
https://doi.org/10.31449/inf.v49i34.9088 Informatica 49 (2025) 1–16 1

Dynamic Access Control and Fine-Grained Searchable Encryption

for Cloud Data Using Trust Evaluation and B-Tree Indexing

Dapeng Zhao1, Yapeng Zhao2, Xuexia Dou1*
1Henan Polytechnic, Zhengzhou 450046, China
2Henan Polytechnic University, Jiaozuo 454003, China

E-mail: zhengzhou16886@163.com
*Corresponding author

Keywords: SE, B-tree, cloud servers, user permissions, safety management, trust value, access control

Received: July 2, 2025

The security management of data stored on cloud servers is of great significance, as it not only prevents

data leakage but also ensures data integrity. Thus, to achieve secure management of data stored on cloud

servers, the research starts with existing searchable encryption technologies and attribute-based

searchable encryption technologies, and improved designs are made for both to form a complete

encryption scheme. Firstly, in terms of searchable encryption technology, the study considers the dynamic

changes in user permissions and constructs an encryption scheme that includes a trust value evaluation

model and a dual dynamic access control mechanism. Among them, the trust value evaluation model needs

to consider historical trust values, recommended trust values, and attribute related trust values, and then

generate a comprehensive trust value to evaluate user permissions. Secondly, in terms of attribute-based

searchable encryption technology, the research adopts a multi-branch balanced tree and linear secret

sharing scheme to construct a fine-grained access control scheme. Among them, the B-Tree index

structure is used to optimize search efficiency, and the linear secret sharing scheme is used to achieve

access control for users. In the experimental part, the study uses Python programming language combined

with PyCrypto and OpenSSL cryptographic libraries for testing to ensure the feasibility and performance

of the solution, and the operating system is Windows 10. The results show that the maximum trust value

calculation time considering the user permission scheme is 32 ms, which is 46 ms, 33 ms, 22 ms, and 19

ms lower than the maximum values of the four comparison schemes, respectively. In addition, the

maximum access control determination time, CPU utilization, and memory occupancy of this scheme are

56 ms, 12.17%, and 13.95%, respectively. The maximum key generation time and communication volume

for supporting fine-grained access control schemes are 180 ms and 3.257 Byte, respectively, and the

average storage overhead for user keys and ciphertext is 3.94 KB and 5.37 KB, respectively. The

encryption schemes designed by the research have good performance and can provide technical support

for secure management of cloud server storage data without decryption for data queries.

Povzetek: Predlagajo dinamičen nadzor dostopa s celovitim zaupanjem ter ABSE z B-drevesnim

indeksiranjem in LSSS za fino zrnat, učinkovit iskalni dostop v oblaku.

1 Introduction
As cloud computing technology advances at a rapid

pace, cloud servers have become an important platform for

data storage and processing. However, data storage in

cloud environments faces many security challenges, such

as data leakage risks, complex access control permission

management, and data privacy protection issues [1-2]. To

ensure the security and integrity of data in cloud servers,

while meeting the needs of users for efficient data retrieval

and access, it holds particular significance in studying an

efficient, secure, and fine-grained access control

supported data storage management solution. The

commonly-used methods for addressing this issue include

Searchable Encryption (SE) and Attribute-Based

Searchable Encryption (ABSE) [3]. In addition, many

scholars have conducted research on SE and ABSE

technologies.

Liu et al. designed an SE data sharing scheme based on

inverted indexing to address issues such as unreliable

data sharing, data attacks, and low efficiency in ciphertext

retrieval. This scheme adopted a dual chain structure to

store and share data, and constructed an inverted index

structure and a ciphertext search algorithm based on this

index structure. The results showed that this scheme could

ensure datan SEcurity and improve retrieval efficiency

[4]. Ng et al. proposed a blockchain-based multi-keyword

SE scheme to protect the tracking data of contacts with a

certain disease. Meanwhile, the scheme adopted the

advanced encryption standard Galois/Counter mode to

encrypt data and supported dynamic updates of search

indexes. The results showed that the scheme could work

effectively without affecting security objectives, and

could also maintain efficiency when using larger search

indexes [5]. Liu et al. designed an efficient multi-authority

ABSE solution assisted by blockchain technology to

mailto:zhengzhou16886@163.com

2 Informatica 49 (2025) 1–16 D. Zhao et al.

address issues such as single attribute authorization

failure, privacy leakage during the search process, and

high decryption overhead in ABSE technology. This

framework leverages consortium blockchain technology

for global public parameter management, integrating

smart contracts, hybrid online/offline mechanisms, and

verifiable edge-assisted decryption protocols to enhance

system security and efficiency. The results showed that

compared with existing solutions, this approach

significantly improved computational efficiency [6]. Lu et

al. designed a retrieval strategy ABSE scheme based on

key policy attribute encryption framework to provide

encryption support for privacy preserving database

architectures. This scheme bound security query policies

to query credentials and used a policy matrix to optimize

the generation of security query policies. The results

showed that the scheme achieved semantic security under

the selection plaintext attack that included policy and

identity queries [7].

Nevertheless, these studies and methodologies are

not without their drawbacks, including the inability of SE

technology to effectively respond to dynamic changes in

user permissions, and the need to improve the search

efficiency of ABSE technology. In order to better

demonstrate the shortcomings of existing technologies, a

detailed comparison of related works was conducted, as

shown in Table 1.

Table 1: Summary table of related work
Comparative

method
Features Limitations Quantitative results

Liu et al. [4]
SE Data Sharing Scheme

Based on Inverted Index

Not involving dynamic changes in
user permissions, ignoring static

access permission issues

Reduce computing costs by 20% and storage

expenses by 10%

Ng et al. [5]
Multi keyword SE scheme

based on blockchain

Not explicitly mentioning the

efficiency of dynamic
management of user permissions

and access control

Efficiency increased by 30%, computational
cost increased by 8%

Liu et al. [6]
Efficient and Multi

Authoritative ABSE Scheme

Assisted by Blockchain

Unresolved problem of low search

efficiency in ABSE technology

40% increase in computational efficiency and

25% increase in storage overhead

Lu et al. [7]
ABSE scheme based on key
policy attribute encryption

framework

Handling of dynamic changes in

user permissions not mentioned

Efficiency increased by 35%, storage overhead

increased by 20%

From Table 1, although existing research has made

some progress in SE and ABSE technologies, there are

still some common limitations. Some solutions did not

fully consider the dynamic changes in user permissions,

resulting in insufficient flexibility in practical application

scenarios. In addition, the search efficiency of ABSE

technology still needs to be further improved to meet the

needs of large-scale data processing. These shortcomings

provide directions for improvement in this study,

prompting us to design encryption schemes that are more

adaptable and efficient.

