( )k k k k k k k kK P H H P R −

− −= +∣ ∣  (5) 

In Equation (5), kK  is the Kalman gain matrix. kH  

denotes the measurement matrix. kR  is the measurement 

noise covariance matrix, (1.0,1.0,0.5,0.5)kR diag= . The 

definition of kH  is shown in equation (6). 
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According to equation (6), GNSS measurements can 

provide position and velocity information. Kalman gain 

and observation model are used to integrate the actual 

measurement results of GNSS into INS prediction and 

update the system state. Each instrument is calibrated at 

the factory, and the internal computational flow of the 

gyroscope in a high-precision INS is shown in Figure 3 

[19]. 
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Figure 3: INS internal calculation process. 
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In Figure 3, the high-precision INS measures the 

angular velocity by means of a gyroscope to update the 

attitude matrix and calculate the attitude angle. 

Meanwhile, the three-axis accelerometer is utilized to 

measure the specific force, and the acceleration is obtained 

by coordinate transformation. The integral is used to 

calculate the motion trajectory, and the solution of the 

geometric position of the orbit is finally realized. The 

whole process combines the angular velocity, attitude 

update, and acceleration data to complete the high-

precision motion state projection. 

2.2 Coordinate positioning based on GNSS 

information fusion 

To further improve the accuracy of data acquisition and 

processing of the rail checker under running condition, the 

collected GNSS information needs to be deeply fused and 

optimized to make up for the shortcomings and limitations 

of the GNSS when it is used alone. In the dynamic process 

of traveling, the track checker uses GNSS to provide the 

absolute position of the train and INS to provide short-

term accurate positioning. Since GNSS signals are easily 

affected by the environment, they may be lost in tunnels 

and other areas, and the sampling frequency of GNSS is 

low, which cannot meet the demand for precise 

positioning. The study proposes a combined GNSS/INS 

coordinate positioning technique, which converts and 

corrects GNSS data to the track centerline, and combines 

INS data to construct a sequence of “time coordinates”. To 

realize accurate positioning in the traveling state, GNSS is 

used in combination with real time kinematic (RTK) [20]. 

The GNSS-RTK system used by the research is based on 

carrier phase differential positioning to enhance accuracy. 

Compared to pseudorange correction, carrier phase 

correction provides more accurate observations and is 

ideal for orbit detection scenarios sensitive to positioning 

errors. The GNSS-RTK system used by the research is 

based on carrier phase differential positioning to enhance 

accuracy. Compared to pseudorange correction, carrier 

phase correction provides more accurate observations and 

is ideal for orbit detection scenarios sensitive to 

positioning errors. For areas with urban rail and tunnel 

access where GNSS is susceptible to multipath 

interference, the system introduces signal quality 

discrimination thresholds and satellite shielding angle 

screening strategies in the raw data processing layer. 

These strategies reduce interference from reflected 

signals. Taking trains as an example, the application 

scenario of GNSS-RTK technology is shown in Figure 4 

[21]. 

In Figure 4, multiple satellite systems, such as GPS, 

BeiDou, etc., send signals to the ground, and the 

equipment receives the satellite signals while providing 

error correction values through the RTK reference station 

and the ground-based enhancement system. Sources of 

error include satellite, atmospheric, and multipath errors. 

Through high precision calculations and corrections from 

a ground-based enhancement system, positioning 

accuracy can be realized to a centimeter level. However, 

the time error that this technology can provide is only 

centimeter-level accuracy. Therefore, the short-term 

positioning advantage of INS needs to be utilized to 

supplement the missing part of GNSS signals, while 

GNSS is used to suppress the long-term drift of INS. The 

INS-GNSS coupling structure is shown in Figure 5 [22]. 
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Figure 4: Principles of GNSS-RTK technology. 
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Figure 5: INS-GNSS coupling structure. 
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Figures 5(a) and 5(b) show two fusion structures of 

the INS-GNSS system: the loose-coupled structure and the 

tight-coupled structure, respectively. In the loosely-

coupled structure, the INS system and the GNSS system 

output velocity and position information independently, 

respectively. The results of both are fused by a Kalman 

filter to generate the position information output. In the 

tight combination structure, the pseudorange and carrier 

phase data from GNSS are directly combined with the 

solved results from INS. Then the Kalman filtering is used 

to realize a more accurate positioning information output. 

