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This study proposes a novel Convolutional Neural Network (CNN) approach with both spatial and 

channel attention mechanisms to improve automated chest X-ray image classification. The 

architecture integrates Squeeze-and-Excitation (SE) Blocks for channel attention and a spatial 

method to focus on informative regions of the sample, thereby enhancing both local and global feature 

extraction. The model processes input images of size 224×224×3 and comprises three convolutional 

blocks, each consisting of Conv2D, Batch Normalization, SE Blocks, Spatial Attention, MaxPooling, 

and Dropout layers. The dataset, sourced from Kaggle, contains 6,000 chest X-ray images 

categorized into three classes: Lung Opacity, Normal, and Viral Pneumonia. A standardized 

preprocessing pipeline was employed, including resizing, normalization (rescaling pixel values to [0, 

1]), and real-time augmentation via TensorFlow’s ImageDataGenerator. The model was trained for 

10 epochs using a batch size of 32. It achieved a final test accuracy of 93.01%, with a peak validation 

accuracy of 88.57%, and an Area Under the Curve (AUC) score of 97.22%.  

Povzetek: Za avtomatizirano analizo rentgenskih posnetkov prsnega koša so uporabili konvolucijsko 

omrežje, ki združuje kanalsko (SE) in prostorsko pozornost ter s tremi bloki učinkoviteje izlušči 

lokalne in globalne značilke. 

 

1 Introduction  
Lung diseases, including pneumonia, tuberculosis (TB), 

lung cancer, and chronic obstructive pulmonary disease 

(COPD) [23], remain among the leading causes of death 

worldwide. Early diagnosis and accurate detection of 

these conditions are crucial for improving patient 

outcomes and reducing the healthcare burden. 

Traditionally, radiologists have relied on chest X-rays 

to identify lung abnormalities. Still, this process is time-

consuming, requires additional human resources, such 

as experts, and is prone to human error. As a result, 

there is acriticalneed for automated systems that can 

diagnose lung diseases more efficiently and accurately. 

In recent years, the advent of deep learning (DL) and 

subset neural networks has revolutionized the field of 

medical image analysis. CNNs, a type of DL model, 

have demonstrated optimal performance in image 

classification, particularly in detecting lung problems 

from chest images. By training on numerous annotated 

medical images, deep learning models can 

automatically identify abnormalities in X-rays, 

providing a solution to the limitations of traditional 

methods. These models improve prediction accuracy 

and reduce the time required for analyzing multiple 

samples simultaneously, enabling faster decision-

making with optimal clinical outcomes. 

The DL approach used for detecting lung diseases from 

X-ray images was proposed by Al-qaness, M. A., et al. 

(2024) [1]. And the challenges associated with lung 

disease detection and how DL models can address these 

issues. Still, they can extract some complex features 

from the image that may be difficult for the human eye 

to detect. Additionally, it will examine the different 

architectures and techniques employed in this domain, 

highlight the impact of large-scale annotated datasets, 

and discuss the practical applications of these models in 

clinical settings. But these simple CNN models will not 

capture sequential patterns from the samples.  

Lung diseases such as pneumonia, tuberculosis (TB), 

lung cancer, and COPD are not only prevalent but also 
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highly incurable if not detected in early stages. Early 

diagnosis is crucial for enhancing treatment outcomes 

and improving survival rates. For example, Pneumonia 

can cause severe respiratory pain if not diagnosed and 

treated with antibiotics. TB, on the other hand, is one of 

the foremost causes of death from an infectious disease, 

particularly in low-resource settings. In the case of lung 

cancer, the prediction is often poor if the disease is 

diagnosed at later stages, making early detection 

essential for survival. COPD is another common lung 

problem that can result in significant morbidity and 

mortality if not effectively managed. The global burden 

of lung diseases continues to rise, particularly in 

developing countries where medical resources are 

limited. The demand for effective and affordable 

diagnostic tools has grown in these regions. 