Therefore, the research questions are as follows: how

to achieve secure storage and efficient management of

data in cloud servers, while supporting fine-grained access

control; How to dynamically manage user permissions to

adapt to the dynamic changes in user permissions; How to

improve the search efficiency of ABSE technology. To

address the aforementioned research issues, a

cryptographic scheme combining SE technology and

ABSE technology has been proposed. Specifically, a trust

value (TV) evaluation model and a dual dynamic access

control mechanism were designed to achieve dynamic

management of user permissions and solve the problem of

dynamic changes in user permissions. This model

evaluates the user's comprehensive TV in real time by

comprehensively considering the historical TV,

recommended TV and attribute related TV, so as to

dynamically adjust user permissions and ensure that only

trusted users can access sensitive data. At the same time,

the study introduced a Balanced Multi Way Tree (B-Tree)

index structure and a Linear Secret Sharing Scheme

(LSSS) to optimize the search efficiency of ABSE

technology and achieve fine-grained access control. The

goal of the research is to design a cloud server data storage

management scheme that can adapt to dynamic changes in

user permissions by improving SE and ABSE, to achieve

secure storage, efficient retrieval, and fine-grained access

control of data. The novelty of the present research is

embodied in several aspects. It involves the creation of a

TV evaluation model, the application of B-Tree to

optimize ABSE technology, the attainment of efficient

data retrieval capabilities, and the offering of a brand-new

technological route for the secure storage and effective

management of data on cloud servers.

2 Methods and materials
To address the security management issues of data

storage in cloud servers, an SE-oriented user permission

dynamic management method was first developed to

consider the dynamic changes in user permissions.

Meanwhile, the research also designed an ABSE scheme

based on B-Tree index structure and combined it with user

permission dynamic management method to form a

complete encryption method.

2.1 Design of user permission dynamic

management method for SE

Dynamic Access Control and Fine-Grained Searchable Encryption… Informatica 49 (2025) 1–16 3

To manage the security of data stored in cloud

servers, the research starts with existing encryption

technologies, namely SE technology and ABSE

technology. Research has improved the shortcomings of

these two technologies and developed new encryption

schemes for each. Finally, these two encryption schemes

are deployed on the encryption system to form a complete

encryption scheme. SE technology is a technique that

allows users to perform search operations in encrypted

data, while ensuring the privacy and security of the data in

an unencrypted state [8-9]. The advantages of this

technology are strong retrieval capability, high flexibility,

strong security, support for multiple application scenarios,

and effective prevention of data leakage. The schematic of

SE technology is shown in Figure 1.

Data provider Data user

Cloud server

Search key

Response Search

token
Index and

encrypt files

Figure 1: The schematic of SE technology

From Figure 1, SE technology involves data

providers, data consumers, cloud servers, search keys,

indexes and encrypted files, search tokens, and responses.

However, a large portion of SE solutions currently do not

involve dynamic changes in user permissions and ignore

potential issues with static user access permissions.

Therefore, to solve this problem, an SE-oriented user

permission dynamic management method has been

studied and designed. Figure 2 illustrates the

comprehensive structure of this method.

User

Cloud server resources

TV evaluation model

Dual dynamic access control mechanism

Historical TV
Recommendation

TV

Attribute related

TVs

Real-time

evaluation

Comprehensive

TV

Compare the comprehensive

TVs of users

Matching of access policies

for resources to be accessed

Permission

determination
Authorize

Influencing factors

Behavioral

data

Information

related to user

attributes

The user's

historical TV

Other users'

recommended TVs

for this user

Figure 2: The overall framework of SE oriented user permission dynamic management method

From Figure 2, the user permission dynamic

management method mainly includes two key parts,

namely the TV evaluation model and the dual dynamic

access control mechanism. In the calculation of TVs,

including weights or function forms, innovative designs

and improvements are made based on previous relevant

research [10-11]. The recommended TV d of the system

and other registered users h for registered user c is

solved as shown in Equation (1) [12].

() () ()() ()sing h

c c h ch
AB D AB D B d D AB D = + −  (1)

In Equation (1), both  and  are influence

weights, and the sum of the two is 1. ()g

cAB D represents

the recommended TV of the system for registered user c

4 Informatica 49 (2025) 1–16 D. Zhao et al.

, D is the time interval, and d represents the specific

time. The weight is ()()sin hB d D− , and the value range

is [0,1] . B is a TV, and ()hB d D− represents the TV of

h under the previous evaluation D . ()h

cAB D represents

the recommended TV of h towards registered user c . In

addition, in the calculation of user recommendation TVs,

normalization methods need to be used. The reason for

using normalization method is to eliminate dimensional

differences and dimensional influences between different

data sources or indicators. There is a theoretical basis for

using Z-score normalization on the minimum maximum

scale. Z-score normalization can make data from different

sources comparable [13]. The conditions for using this

method include normal distribution of data, elimination of

dimensional influence, and standardization of data range.

The expression of Z-score normalization is in Equation (2)

[14].

a b
I

G

−
= (2)

In Equation (2), I represents the processed data and
a is the actual data. b and G are the mean and standard

deviations of the dataset, respectively. The expression of

range normalization is in Equation (3).

min

max min

a
I

−
=

−
 (3)

In Equation (3), max and min represent the

maximum and minimum values in the dataset,

respectively. In the solution of system recommendation

TV, the behavior feature vector of c is expressed as

shown in Equation (4) [15].

(),1 ,2 ,, ,......,c c c c kJ j j j= (4)

In Equation (4), ,1cj represents the behavior feature

of the first row and k is the total number of user behavior

features. Therefore, the expression of ()g

cAB D is in

Equation (5).

() ()g

c cAB D f L J=  (5)

In Equation (5), ()f  represents the activation

function, L represents the weight of behavioral features,

and cL J is the inner product of vectors. The expression

of cL J is in Equation (6).

1 ,1 2 ,2 ,......c c c k c kL J L j L j L j= + + + (6)

In equation (6), kL represents the weight of the k th

behavioral feature. The solution of ()h

cAB D is in

Equation (7).

()h n

c

n n

M
AB D

M P
=

+
 (7)

In Equation (7), n represents the interaction process,

nM and nP respectively represent the number of times

the operation of c in n is judged as honest or dishonest.

In addition, the solution for the TV ()cNDD D related to

the c attribute information is in Equation (8).

