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This study proposes a novel Convolutional Neural Network (CNN) approach with both spatial and
channel attention mechanisms to improve automated chest X-ray image classification. The
architecture integrates Squeeze-and-Excitation (SE) Blocks for channel attention and a spatial
method to focus on informative regions of the sample, thereby enhancing both local and global feature
extraction. The model processes input images of size 224x224x3 and comprises three convolutional
blocks, each consisting of Conv2D, Batch Normalization, SE Blocks, Spatial Attention, MaxPooling,
and Dropout layers. The dataset, sourced from Kaggle, contains 6,000 chest X-ray images
categorized into three classes: Lung Opacity, Normal, and Viral Pneumonia. A standardized
preprocessing pipeline was employed, including resizing, normalization (rescaling pixel values to [0,
1]), and real-time augmentation via TensorFlow’s ImageDataGenerator. The model was trained for
10 epochs using a batch size of 32. It achieved a final test accuracy of 93.01%, with a peak validation
accuracy of 88.57%, and an Area Under the Curve (AUC) score of 97.22%.

Povzetek: Za avtomatizirano analizo rentgenskih posnetkov prsnega koSa so uporabili konvolucijsko
omrezZje, ki zdruzuje kanalsko (SE) in prostorsko pozornost ter s tremi bloki ucinkoviteje izlusci

lokalne in globalne znacilke.

1 Introduction

Lung diseases, including pneumonia, tuberculosis (TB),
lung cancer, and chronic obstructive pulmonary disease
(COPD) [23], remain among the leading causes of death
worldwide. Early diagnosis and accurate detection of
these conditions are crucial for improving patient
outcomes and reducing the healthcare burden.
Traditionally, radiologists have relied on chest X-rays
to identify lung abnormalities. Still, this process is time-
consuming, requires additional human resources, such
as experts, and is prone to human error. As a result,
there is acriticalneed for automated systems that can
diagnose lung diseases more efficiently and accurately.

In recent years, the advent of deep learning (DL) and
subset neural networks has revolutionized the field of
medical image analysis. CNNs, a type of DL model,
have demonstrated optimal performance in image
classification, particularly in detecting lung problems
from chest images. By training on numerous annotated
medical images, deep learning models can

automatically identify abnormalities in  X-rays,
providing a solution to the limitations of traditional
methods. These models improve prediction accuracy
and reduce the time required for analyzing multiple
samples simultaneously, enabling faster decision-
making with optimal clinical outcomes.

The DL approach used for detecting lung diseases from
X-ray images was proposed by Al-ganess, M. A, et al.
(2024) [1]. And the challenges associated with lung
disease detection and how DL models can address these
issues. Still, they can extract some complex features
from the image that may be difficult for the human eye
to detect. Additionally, it will examine the different
architectures and techniques employed in this domain,
highlight the impact of large-scale annotated datasets,
and discuss the practical applications of these models in
clinical settings. But these simple CNN models will not
capture sequential patterns from the samples.

Lung diseases such as pneumonia, tuberculosis (TB),
lung cancer, and COPD are not only prevalent but also
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highly incurable if not detected in early stages. Early
diagnosis is crucial for enhancing treatment outcomes
and improving survival rates. For example, Pneumonia
can cause severe respiratory pain if not diagnosed and
treated with antibiotics. TB, on the other hand, is one of
the foremost causes of death from an infectious disease,
particularly in low-resource settings. In the case of lung
cancer, the prediction is often poor if the disease is
diagnosed at later stages, making early detection
essential for survival. COPD is another common lung
problem that can result in significant morbidity and
mortality if not effectively managed. The global burden
of lung diseases continues to rise, particularly in
developing countries where medical resources are
limited. The demand for effective and affordable
diagnostic tools has grown in these regions.

Chest X-rays have been a vital diagnostic tool for lung
diseases for decades. They provide a relatively
inexpensive and accessible method for detecting
abnormalities in the lungs. Radiologists assess X-ray
images [8] to identify signs of disease, such as opacities
and nodules, which can indicate various lung
conditions. However, despite their importance,
interpreting these images is challenging due to the
complexity of the lung anatomy and the wide range of
diseases that can occur in similar ways. These images
are full of noise, which may bias the model.