Chest X-rays have been a vital diagnostic tool for lung 

diseases for decades. They provide a relatively 

inexpensive and accessible method for detecting 

abnormalities in the lungs. Radiologists assess X-ray 

images [8] to identify signs of disease, such as opacities 

and nodules, which can indicate various lung 

conditions. However, despite their importance, 

interpreting these images is challenging due to the 

complexity of the lung anatomy and the wide range of 

diseases that can occur in similar ways. These images 

are full of noise, which may bias the model.  

The main challenges in lung disease detection are the 

complexity of the images, which includes model noise, 

and the interpretation, such as background color and the 

types of features extracted from image patches. Chest 

X-ray images often contain noise, artifacts, and 

variations in quality, making it challenging to capture 

complex features from raw data. In addition, the 

radiological manifestations of different lung diseases 

can be similar, such as nodules or consolidations that 

may appear in both lung cancer and pneumonia. Such 

overlapping symptoms increase the likelihood of 

misdiagnosis, especially when the images are reviewed 

by clinicians without the expertise or experience in 

interpreting lung X-rays. 

Moreover, traditional diagnostic systems rely on 

radiologists' manual detection, which can be time-

consuming and does not always provide optimal results. 

Radiologists, especially in busy healthcare settings, may 

not always have the time to thoroughly review all 

available X-ray images, resulting in delayed diagnoses. 

As the number of patients seeking diagnostic imaging 

services grows, the workload on radiologists also 

increases, further contributing to the potential for 

mistakes and missed diagnoses. 

Researchers have turned to automated image analysis 

systems powered by deep learning or AI to overcome 

these challenges. Deep learning models are designed to 

learn and extract patterns from large datasets, making 

them ideal for analyzing medical images. These models 

can identify and classify diseases based on features that 

are complex for the human eye to perceive, such as 

delicate changes in texture, shape, depth, and size of 

structures in chest X-rays. 

Deep learning, specifically through CNNs [11] and 

[12], has shown promise in medical image analysis. 

CNNs are a type of neural network designed to work 

with grid-like data such as images. These models 

automatically extract various features from input 

images, such as edges, textures, and patterns, without 

requiring manual feature engineering. This 

characteristic makes CNNs particularly effective for 

image classification tasks, including medical image 

analysis. In the context of lung disease detection, CNNs 

are trained on large datasets of labeled chest X-ray 

images that can classify the samples into healthy and 

diseased lungs. The model learns to identify visual 

patterns associated with different lung diseases, such as 

lung opacity, nodules, consolidation, and fibrosis, 

which can help classify diseases like pneumonia, TB, 

and lung cancer. Once a method is trained, these models 

can automatically analyze new X-ray images, providing 

accurate and rapid diagnoses. By using large-scale 

annotated samples, these models can achieve optimal 

performance. Although CNNs [13] and [19] neural 

network is used primarily for lung disease detection, 

recent advancements have introduced enhanced models 

that further improve performance and address existing 

limitations. These enhanced models incorporate 

techniques, such as transfer learning, data 

augmentation, and multi-task learning, to improve 

model accuracy and robustness. 

Transfer learning is one of the most effective techniques 

in deep learning, particularly in scenarios where large 

labeled datasets are limited. By pre training a deep 

learning model [20] on a large number of images like 

ImageNet and these models can be fine-tuning on a 

smaller sample, specialized dataset like chest X-rays 

[21] will provide better results, transfer learning allows 

models to retain general knowledge while learning 

specific features relevant to lung disease detection. 

Other recent innovations in deep learning for lung 

disease detection include the use of an attention 

approach, which enables patch-wise embedding and 

captures complex patterns from the image, and 

ensemble learning, where multiple models are 

combined to enhance predictive accuracy. 

 

Contributions. 

• Enhanced CNN with Spatial and Channel 

Attention Mechanisms for Improved Feature 

Extraction and Classification Performance. 

• High-accuracy Chest X-ray Disease 

Classification Model Utilizing Attention 

Mechanisms to Improve Generalization and 

Robustness. 
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• Comprehensive Evaluation with Feature 

Importance Analysis Technique to Interpret 

Model Predictions and Enhance Explainability. 

