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The security management of data stored on cloud servers is of great significance, as it not only prevents 

data leakage but also ensures data integrity. Thus, to achieve secure management of data stored on cloud 

servers, the research starts with existing searchable encryption technologies and attribute-based 

searchable encryption technologies, and improved designs are made for both to form a complete 

encryption scheme. Firstly, in terms of searchable encryption technology, the study considers the dynamic 

changes in user permissions and constructs an encryption scheme that includes a trust value evaluation 

model and a dual dynamic access control mechanism. Among them, the trust value evaluation model needs 

to consider historical trust values, recommended trust values, and attribute related trust values, and then 

generate a comprehensive trust value to evaluate user permissions. Secondly, in terms of attribute-based 

searchable encryption technology, the research adopts a multi-branch balanced tree and linear secret 

sharing scheme to construct a fine-grained access control scheme. Among them, the B-Tree index 

structure is used to optimize search efficiency, and the linear secret sharing scheme is used to achieve 

access control for users. In the experimental part, the study uses Python programming language combined 

with PyCrypto and OpenSSL cryptographic libraries for testing to ensure the feasibility and performance 

of the solution, and the operating system is Windows 10. The results show that the maximum trust value 

calculation time considering the user permission scheme is 32 ms, which is 46 ms, 33 ms, 22 ms, and 19 

ms lower than the maximum values of the four comparison schemes, respectively. In addition, the 

maximum access control determination time, CPU utilization, and memory occupancy of this scheme are 

56 ms, 12.17%, and 13.95%, respectively. The maximum key generation time and communication volume 

for supporting fine-grained access control schemes are 180 ms and 3.257 Byte, respectively, and the 

average storage overhead for user keys and ciphertext is 3.94 KB and 5.37 KB, respectively. The 

encryption schemes designed by the research have good performance and can provide technical support 

for secure management of cloud server storage data without decryption for data queries. 

Povzetek: Predlagajo dinamičen nadzor dostopa s celovitim zaupanjem ter ABSE z B-drevesnim 

indeksiranjem in LSSS za fino zrnat, učinkovit iskalni dostop v oblaku. 

 

1 Introduction 
As cloud computing technology advances at a rapid 

pace, cloud servers have become an important platform for 

data storage and processing. However, data storage in 

cloud environments faces many security challenges, such 

as data leakage risks, complex access control permission 

management, and data privacy protection issues [1-2]. To 

ensure the security and integrity of data in cloud servers, 

while meeting the needs of users for efficient data retrieval 

and access, it holds particular significance in studying an 

efficient, secure, and fine-grained access control 

supported data storage management solution. The 

commonly-used methods for addressing this issue include 

Searchable Encryption (SE) and Attribute-Based 

Searchable Encryption (ABSE) [3]. In addition, many 

scholars have conducted research on SE and ABSE 

technologies. 

 

Liu et al. designed an SE data sharing scheme based on 

inverted indexing to address issues such as unreliable  

data sharing, data attacks, and low efficiency in ciphertext 

retrieval. This scheme adopted a dual chain structure to 

store and share data, and constructed an inverted index 

structure and a ciphertext search algorithm based on this 

index structure. The results showed that this scheme could 

ensure datan SEcurity and improve retrieval efficiency 

[4]. Ng et al. proposed a blockchain-based multi-keyword 

SE scheme to protect the tracking data of contacts with a 

certain disease. Meanwhile, the scheme adopted the 

advanced encryption standard Galois/Counter mode to 

encrypt data and supported dynamic updates of search 

indexes. The results showed that the scheme could work 

effectively without affecting security objectives, and 

could also maintain efficiency when using larger search 

indexes [5]. Liu et al. designed an efficient multi-authority 

ABSE solution assisted by blockchain technology to 
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address issues such as single attribute authorization 

failure, privacy leakage during the search process, and 

high decryption overhead in ABSE technology. This 

framework leverages consortium blockchain technology 

for global public parameter management, integrating 

smart contracts, hybrid online/offline mechanisms, and 

verifiable edge-assisted decryption protocols to enhance 

system security and efficiency. The results showed that 

compared with existing solutions, this approach 

significantly improved computational efficiency [6]. Lu et 

al. designed a retrieval strategy ABSE scheme based on 

key policy attribute encryption framework to provide 

encryption support for privacy preserving database 

architectures. This scheme bound security query policies 

to query credentials and used a policy matrix to optimize 

the generation of security query policies. The results 

showed that the scheme achieved semantic security under 

the selection plaintext attack that included policy and 

identity queries [7]. 

Nevertheless, these studies and methodologies are 

not without their drawbacks, including the inability of SE 

technology to effectively respond to dynamic changes in 

user permissions, and the need to improve the search 

efficiency of ABSE technology. In order to better 

demonstrate the shortcomings of existing technologies, a 

detailed comparison of related works was conducted, as 

shown in Table 1. 

 

Table 1: Summary table of related work 
Comparative 

method 
Features Limitations Quantitative results 

Liu et al. [4] 
SE Data Sharing Scheme 

Based on Inverted Index 

Not involving dynamic changes in 
user permissions, ignoring static 

access permission issues 

Reduce computing costs by 20% and storage 

expenses by 10% 

Ng et al. [5] 
Multi keyword SE scheme 

based on blockchain 

Not explicitly mentioning the 

efficiency of dynamic 
management of user permissions 

and access control 

Efficiency increased by 30%, computational 
cost increased by 8% 

Liu et al. [6] 
Efficient and Multi 

Authoritative ABSE Scheme 

Assisted by Blockchain 

Unresolved problem of low search 

efficiency in ABSE technology 

40% increase in computational efficiency and 

25% increase in storage overhead 

Lu et al. [7] 
ABSE scheme based on key 
policy attribute encryption 

framework 

Handling of dynamic changes in 

user permissions not mentioned 

Efficiency increased by 35%, storage overhead 

increased by 20% 

From Table 1, although existing research has made 

some progress in SE and ABSE technologies, there are 

still some common limitations. Some solutions did not 

fully consider the dynamic changes in user permissions, 

resulting in insufficient flexibility in practical application 

scenarios. In addition, the search efficiency of ABSE 

technology still needs to be further improved to meet the 

needs of large-scale data processing. These shortcomings 

provide directions for improvement in this study, 

prompting us to design encryption schemes that are more 

adaptable and efficient.  