The main challenges in lung disease detection are the
complexity of the images, which includes model noise,
and the interpretation, such as background color and the
types of features extracted from image patches. Chest
X-ray images often contain noise, artifacts, and
variations in quality, making it challenging to capture
complex features from raw data. In addition, the
radiological manifestations of different lung diseases
can be similar, such as nodules or consolidations that
may appear in both lung cancer and pneumonia. Such
overlapping symptoms increase the likelihood of
misdiagnosis, especially when the images are reviewed
by clinicians without the expertise or experience in
interpreting lung X-rays.

Moreover, traditional diagnostic systems rely on
radiologists' manual detection, which can be time-
consuming and does not always provide optimal results.
Radiologists, especially in busy healthcare settings, may
not always have the time to thoroughly review all
available X-ray images, resulting in delayed diagnoses.
As the number of patients seeking diagnostic imaging
services grows, the workload on radiologists also
increases, further contributing to the potential for
mistakes and missed diagnoses.

Researchers have turned to automated image analysis
systems powered by deep learning or Al to overcome
these challenges. Deep learning models are designed to
learn and extract patterns from large datasets, making
them ideal for analyzing medical images. These models
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can identify and classify diseases based on features that
are complex for the human eye to perceive, such as
delicate changes in texture, shape, depth, and size of
structures in chest X-rays.

Deep learning, specifically through CNNs [11] and
[12], has shown promise in medical image analysis.
CNNs are a type of neural network designed to work
with grid-like data such as images. These models
automatically extract various features from input
images, such as edges, textures, and patterns, without
requiring manual  feature  engineering.  This
characteristic makes CNNs particularly effective for
image classification tasks, including medical image
analysis. In the context of lung disease detection, CNNs
are trained on large datasets of labeled chest X-ray
images that can classify the samples into healthy and
diseased lungs. The model learns to identify visual
patterns associated with different lung diseases, such as
lung opacity, nodules, consolidation, and fibrosis,
which can help classify diseases like pneumonia, TB,
and lung cancer. Once a method is trained, these models
can automatically analyze new X-ray images, providing
accurate and rapid diagnoses. By using large-scale
annotated samples, these models can achieve optimal
performance. Although CNNs [13] and [19] neural
network is used primarily for lung disease detection,
recent advancements have introduced enhanced models
that further improve performance and address existing
limitations. These enhanced models incorporate
techniques, such as transfer learning, data
augmentation, and multi-task learning, to improve
model accuracy and robustness.

Transfer learning is one of the most effective techniques
in deep learning, particularly in scenarios where large
labeled datasets are limited. By pre training a deep
learning model [20] on a large number of images like
ImageNet and these models can be fine-tuning on a
smaller sample, specialized dataset like chest X-rays
[21] will provide better results, transfer learning allows
models to retain general knowledge while learning
specific features relevant to lung disease detection.
Other recent innovations in deep learning for lung
disease detection include the use of an attention
approach, which enables patch-wise embedding and
captures complex patterns from the image, and
ensemble learning, where multiple models are
combined to enhance predictive accuracy.

Contributions.

e Enhanced CNN with Spatial and Channel
Attention Mechanisms for Improved Feature
Extraction and Classification Performance.

e High-accuracy @ Chest  X-ray  Disease
Classification Model Utilizing Attention
Mechanisms to Improve Generalization and
Robustness.
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e Comprehensive Evaluation with Feature
Importance Analysis Technique to Interpret
Model Predictions and Enhance Explainability.