The study uses a loosely coupled structure to fuse the INS 

and multi-constellation GNSS boards in the rail checker to 

meet the design requirements of the miniature airborne 

combined positioning system. The study employs a 

loosely coupled structure that fuses GNSS position and 

INS data via Kalman filtering. This approach significantly 

reduces system complexity while ensuring accuracy. This 

fusion structure is directly compatible with commercial 

GNSS modules and standard IMUs. It eliminates the need 

to process raw observation data and can automatically 

switch to INS calculation mode when GNSS is 

interrupted. This feature perfectly meets the engineering 

requirements of miniaturized airborne equipment. INS 

utilizes inertial sensors to calculate the position, velocity 

and attitude of the carrier, and the acceleration of the 

object in the inertial navigation coordinate system is 

shown in Equation (7). 
n n n

x x

n n n

y y

n n n

z z

V f a

V f a

V f a g

 = −


= −


= − −
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In Equation (7), 
n

xV , 
n

yV , and 
n

zV  denote the velocity 

components of the object along the x , y , and z  axes in 

the inertial navigation coordinate system, respectively. 
nf  denotes the external force component on the object in 

the inertial navigation coordinate system. 
n

xa , 
n

ya , and 
n

za  

denote the acceleration components in the inertial 

navigation coordinate system. g  is the gravitational 

acceleration. After calculating 
n

xV , 
n

yV , and 
n

zV , the 

velocity of the object to the ground is obtained by 

integrating once, as shown in Equation (8) [23]. 
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In Equation (8), t  denotes the time difference 

between two consecutive localization points. ( )g

xV t , 

( )g

yV t , and ( )g

zV t  denote the variation of the object's 

velocity with t  in the x , y , and z -axis directions in the 

inertial navigation coordinate system, respectively. 

(0)g

xV , (0)g

yV , and (0)g

zV  denote the last localization 

point of the object in the x , y , and z  axis directions that 

recorded the carrier's velocity to the ground before the 

GNSS signal is interrupted, respectively. Subsequently, 

the velocity of each localization point in the INS is 

calculated as shown in Equation (9). 

1 1i i iV V a t− −= +    (9) 

In Equation (9), iV  denotes the velocity of the current 

localization i . 1iV −  denotes the velocity of the last 

localization of i . 1ia −  denotes the acceleration of the last 

localization of i . The flow of INS accurate latitude and 

longitude update is shown in Figure 6. 

In Figure 6, first, INS outputs the specific force data 

and removes the harmful acceleration through the 

conversion matrix, followed by latitude and longitude unit 

conversion and defining the relevant parameters. Next, the 

navigation belt number and the central meridian longitude 

are calculated, and the results are substituted into the 

latitude and longitude coordinate conversion formula. 

According to the coordinates and velocities of the initial 

points, the acceleration of each detection points under the 

navigation coordinate system and the position information 

based on the acceleration and velocity are calculated. The 

precise coordinates of the detected points are finally 

output. 
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Figure 6: The process of updating INS precise latitude and longitude. 
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Table 2: Data processing performance results. 

Collection method Scene SNR (dB) MSE (mm) Data denoising effectiveness (%) MSE standard deviation 

GNSS 

Open environment 35.2 0.8 75.6 0.15 

Urban rail transit 25.3 1.5 65.2 0.25 

Mountain track 18.7 2.3 50.8 0.28 

GNSS-RTK 

Open environment 40.1 0.5 80.1 0.12 

Urban rail transit 30.5 1.2 70.5 0.18 

Mountain track 20.2 2.1 60.2 0.25 

Ours 

Open environment 45.8 0.3 90.3 0.08 

Urban rail transit 38.9 0.8 85.2 0.13 

Mountain track 32.4 1.5 78.5 0.21 

 

3 Results 
The study analyzes the performance of the proposed INS-

GNSS fusion method in data processing and GNSS signal 

positioning for the rail checker under traffic conditions. 