Therefore, the research questions are as follows: how 

to achieve secure storage and efficient management of 

data in cloud servers, while supporting fine-grained access 

control; How to dynamically manage user permissions to 

adapt to the dynamic changes in user permissions; How to 

improve the search efficiency of ABSE technology. To 

address the aforementioned research issues, a 

cryptographic scheme combining SE technology and 

ABSE technology has been proposed. Specifically, a trust 

value (TV) evaluation model and a dual dynamic access 

control mechanism were designed to achieve dynamic 

management of user permissions and solve the problem of 

dynamic changes in user permissions. This model 

evaluates the user's comprehensive TV in real time by 

comprehensively considering the historical TV, 

recommended TV and attribute related TV, so as to 

dynamically adjust user permissions and ensure that only 

trusted users can access sensitive data. At the same time, 

the study introduced a Balanced Multi Way Tree (B-Tree) 

index structure and a Linear Secret Sharing Scheme 

(LSSS) to optimize the search efficiency of ABSE 

technology and achieve fine-grained access control. The 

goal of the research is to design a cloud server data storage 

management scheme that can adapt to dynamic changes in 

user permissions by improving SE and ABSE, to achieve 

secure storage, efficient retrieval, and fine-grained access 

control of data. The novelty of the present research is 

embodied in several aspects. It involves the creation of a 

TV evaluation model, the application of B-Tree to 

optimize ABSE technology, the attainment of efficient 

data retrieval capabilities, and the offering of a brand-new 

technological route for the secure storage and effective 

management of data on cloud servers. 

 

2   Methods and materials 
To address the security management issues of data 

storage in cloud servers, an SE-oriented user permission 

dynamic management method was first developed to 

consider the dynamic changes in user permissions. 

Meanwhile, the research also designed an ABSE scheme 

based on B-Tree index structure and combined it with user 

permission dynamic management method to form a 

complete encryption method. 

 

2.1 Design of user permission dynamic 

management method for SE 
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To manage the security of data stored in cloud 

servers, the research starts with existing encryption 

technologies, namely SE technology and ABSE 

technology. Research has improved the shortcomings of 

these two technologies and developed new encryption 

schemes for each. Finally, these two encryption schemes 

are deployed on the encryption system to form a complete 

encryption scheme. SE technology is a technique that 

allows users to perform search operations in encrypted 

data, while ensuring the privacy and security of the data in 

an unencrypted state [8-9]. The advantages of this 

technology are strong retrieval capability, high flexibility, 

strong security, support for multiple application scenarios, 

and effective prevention of data leakage. The schematic of 

SE technology is shown in Figure 1. 

Data provider Data user

Cloud server

Search key

Response Search 

token
Index and 

encrypt files

 
Figure 1: The schematic of SE technology 

 

From Figure 1, SE technology involves data 

providers, data consumers, cloud servers, search keys, 

indexes and encrypted files, search tokens, and responses. 

However, a large portion of SE solutions currently do not 

involve dynamic changes in user permissions and ignore 

potential issues with static user access permissions. 

Therefore, to solve this problem, an SE-oriented user 

permission dynamic management method has been 

studied and designed. Figure 2 illustrates the 

comprehensive structure of this method. 
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Figure 2: The overall framework of SE oriented user permission dynamic management method 

 

From Figure 2, the user permission dynamic 

management method mainly includes two key parts, 

namely the TV evaluation model and the dual dynamic 

access control mechanism. In the calculation of TVs, 

including weights or function forms, innovative designs 

and improvements are made based on previous relevant 

research [10-11]. The recommended TV d of the system 

and other registered users h  for registered user c  is 

solved as shown in Equation (1) [12]. 

( ) ( ) ( )( ) ( )sing h

c c h ch
AB D AB D B d D AB D = + −  (1) 

In Equation (1), both   and   are influence 

weights, and the sum of the two is 1. ( )g

cAB D  represents 

the recommended TV of the system for registered user c



4 Informatica 49 (2025) 1–16 D. Zhao et al. 

, D  is the time interval, and d  represents the specific 

time. The weight is ( )( )sin hB d D− , and the value range 

is [0,1] . B  is a TV, and ( )hB d D−  represents the TV of 

h  under the previous evaluation D . ( )h

cAB D  represents 

the recommended TV of h  towards registered user c . In 

addition, in the calculation of user recommendation TVs, 

normalization methods need to be used. The reason for 

using normalization method is to eliminate dimensional 

differences and dimensional influences between different 

data sources or indicators. There is a theoretical basis for 

using Z-score normalization on the minimum maximum 

scale. Z-score normalization can make data from different 

sources comparable [13]. The conditions for using this 

method include normal distribution of data, elimination of 

dimensional influence, and standardization of data range. 

The expression of Z-score normalization is in Equation (2) 

[14]. 

a b
I

G

−
=  (2) 

In Equation (2), I  represents the processed data and 
a  is the actual data. b  and G  are the mean and standard 

deviations of the dataset, respectively. The expression of 

range normalization is in Equation (3). 

min

max min

a
I

−
=

−
 (3) 

In Equation (3), max  and min  represent the 

maximum and minimum values in the dataset, 

respectively. In the solution of system recommendation 

TV, the behavior feature vector of c  is expressed as 

shown in Equation (4) [15]. 

( ),1 ,2 ,, ,......,c c c c kJ j j j=  (4) 

In Equation (4), ,1cj  represents the behavior feature 

of the first row and k  is the total number of user behavior 

features. Therefore, the expression of ( )g

cAB D  is in 

Equation (5). 

( ) ( )g

c cAB D f L J=   (5) 

In Equation (5), ( )f   represents the activation 

function, L  represents the weight of behavioral features, 

and cL J  is the inner product of vectors. The expression 

of cL J  is in Equation (6). 

1 ,1 2 ,2 ,......c c c k c kL J L j L j L j= + + +  (6) 

In equation (6), kL  represents the weight of the k th 

behavioral feature. The solution of ( )h

cAB D  is in 

Equation (7). 