() () () ()
1 21 1 1, 2 2 2, ,...

Rc s s R R R sNDD D F N F N F N  =  +  + + 

(8)

In Equation (8), R represents the total number of

categories of attributes, 1 , 2 , and R all represent

influence weights, and their sum is 1. N is the attribute

value, and , RR sN represents the Rs th attribute value in the

R th class attribute. 1F , 2F , and RF represent conversion

functions. s is the number of attributes of a certain type.

In addition, different conversion functions are expressed

uniformly, as shown in Equation (9).

() () ()1 2 ... 1N

RF N F N F N e= = = = − (9)

Therefore, the solution for the comprehensive TV

()cB D is in Equation (10).

() () () ()1 2 3c h c cB D B d D AB D NDD D  =  − +  + 

(10)

In Equation (10), 1 , 2 , and 3 represent the influence

weights, and the sum of the three is 1. The process of

calculating the comprehensive TV is as follows: first

initialize the user TV and assign a set of attributes, then

collect user behavior data in real time, weight and sum

historical TVs (calculated based on behavior records),

normalize recommended TVs (system and other user

recommended inputs), and attribute-related TVs

(calculated based on the correlation between attributes and

data) to obtain the comprehensive TV. Finally,

dynamically adjust user permissions based on this, and

compare TVs with thresholds to determine authorization

during resource access. The pseudocode of the TV

evaluation model is shown in Figure 3.

function calculateCompositeTrust(user):

 historicalTrust = user.getHistoricalTrust()

 recommendedTrust = calculateRecommendedTrust(user.getRecommendations())

 attributeTrust = calculateAttributeTrust(user.Attributes)

 weight1 = 0.4

 weight2 = 0.3

 weight3 = 0.3

 compositeTrust = weight1 * historicalTrust + weight2 * recommendedTrust +

weight3 * attributeTrust

 return compositeTrust

function calculateRecommendedTrust(recommendations):

 normalizedRecommendations = normalize(recommendations)

 return normalizedRecommendations

function calculateAttributeTrust(attributes):

 attributeTrust = 0.0

 for attribute in attributes:

 attributeTrust += attribute.value

 return attributeTrust / len(attributes)

Figure 3: Pseudo code for TV evaluation model

From Figure 3, it can be seen that the pseudocode

defines how to calculate the user's comprehensive TV.

Subsequently, the generated comprehensive TV is input

into the dual dynamic access control mechanism section.

In the dual dynamic access control mechanism, the core is

permission determination, and the determination content

is to compare the comprehensive TVs of users and match

the access policies of the resources to be accessed. The

Dynamic Access Control and Fine-Grained Searchable Encryption… Informatica 49 (2025) 1–16 5

pseudocode of the dual access control mechanism is

shown in Figure 4.

function dualDynamicAccessControl(userRequest, resourcePolicy):

 compositeTrust = calculateCompositeTrust(userRequest.user)

 if compositeTrust < trustThreshold:

 return ACCESS_DENIED

 if not userRequest.attributes.match(resourcePolicy):

 return ACCESS_DENIED

 return ACCESS_GRANTED

Figure 4: Pseudo code for dual access control

mechanism

From Figure 4, it can be seen that the pseudocode

describes the core logic of the dual dynamic access control

mechanism. In addition, the dynamic management method

of user permissions also involves factors that affect the

overall TV, and this part is the foundation of two key parts

that need to be provided with relevant user information.

Therefore, the overall process of the user permission

dynamic management method is in Figure 5.

User

registration

TV

initialization

Assign

attribute set

Dynamically

allocate permissions

Is the user TV greater than

the trust threshold?

Dual dynamic access

control mechanism

Refuse to

execute

Real-time

monitoring

Meet the

access policy?

Perform the

corresponding operation

TV

evaluation

Attribute

update

YY

NN

Figure 5: The overall process of dynamic management method for user permissions

From Figure 5, the first step of the user permission

dynamic management method is to register the user, and

the second step is to initialize the TV. The third step is to

allocate attribute sets, and the fourth step is to dynamically

allocate permissions. The fifth step is to enter the dual

dynamic access control mechanism. In this mechanism,

the first step is to determine whether the user's TV is

greater than the trust threshold. If it is greater than the trust

threshold, the next step is to proceed. Otherwise,

execution is rejected and real-time monitoring is initiated.

Secondly, it is necessary to determine whether the access

policy is met. If it is met, the corresponding operation

should be executed before proceeding to real-time

monitoring. Otherwise, it will directly proceed to real-time

monitoring. The sixth step is to evaluate the TV, the

seventh step is to update the attributes, and then return to

dynamically assigning permissions.

In addition, in the SE-based user permission dynamic

management method, the dual dynamic access control

mechanism closely interacts with the underlying SE

operations. Specifically, when a user initiates a search

request, the system first performs a TV check on the client

side, compares the user's comprehensive TV with a preset

trust threshold, and verifies whether it complies with the

resource access policy. This process occurs before

generating the search token, ensuring that only trusted

users can create valid search tokens. If the user passes the

TV check, the client will generate a search token based on

the user's attributes and permissions, and send it to the

cloud server. After receiving the search token, the cloud

server performs a search operation and returns a list of

encrypted files that match the token. After obtaining the

encrypted file, the user performs a TV check again to

ensure that they still have the authority to decrypt the data.

This TV-based dynamic access control mechanism runs

through the entire search and retrieval process of SE,

ensuring data security and dynamic access.

2.2 Design of ABSE scheme Using B-Tree

index structure
A dynamic user permission management method for

SE has been designed to address the security management

issues of data storage on cloud servers. However, in

response to the improvement of SE technology, existing

research has proposed ABSE technology that combines

SE technology with attribute-based encryption. ABSE

technology allows data owners to encrypt data based on its

attributes, supports fine-grained access control and private

keyword search, and ensures data security [16-17].

However, this technology still has certain shortcomings,

such as rigid access policies and low search efficiency. In

order to address these issues and further improve ABSE

technology, methods that can supporting fine-grained

access control have been researched and designed. The

system model of this method is in Figure 6.

6 Informatica 49 (2025) 1–16 D. Zhao et al.

Data owner module Cloud server

Data user module
Attribute authorization

institution module

Public parameters

Public

parameters

Properties

Keyword hash value (file

number, frequency)

Query

results

Retrieval

request

Attribute

key

File ciphertext and

keyword ciphertext

Figure 6: System model supporting fine-grained access control methods

From Figure 6, the system model supporting fine-

grained access control methods mainly includes the data

owner module, data user module, cloud server, attribute

authorization authority module, public parameters,

attribute sets, attribute keys, file ciphertexts and keyword

ciphertexts, keyword hash values (file numbers,

frequency), query results, and retrieval requests. Among

them, the attribute authorization authority module needs

to generate a system master key and system initialization,

and the cloud server needs to run a search algorithm.