 

2 Related work  
Many researchers have worked with machine and deep 

learning models, such as Shilpa, N., et al. (2024) [2], 

which have implemented various models, including 

ResNet50, MobileNetV2, AlexNet, and EfficientNetB0, 

to detect pneumonia in chest X-rays. Among all models, 

EfficientNetB0 performed the best. In this case, only 

one disease was detected using a pre-trained model. 

Sanida, T., et al (2024) [3] Implemented an optimized 

VGG model to detect multiple diseases, such as 

COVID-19, cancer, etc, in X-ray samples.  I used 

27,445 samples from all classes and applied 

augmentation methods to balance the dataset 

(Choudhry, I.). A et al. (2024) [4] implemented a deep 

learning model using cloud and fog methods to enhance 

security in the healthcare system. They employed a 

transfer learning method, such as RetinaNet, and fine-

tuned EfficientNet models on chest X-ray samples.  

KS, N., and Darapaneni, N. (2024) [5] implemented V-

BreathNet model to detect the abnormality in X-ray, In 

this they first trained a customized CNN model on X-

ray samples consist of 3 classes like phenomena, lung 

opacity and standard samples and got superior 

performance compared to VGG and Dense Net models. 

Paswan, J. D., et al (2024) in [6] pre-trained VGG, 

ResNet50, and DenseNet121 models on the COVID-19 

dataset. This has only two classes, yes or no, and 

achieved an accuracy of 94% and 87% for training and 

testing, respectively.  

Pan, C. T., et al. (2024) [7] proposed a two-stage data 

analysis method for the COVID-19 dataset, which 

consists of four classes: SARS, COVID-19, regular, and 

abnormal. First, all samples were converted to 224*224 

dimensions after augmentation. I also trained various 

models, including VGG and GoogleNet, using 5-fold 

cross-validation; GoogleNet performed particularly 

well. 

Mahamud, E., et al. (2024) [9] proposed an enhanced 

DenseNet201 model with a transformer approach using 

X-ray data. With Explainable AI, trained on 10000 

samples over four classes, and got an accuracy of 1.0. 

Kotei, E., and Thirunavukarasu, R. (2024) [10] 

developed a method for detecting Tuberculosis disease 

using pre-trained CNN models on X-ray images. First, 

all samples were converted to a 256-gray scale, and the 

CNN model was trained, achieving an accuracy of 99%.    

Hansun, S., et al. (2023) [14] utilized the QUADAS-2 

dataset, comprising 309 samples, to train ML and DL 

models, achieving an accuracy of 0.93 with ML models 

in detecting TB. Malik, H., et al. (2023) [15] 

implemented a pre-trained CNN model to detect various 

diseases, such as TB and pneumonia, from X-ray 

samples, achieving an accuracy of 0.99, which is better 

than that of overall transfer models.  

Chen, Y., etal. (2023) [16] optimized EfficientNet-b5 

and CoAtNet-0-rw using different loss functions, 

including novel and weighted binary loss functions. 

This model is trained on the ChestX-ray14 dataset, 

which comprises 14 classes, and achieves an accuracy 

of 0.842. 

Bharati, S., et al (2020) implemented a hybrid DL 

model by combining CNN and VGG on lung disease 

detection and trained various combinations; in this, they 

got an accuracy of 0.73% with the best model. 

Ganeshkumar, M., et al. (2023) [18] proposed a two-

stage learning ensemble method for classifying regular 

pneumonia and COVID-19 Pneumonia. The total 

number of samples is 600. This ensemble model 

achieved an accuracy of 0.89.  

Mustafa, Z., and Nsour, H. (2023) [22] proposed a 

YOLO pre-trained model for detecting respiratory 

infections and TB using X-ray images. Reamaroon, N., 

et al. (2021) [24] extracted gray-level co-occurrence 

matrix-based features, trained a machine learning model 

using k-fold cross-validation and the Adam optimizer, 

and achieved an accuracy of 0.83. Chen, K. C., et al. 