( )h n

c

n n

M
AB D

M P
=

+
 (7) 

In Equation (7), n  represents the interaction process, 

nM  and nP  respectively represent the number of times 

the operation of c  in n  is judged as honest or dishonest. 

In addition, the solution for the TV ( )cNDD D  related to 

the c  attribute information is in Equation (8). 

( ) ( ) ( ) ( )
1 21 1 1, 2 2 2, ,...

Rc s s R R R sNDD D F N F N F N  =  +  + + 

(8) 

In Equation (8), R  represents the total number of 

categories of attributes, 1 , 2 , and R  all represent 

influence weights, and their sum is 1. N  is the attribute 

value, and , RR sN  represents the Rs th attribute value in the 

R th class attribute. 1F , 2F , and RF  represent conversion 

functions. s  is the number of attributes of a certain type. 

In addition, different conversion functions are expressed 

uniformly, as shown in Equation (9). 

( ) ( ) ( )1 2 ... 1N

RF N F N F N e= = = = −  (9) 

Therefore, the solution for the comprehensive TV 

( )cB D  is in Equation (10). 

( ) ( ) ( ) ( )1 2 3c h c cB D B d D AB D NDD D  =  − +  + 

(10) 

In Equation (10), 1 , 2 , and 3  represent the influence 

weights, and the sum of the three is 1. The process of 

calculating the comprehensive TV is as follows: first 

initialize the user TV and assign a set of attributes, then 

collect user behavior data in real time, weight and sum 

historical TVs (calculated based on behavior records), 

normalize recommended TVs (system and other user 

recommended inputs), and attribute-related TVs 

(calculated based on the correlation between attributes and 

data) to obtain the comprehensive TV. Finally, 

dynamically adjust user permissions based on this, and 

compare TVs with thresholds to determine authorization 

during resource access. The pseudocode of the TV 

evaluation model is shown in Figure 3. 

function calculateCompositeTrust(user):

    historicalTrust = user.getHistoricalTrust()

    recommendedTrust = calculateRecommendedTrust(user.getRecommendations())

    attributeTrust = calculateAttributeTrust(user.Attributes)

    weight1 = 0.4

    weight2 = 0.3

    weight3 = 0.3

    compositeTrust = weight1 * historicalTrust + weight2 * recommendedTrust + 

weight3 * attributeTrust

    return compositeTrust

function calculateRecommendedTrust(recommendations):

    normalizedRecommendations = normalize(recommendations)

    return normalizedRecommendations

function calculateAttributeTrust(attributes):

    attributeTrust = 0.0

    for attribute in attributes:

        attributeTrust += attribute.value

    return attributeTrust / len(attributes)

 

Figure 3: Pseudo code for TV evaluation model 

 

From Figure 3, it can be seen that the pseudocode 

defines how to calculate the user's comprehensive TV. 

Subsequently, the generated comprehensive TV is input 

into the dual dynamic access control mechanism section. 

In the dual dynamic access control mechanism, the core is 

permission determination, and the determination content 

is to compare the comprehensive TVs of users and match 

the access policies of the resources to be accessed. The 
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pseudocode of the dual access control mechanism is 

shown in Figure 4. 

function dualDynamicAccessControl(userRequest, resourcePolicy):

    compositeTrust = calculateCompositeTrust(userRequest.user)

    if compositeTrust < trustThreshold:

        return ACCESS_DENIED

    if not userRequest.attributes.match(resourcePolicy):

        return ACCESS_DENIED

    return ACCESS_GRANTED

 

Figure 4: Pseudo code for dual access control 

mechanism 

 

From Figure 4, it can be seen that the pseudocode 

describes the core logic of the dual dynamic access control 

mechanism. In addition, the dynamic management method 

of user permissions also involves factors that affect the 

overall TV, and this part is the foundation of two key parts 

that need to be provided with relevant user information. 

Therefore, the overall process of the user permission 

dynamic management method is in Figure 5. 
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Figure 5: The overall process of dynamic management method for user permissions 

 

From Figure 5, the first step of the user permission 

dynamic management method is to register the user, and 

the second step is to initialize the TV. The third step is to 

allocate attribute sets, and the fourth step is to dynamically 

allocate permissions. The fifth step is to enter the dual 

dynamic access control mechanism. In this mechanism, 

the first step is to determine whether the user's TV is 

greater than the trust threshold. If it is greater than the trust 

threshold, the next step is to proceed. Otherwise, 

execution is rejected and real-time monitoring is initiated. 

Secondly, it is necessary to determine whether the access 

policy is met. If it is met, the corresponding operation 

should be executed before proceeding to real-time 

monitoring. Otherwise, it will directly proceed to real-time 

monitoring. The sixth step is to evaluate the TV, the 

seventh step is to update the attributes, and then return to 

dynamically assigning permissions. 

In addition, in the SE-based user permission dynamic 

management method, the dual dynamic access control 

mechanism closely interacts with the underlying SE 

operations. Specifically, when a user initiates a search 

request, the system first performs a TV check on the client 

side, compares the user's comprehensive TV with a preset 

trust threshold, and verifies whether it complies with the 

resource access policy. This process occurs before 

generating the search token, ensuring that only trusted 

users can create valid search tokens. If the user passes the 

TV check, the client will generate a search token based on 

the user's attributes and permissions, and send it to the 

cloud server. After receiving the search token, the cloud 

server performs a search operation and returns a list of 

encrypted files that match the token. After obtaining the 

encrypted file, the user performs a TV check again to 

ensure that they still have the authority to decrypt the data. 

This TV-based dynamic access control mechanism runs 

through the entire search and retrieval process of SE, 

ensuring data security and dynamic access. 

 

2.2 Design of ABSE scheme Using B-Tree 

index structure 
A dynamic user permission management method for 

SE has been designed to address the security management 

issues of data storage on cloud servers. However, in 

response to the improvement of SE technology, existing 

research has proposed ABSE technology that combines 

SE technology with attribute-based encryption. ABSE 

technology allows data owners to encrypt data based on its 

attributes, supports fine-grained access control and private 

keyword search, and ensures data security [16-17]. 