Meanwhile, the data owner module needs to run

encryption algorithms, while the data user module needs

to obtain ciphertext files corresponding to keywords, and

this process requires running search token generation

algorithms.

In the construction process of supporting fine-

grained access control methods, the B-Tree index

structure is adopted to optimize search efficiency and

search result accuracy. The B-Tree index structure is an

efficient search tree, mainly used to accelerate data

retrieval. It has the advantages of high data retrieval

performance, support for ordered range queries and

dynamic adjustments, and is widely used in database

systems, in memory databases, and caching systems [18-

19]. The construction process of B-Tree index structure is

in Figure 7.

Retrieve file collection

Document number Keyword extraction

Obtain keyword

frequency

Get keyword

hash value

Output keyword hash value containing file

number - keyword frequency

Establish a B-Tree index structure

Figure 7: The construction process of B-Tree index structure

From Figure 7, the first step in constructing the B-

Tree index structure is to obtain a set of files, and the

second step involves extracting file numbers and

keywords separately. Meanwhile, in keyword extraction,

it is necessary to obtain keyword frequency and keyword

hash value. The third step is to output a keyword hash

Dynamic Access Control and Fine-Grained Searchable Encryption… Informatica 49 (2025) 1–16 7

value containing the file number and keyword frequency,

and the fourth step is to establish a B-Tree index structure.

The pseudocode of B-Tree structure is shown in Figure 8.

class BTreeNode:

 def __init__(self):

 self.keys = []

 self.children = []

 self.is_leaf = True

function insertIntoBTree(node, key):

 if node.is_leaf:

 node.keys.append(key)

 node.keys.sort()

 else:

 child = findAppropriateChild(node, key)

 insertIntoBTree(child, key)

 if len(node.keys) > max_keys:

 splitNode(node)

function searchInBTree(node, key):

 if node.is_leaf:

 return key in node.keys

 else:

 child = findAppropriateChild(node, key)

 return searchInBTree(child, key)

Figure 8: Pseudo code of B-Tree structure

From Figure 8, the pseudocode defines the B-Tree

node structure and implements insertion and search

operations. In addition, when generating the system

master key, it is necessary to first initialize and generate

public parameters. The T expression of the system master

key is in Equation (11) [20].

 ()1
,

V

v v
T u

=
= (11)

In Equation (11),  represents a random element

and vu represents the random value corresponding to the

attribute. v is the serial number of the attribute, and V

represents the total number of attributes.  and vu have

*

pZ  and
*

v pu Z respectively, and
*

pZ is a special

symbol [21]. The expression of system public parameters

is in Equation (12).

()  ()1, , , ,
V

v v
U w w e w w x Y


= ， (12)

In Equation (12), both w and 1w are generators of

the multiplicative cyclic group, (),e w w


 represents

bilinear pairing operations. Y is the hash algorithm, and

vx represents the group elements generated from the

attribute set. In addition, the generation method of user

attribute key X is in Equation (13).

 ()1
,X



 
 

=
= (13)

In Equation (13),  represents the number of user

attributes and  is the user attribute number. 

represents the authorization corresponding to user

attributes. Among them, "authorization"  refers to the

authorization information of the attribute authorization

agency for user attributes. It is employed together with

attribute values and master keys to export user attribute

keys. The attribute authorization agency uses the random

elements and corresponding random values in the system

master key, combined with user attribute information, to

calculate the user attribute related key part through one-

way hash function and key generation algorithm. This

ensures that only authorized users can obtain the correct

attribute key to decrypt or generate valid search tokens,

ensuring both user attribute confidentiality and system

security and fine-grained access control.

The study explains the implementation details of the

B-Tree index structure, including order, balancing

strategy, and concurrency control. In terms of sequence, a

B-Tree index is constructed by extracting file numbers and

keywords from the file set, storing keywords and their file

information in order, and recursively locating when

inserting new keywords to maintain order. In regard to

balancing strategy, node splitting and merging operations

are used to maintain balance, ensuring that the number of

node keywords does not exceed the preset upper limit. In

terms of concurrency control, existing technologies such

as locking or timestamp sorting mechanisms are combined

to manage concurrent access and updates, ensuring data

consistency and integrity during multi-user operations.

The linear secret sharing matrix is one of the specific

implementation details of LSSS, which describes in detail

how secrets are divided and reconstructed from authorized

shares. This matrix driven approach ensures the security

and flexibility of the solution, enabling it to adapt to

various complex access control requirements. The design

and parameter selection of matrices directly affect the

efficiency and security of the scheme, and are the

foundation for implementing fine-grained access control

and secure multi-party computation. Therefore, in the

encryption stage, a linear secret sharing matrix was used

to achieve access control for users. Linear secret sharing

matrix is a technology based on matrix operations to

achieve secret information segmentation and recovery. It

has the advantages of high security, strong flexibility,

good scalability, and supports dynamic adjustment. It

finds extensive utility in confidential file transmission,

cloud computing and privacy protection, IoT security, and

blockchain security [22-24]. Therefore, the  expression

of the complete ciphertext is in Equation (14).

(),  = (14)

In Equation (14),  represents symmetric encrypted

ciphertext and  represents keyword ciphertext. The

expression of the search token  is in Equation (15).

()
1

Y
w 






 = (15)

In Equation (15),  represents the keyword and 

is the sequence number of the keyword.  represents the

total number of keywords, and ()Y  represents the hash

value of  . To address issues such as keyword conflicts,

copying, and revocation, researchers have developed a

series of processing methods. When keyword conflicts

arise, the system employs salt hashing to boost the element

of unpredictability, thereby mitigating conflicts.

Additionally, it records relevant information to

8 Informatica 49 (2025) 1–16 D. Zhao et al.

differentiate between keywords. In scenarios where

keyword copying occurs, the system assigns unique

identifiers to the keywords, updates the information within

the B-Tree index, and verifies uniqueness during token

generation. When it comes to keyword revocation, the

system utilizes version control tags to revoke the specific

version and simultaneously updates the ciphertext file

information.

In the ABSE framework, B-Tree stores file keywords

and attribute information to support attribute access

control. When encrypting files, the data owner stores

keyword and attribute information in the B-Tree index.