(2020) [25] focused on pulmonary diseases in children, 

utilizing X-ray images to train a YOLO model, 

achieving an accuracy of 0.92. 

[26] Benchabane&Charif (2025). In this work, we 

integrate deep learning with advanced image 

enhancement to enhance the detection of COVID-19 

through chest X-rays. The proposed approach 

demonstrates superior diagnostic performance, 

underscoring the contribution of pre-processing to 

enhancing model accuracy. [27] Oraibi&Albasri (2023) 

The authors present a robust end-to-end CNN 

architecture that addresses the issue of data imbalance 

in COVID-19 detection. The model's accuracy is high 

on X-ray datasets, and focusing on balanced training 

and architectural optimization strategies is onekey 

reason. 

 

3 Methodology 

We designed a custom CNN architecture that 

incorporates spatial and channel attention mechanisms 

to enhance the extraction of complex features, such as 

local and global variations, as well as background and 

foreground, from images. The model processes 

224×224×3 RGB embedded vectors, which are 

normalized between 0 and 1 to improve training 
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stability and remove the domination of background 

vectors. 

The CNN consists of three convolutional blocks, each 

incorporating Conv2D, Batch Normalization, Squeeze-

and-Excitation (SE) Blocks, Spatial Attention Layers, 

MaxPooling, and Dropout layers. The SE Block applies 

channel attention by adaptively recalibrating feature 

responses, enhancing relevant features while 

suppressing redundant ones. Meanwhile, the Spatial 

Attention Layer emphasizes critical spatial regions by 

computing attention maps based on average and max-

pooled feature maps. 

Each convolutional block consists of a Conv2D layer 

with a 3×3 kernel, ReLU activation, and 'same' padding, 

extracting hierarchical spatial features from each 

3*224*224 sample. A Batch Normalization method is 

applied to normalize the embedded vectors within the 

range of 0 to 1, which is then passed to the 

convolutional layer, where it normalizes the features, 

thereby reducing internal adjustments. 

The SE Block, responsible for channel attention, 

consists of three key steps: 

1. Global Average Pooling will find the average 

value of each global feature map. 

2. Bottleneck dense layers, which consist of two 

fully connected layers, adjust the channel 

dimensions. The first dense layer (with ReLU 

activation) reduces the number of filters by a 

factor of 16, and the second dense layer (with a 

sigmoid activation) restores the original filter 

count. 

3. Reshaping and Multiplication – The 

recalibrated weights are applied to the input 

feature maps, improving feature selection. 

The final classification layers include a flatten layer that 

converts a multidimensional matrix into 1D data and 

sends 1D data to a dense layer with 256 units. The thick 

layer, with ReLU activation, provides nonlinear values 

for the given input, allowing it to learn complex 

foreground features. A Dropout method with a 50% rate 

is applied to prevent overfitting, where 50% of neurons 

are dropped from the training process after each epoch.  

 

4 Data set 
The dataset used for lung disease classification was 

obtained from Kaggle. It comprises chest X-ray samples 

labeled into three classes, totaling6000, as shown in 

Figure 1. The data set consists of a mixture of 

dimensions, depths, and sizes, so a standardized 

preprocessing pipeline was applied to ensure 

consistency in input dimensions and facilitate practical 

model training. 

Initially, we employed the ImageDataGenerator class in 

TensorFlow to handle image augmentation and 

rescaling. The training dataset was augmented using 

ImageDataGenerator with a normalization factor of 

1/255to scale pixel values between 0 and 1. A 

validation split of 20% was applied to ensure a fair 

model evaluation. Separate ImageDataGenerator 

instances were also used for validation and test datasets, 

with rescaling applied uniformly across all datasets. The 

images were loaded into TensorFlow data generators 

using the flow from data frame method, which sourced 

image file paths and corresponding labels from 

structured data frames. 

Additionally, we implemented a preprocessing pipeline 

using TensorFlow's Sequential API to standardize 

image dimensions. This involved a Resizing layer to 

reshape images to a fixed size of (224,224), ensuring 

uniformity across the dataset, followed by a Rescaling 

layer to normalize pixel values. Figure 2 illustrates the 

number of samples for each class before augmentation.  