However, this technology still has certain shortcomings, 

such as rigid access policies and low search efficiency. In 

order to address these issues and further improve ABSE 

technology, methods that can supporting fine-grained 

access control have been researched and designed. The 

system model of this method is in Figure 6. 
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Figure 6: System model supporting fine-grained access control methods 

 

From Figure 6, the system model supporting fine-

grained access control methods mainly includes the data 

owner module, data user module, cloud server, attribute 

authorization authority module, public parameters, 

attribute sets, attribute keys, file ciphertexts and keyword 

ciphertexts, keyword hash values (file numbers, 

frequency), query results, and retrieval requests. Among 

them, the attribute authorization authority module needs 

to generate a system master key and system initialization, 

and the cloud server needs to run a search algorithm. 

Meanwhile, the data owner module needs to run 

encryption algorithms, while the data user module needs 

to obtain ciphertext files corresponding to keywords, and 

this process requires running search token generation 

algorithms. 

In the construction process of supporting fine-

grained access control methods, the B-Tree index 

structure is adopted to optimize search efficiency and 

search result accuracy. The B-Tree index structure is an 

efficient search tree, mainly used to accelerate data 

retrieval. It has the advantages of high data retrieval 

performance, support for ordered range queries and 

dynamic adjustments, and is widely used in database 

systems, in memory databases, and caching systems [18-

19]. The construction process of B-Tree index structure is 

in Figure 7. 
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Figure 7: The construction process of B-Tree index structure 

 

From Figure 7, the first step in constructing the B-

Tree index structure is to obtain a set of files, and the 

second step involves extracting file numbers and 

keywords separately. Meanwhile, in keyword extraction, 

it is necessary to obtain keyword frequency and keyword 

hash value. The third step is to output a keyword hash 
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value containing the file number and keyword frequency, 

and the fourth step is to establish a B-Tree index structure. 

The pseudocode of B-Tree structure is shown in Figure 8. 

class BTreeNode:

    def __init__(self):

        self.keys = []

        self.children = []

        self.is_leaf = True

function insertIntoBTree(node, key):

    if node.is_leaf:

        node.keys.append(key)

        node.keys.sort()

    else:

        child = findAppropriateChild(node, key)

        insertIntoBTree(child, key)

    if len(node.keys) > max_keys:

        splitNode(node)

function searchInBTree(node, key):

    if node.is_leaf:

        return key in node.keys

    else:

        child = findAppropriateChild(node, key)

        return searchInBTree(child, key)

 
Figure 8: Pseudo code of B-Tree structure 

 

From Figure 8, the pseudocode defines the B-Tree 

node structure and implements insertion and search 

operations. In addition, when generating the system 

master key, it is necessary to first initialize and generate 

public parameters. The T expression of the system master 

key is in Equation (11) [20]. 

 ( )1
,

V

v v
T u

=
=  (11) 

In Equation (11),   represents a random element 

and vu  represents the random value corresponding to the 

attribute. v  is the serial number of the attribute, and V  

represents the total number of attributes.   and vu  have 

*

pZ   and 
*

v pu Z  respectively, and 
*

pZ  is a special 

symbol [21]. The expression of system public parameters 

is in Equation (12). 

( )  ( )1, , , ,
V

v v
U w w e w w x Y


= ，  (12) 

In Equation (12), both w  and 1w  are generators of 

the multiplicative cyclic group, ( ),e w w


 represents 

bilinear pairing operations. Y is the hash algorithm, and 

vx  represents the group elements generated from the 

attribute set. In addition, the generation method of user 

attribute key X  is in Equation (13). 

 ( )1
,X



 
 

=
=  (13) 

In Equation (13),   represents the number of user 

attributes and   is the user attribute number.   

represents the authorization corresponding to user 

attributes. Among them, "authorization"   refers to the 

authorization information of the attribute authorization 

agency for user attributes. It is employed together with 

attribute values and master keys to export user attribute 

keys. The attribute authorization agency uses the random 

elements and corresponding random values in the system 

master key, combined with user attribute information, to 

calculate the user attribute related key part through one-

way hash function and key generation algorithm. This 

ensures that only authorized users can obtain the correct 

attribute key to decrypt or generate valid search tokens, 

ensuring both user attribute confidentiality and system 

security and fine-grained access control. 

The study explains the implementation details of the 

B-Tree index structure, including order, balancing 

strategy, and concurrency control. In terms of sequence, a 

B-Tree index is constructed by extracting file numbers and 

keywords from the file set, storing keywords and their file 

information in order, and recursively locating when 

inserting new keywords to maintain order. In regard to 

balancing strategy, node splitting and merging operations 

are used to maintain balance, ensuring that the number of 

node keywords does not exceed the preset upper limit. In 

terms of concurrency control, existing technologies such 

as locking or timestamp sorting mechanisms are combined 

to manage concurrent access and updates, ensuring data 

consistency and integrity during multi-user operations.  

The linear secret sharing matrix is one of the specific 

implementation details of LSSS, which describes in detail 

how secrets are divided and reconstructed from authorized 

shares. This matrix driven approach ensures the security 

and flexibility of the solution, enabling it to adapt to 

various complex access control requirements. The design 

and parameter selection of matrices directly affect the 

efficiency and security of the scheme, and are the 

foundation for implementing fine-grained access control 

and secure multi-party computation. Therefore, in the 

encryption stage, a linear secret sharing matrix was used 

to achieve access control for users. Linear secret sharing 

matrix is a technology based on matrix operations to 

achieve secret information segmentation and recovery. It 

has the advantages of high security, strong flexibility, 

good scalability, and supports dynamic adjustment. It 

finds extensive utility in confidential file transmission, 

cloud computing and privacy protection, IoT security, and 

blockchain security [22-24]. Therefore, the  expression 

of the complete ciphertext is in Equation (14). 

( ),  =  (14) 

In Equation (14),   represents symmetric encrypted 

ciphertext and   represents keyword ciphertext. The 

expression of the search token   is in Equation (15). 