2 Related work

Many researchers have worked with machine and deep
learning models, such as Shilpa, N., et al. (2024) [2],
which have implemented various models, including
ResNet50, MobileNetV2, AlexNet, and EfficientNetBO,
to detect pneumonia in chest X-rays. Among all models,
EfficientNetBO performed the best. In this case, only
one disease was detected using a pre-trained model.
Sanida, T., et al (2024) [3] Implemented an optimized
VGG model to detect multiple diseases, such as

COVID-19, cancer, etc, in X-ray samples. | used
27,445 samples from all classes and applied
augmentation methods to balance the dataset

(Choudhry, 1.). A et al. (2024) [4] implemented a deep
learning model using cloud and fog methods to enhance
security in the healthcare system. They employed a
transfer learning method, such as RetinaNet, and fine-
tuned EfficientNet models on chest X-ray samples.

KS, N., and Darapaneni, N. (2024) [5] implemented V-
BreathNet model to detect the abnormality in X-ray, In
this they first trained a customized CNN model on X-
ray samples consist of 3 classes like phenomena, lung
opacity and standard samples and got superior
performance compared to VGG and Dense Net models.
Paswan, J. D., et al (2024) in [6] pre-trained VGG,
ResNet50, and DenseNet121 models on the COVID-19
dataset. This has only two classes, yes or no, and
achieved an accuracy of 94% and 87% for training and
testing, respectively.

Pan, C. T., et al. (2024) [7] proposed a two-stage data
analysis method for the COVID-19 dataset, which
consists of four classes: SARS, COVID-19, regular, and
abnormal. First, all samples were converted to 224*224
dimensions after augmentation. | also trained various
models, including VGG and GoogleNet, using 5-fold
cross-validation; GoogleNet performed particularly
well.

Mahamud, E., et al. (2024) [9] proposed an enhanced
DenseNet201 model with a transformer approach using
X-ray data. With Explainable Al, trained on 10000
samples over four classes, and got an accuracy of 1.0.
Kotei, E., and Thirunavukarasu, R. (2024) [10]
developed a method for detecting Tuberculosis disease
using pre-trained CNN models on X-ray images. First,
all samples were converted to a 256-gray scale, and the
CNN model was trained, achieving an accuracy of 99%.
Hansun, S., et al. (2023) [14] utilized the QUADAS-2
dataset, comprising 309 samples, to train ML and DL
models, achieving an accuracy of 0.93 with ML models
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in detecting TB. Malik, H., et al. (2023) [15]
implemented a pre-trained CNN model to detect various
diseases, such as TB and pneumonia, from X-ray
samples, achieving an accuracy of 0.99, which is better
than that of overall transfer models.

Chen, Y., etal. (2023) [16] optimized EfficientNet-b5
and CoAtNet-0-rw using different loss functions,
including novel and weighted binary loss functions.
This model is trained on the ChestX-rayl4 dataset,
which comprises 14 classes, and achieves an accuracy
of 0.842.

Bharati, S., et al (2020) implemented a hybrid DL
model by combining CNN and VGG on lung disease
detection and trained various combinations; in this, they
got an accuracy of 0.73% with the best model.
Ganeshkumar, M., et al. (2023) [18] proposed a two-
stage learning ensemble method for classifying regular
pneumonia and COVID-19 Pneumonia. The total
number of samples is 600. This ensemble model
achieved an accuracy of 0.89.

Mustafa, Z., and Nsour, H. (2023) [22] proposed a
YOLO pre-trained model for detecting respiratory
infections and TB using X-ray images. Reamaroon, N.,
et al. (2021) [24] extracted gray-level co-occurrence
matrix-based features, trained a machine learning model
using k-fold cross-validation and the Adam optimizer,
and achieved an accuracy of 0.83. Chen, K. C,, et al.
(2020) [25] focused on pulmonary diseases in children,
utilizing X-ray images to train a YOLO model,
achieving an accuracy of 0.92.

[26] Benchabane&Charif (2025). In this work, we
integrate  deep learning with advanced image
enhancement to enhance the detection of COVID-19
through chest X-rays. The proposed approach
demonstrates  superior  diagnostic  performance,
underscoring the contribution of pre-processing to
enhancing model accuracy. [27] Oraibi&Albasri (2023)
The authors present a robust end-to-end CNN
architecture that addresses the issue of data imbalance
in COVID-19 detection. The model's accuracy is high
on X-ray datasets, and focusing on balanced training
and architectural optimization strategies is onekey
reason.