 

Figure 1: Shows X-ray images of the disease and normal. 
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Figure 2: Class-wise number of samples before augmentation 

 

5 Result analysis 
The proposed CNN model, with spatial and channel 

attention mechanisms, was trained for 10 epochs to 

classify chest X-ray images into three categories: Lung 

Opacity, Normal, and Viral Pneumonia. The model was 

trained using a batch size of 32, with accuracy and loss 

metrics recorded for both the training and validation 

datasets at each epoch, as shown in Figure 3. 

During the early training epochs, the model showed 

consistent improvement in classification performance. 

By Epoch 4, the accuracy reached 87.17%, with a 

slightly lower validation of 78.57%, indicating that the 

model was still learning to generalize to unseen 

patterns. This trend continued into Epoch 6, where 

training accuracy rose to 90.08% and validation 

accuracy improved to 82.86%, demonstrating better 

generalization. Concurrently, the training loss decreased 

from 0.3160 to 0.2570, and the validation loss dropped 

from 0.4803 to 0.3691. 

A notable improvement occurred in Epoch 7, with 

training accuracy at 89.98% and validation accuracy 

peaking at 88.57%. The corresponding validation loss 

further reduced to 0.2566, suggesting increased model 

stability and effective feature learning. However, by 

Epoch 9, validation loss spiked to 0.5656 despite a high 

training accuracy of 92.70%, indicating potential 

overfitting. This was confirmed in Epoch 10, where 

validation loss sharply increased to 1.0427 and 

validation accuracy stagnated at 82.86%, suggesting 

that the model had begun to memorize the training data 

rather than generalize effectively.

 
Figure 3: Learning curves of the proposed model 
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The proposed model achieved an overall accuracy of 

93.93%, as shown in Figure 4, demonstrating its 

effectiveness in classifying into three classes: lung 

opacacity, normal opacacity, and viral pneumonia. The 

model exhibited strong predictive performance across 

all classes, with high correctness in identifying both 

positive and negative cases. Specifically, for Lung 

Opacity, the model maintained perfect results in correct 

classifications and misclassifications, ensuring high 

reliability. Similarly, the classification performance for 

Normal cases remained consistent, with minimal errors. 

The highest performance was observed in detecting 

Viral Pneumonia, where the model exhibited superior 

capability in distinguishing these cases from the other 

categories, reflecting its ability to capture distinctive 

patterns in the dataset. 

The overall effectiveness of the model was further 

reinforced by its ability to maintain a strong balance 

across different performance metrics, reducing both 

false positives and false negatives. The comprehensive 

evaluation metrics indicate that the model extracted 

complex spatial and temporal features and provides 

robust decision-making. Additionally, the model 

provided a substantial area under the curve (AUC) score 

of 97.22%, highlighting its ability to differentiate 

between categories with high confidence, as illustrated 

in Figures 5 and 6. The combination of spatial and 

channel attention mechanisms contributed significantly 

to feature enhancement, improving classification 

accuracy and better generalization across chest X-ray 

samples. 

 
Figure 4: Confusion matrix of the proposed hybrid model 
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Figure 5: Proposed model performance on various metrics 

 
Figure 6: Class-wise performance of proposed hybrid model 
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Figures 5 and 6 show that the ROC and PR curves from 

Figure 7 illustrate the model's performance over three 

classes—Lung Opacity, Normal, and Viral Pneumonia. 

The ROC curve accuracy shows that the model achieves 

a high AUC for all courses, 0.97, with Viral Pneumonia 

approaching an ideal classification boundary. The PR 

curve demonstrates the presentation of the model on 

three classes. The slight reduction in precision at higher 

recall values, particularly for the Normal and Lung 

Opacity classes, suggests that the model provides strong 

predictive capability. Figure 8 represents the 

importance of features using permutation-based 

analysis, highlighting the role of different features in 

the model's executive process. The color gradient 

visually distinguishes features based on their relative 

importance, where taller bars indicate higher 

significance. The black error bars depict variability in 

importance scores across multiple iterations, ensuring 

robustness in feature selection.  