Simulation experiments are carried out in three typical 

scenarios: an open environment, urban rail transit, and a 

mountain track. The performance of the three methods in 

terms of data processing and positioning effect is 

compared. 

3.1 Data processing performance test of 

railroad track checker under traveling 

condition 

The data processing performance of the track gauge under 

driving conditions is tested by simulating three different 

scenarios: open environment, urban orbit, and 

mountainous orbit. GNSS, GNSS-RTK, and the fusion 

algorithm proposed by the research method are used to 

collect and process data in three different scenarios. The 

data collected includes 3 lines and 9 track sections, with a 

total trajectory length of approximately 18.6 kilometers 

and approximately 61000 sets of data frames. The 

sampling frequency of the GNSS module is 10 Hz, and the 

sampling frequency of the IMU inertial measurement unit 

is 100 Hz. The signal-to-noise ratio (SNR), mean squared 

error (MSE), and acquisition accuracy are used as 

evaluation indicators. To further evaluate the stability of 

each positioning method in different orbit scenarios, the 

standard deviation of MSE is used as the evaluation 

indicator. All results are the average of 5 independent 

experiments. The standard deviation represents the 

amplitude of the MSE fluctuation in different 

experimental rounds and reflects the stability of the 

positioning error. The study employs an SNR threshold 

filtering strategy when calculating denoising indicators. 

Since the GNSS module's error significantly increases 

when the SNR is below a certain value, the signal 

discrimination threshold is set to 23 dB according to the 

receiver manufacturer's recommendation. If the SNR at a 

sampling point is below 23 dB, the measurement is 

considered invalid and excluded from the denoising rate 

calculation. If the ratio is higher than 23 dB, the signal is 

valid and can be used for fusion and error calculation. The 

data processing performance results are shown in Table 2. 

Table 2 shows that in open environments, the 

proposed method has the highest SNR of 45.8 dB, 

demonstrating its advantage in improving signal quality. 

The SNR of GNSS-RTK is 40.1 dB, which is lower than 

the method proposed by the research but higher than that 

of GNSS alone. The method proposed by the research has 

the lowest MSE, at 0.3 mm, indicating that it can provide 

higher positioning and data processing accuracy in open 

environments. With a standard deviation of only 0.08 mm, 

the MSE is significantly smaller than GNSS and GNSS-

RTK. This indicates that the MSE's positioning 

performance is more stable under high SNR conditions. 

The MSE of GNSS-RTK is 0.5mm, and the MSE of GNSS 

is 0.8mm, both of which are inferior to the methods 

proposed by the research. Additionally, the proposed 

method by the research has the best denoising effect, 

reaching 90.3%. This indicates that the algorithm can 

eliminate noise to the greatest extent possible. In urban rail 

transit, the SNR of the proposed method is 32.4 dB, 

significantly higher than GNSS-RTK and GNSS. This 

indicates that the algorithm has stronger adaptability to 

complex environments. The GNSS method has significant 

error fluctuations due to signal occlusion and multipath 

interference, with a standard deviation of 0.20 mm. 