3 Methodology

We designed a custom CNN architecture that
incorporates spatial and channel attention mechanisms
to enhance the extraction of complex features, such as
local and global variations, as well as background and
foreground, from images. The model processes
224x224x3 RGB embedded vectors, which are
normalized between 0 and 1 to improve training



528 Informatica 49 (2025) 525-536

stability and remove the domination of background
vectors.

The CNN consists of three convolutional blocks, each
incorporating Conv2D, Batch Normalization, Squeeze-
and-Excitation (SE) Blocks, Spatial Attention Layers,
MaxPooling, and Dropout layers. The SE Block applies
channel attention by adaptively recalibrating feature
responses, enhancing relevant features  while
suppressing redundant ones. Meanwhile, the Spatial
Attention Layer emphasizes critical spatial regions by
computing attention maps based on average and max-
pooled feature maps.

Each convolutional block consists of a Conv2D layer
with a 3x3 kernel, ReLU activation, and 'same' padding,
extracting hierarchical spatial features from each
3*224*224 sample. A Batch Normalization method is
applied to normalize the embedded vectors within the
range of 0 to 1, which is then passed to the
convolutional layer, where it normalizes the features,
thereby reducing internal adjustments.

The SE Block, responsible for channel attention,
consists of three key steps:

1. Global Average Pooling will find the average
value of each global feature map.

2. Bottleneck dense layers, which consist of two
fully connected layers, adjust the channel
dimensions. The first dense layer (with ReLU
activation) reduces the number of filters by a
factor of 16, and the second dense layer (with a
sigmoid activation) restores the original filter
count.

3. Reshaping and Multiplication — The

recalibrated weights are applied to the input
feature maps, improving feature selection.
The final classification layers include a flatten layer that
converts a multidimensional matrix into 1D data and
sends 1D data to a dense layer with 256 units. The thick
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layer, with ReL U activation, provides nonlinear values
for the given input, allowing it to learn complex
foreground features. A Dropout method with a 50% rate
is applied to prevent overfitting, where 50% of neurons
are dropped from the training process after each epoch.

4 Data set

The dataset used for lung disease classification was
obtained from Kaggle. It comprises chest X-ray samples
labeled into three classes, totaling6000, as shown in
Figure 1. The data set consists of a mixture of
dimensions, depths, and sizes, so a standardized
preprocessing pipeline was applied to ensure
consistency in input dimensions and facilitate practical
model training.

Initially, we employed the ImageDataGenerator class in
TensorFlow to handle image augmentation and
rescaling. The training dataset was augmented using
ImageDataGenerator with a normalization factor of
1/255t0 scale pixel values between 0 and 1. A
validation split of 20% was applied to ensure a fair
model evaluation. Separate ImageDataGenerator
instances were also used for validation and test datasets,
with rescaling applied uniformly across all datasets. The
images were loaded into TensorFlow data generators
using the flow from data frame method, which sourced
image file paths and corresponding labels from
structured data frames.

Additionally, we implemented a preprocessing pipeline
using TensorFlow's Sequential APl to standardize
image dimensions. This involved a Resizing layer to
reshape images to a fixed size of (224,224), ensuring
uniformity across the dataset, followed by a Rescaling
layer to normalize pixel values. Figure 2 illustrates the
number of samples for each class before augmentation.

Normal Normal

Lung_Opacity

Lung_Opacity

Viral Pneumonia Viral Pneumonia

Figure 1: Shows X-ray images of the disease and normal.
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Figure 2: Class-wise number of samples before augmentation

5 Result analysis

The proposed CNN model, with spatial and channel
attention mechanisms, was trained for 10 epochs to
classify chest X-ray images into three categories: Lung
Opacity, Normal, and Viral Pneumonia. The model was
trained using a batch size of 32, with accuracy and loss
metrics recorded for both the training and validation
datasets at each epoch, as shown in Figure 3.