When users search, the attribute authorization agency

generates a search token containing user attributes and

access policies. The cloud server uses B-Tree to locate

files, verifies whether user attributes meet policies through

LSSS, and decides whether to allow or deny access. To

determine user access permissions, cloud servers need to

combine  and X . To form a complete encryption

scheme, the two designed schemes will be integrated into

the encryption system together. Figure 9 presents the

comprehensive structure of the encryption system.

ClientThe server

Attribute authorization agency

User information module

Data encryption and

decryption module

Index building module

Search trapdoor

generation module

User trust value

calculation module

Data storage

module

Index storage

module

Access control

module

User information management module

Initialization and key generation module

Figure 9: Comprehensive structure of encryption system

From Figure 9, the comprehensive structure of the

encryption system mainly consists of three main parts,

namely the client, server, and attribute authorization

authority. Meanwhile, all three parts are interconnected

with each other. In addition, the client includes a user

information module, a data encryption and decryption

module, an index construction module, and a search

trapdoor generation module. The server consists of four

main modules, and the most critical one is TV calculation.

Finally, the user information management module and the

initialization and key generation module constitute the

attribute authorization authority. The sequence diagram of

the encryption system is shown in Figure 10.

Client The serverAttribute authorization agency

1-User information

collection and registration

2. Attribute authorization

request

3. Attribute key generation

and distribution

4. Attribute key distribution

5. Data encryption and index

construction

6. Upload encrypted files and

index information

7. Search result request

8. Search result generation

9. Search results return

10. Data Decryption

11. User information

synchronization

12. Access control policy

update

Figure 10: Sequence diagram of encryption system

Dynamic Access Control and Fine-Grained Searchable Encryption… Informatica 49 (2025) 1–16 9

From Figure 10, after collecting user information and

registering, the client requests attribute authorization from

the attribute authorization agency. The attribute

authorization agency generates attribute keys and

distributes them to clients, who use them to encrypt data

and build indexes, and then upload the encrypted files and

indexes to the cloud server. After the client initiates a

search request, the cloud server returns the search results,

and the client decrypts the results. Meanwhile, the cloud

server synchronizes user information with the attribute

authorization agency, which updates access control

policies and notifies the cloud server to ensure system data

security and the effectiveness of access control.

In the final plan, the TV-based dynamic access

control mechanism enhances rather than replaces the

attribute based mechanism. When making access

decisions, first verify the user's identity and attributes, and

then evaluate the TV. If the TV exceeds the threshold and

the attributes comply with the policy, access is allowed;

otherwise, access is denied. This combination enhances

system security and flexibility, effectively protecting

cloud server data.

3 Results
To confirm the capability of the research design

scheme, the experimental environment was first

described, and then the comparative scheme was selected.

In regard to comparative indicators, the study selected

factors such as time consumption, memory usage, Central

Processing Unit (CPU) utilization, and traffic analysis.

3.1 Performance verification of dynamic

management methods for user permissions
To confirm the performance of the dynamic

management method for user permissions in the research

design, experiments were conducted using Python

programming language combined with PyCrypto and

OpenSSL cryptographic libraries. The paper utilized the

PyCrypto library to implement encryption methods to

ensure data confidentiality and integrity, and used the

SSL/TLS protocol supported by the OpenSSL library to

ensure communication security and prevent data from

being stolen or tampered with during transmission. The

operating system was Windows 10, the CPU was Intel

Core i5-12600KF, the main frequency and dynamic

acceleration frequency were 3.7GHz and 4.9GHz,

respectively, and the number of cores was ten. The

maximum memory bandwidth was 76.8GB/s. The study

established a threat model that included data leakage,

unauthorized access, data tampering, insider threats, and

man in the middle attacks. Attackers may have the ability

to intercept data transmission, crack encryption

algorithms, forge user identities, tamper with stored data,

and exploit system vulnerabilities. The types of attacks

that the system can defend against include data leakage,

unauthorized access, data tampering, insider threats, and

man in the middle attacks. The specific defenses are as

follows: the system uses strong encryption algorithms to

prevent data leakage, resists unauthorized access through

fine-grained access control and dynamic trust evaluation,

uses digital signatures and integrity verification to ensure

data integrity, follows minimum privilege and audit

mechanisms to prevent internal threats, and uses secure

communication protocols to prevent man in the middle

attacks. In addition, there are two trusted vacation options

for servers or clients, namely: cloud servers are considered

semi trusted and must perform operations according to the

protocol, and ensure the security of the operating

environment through regular audits and vulnerability

scans. The client is generally trustworthy, but identity

authentication and trust assessment are still required,

while ensuring local security to prevent malicious

software from stealing user credentials or keys. In regard

to comparative methods, the study selected four schemes

and represented them using Scheme A, Scheme B,

Scheme C, and Scheme D. Among them, Scheme A is an

access control scheme based on roles and user TVs,

dynamically adjusting user permissions by defining roles

and assigning TVs. Scheme B is a trust management

system for wireless sensor networks based on Bayesian

trust model. This scheme utilizes the principle of Bayesian

networks to construct a trust model based on users'

historical interaction behavior, recommendation

information, etc., and calculates the trust relationship

between users through probabilistic inference to

determine access permissions. Scheme C is a dynamic

access control and authorization system based on zero

trust, which requires strict authentication of user identity

and dynamic granting of minimum permissions for each

access. Scheme D is a hybrid access control scheme based

on attributes and TVs. This scheme integrates user

attributes and TV evaluation, and users need to meet

attribute requirements and TV standards to access

resources. Meanwhile, TV comprehensively considers

factors such as user attribute relevance and behavior

history. The reason for choosing these four methods was

that they cover different trust evaluation and access

control mechanisms, which can be effectively compared

with the paper design scheme, highlighting the advantages

of the paper scheme in regard to TV evaluation accuracy,

access control flexibility, and system performance. In

regard to parameter values, there were four possible values

for 1 in the research design scheme, namely 0.8, 0.6, 0.4,

and 0.2. Meanwhile, the initial TV was set to 0.5. In

addition, the initial TVs for schemes A, B, C, and D are

also 0.5. The comparison of TV calculation time and

access control determination time for different schemes is

in Figure 11.