However, the MSE of the proposed method is 0.8mm, and 

the error fluctuations are effectively controlled within 0.13 

mm. In mountainous areas, GNSS's MSE is highest at 2.3 

mm. The standard deviation is also high at 0.28 mm, 

indicating severe environmental interference and 

extremely unstable positioning accuracy in complex 

terrain. The MSE of the method proposed by the research 

is 1.5mm, and the standard deviation is controlled within 

0.21 mm through the INS compensation mechanism, 

which has stronger robustness and stability. Additionally, 

the SNR of the proposed method increased by an average 

of 2.3 to 3.5 decibels (dB), which reduced the fusion 

fluctuations caused by GNSS noise mismatch. This 

indicates that soft synchronization and parallel acquisition 

positively affect system stability and real-time 

performance. Soft synchronization achieves non-blocking 

data alignment between the GNSS and the IMU through 

timestamp alignment and a cache queue. This avoids the 

waiting delay caused by traditional hardware-triggered 

synchronization. Multi-threaded acquisition enables the 

GNSS, IMU, and data preprocessing channels to run 

simultaneously, which significantly reduces acquisition 

latency. In urban rail transit and mountain track, the 

denoising effect of fusion of the proposed method is 

studied to be 85.2% and 78.5% respectively, which is 

significantly better than the other two methods. The train 

running time is set to 500s, and the change of detection 
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resolution in different scenarios is reflected by the data 

sampling accuracy, as shown in Figure 7. 

Figure 7(a), Figure 7(b), and Figure 7(c) show the 

variation of sampling accuracy of the three localization 

methods with the running time of the train in different 

scenarios, respectively. Figure 7(a) shows that GNSS 

sampling accuracy is about 0.25 mm and remains stable 

throughout the running time. However, it is lower than 

GNSS-RTK sampling accuracy, which is about 0.12 mm 

and significantly better with less fluctuation. It shows that 

RTK can effectively improve the sampling accuracy in 

open environment. The sampling accuracy of the proposed 

method in the study is the highest, about 0.06mm, and has 

the least variation, showing great stability. In Figure 7(b), 

the sampling accuracy of GNSS decreases to about 

0.22mm and fluctuates slightly with running time. The 

sampling accuracy of GNSS-RTK is about 0.15mm, 

which is more stable but decreases compared to open 

environment. The sampling accuracy of the proposed 

method is about 0.09mm, which is still the best 

performance and the variation is very small. Similarly, in 

Figure 7(c), the sampling accuracy of the proposed 

method is about 0.11mm, and the fluctuation is 

minimized, which is significantly better than the other two 

methods. This indicates that the proposed fusion method 

effectively compensates the GNSS signal occlusion 

problem by INS in the mountain track and shows strong 

robustness. The distribution of positioning error is shown 

in Figure 8. 
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Figure 7: Detection resolution in different scenarios. 
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Figure 8: Distribution of positioning errors. 
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Table 3: Cross validation results under different speed conditions. 

Method Test Condition Sampling Precision ±  (mm) Positioning Error ±  (mm) 

GNSS 

30 km/h 0.29 ± 0.07 13.3 ± 1.6 

50 km/h 0.30 ± 0.08 13.0 ± 1.8 

70 km/h 0.28 ± 0.08 13.1 ± 1.9 

GNSS-RTK 

30 km/h 0.22 ± 0.05 6.7 ± 1.2 

50 km/h 0.23 ± 0.06 6.8 ± 1.1 

70 km/h 0.24 ± 0.07 6.9 ± 1.3 

Ours 

30 km/h 0.12 ± 0.04 2.9 ± 0.6 

50 km/h 0.13 ± 0.04 2.8 ± 0.6 

70 km/h 0.12 ± 0.03 2.9 ± 0.7 

 

Table 4: Redundancy detection rate and positioning error results. 

Method Scene Redundancy detection rate (%) Positioning error ±  (mm) 

GNSS 

Open environment 65.2 12.5 ± 1.8 

Urban rail transit 45.8 30.1 ± 2.7 

Mountain track 35.2 45.6 ± 3.1 

GNSS-RTK 

Open environment 85.6 6.2 ± 1.1 

Urban rail transit 78.5 12.8 ± 1.9 

Mountain track 70.3 20.5 ± 2.2 

Ours 

Open environment 95.2 2.5 ± 0.6 

Urban rail transit 92.1 6.8 ± 1.0 

Mountain track 90.3 8.5 ± 1.3 

 