During the early training epochs, the model showed
consistent improvement in classification performance.
By Epoch 4, the accuracy reached 87.17%, with a
slightly lower validation of 78.57%, indicating that the
model was still learning to generalize to unseen
patterns. This trend continued into Epoch 6, where
training accuracy rose to 90.08% and validation

generalization. Concurrently, the training loss decreased
from 0.3160 to 0.2570, and the validation loss dropped
from 0.4803 to 0.3691.

A notable improvement occurred in Epoch 7, with
training accuracy at 89.98% and validation accuracy
peaking at 88.57%. The corresponding validation loss
further reduced to 0.2566, suggesting increased model
stability and effective feature learning. However, by
Epoch 9, validation loss spiked to 0.5656 despite a high
training accuracy of 92.70%, indicating potential
overfitting. This was confirmed in Epoch 10, where
validation loss sharply increased to 1.0427 and
validation accuracy stagnated at 82.86%, suggesting
that the model had begun to memorize the training data

. . rather than eneralize effectively.
accuracy improved to 82.86%, demonstrating better g y
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Figure 3: Learning curves of the proposed model
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The proposed model achieved an overall accuracy of
93.93%, as shown in Figure 4, demonstrating its
effectiveness in classifying into three classes: lung
opacacity, normal opacacity, and viral pneumonia. The
model exhibited strong predictive performance across
all classes, with high correctness in identifying both
positive and negative cases. Specifically, for Lung
Opacity, the model maintained perfect results in correct
classifications and misclassifications, ensuring high
reliability. Similarly, the classification performance for
Normal cases remained consistent, with minimal errors.
The highest performance was observed in detecting
Viral Pneumonia, where the model exhibited superior
capability in distinguishing these cases from the other
categories, reflecting its ability to capture distinctive
patterns in the dataset.

D. Priyanka et al.

The overall effectiveness of the model was further
reinforced by its ability to maintain a strong balance
across different performance metrics, reducing both
false positives and false negatives. The comprehensive
evaluation metrics indicate that the model extracted
complex spatial and temporal features and provides
robust decision-making. Additionally, the model
provided a substantial area under the curve (AUC) score
of 97.22%, highlighting its ability to differentiate
between categories with high confidence, as illustrated
in Figures 5 and 6. The combination of spatial and
channel attention mechanisms contributed significantly
to feature enhancement, improving classification
accuracy and better generalization across chest X-ray
samples.
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Figure 4: Confusion matrix of the proposed hybrid model
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532 Informatica 49 (2025) 525-536

Figures 5 and 6 show that the ROC and PR curves from
Figure 7 illustrate the model's performance over three
classes—Lung Opacity, Normal, and Viral Pneumonia.
The ROC curve accuracy shows that the model achieves
a high AUC for all courses, 0.97, with Viral Pneumonia
approaching an ideal classification boundary. The PR
curve demonstrates the presentation of the model on
three classes. The slight reduction in precision at higher
recall values, particularly for the Normal and Lung
Opacity classes, suggests that the model provides strong
predictive capability. Figure 8 represents the
importance of features using permutation-based
analysis, highlighting the role of different features in
the model's executive process. The color gradient
visually distinguishes features based on their relative
importance, where taller bars indicate higher
significance. The black error bars depict variability in
importance scores across multiple iterations, ensuring
robustness in feature selection.

From table 1 it is observed thatPaswan et al. [6] with
pre-trained method like VGG, ResNet50, and
DenseNet121 on a COVID-19 dataset and reported a
training accuracy of 94% and a testing accuracy of
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learning (ML) and deep learning (DL) models on the
QUADAS-2 dataset comprising 309 samples to detect
tuberculosis (TB), achieving an overall accuracy of
93%. Chen et al. [16] fine-tuned EfficientNet-B5 and
CoAtNet-0 on the ChestX-rayl4 dataset, which
contains 14 classes of chest diseases, and achieved a
multi-class classification accuracy of 84.2%. Similarly,
VDSNet [17] was trained on 5,606 samples from the
same dataset and achieved 73% accuracy across 14
disease classes, demonstrating the complexity of multi-
class classification with high disease variability.