10 Informatica 49 (2025) 1–16 D. Zhao et al.

175

0

10

20

30

40

60

80
T

im
e

co
n
su

m
in

g
/m

s

Experiments

0

(a) Comparison of trust value

calculation time

5 10 15 20 25 30 40 4535 50

Sch. A Sch. B

Sch. C Sch. D

Dynamic management method

for user permissions

50

70

0

25

50

75

100

150

250

T
im

e
co

n
su

m
in

g
/m

s

Experiments

0

(b) Comparison of access control

determination time

5 10 15 20 25 30 40 4535 50

Sch. A Sch. B

Sch. C Sch. D

Dynamic management method

for user permissions

125

200

225

Figure 11: Comparison of TV calculation time and access control determination time for different schemes

From Figure 11 (a), in regard to the comparison of

TV calculation time, the research-designed user

permission dynamic management method performed

better, with corresponding maximum and minimum values

of 32 ms and 0.6 ms, respectively. Meanwhile, the

maximum TV calculation time of Scheme A, Scheme B,

Scheme C, and Scheme D was 78 ms, 65, 54 ms, and 51

ms, respectively, which were 46 ms, 33 ms, 22 ms, and 19

ms higher than 32 ms. From Figure 11 (b), when

comparing the access control judgment time of different

schemes, the maximum value of the research designed

user permission dynamic management method was 56 ms,

while the maximum values of the four comparison

schemes were 237 ms and 201 ms, respectively. The

differences between 189 ms, 150 ms, and 56 ms were 181

ms, 145 ms, 133 ms, and 94 ms, respectively. In summary,

the TV calculation and access control determination time

of the research and design user permission dynamic

management method were both lower, and the

performance was better. The rationality comparison of

TVs for different schemes is in Figure 12.

0.0

0.2

0.3

0.4

0.5

0.7

0.9

T
ru

st
 v

al
u

e

Total number of interactions

0

(a) Dynamic management

method for user permissions

20 40 60 80 100 120 160 180140 200

0.2 0.4 0.6 0.8

0.6

0.8

0.1

0.0

0.2

0.3

0.4

0.5

0.7

0.9

T
ru

st
 v

al
u

e

Total number of interactions

0

(b) Scheme A

20 40 60 80 100 120 160 180140 200

0.2 0.4 0.6 0.8

0.6

0.8

0.1

0.0

0.2

0.3

0.4

0.5

0.7

0.9

T
ru

st
 v

al
u

e

Total number of interactions

0

(c) Scheme B

20 40 60 80 100 120 160 180140 200

0.2 0.4 0.6 0.8

0.6

0.8

0.1

0.0

0.2

0.3

0.4

0.5

0.7

0.9

T
ru

st
 v

al
u

e

Total number of interactions

0

(d) Scheme C

20 40 60 80 100 120 160 180140 200

0.2 0.4 0.6 0.8

0.6

0.8

0.1

0.0

0.2

0.3

0.4

0.5

0.7

0.9

T
ru

st
 v

al
u

e

Total number of interactions

0

(e) Scheme D

20 40 60 80 100 120 160 180140 200

0.2 0.4 0.6 0.8

0.6

0.8

0.1

Figure 12: Comparison of the rationality of TVs for different schemes

Dynamic Access Control and Fine-Grained Searchable Encryption… Informatica 49 (2025) 1–16 11

According to Figure 12 (a), in the user permission

dynamic management method designed for research, the

fluctuation range of TVs for random users under different

weight values was [0.227, 0.845], and the difference

between their maximum and minimum values was 0.618.

From Figure 12 (b), Figure 12 (c), Figure 12 (d), and

Figure 12 (e), in Scheme A, Scheme B, Scheme C, and

Scheme D, the fluctuation range of TVs of random users

was [0.423, 0.698], [0.385, 0.725], [0.336, 0.761], and

[0.285, 0.802], respectively. The difference between the

maximum and minimum values was 0.275, 0.340, 0.425,

and 0.517, all of which were less than 0.618. The

comparison of CPU utilization and memory usage

between different schemes is in Figure 13.

0

5

15

25

30

35

V
al

u
e/

%

Value situation

(a) Comparison of CPU Utilization

Maximum AverageMinimum

10

20

Sch. A Sch. B

Sch. C Sch. D

Dynamic management method

for user permissions

0

5

15

25

30

35

V
al

u
e/

%

Value situation

(b) Memory usage rate

Maximum AverageMinimum

10

20

Sch. A Sch. B

Sch. C Sch. D

Dynamic management method

for user permissions

Figure 13: Comparison of CPU utilization and memory usage among different schemes

From Figure 13 (a), in regard to CPU utilization

comparison, the maximum value for studying and

designing user permission dynamic management methods

was 12.17%, and the minimum value was 8.9%.

Meanwhile, the maximum CPU utilization rates of the

four comparison schemes were 26.98%, 20.17%, 18.55%,

and 16.29%, respectively, which were 14.81%, 8.00%,

6.38%, and 4.12% higher than 12.17%. From Figure 13

(b), when comparing the memory occupancy rates of

different schemes, the user permission dynamic

management method designed by the research ranked

first, followed by Scheme D, Scheme C, Scheme B, and

Scheme A in the second to fifth positions. Meanwhile,

according to the ranking order, the maximum memory

occupancy rates of the five schemes were 13.95%,

17.52%, 20.31%, 23.17%, and 28.55%, respectively. In

summary, the research and design of dynamic

management methods for user permissions had lower CPU

utilization and memory usage, and better performance. To

further validate the performance of the research designed

user permission dynamic management method, encryption

evaluations were conducted on both the method and the

comparison method, involving security proof indicators

and resistance indicators to known attacks. The encryption

evaluation results of different methods are shown in Table

2.

Table 2: Encryption evaluation results of different methods

Scheme

Safety certificate Resistance to known attacks

Number of experiments Number of experiments

1 2 3 4 5 1 2 3 4 5

Scheme A 64 68 68 67 61 68 65 70 61 62

Scheme B 66 68 66 66 66 66 73 67 71 67

Scheme C 79 82 79 81 77 77 77 80 82 81

Scheme D 86 81 80 89 82 87 80 83 82 85

Manuscript 93 91 96 92 93 96 97 98 95 94

From Table 2, in the five experiments of security

proof, the scores of the research design user permission

dynamic management method were all above 90 points,

with the highest reaching 96 points, significantly higher

than other comparative schemes. In regard to resistance to

known attacks, the research and design of user permission

dynamic management methods also scored above 90

points, with the highest reaching 98 points, demonstrating

extremely strong resistance to attacks. In contrast, Scheme

A and Scheme B scored lower on both indicators, while

Scheme C and Scheme D performed well but still did not

reach the level of research design methods.

3.2 Performance validation supporting fine-

grained access control methods
To validate the performance of fine-grained access

control methods, the same experimental setup was used in

the study. In addition, in regard to comparative methods,

the study selected four schemes and named them Scheme

1, Scheme 2, Scheme 3, and Scheme 4 respectively.