In Figure 8, (a), (b), and (c) respectively show the 

distribution of positioning performance of GNSS, GNSS-

RTK, and the proposed method. Figure 8(a) shows an 

uneven distribution of GNSS positioning points with 

significant overlap and offset. The error fluctuates greatly 

due to multipath effects. In Figure 8 (b), GNSS-RTK 

significantly reduces the error range through differential 

correction. In Figure 8 (c), the distribution of positioning 

points is extremely uniform, with no significant error 

offset or overlap. The proposed method achieves high-

precision positioning with uniform distribution and no 

offset through multi-source data fusion and INS 

compensation. This method demonstrates superior 

robustness in complex environments. To verify the 

generalization ability and speed stability of the model, 

cross validation is conducted under three speed conditions 

of 30/50/70 km/h. The results are shown in Table 3. 

According to Table 3, the GNSS method maintains a 

sampling accuracy of 0.28-0.30 mm and a positioning 

error of 13.0-13.3 mm within the speed range of 30-70 

km/h. The impact of speed changes on performance is 

relatively small, and the standard deviation of sampling 

accuracy and positioning error fluctuates between 0.07-

0.08 mm and 1.6-1.9 mm. It indicated that the method has 

speed robustness but limited overall accuracy. The GNSS-

RTK method has significantly improved compared to 

basic GNSS. The sampling accuracy increased to the 

range of 0.22-0.24 mm, positioning error reduced to 6.7-

6.9 mm, and standard deviation controlled at 0.05-0.07 

mm and 1.1-1.3 mm. It demonstrates the effectiveness of 

differential correction. The proposed method performs the 

best at all testing speeds, with a sampling accuracy of 

0.12-0.13 mm, a positioning error of only 2.8-2.9 mm, and 

the smallest standard deviation. At a speed of 70 km/h, it 

can maintain a sampling accuracy of 0.12 mm and a 

positioning error of 2.9 mm with no significant increase in 

standard deviation. This fully demonstrates the stability 

and accuracy advantages of this method at different 

speeds. 

3.2 Analysis of the actual effect of INS-

GNSS fusion-based positioning 

To evaluate the practical effect of the proposed INS-

GNSS fusion method for localization in different 

scenarios, the study conducts simulation experiments in 

three typical scenarios: open environment, urban rail 

transit, and mountain track. The positioning error, 

redundancy detection rate, trajectory reconstruction 

accuracy, and resource consumption are tested. Similarly, 

the average of each set of data is based on 5 independent 

experiments. The standard deviation is used to measure 

the range of fluctuation in positioning error, which reflects 

the method's stability under different operating conditions. 

The results of redundancy detection rate and positioning 

error in different scenarios are shown in Table 4. 

In Table 4, in open environments, the redundancy 

detection rate of GNSS is 65.2%, the positioning error is 

12.5mm, and the standard deviation is 1.8mm. The GNSS-

RTK's redundancy detection rate increases to 85.6%, and 

its positioning error significantly decreases to 6.2 mm with 

a standard deviation of 1.1 mm. The proposed method has 

the highest redundancy detection rate of 95.2%, with the 

smallest positioning error and standard deviation of 

2.5mm and 0.6mm, respectively. When combined with 

INS, the utilization rate and positioning accuracy of 

redundant information improve further. In urban rail 
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environments, GNSS positioning errors fluctuate 