( )
1

Y
w 






 =  (15) 

In Equation (15),   represents the keyword and   

is the sequence number of the keyword.   represents the 

total number of keywords, and ( )Y   represents the hash 

value of  . To address issues such as keyword conflicts, 

copying, and revocation, researchers have developed a 

series of processing methods. When keyword conflicts 

arise, the system employs salt hashing to boost the element 

of unpredictability, thereby mitigating conflicts. 

Additionally, it records relevant information to 
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differentiate between keywords. In scenarios where 

keyword copying occurs, the system assigns unique 

identifiers to the keywords, updates the information within 

the B-Tree index, and verifies uniqueness during token 

generation. When it comes to keyword revocation, the 

system utilizes version control tags to revoke the specific 

version and simultaneously updates the ciphertext file 

information. 

In the ABSE framework, B-Tree stores file keywords 

and attribute information to support attribute access 

control. When encrypting files, the data owner stores 

keyword and attribute information in the B-Tree index. 

When users search, the attribute authorization agency 

generates a search token containing user attributes and 

access policies. The cloud server uses B-Tree to locate 

files, verifies whether user attributes meet policies through 

LSSS, and decides whether to allow or deny access. To 

determine user access permissions, cloud servers need to 

combine   and X . To form a complete encryption 

scheme, the two designed schemes will be integrated into 

the encryption system together. Figure 9 presents the 

comprehensive structure of the encryption system. 

ClientThe server

Attribute authorization agency

User information module

Data encryption and 

decryption module

Index building module

Search trapdoor 

generation module

User trust value 

calculation module

Data storage 

module

Index storage 

module

Access control 

module

User information management module

Initialization and key generation module

 
Figure 9: Comprehensive structure of encryption system 

 

From Figure 9, the comprehensive structure of the 

encryption system mainly consists of three main parts, 

namely the client, server, and attribute authorization 

authority. Meanwhile, all three parts are interconnected 

with each other. In addition, the client includes a user 

information module, a data encryption and decryption 

module, an index construction module, and a search 

trapdoor generation module. The server consists of four 

main modules, and the most critical one is TV calculation. 

Finally, the user information management module and the 

initialization and key generation module constitute the 

attribute authorization authority. The sequence diagram of 

the encryption system is shown in Figure 10. 

Client The serverAttribute authorization agency

1-User information 

collection and registration

2. Attribute authorization 

request

3. Attribute key generation 

and distribution

4. Attribute key distribution

5. Data encryption and index 

construction

6. Upload encrypted files and 

index information

7. Search result request

8. Search result generation

9. Search results return

10. Data Decryption

11. User information 

synchronization

12. Access control policy 

update

 
Figure 10: Sequence diagram of encryption system 
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From Figure 10, after collecting user information and 

registering, the client requests attribute authorization from 

the attribute authorization agency. The attribute 

authorization agency generates attribute keys and 

distributes them to clients, who use them to encrypt data 

and build indexes, and then upload the encrypted files and 

indexes to the cloud server. After the client initiates a 

search request, the cloud server returns the search results, 

and the client decrypts the results. Meanwhile, the cloud 

server synchronizes user information with the attribute 

authorization agency, which updates access control 

policies and notifies the cloud server to ensure system data 

security and the effectiveness of access control. 

In the final plan, the TV-based dynamic access 

control mechanism enhances rather than replaces the 

attribute based mechanism. When making access 

decisions, first verify the user's identity and attributes, and 

then evaluate the TV. If the TV exceeds the threshold and 

the attributes comply with the policy, access is allowed; 

otherwise, access is denied. This combination enhances 

system security and flexibility, effectively protecting 

cloud server data. 

 

3  Results 
To confirm the capability of the research design 

scheme, the experimental environment was first 

described, and then the comparative scheme was selected. 

In regard to comparative indicators, the study selected 

factors such as time consumption, memory usage, Central 

Processing Unit (CPU) utilization, and traffic analysis. 

 

3.1 Performance verification of dynamic 

management methods for user permissions 
To confirm the performance of the dynamic 

management method for user permissions in the research 

design, experiments were conducted using Python 

programming language combined with PyCrypto and 

OpenSSL cryptographic libraries. The paper utilized the 

PyCrypto library to implement encryption methods to 

ensure data confidentiality and integrity, and used the 

SSL/TLS protocol supported by the OpenSSL library to 

ensure communication security and prevent data from 

being stolen or tampered with during transmission. The 

operating system was Windows 10, the CPU was Intel 

Core i5-12600KF, the main frequency and dynamic 

acceleration frequency were 3.7GHz and 4.9GHz, 

respectively, and the number of cores was ten. The 

maximum memory bandwidth was 76.8GB/s. The study 

established a threat model that included data leakage, 

unauthorized access, data tampering, insider threats, and 

man in the middle attacks. Attackers may have the ability 

to intercept data transmission, crack encryption 

algorithms, forge user identities, tamper with stored data, 

and exploit system vulnerabilities. The types of attacks 

that the system can defend against include data leakage, 

unauthorized access, data tampering, insider threats, and 

man in the middle attacks. The specific defenses are as 

follows: the system uses strong encryption algorithms to 

prevent data leakage, resists unauthorized access through 

fine-grained access control and dynamic trust evaluation, 

uses digital signatures and integrity verification to ensure 

data integrity, follows minimum privilege and audit 

mechanisms to prevent internal threats, and uses secure 

communication protocols to prevent man in the middle 

attacks. In addition, there are two trusted vacation options 

for servers or clients, namely: cloud servers are considered 

semi trusted and must perform operations according to the 

protocol, and ensure the security of the operating 

environment through regular audits and vulnerability 

scans. The client is generally trustworthy, but identity 

authentication and trust assessment are still required, 

while ensuring local security to prevent malicious 

software from stealing user credentials or keys. In regard 

to comparative methods, the study selected four schemes 

and represented them using Scheme A, Scheme B, 

Scheme C, and Scheme D. Among them, Scheme A is an 

access control scheme based on roles and user TVs, 

dynamically adjusting user permissions by defining roles 

and assigning TVs. Scheme B is a trust management 

system for wireless sensor networks based on Bayesian 

trust model. This scheme utilizes the principle of Bayesian 

networks to construct a trust model based on users' 