Among them, Scheme 1 is a traditional symmetric SE

scheme, which uses symmetric encryption algorithms to

encrypt data and constructs an index structure for

searching. Option 2 is the ABSE scheme, which

implements fine-grained access control through attribute

12 Informatica 49 (2025) 1–16 D. Zhao et al.

encryption and SE techniques. Scheme 3 is a dynamic

access control SE scheme based on zero trust. This scheme

combines a zero trust security model and SE technology.

Every time a user initiates a search request, their identity

must be re verified and dynamically evaluated, and the

evaluation results are used to determine whether to allow

the user to search and access data. Scheme 4 is a

blockchain based SE scheme, which utilizes blockchain to

record data hash and permission information, and

combines SE to achieve technical security retrieval. The

reason for choosing these four methods was that they

represent encryption and access control methods of

different technological routes, which can

comprehensively compare the advantages of this research

scheme in regard to encryption efficiency, access control

flexibility, security, and communication cost. Meanwhile,

these solutions all included five stages: system

initialization, key generation, encryption, search token

generation, and search. In addition, there were a total of 6

values for the number of user attributes, namely 1, 6, 11,

16, 21, and 26, and the access policy involved the same

number of attributes. The comparison of time

consumption for different parts is in Figure 14.

0

25

50

75

100

150

200

T
im

e
co

n
su

m
in

g
/m

s

Number of user attributes

1

(a) System initialization phase

6 11 16 21 26

Sch. 1 Sch. 2

Sch. 3 Sch. 4

Supporting fine-grained access

control method

125

175

×10

0

25

50

75

100

150

200

T
im

e
co

n
su

m
in

g
/m

s

Number of user attributes

1

(b) Key generation stage

6 11 16 21 26

Sch. 1 Sch. 2

Sch. 3 Sch. 4

125

175

×10

0

25

50

75

100

150

200

T
im

e
co

n
su

m
in

g
/m

s

Access strategy involves

the number of attributes

1

(c) Encryption process

6 11 16 21 26

Sch. 1 Sch. 2

Sch. 3 Sch. 4

125

175

×10

0

50

100

150

200

300

350

T
im

e
co

n
su

m
in

g
/m

s

Number of user attributes

1

(d) Search token generation process

6 11 16 21 26

Sch. 1 Sch. 2

Sch. 3 Sch. 4

250

0

10

20

30

40

60

70

T
im

e
co

n
su

m
in

g
/m

s

Number of summary points

500

(e) Search phase

1000 1500 2000 2500 3000

Sch. 1 Sch. 2

Sch. 3 Sch. 4

50

Supporting fine-grained access

control method

Supporting fine-grained access

control method

Supporting fine-grained access

control method

Supporting fine-grained access

control method

Figure 14: Comparison of time consumption for different parts

Dynamic Access Control and Fine-Grained Searchable Encryption… Informatica 49 (2025) 1–16 13

According to Figure 14 (a), during the system

initialization phase, as the number of user attributes

increased, the corresponding time consumption for

different schemes also increased synchronously. The

increase speed of the fine-grained access control method

designed in this study was slower, while the increase speed

of Scheme 1 was faster. In addition, in regard to specific

values, the max time consumption of schemes 1, 2, 3, and

4 was 1852 ms, 1652 ms, 1400 ms, and 1050 ms,

respectively, while the max time consumption of the

research-designed fine-grained access control method was

580ms. As shown in Figure 14 (b), in the key generation

stage, the max time consumption of the five schemes was

180 ms, 1558 ms, 1327 ms, 1106 ms, and 985 ms,

respectively. From Figure 14 (c), in the encryption stage,

the research-designed supporting fine-grained access

control method performed better, followed by schemes 4,

3, and 2, and finally scheme 1. Meanwhile, the max

encryption time for the five schemes was 325 ms, 657 ms,

739 ms, 962 ms, and 1107 ms, respectively. The trend of

encryption time for the five schemes increased

synchronously with the increase in the number of

attributes involved in the access policy. From Figure 14

(d), in the search token generation stage, the max time

consumption of the research-designed supporting fine-

grained access control method and the four comparison

schemes were 25 ms, 287 ms, 120 ms, 85 ms, and 60 ms,

respectively. From Figure 14 (e), in the search stage, the

max time consumption of the five schemes were 33 ms, 57

ms, 48 ms, 46 ms, and 42 ms, respectively. Overall, the

research-designed supporting fine-grained access control

method had shorter time consumption and better

performance. The comparison of communication volume

between different schemes is in Table 3.

Table 3: Comparison of communication volume

between different schemes

Scheme
Number of keywords

1 2 3 4 5 6

Scheme 1 3.336 4.985 6.226 7.679 9.017 10.369

Scheme 2 3.017 4.119 5.654 7.301 8.435 10.195

Scheme 3 2.778 3.657 4.753 6.432 8.003 9.665

Scheme 4 2.374 2.892 4.147 6.158 7.553 9.448

Supporting

fine-grained

access
control

methods

1.137 2.015 2.225 2.785 3.012 3.257

In Table 3, the communication volume is represented

by the amount of data, and the unit is Byte. From Table 3,

as the number of keywords increased, the amount of data

corresponding to different schemes also increased

synchronously. Within the same range of keyword

changes, the data volume of scheme 2 changed more

significantly, about 7.178 Byte. Meanwhile, the data

volume changes for Scheme 1, Scheme 3, Scheme 4, and

the research-designed supporting fine-grained access

control method were 7.033 Byte, 6.887 Byte, 7.074 Byte,

and 2.120 Byte, respectively. The research-designed

supporting fine-grained access control method had smaller

changes in data volume, which were 4.913 bytes, 5.058

bytes, 4.767 bytes, and 4.954 bytes less than the

comparison scheme, respectively. This method had lower

communication volume and better performance. The

storage overhead comparison of different schemes is in

Table 4.