significantly due to multipath effects and severe GNSS 

occlusion. Among them, the redundancy detection rate of 

GNSS decreases to 45.8%, the positioning error increases 

significantly to 30.1mm, and the standard deviation 

reaches 2.7mm. The redundancy detection rate of GNSS-

RTK is 78.5%, the positioning error is 12.8mm, and the 

standard deviation is controlled at 1.9mm. This indicates 

that differential technology has limited effectiveness in 

complex environments, but it is still significantly better 

than GNSS alone. The redundancy detection rate of the 

method proposed by the research is 92.1%, the positioning 

error is 6.8mm, and the error fluctuation is compressed to 

1.0mm. This indicates that the method compensates for 

the instability of GNSS signals through inertial navigation 

and maintains high accuracy and robustness in complex 

environments. Finally, in a mountainous orbit, GNSS has 

the lowest redundancy detection rate, at only 35.2%. The 

positioning error also increases significantly, to 45.6 mm, 

with a maximum standard deviation of 3.1 mm. The 

complex terrain and severe signal obstruction in 

mountainous orbit environment greatly reduce the GNSS 

positioning effect. The redundancy detection rate of 

GNSS-RTK is 70.3%, with a positioning error of 20.5mm 

and a standard deviation of 2.2mm. Although differential 

technology has improved, the mountainous environment 

has a significant impact on signal quality. The research's 

proposed method significantly improves positioning 

accuracy and redundancy utilization through inertial 

navigation compensation. The measurement results show 

that this method has a 90.3% redundancy detection rate, 

an 8.5 mm positioning error, and a 1.3 mm standard 

deviation. These results verify the INS's effective 

compensation ability and the filtering strategy's 

robustness. The Kalman filter used in the study not only 

performs weighted smoothing on GNSS pseudoranges, 

but also estimates and corrects attitude and velocity errors 

of inertial measurement units. When GNSS positioning 

calculations are interrupted, the filter recursively 

calculates based on previous GNSS states and current 

inertial measurement values to achieve continuous 

positioning output. The resource consumption results 

during the positioning operation are shown in Figure 9. 
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Figure 9: Resource consumption results. 
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Figure 10: According to the variation of processing time with running time. 

In Figure 9, (a), (b), and (c) show the comparison of 

CPU utilization and memory consumption of the three 

methods in different scenarios, respectively. Figure 9(a) 

shows that the GNSS method has the lowest resource 

utilization. It has a CPU usage rate of 36.4% and a 

memory usage of 40.2 MB, which indicates its low 

algorithm complexity. Due to differential correction, the 

GNSS-RTK method requires additional calculations, 

resulting in a CPU usage rate of 42.6% and a memory 

usage of 47.5 MB. The proposed method has the highest 

resource overhead due to multi-source data fusion and 

synchronization mechanism, with a CPU of 58.2% and a 

memory of 51.6MB. In Figure 9(b), the GNSS method has 

a CPU utilization of 41.6% and a memory consumption of 

46.3MB, which is slightly increased by the urban rail 

transit signal complexity. The GNSS-RTK method has a 

CPU utilization of 48.7% and a memory consumption of 

53.4MB, which is an increase in computational resource 

requirements. The CPU utilization of the proposed method 

in the study is 60.2%, while the memory consumption is 

up to 60.2MB, and the demand for multi-source data 

fusion is elevated in complex environments. In Figure 

9(c), the GNSS method has a CPU utilization of 43.5% 

and memory consumption of 48.4MB, and there is an 

increase in the demand for memory due to the complexity 

of mountain signals. The CPU utilization of the GNSS-

RTK method is 50.6%, which is about 7% higher than that 

of GNSS, and the memory consumption is 59.6MB. 

Differential processing has improved the complex terrain. 

The method proposed by the research requires inertial 

navigation compensation and complex terrain data fusion. 

This method has a CPU utilization rate of 59.6% and the 

highest memory consumption, at 60.3 MB. Finally, the 

real-time data processing is evaluated and the results are 

shown in Figure 10. 