historical interaction behavior, recommendation 

information, etc., and calculates the trust relationship 

between users through probabilistic inference to 

determine access permissions. Scheme C is a dynamic 

access control and authorization system based on zero 

trust, which requires strict authentication of user identity 

and dynamic granting of minimum permissions for each 

access. Scheme D is a hybrid access control scheme based 

on attributes and TVs. This scheme integrates user 

attributes and TV evaluation, and users need to meet 

attribute requirements and TV standards to access 

resources. Meanwhile, TV comprehensively considers 

factors such as user attribute relevance and behavior 

history. The reason for choosing these four methods was 

that they cover different trust evaluation and access 

control mechanisms, which can be effectively compared 

with the paper design scheme, highlighting the advantages 

of the paper scheme in regard to TV evaluation accuracy, 

access control flexibility, and system performance. In 

regard to parameter values, there were four possible values 

for 1  in the research design scheme, namely 0.8, 0.6, 0.4, 

and 0.2. Meanwhile, the initial TV was set to 0.5. In 

addition, the initial TVs for schemes A, B, C, and D are 

also 0.5. The comparison of TV calculation time and 

access control determination time for different schemes is 

in Figure 11. 
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Figure 11: Comparison of TV calculation time and access control determination time for different schemes 

 
From Figure 11 (a), in regard to the comparison of 

TV calculation time, the research-designed user 

permission dynamic management method performed 

better, with corresponding maximum and minimum values 

of 32 ms and 0.6 ms, respectively. Meanwhile, the 

maximum TV calculation time of Scheme A, Scheme B, 

Scheme C, and Scheme D was 78 ms, 65, 54 ms, and 51 

ms, respectively, which were 46 ms, 33 ms, 22 ms, and 19 

ms higher than 32 ms. From Figure 11 (b), when 

comparing the access control judgment time of different 

schemes, the maximum value of the research designed 

user permission dynamic management method was 56 ms, 

while the maximum values of the four comparison 

schemes were 237 ms and 201 ms, respectively. The 

differences between 189 ms, 150 ms, and 56 ms were 181 

ms, 145 ms, 133 ms, and 94 ms, respectively. In summary, 

the TV calculation and access control determination time 

of the research and design user permission dynamic 

management method were both lower, and the 

performance was better. The rationality comparison of 

TVs for different schemes is in Figure 12. 
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Figure 12: Comparison of the rationality of TVs for different schemes 
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According to Figure 12 (a), in the user permission 

dynamic management method designed for research, the 

fluctuation range of TVs for random users under different 

weight values was [0.227, 0.845], and the difference 

between their maximum and minimum values was 0.618. 

From Figure 12 (b), Figure 12 (c), Figure 12 (d), and 

Figure 12 (e), in Scheme A, Scheme B, Scheme C, and 

Scheme D, the fluctuation range of TVs of random users 

was [0.423, 0.698], [0.385, 0.725], [0.336, 0.761], and 

[0.285, 0.802], respectively. The difference between the 

maximum and minimum values was 0.275, 0.340, 0.425, 

and 0.517, all of which were less than 0.618. The 

comparison of CPU utilization and memory usage 

between different schemes is in Figure 13. 
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Figure 13: Comparison of CPU utilization and memory usage among different schemes 

 

From Figure 13 (a), in regard to CPU utilization 

comparison, the maximum value for studying and 

designing user permission dynamic management methods 

was 12.17%, and the minimum value was 8.9%. 

Meanwhile, the maximum CPU utilization rates of the 

four comparison schemes were 26.98%, 20.17%, 18.55%, 

and 16.29%, respectively, which were 14.81%, 8.00%, 

6.38%, and 4.12% higher than 12.17%. From Figure 13 

(b), when comparing the memory occupancy rates of 

different schemes, the user permission dynamic 

management method designed by the research ranked 

first, followed by Scheme D, Scheme C, Scheme B, and 

Scheme A in the second to fifth positions. Meanwhile, 

according to the ranking order, the maximum memory 

occupancy rates of the five schemes were 13.95%, 

17.52%, 20.31%, 23.17%, and 28.55%, respectively. In 

summary, the research and design of dynamic 

management methods for user permissions had lower CPU 

utilization and memory usage, and better performance. To 

further validate the performance of the research designed 

user permission dynamic management method, encryption 

evaluations were conducted on both the method and the 

comparison method, involving security proof indicators 

and resistance indicators to known attacks. The encryption 

evaluation results of different methods are shown in Table 

2. 
 

Table 2: Encryption evaluation results of different methods 

Scheme 

Safety certificate Resistance to known attacks 

Number of experiments Number of experiments 

1 2 3 4 5 1 2 3 4 5 

Scheme A 64 68 68 67 61 68 65 70 61 62 

Scheme B 66 68 66 66 66 66 73 67 71 67 

Scheme C 79 82 79 81 77 77 77 80 82 81 

Scheme D 86 81 80 89 82 87 80 83 82 85 

Manuscript 93 91 96 92 93 96 97 98 95 94 

From Table 2, in the five experiments of security 

proof, the scores of the research design user permission 

dynamic management method were all above 90 points, 

with the highest reaching 96 points, significantly higher 

than other comparative schemes. In regard to resistance to 

known attacks, the research and design of user permission 

dynamic management methods also scored above 90 

points, with the highest reaching 98 points, demonstrating 

extremely strong resistance to attacks. In contrast, Scheme 

A and Scheme B scored lower on both indicators, while 

Scheme C and Scheme D performed well but still did not 

reach the level of research design methods. 

3.2 Performance validation supporting fine-

grained access control methods 
To validate the performance of fine-grained access 

control methods, the same experimental setup was used in 

the study. In addition, in regard to comparative methods, 

the study selected four schemes and named them Scheme 

1, Scheme 2, Scheme 3, and Scheme 4 respectively. 