Ganeshkumar et al. [18] proposed an ensemble learning
approach on a smaller dataset of 600 chest X-rays to
distinguish between regular and COVID-19 pneumonia,
reaching an accuracy of 89%. In another approach,
Mustafa and Nsour [22] employed a pre-trained YOLO
model to detect TB and respiratory infections, although
specific performance metrics were not reported.
Reamaroon et al. [24] used gray-level co-occurrence
matrix (GLCM) features with ML classifiers to detect
respiratory infections, achieving 83% accuracy. Chen et
al. [25] applied YOLO to pediatric pulmonary X-ray
images, attaining a classification accuracy of 92% in

87%, targeting binary classification (COVID-19 vs.  detecting childhood pulmonary diseases.
non-COVID). Hansun et al. [14] used both machine
ROC Curve Precision-Recall Curve
1.0 — - 1.0 1
l'r e ,,/ ‘L
ot 0.9 -
0.8 ot
/” 0.8 1
g -~
< 067 et c 0.7 {
= 4 2 \
% /" 3 1
E 0.4 // £ 061 1
Z e
= /1 !
e 0.5 1
0.2 e
#
-~ —— Lung Opacity (AUC=0.97) 0.4 1 — Lung Opacity
,/' Normal (AUC=0.95) Normal
004 ¥ — Viral Pneumonia (AUC=1.00) 0.3 4 — Viral Pneumonia
O.IO O.IZ O.I4 0:6 O.IB l.IO O.IO 0:2 0:4 0:6 O.IB l.IO
False Positive Rate Recall
Figure 7: ROC, precision-recall curves of the proposed hybrid model
Table 1: Comparison of proposed hybrid model with prescribed models
Ref | Model / Dataset / Sample Disease(s) Detected Classes | Accuracy /
Size Performance
[6] | VGG, ResNet50, COVID-19 Dataset | COVID-19 2 Train: 94%,
DenseNet121 Test: 87%
[14] | ML and DL Models QUADAS-2 /309 Tuberculosis 2 93%
samples
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[16] | EfficientNet-B5, ChestX-ray14 (14- 14 Chest Diseases 14 84.20%
CoAtNet-0 class)
[17] | VDSNet ChestX-ray14, 5606 | 14 disease 14 73%
samples
[18] | Ensemble Learning 600 X-rays Pneumonia (Regular vs. 2 89%
COVID-19)
[22] | YOLO (Pre-trained) Chest X-rays TB, Respiratory Multi N.A.
Infections
[24] | ML + GLCM Features | X-rays/N.A. Respiratory Infections 2 83%
[25] | YOLO Pediatric Pulmonary | Pulmonary Disease in 2 92%
X-rays Children
# Proposed model Chest X-rays, 3475 | Pneumonia, normal,lung | 3 93.01%
samples opacacity
Feature Importance based on Permutation
500 -
400 A
300 4 |
g
&
200 1

100

0

~ A S P O T V£ T

Importance

Figure 8: Features the importance plot after training

6 Conclusion

This study proposed a novel CNN architecture
enhanced with spatial and channel attention
mechanisms for automated chest X-ray classification,
achieving high classification accuracy and strong
generalization capabilities. Integrating SE Blocks and
Spatial ~ Attention  Layers  improved  feature
representation, enabling the model to distinguish
between Lung Opacity, Normal, and Viral Pneumonia
with an overall accuracy of 93.01%. Performance

analysis using ROC and Precision-Recall curves
confirmed the model's ability to maintain high precision
and recall across all classes. However, training
dynamics indicated overfitting in later epochs,
suggesting the need for further optimization through
regularization techniques and extended training
datasets. Future work will enhance model robustness by
incorporating advanced augmentation techniques and
exploring hybrid deep learning architectures.
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