Figure 10(a), Figure 10(b), and Figure 10(c) show the 

trend of data processing time with running time for the 

three localization methods in different environments, 

respectively. Among them, the data processing time of 

GNSS gradually increases under the open environment in 

Figure 10(a). Compared with GNSS, the time of GNSS-

RTK is shorter, which indicates that the differential 

correction effectively reduces the processing time of data 

errors. The starting processing time of the proposed 

method in the study is the lowest and slowest growing, 

stabilizing below 100ms. It shows that the processing 

efficiency of the proposed method fusion is the highest in 

open environment. In Figure 10(b), the processing time of 

GNSS increases significantly and gradually grows to 

130ms. The processing time of GNSS-RTK grows to 

120ms and then stabilizes. The starting processing time of 

the proposed method is still the lowest and finally 

stabilized at 105ms. It shows that the proposed method 

fusion can effectively improve the processing efficiency 

and reduce the effect of GNSS signal interference in 

complex environments. In Figure 10(c), the processing 

time of GNSS grows most significantly, from 100ms to 

more than 140ms. In mountainous environments, the 

GNSS method requires more time to process lost or 

unstable signals due to signal occlusion and complex 
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terrain. The processing time for GNSS-RTK grows to 125 

ms. Although the RTK differential correction can mitigate 

some signal interference, it still suffers from signal 

multipath effects in mountainous environments. The 

processing time of the proposed method grows the slowest 

and eventually stabilizes within 110ms. It shows that the 

proposed method effectively controls the processing time 

by compensating the GNSS signal missing problem 

through inertial navigation in mountainous environments. 

To verify the robustness of the INS-GNSS fusion method 

in the presence of noisy, multipath interference, and 

occlusion data in actual rail operating environments, on-

site data is collected from three real rail lines in a city's rail 

transit system. The results are shown in Table 5. 

According to Table 5, severe satellite signal 

obstruction in urban subway environments significantly 

reduces the performance of traditional GNSS positioning. 

The GNSS method's average positioning error reaches 

41.5 mm, with a maximum error of 54.9 mm and a signal 

interruption rate of up to 89.4%. Although GNSS-RTK 

has slightly improved through differential correction, its 

average error still reaches 24.6 mm, the maximum error is 

close to 50 mm, and the interruption rate is as high as 

72.5%. In contrast, the method proposed by the research 

not only controls the average error at 6.4mm, but also has 

a maximum error of only 12.1mm. It significantly reduces 

the interruption rate to 17.5%, achieving fast positioning 

recovery in 8.9 s. This demonstrates its excellent 

continuous tracking capability and anti-interference 

performance. In the elevated line section, the average 

positioning error of GNSS is 18.7mm, with a maximum 

error of 40mm. Although GNSS-RTK technology 

optimizes the average error to 9.6mm, there is still an 8.7% 

interruption probability. The method proposed by the 

research further controls the error within 4.2 mm, with a 

maximum error of only 8.9 mm. At the same time, the 

interruption rate is reduced to an extremely low 1.2%, and 

the positioning recovery time is shortened to 0.6 seconds. 

In mountainous railway sections, the average positioning 

error is as high as 32.5 mm due to severe satellite 

obstruction. The maximum error is 64.8 mm, and the 

interruption rate remains high at 35.6%. GNSS-RTK 

technology has improved the average error to 17.8mm, but 

the signal interruption rate remains high at 18.9%. The 

proposed method effectively controls the average error 

within 8.5 mm, reduces the interruption rate to 5.4%, and 

enables a quick recovery in 1.1 seconds via inertial 

navigation compensation. This demonstrates the method's 

reliability and robustness in complex environments. 

4 Discussion 
The INS-GNSS fusion-based orbit detection and 

positioning method proposed in the study showed 

significant advantages in addressing issues such as GNSS 

signal occlusion and multipath effects in complex orbit 

environments. Experimental data showed that, on average, 

the positioning error of the proposed method was 

controlled within 10 mm in three typical environments. In 

an open environment, the error was only 2.5 mm, which 

was better than GNSS-RTK and traditional GNSS. 