Among them, Scheme 1 is a traditional symmetric SE 

scheme, which uses symmetric encryption algorithms to 

encrypt data and constructs an index structure for 

searching. Option 2 is the ABSE scheme, which 

implements fine-grained access control through attribute 
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encryption and SE techniques. Scheme 3 is a dynamic 

access control SE scheme based on zero trust. This scheme 

combines a zero trust security model and SE technology. 

Every time a user initiates a search request, their identity 

must be re verified and dynamically evaluated, and the 

evaluation results are used to determine whether to allow 

the user to search and access data. Scheme 4 is a 

blockchain based SE scheme, which utilizes blockchain to 

record data hash and permission information, and 

combines SE to achieve technical security retrieval. The 

reason for choosing these four methods was that they 

represent encryption and access control methods of 

different technological routes, which can 

comprehensively compare the advantages of this research 

scheme in regard to encryption efficiency, access control 

flexibility, security, and communication cost. Meanwhile, 

these solutions all included five stages: system 

initialization, key generation, encryption, search token 

generation, and search. In addition, there were a total of 6 

values for the number of user attributes, namely 1, 6, 11, 

16, 21, and 26, and the access policy involved the same 

number of attributes. The comparison of time 

consumption for different parts is in Figure 14. 
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Figure 14: Comparison of time consumption for different parts 
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According to Figure 14 (a), during the system 

initialization phase, as the number of user attributes 

increased, the corresponding time consumption for 

different schemes also increased synchronously. The 

increase speed of the fine-grained access control method 

designed in this study was slower, while the increase speed 

of Scheme 1 was faster. In addition, in regard to specific 

values, the max time consumption of schemes 1, 2, 3, and 

4 was 1852 ms, 1652 ms, 1400 ms, and 1050 ms, 

respectively, while the max time consumption of the 

research-designed fine-grained access control method was 

580ms. As shown in Figure 14 (b), in the key generation 

stage, the max time consumption of the five schemes was 

180 ms, 1558 ms, 1327 ms, 1106 ms, and 985 ms, 

respectively. From Figure 14 (c), in the encryption stage, 

the research-designed supporting fine-grained access 

control method performed better, followed by schemes 4, 

3, and 2, and finally scheme 1. Meanwhile, the max 

encryption time for the five schemes was 325 ms, 657 ms, 

739 ms, 962 ms, and 1107 ms, respectively. The trend of 

encryption time for the five schemes increased 

synchronously with the increase in the number of 

attributes involved in the access policy. From Figure 14 

(d), in the search token generation stage, the max time 

consumption of the research-designed supporting fine-

grained access control method and the four comparison 

schemes were 25 ms, 287 ms, 120 ms, 85 ms, and 60 ms, 

respectively. From Figure 14 (e), in the search stage, the 

max time consumption of the five schemes were 33 ms, 57 

ms, 48 ms, 46 ms, and 42 ms, respectively. Overall, the 

research-designed supporting fine-grained access control 

method had shorter time consumption and better 

performance. The comparison of communication volume 

between different schemes is in Table 3. 

 

Table 3: Comparison of communication volume 

between different schemes 

Scheme 
Number of keywords 

1 2 3 4 5 6 

Scheme 1 3.336 4.985 6.226 7.679 9.017 10.369 

Scheme 2 3.017 4.119 5.654 7.301 8.435 10.195 

Scheme 3 2.778 3.657 4.753 6.432 8.003 9.665 

Scheme 4 2.374 2.892 4.147 6.158 7.553 9.448 

Supporting 

fine-grained 

access 
control 

methods 

1.137 2.015 2.225 2.785 3.012 3.257 

 

In Table 3, the communication volume is represented 

by the amount of data, and the unit is Byte. From Table 3, 

as the number of keywords increased, the amount of data 

corresponding to different schemes also increased 

synchronously. Within the same range of keyword 

changes, the data volume of scheme 2 changed more 

significantly, about 7.178 Byte. Meanwhile, the data 

volume changes for Scheme 1, Scheme 3, Scheme 4, and 

the research-designed supporting fine-grained access 

control method were 7.033 Byte, 6.887 Byte, 7.074 Byte, 

and 2.120 Byte, respectively. The research-designed 

supporting fine-grained access control method had smaller 

changes in data volume, which were 4.913 bytes, 5.058 

bytes, 4.767 bytes, and 4.954 bytes less than the 

comparison scheme, respectively. This method had lower 

communication volume and better performance. The 

storage overhead comparison of different schemes is in 

Table 4. 

 

Table 4: Comparison of storage costs for different solutions 

Scheme 

User key storage overhead/KB Cryptocurrency storage overhead/KB 

User attribute set size Leaf node set size 

5 10 15 20 25 10 15 20 25 30 

Scheme 1 3.45 4.73 5.69 8.71 8.98 5.13 6.08 7.32 8.65 9.17 

Scheme 2 3.13 4.03 5.36 8.42 8.66 4.65 5.73 6.54 8.42 8.88 

Scheme 3 2.65 4.12 4.95 7.11 7.79 4.11 4.72 6.36 7.89 8.34 

Scheme 4 2.23 3.87 4.67 6.52 7.42 3.89 4.57 5.98 7.42 7.62 

Supporting Fine-grained 

access control method 
1.74 2.54 3.89 5.14 6.37 3.34 4.17 5.24 6.85 7.25 

From Table 4, in regard to the comparison of user 

key storage costs, the research-designed supporting fine-

grained access control method performed better, with an 

average value of 3.94 KB. In addition, the average user 

key storage costs of the four comparison schemes were 

6.31 KB, 5.92 KB, 5.32 KB, and 4.94 KB, respectively, 

which were 2.37 KB, 1.98 KB, 1.38 KB, and 1.00 KB 

higher than 3.94 KB. In addition, as the size of the random 

user attribute set increased, the user key storage costs 

corresponding to different schemes also increased 

synchronously, and schemes 1 and 2 increase more. 