From table 1 it is observed thatPaswan et al. [6] with 

pre-trained method like VGG, ResNet50, and 

DenseNet121 on a COVID-19 dataset and reported a 

training accuracy of 94% and a testing accuracy of 

87%, targeting binary classification (COVID-19 vs. 

non-COVID). Hansun et al. [14] used both machine 

learning (ML) and deep learning (DL) models on the 

QUADAS-2 dataset comprising 309 samples to detect 

tuberculosis (TB), achieving an overall accuracy of 

93%. Chen et al. [16] fine-tuned EfficientNet-B5 and 

CoAtNet-0 on the ChestX-ray14 dataset, which 

contains 14 classes of chest diseases, and achieved a 

multi-class classification accuracy of 84.2%. Similarly, 

VDSNet [17] was trained on 5,606 samples from the 

same dataset and achieved 73% accuracy across 14 

disease classes, demonstrating the complexity of multi-

class classification with high disease variability. 

Ganeshkumar et al. [18] proposed an ensemble learning 

approach on a smaller dataset of 600 chest X-rays to 

distinguish between regular and COVID-19 pneumonia, 

reaching an accuracy of 89%. In another approach, 

Mustafa and Nsour [22] employed a pre-trained YOLO 

model to detect TB and respiratory infections, although 

specific performance metrics were not reported. 

Reamaroon et al. [24] used gray-level co-occurrence 

matrix (GLCM) features with ML classifiers to detect 

respiratory infections, achieving 83% accuracy. Chen et 

al. [25] applied YOLO to pediatric pulmonary X-ray 

images, attaining a classification accuracy of 92% in 

detecting childhood pulmonary diseases.

 
Figure 7: ROC, precision-recall curves of the proposed hybrid model 

 

Table 1: Comparison of proposed hybrid model with prescribed models 

Ref Model /  Dataset / Sample 

Size 

Disease(s) Detected Classes Accuracy / 

Performance 

[6] VGG, ResNet50, 

DenseNet121 

COVID-19 Dataset COVID-19 2 Train: 94%,  

Test: 87% 

[14] ML and DL Models QUADAS-2 / 309 

samples 

Tuberculosis 2 93%  
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[16] EfficientNet-B5, 

CoAtNet-0 

ChestX-ray14 (14-

class) 

14 Chest Diseases 14 84.20% 

[17]  VDSNet ChestX-ray14, 5606 

samples 

14 disease 14 73% 

[18] Ensemble Learning 600 X-rays Pneumonia (Regular vs. 

COVID-19) 

2 89% 

[22] YOLO (Pre-trained) Chest X-rays TB, Respiratory 

Infections 

Multi N.A. 

[24] ML + GLCM Features X-rays / N.A. Respiratory Infections 2 83% 

[25] YOLO Pediatric Pulmonary 

X-rays 

Pulmonary Disease in 

Children 

2 92% 

# Proposed model Chest X-rays, 3475 

samples 

Pneumonia, normal,lung 

opacacity 

3 93.01% 

 
Figure 8: Features the importance plot after training 

6 Conclusion 
This study proposed a novel CNN architecture 

enhanced with spatial and channel attention 

mechanisms for automated chest X-ray classification, 

achieving high classification accuracy and strong 

generalization capabilities. Integrating SE Blocks and 

Spatial Attention Layers improved feature 

representation, enabling the model to distinguish 

between Lung Opacity, Normal, and Viral Pneumonia 

with an overall accuracy of 93.01%. Performance 

analysis using ROC and Precision-Recall curves 

confirmed the model's ability to maintain high precision 

and recall across all classes. However, training 

dynamics indicated overfitting in later epochs, 

suggesting the need for further optimization through 

regularization techniques and extended training 

datasets. Future work will enhance model robustness by 

incorporating advanced augmentation techniques and 

exploring hybrid deep learning architectures.  
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