Additionally, the traditional GNSS scheme achieved an 

MSE of 2.3 mm and a denoising effect of only 50.8% at 

an SNR of 18.7 dB. However, even in complex terrain, the 

research's proposed method improved the SNR to 32.4 dB, 

reduced the MSE to 1.5 mm, and increased the denoising 

rate to 78.5%. This significantly suppressed signal 

multipath interference. Further analysis of sampling 

accuracy revealed that GNSS sampling errors fluctuate 

around 0.25 mm in mountainous scenes. The sampling 

accuracy of the method proposed by the research remained 

stable at 0.11 mm and did not significantly deteriorate over 

time, which verified the role of the multi-threaded 

acquisition and soft synchronization mechanisms in 

maintaining system stability. Compared to the research by 

Ma et al. [4], which was based on multi-source data 

location calibration, the proposed method expanded its 

applicable environment and improved its sampling 

stability. It utilized redundant information more 

effectively and controls errors better in urban and 

mountainous scenarios, improving system stability. The 

standard deviation of the positioning error was ±1.3 mm. 

This was significantly better than GNSS and GMSS-RTK. 

It indicated that the algorithm was less volatile during 

dynamic orbit operations. In the speed robustness test, the 

GNSS-RTK error increased to 6.9 mm at 70 km/h. 

Meanwhile, the error remained at 2.8-2.9 mm with a 

standard deviation of 0.6-0.7 mm for the proposed 

method, further confirming its adaptability to high-speed 

operating environments. From a practical application 

standpoint, the method proposed by the research 

decreased the GNSS signal interruption rate in urban 

subways from 89.4% to 17.5% and reduced the maximum 

positioning error from 54.9 mm to 12.1 mm. In 

mountainous areas, recovery time was reduced to 1.1 s. 

Compared to the MEMS-based GNSS continuous tracking 

method proposed by Zou et al. [10], the method proposed 

by the research optimized the continuity of GNSS signals 

in discontinuous scenarios and enhanced the ability to 

respond quickly to occluded environments. The results 

indicated that this method effectively used INS to provide 

robust compensation for short-term signal interruptions 

and took full advantage of the global accuracy of GNSS. 
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Table 5: Comparison of actual application effects. 

Scenario Type Method 
Average positioning 
error (mm) 

Maximum error 
(mm) 

Interruption 
rate (%) 

Recovery latency 
(s) 

Urban subway section 

GNSS 41.5 54.9 89.4 4.9 

GNSS-RTK 24.6 48.9 72.5 3.6 

Ours 6.4 12.1 17.5 8.9 

Elevated Line Section 

GNSS 18.7 39.4 18.2 2.5 

GNSS-RTK 9.6 21.3 8.7 1.7 

Ours 4.2 8.9 1.2 0.6 

Mountain route section 

GNSS 32.5 64.8 35.6 5.1 

GNSS-RTK 17.8 38.2 18.9 2.4 

Ours 8.5 16.4 5.4 1.1 

 

5 Conclusion 
In response to the issues of large positioning errors and 

unstable signal quality encountered by rail checkers and 

GNSS systems in complex track environments, the 

research proposed an INS-GNSS fusion positioning 

method. It achieved efficient fusion of multi-source data 

and noise suppression by combining multi-sensor 

synchronous acquisition technology, time alignment 

algorithms, and Kalman filtering algorithms. 

Additionally, the effects of the track checker and GNSS 

signal positioning were analyzed under running 

conditions. The results of the experiment showed that the 

proposed method outperformed the other two comparative 

methods in all scenarios. The application verification of 

this method in typical orbital scenarios showed that it was 

significantly superior to traditional GNSS and GNSS-

RTK schemes in terms of sampling accuracy, positioning 

error control, signal stability, and system response 

capability. It had good adaptability and promotion value. 

This method was particularly suitable for environments 

where tracks were operated under conditions of frequent 

signal obstruction, complex terrain, and significant 

dynamic interference. It could effectively support the 

efficient detection, operation, and maintenance of track 

facilities. In terms of resource consumption, the proposed 

method had slightly higher memory and CPU utilization 

than the traditional method. However, its processing 

efficiency and stability were significantly better. It could 

be suitable for scenarios with high real-time requirements 

in complex environments. Given the higher memory and 

computation requirements of the proposed method, future 

research should focus on optimizing the algorithm's 

efficiency and reducing resource consumption to adapt to 

a wider range of applications. 
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