Meanwhile, in regard to ciphertext storage overhead, the 

research-designed supporting fine-grained access control 

method and the average values of the four comparison 

schemes were 5.37 KB, 7.27 KB, 6.84 KB, 6.28 KB, and 

5.90 KB, respectively. The significance of reducing 

storage overhead by 2-3KB was twofold: firstly, it 

lowered the storage cost of cloud servers. Secondly, it 

reduced the storage pressure on the client and avoided 

problems caused by insufficient storage. Furthermore, it 

could improve system efficiency, accelerate key 

read/write and distribution speed, shorten loading and 

response time, and enhance user experience. Finally, 

reducing storage overhead made the system easier to cope 

with user and data growth, reduce performance bottleneck 

risks, and benefit system scalability. Overall, the research 

-designed supporting fine-grained access control method 

had lower storage overhead and better performance. To 

further verify the robustness of fine-grained access control 

methods, long-term performance analysis and stress 

testing were conducted, with specific indicators being 

system response time and system throughput. The 
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robustness comparison of different methods is shown in 

Table 5. 
 

Table 5: Comparison of robustness of different methods 

Scheme 

System response time/ms System throughput/(req/s) 

Run time/hour Number of concurrent users 

12 24 48 72 96 50 100 200 500 1000 

Scheme 1 120 135 150 165 180 25 45 65 80 90 

Scheme 2 110 120 130 140 150 30 50 70 85 95 

Scheme 3 100 110 120 130 140 35 60 80 90 95 

Scheme 4 90 100 110 120 130 40 70 90 100 105 

Support Fine-grained access 
control methods 

80 90 100 110 120 55 85 120 140 165 

From Table 5, methods that support fine-grained 

access control performed excellently in terms of system 

response time and throughput. After 96 hours of system 

operation, its response time was only 120 milliseconds, 

which was 10-60 milliseconds lower than other solutions. 

With 1000 concurrent users, the throughput reached 165 

times/second, which was 60-75 times/second higher than 

other solutions, demonstrating better performance 

stability and system resilience. 

In practical applications, a centralized key 

management scheme was studied to address the issue of 

handling key management across multiple users: attribute 

authorization agencies generated and distributed attribute 

keys uniformly, ensuring that key generation followed 

consistent policies and was securely distributed to users. 

Meanwhile, using the user information management 

module of the attribute authorization agency, user identity 

and attribute information were centrally managed and 

authenticated. The system dynamically adjusted the key 

according to changes in user attributes to ensure that only 

users with legitimate attributes can obtain the 

corresponding key. In addition, the system regularly 

updated keys and set expiration dates to further improve 

key security and reduce risks caused by key leaks. 

 

4  Discussion 
To conduct critical analysis, the study compared the 

designed method with the techniques in Table 1, and the 

comparison results are shown in Table 6. 
 

Table 6: Comparison between the designed method 

and the techniques in Table 1 
Comparative 

method 
Quantitative results 

Liu et al. [4] 
Reduce computing costs by 20% and storage 

expenses by 10% 

Ng et al. [5] 
Efficiency increased by 30%, computational cost 

increased by 8% 

Liu et al. [6] 
40% increase in computational efficiency and 

25% increase in storage overhead 

Lu et al. [7] 
Efficiency increased by 35%, storage overhead 

increased by 20% 

Dynamic 
management 

method for 

user 
permissions 

Reduce computing costs by 30% and storage 
expenses by 20% 

Support Fine-

grained access 

control 
methods 

Reduce computing costs by 25% and storage 

expenses by 15% 

 

From Table 6, the proposed method for dynamically 

managing user permissions reduced the overhead of 

permission determination and resource allocation through 

comprehensive trust evaluation and dual dynamic access 

control. Meanwhile, it optimized data retrieval efficiency 

using B-tree indexing, thereby reducing computation and 

storage costs. In addition, methods that support fine-

grained access control utilize linear secret sharing 

schemes to achieve precise access control and reduce 

resource consumption during encryption and retrieval 

processes. However, in some cases, such as when the 

number of users increased sharply or the data scale 

expands significantly, the system may face performance 

pressure and need to balance security and efficiency. 

 

5  Conclusion 
The research designed a user permission dynamic 

management scheme and a fine-grained access control 

scheme for SE technology to address the security 

management issues of cloud server data storage, and 

developed a complete encryption scheme. The results 

showed that the max and min TV calculation time of the 

user permission dynamic management scheme were 32 ms 

and 0.6 ms, respectively, and the max access control 

determination time was 56 ms, which was 181 ms, 145 ms, 

133 ms, and 94 ms lower than the max value of the 

comparison scheme. The user permission dynamic 

management scheme had a shorter time consumption, 

which might be due to its use of a comprehensive TV 

evaluation model and a dual dynamic access control 

mechanism, the introduction of an efficient mathematical 

model, and the significant improvement in computational 

efficiency. In regard to memory and CPU usage, dynamic 

management of user permissions also presented 

significant advantages. The max time consumption for 

supporting fine-grained access control method at different 

stages was 1852 ms, 180 ms, 325 ms, 25 ms, and 33 ms, 

respectively, which was significantly better than the 

comparative scheme. This might be due to its adoption of 

B-Tree indexing structure and linear secret sharing 

scheme, which optimized search efficiency and flexibility 

of access control. In regard to communication volume 

comparison, the supporting fine-grained access control 

method had a smaller change amplitude, with a value of 

2.120 Byte, which as 4.913 Byte, 5.058 Byte, 4.767 Byte, 

and 4.954 Byte smaller than the comparison scheme, 

respectively. In summary, the overall encryption scheme 
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designed in the research had good performance. However, 

there are also certain shortcomings in the research. The 

linear secret sharing scheme brought high flexibility but 

also high complexity, mainly reflected in the complexity 

of the access structure and the computational cost of 

matrix operations. Complex access structures may lead to 

reduced efficiency in processing large-scale data, while 

frequent matrix operations may increase computational 

overhead. Future research can adopt simpler access 

structure designs, such as "lightweight LSSS", and 

introduce distributed computing technology to share 

computing tasks. In addition, when the number of users or 

data scale increases sharply, the system may face 

performance bottlenecks, and TV evaluation models and 

access control mechanisms may lead to reduced efficiency 

when deployed in resource constrained environments. 

Future research can be improved by introducing 

distributed computing technology, adopting lightweight 

encryption and access control schemes, machine learning 

and artificial intelligence technologies, and enhancing the 

caching mechanism of the system. 
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