Table 4: Comparison of storage costs for different solutions

Scheme

User key storage overhead/KB Cryptocurrency storage overhead/KB

User attribute set size Leaf node set size

5 10 15 20 25 10 15 20 25 30

Scheme 1 3.45 4.73 5.69 8.71 8.98 5.13 6.08 7.32 8.65 9.17

Scheme 2 3.13 4.03 5.36 8.42 8.66 4.65 5.73 6.54 8.42 8.88

Scheme 3 2.65 4.12 4.95 7.11 7.79 4.11 4.72 6.36 7.89 8.34

Scheme 4 2.23 3.87 4.67 6.52 7.42 3.89 4.57 5.98 7.42 7.62

Supporting Fine-grained

access control method
1.74 2.54 3.89 5.14 6.37 3.34 4.17 5.24 6.85 7.25

From Table 4, in regard to the comparison of user

key storage costs, the research-designed supporting fine-

grained access control method performed better, with an

average value of 3.94 KB. In addition, the average user

key storage costs of the four comparison schemes were

6.31 KB, 5.92 KB, 5.32 KB, and 4.94 KB, respectively,

which were 2.37 KB, 1.98 KB, 1.38 KB, and 1.00 KB

higher than 3.94 KB. In addition, as the size of the random

user attribute set increased, the user key storage costs

corresponding to different schemes also increased

synchronously, and schemes 1 and 2 increase more.

Meanwhile, in regard to ciphertext storage overhead, the

research-designed supporting fine-grained access control

method and the average values of the four comparison

schemes were 5.37 KB, 7.27 KB, 6.84 KB, 6.28 KB, and

5.90 KB, respectively. The significance of reducing

storage overhead by 2-3KB was twofold: firstly, it

lowered the storage cost of cloud servers. Secondly, it

reduced the storage pressure on the client and avoided

problems caused by insufficient storage. Furthermore, it

could improve system efficiency, accelerate key

read/write and distribution speed, shorten loading and

response time, and enhance user experience. Finally,

reducing storage overhead made the system easier to cope

with user and data growth, reduce performance bottleneck

risks, and benefit system scalability. Overall, the research

-designed supporting fine-grained access control method

had lower storage overhead and better performance. To

further verify the robustness of fine-grained access control

methods, long-term performance analysis and stress

testing were conducted, with specific indicators being

system response time and system throughput. The

14 Informatica 49 (2025) 1–16 D. Zhao et al.

robustness comparison of different methods is shown in

Table 5.

Table 5: Comparison of robustness of different methods

Scheme

System response time/ms System throughput/(req/s)

Run time/hour Number of concurrent users

12 24 48 72 96 50 100 200 500 1000

Scheme 1 120 135 150 165 180 25 45 65 80 90

Scheme 2 110 120 130 140 150 30 50 70 85 95

Scheme 3 100 110 120 130 140 35 60 80 90 95

Scheme 4 90 100 110 120 130 40 70 90 100 105

Support Fine-grained access
control methods

80 90 100 110 120 55 85 120 140 165

From Table 5, methods that support fine-grained

access control performed excellently in terms of system

response time and throughput. After 96 hours of system

operation, its response time was only 120 milliseconds,

which was 10-60 milliseconds lower than other solutions.

With 1000 concurrent users, the throughput reached 165

times/second, which was 60-75 times/second higher than

other solutions, demonstrating better performance

stability and system resilience.

In practical applications, a centralized key

management scheme was studied to address the issue of

handling key management across multiple users: attribute

authorization agencies generated and distributed attribute

keys uniformly, ensuring that key generation followed

consistent policies and was securely distributed to users.

Meanwhile, using the user information management

module of the attribute authorization agency, user identity

and attribute information were centrally managed and

authenticated. The system dynamically adjusted the key

according to changes in user attributes to ensure that only

users with legitimate attributes can obtain the

corresponding key. In addition, the system regularly

updated keys and set expiration dates to further improve

key security and reduce risks caused by key leaks.

4 Discussion
To conduct critical analysis, the study compared the

designed method with the techniques in Table 1, and the

comparison results are shown in Table 6.

Table 6: Comparison between the designed method

and the techniques in Table 1
Comparative

method
Quantitative results

Liu et al. [4]
Reduce computing costs by 20% and storage

expenses by 10%

Ng et al. [5]
Efficiency increased by 30%, computational cost

increased by 8%

Liu et al. [6]
40% increase in computational efficiency and

25% increase in storage overhead

Lu et al. [7]
Efficiency increased by 35%, storage overhead

increased by 20%

Dynamic
management

method for

user
permissions

Reduce computing costs by 30% and storage
expenses by 20%

Support Fine-

grained access

control
methods

Reduce computing costs by 25% and storage

expenses by 15%

From Table 6, the proposed method for dynamically

managing user permissions reduced the overhead of

permission determination and resource allocation through

comprehensive trust evaluation and dual dynamic access

control. Meanwhile, it optimized data retrieval efficiency

using B-tree indexing, thereby reducing computation and

storage costs. In addition, methods that support fine-

grained access control utilize linear secret sharing

schemes to achieve precise access control and reduce

resource consumption during encryption and retrieval

processes. However, in some cases, such as when the

number of users increased sharply or the data scale

expands significantly, the system may face performance

pressure and need to balance security and efficiency.

5 Conclusion
The research designed a user permission dynamic

management scheme and a fine-grained access control

scheme for SE technology to address the security

management issues of cloud server data storage, and

developed a complete encryption scheme. The results

showed that the max and min TV calculation time of the

user permission dynamic management scheme were 32 ms

and 0.6 ms, respectively, and the max access control

determination time was 56 ms, which was 181 ms, 145 ms,

133 ms, and 94 ms lower than the max value of the

comparison scheme. The user permission dynamic

management scheme had a shorter time consumption,

which might be due to its use of a comprehensive TV

evaluation model and a dual dynamic access control

mechanism, the introduction of an efficient mathematical

model, and the significant improvement in computational

efficiency. In regard to memory and CPU usage, dynamic

management of user permissions also presented

significant advantages. The max time consumption for

supporting fine-grained access control method at different

stages was 1852 ms, 180 ms, 325 ms, 25 ms, and 33 ms,

respectively, which was significantly better than the

comparative scheme. This might be due to its adoption of

B-Tree indexing structure and linear secret sharing

scheme, which optimized search efficiency and flexibility

of access control. In regard to communication volume

comparison, the supporting fine-grained access control

method had a smaller change amplitude, with a value of

2.120 Byte, which as 4.913 Byte, 5.058 Byte, 4.767 Byte,

and 4.954 Byte smaller than the comparison scheme,

respectively. In summary, the overall encryption scheme

Dynamic Access Control and Fine-Grained Searchable Encryption… Informatica 49 (2025) 1–16 15

designed in the research had good performance. However,

there are also certain shortcomings in the research. The

linear secret sharing scheme brought high flexibility but

also high complexity, mainly reflected in the complexity

of the access structure and the computational cost of

matrix operations. Complex access structures may lead to

reduced efficiency in processing large-scale data, while

frequent matrix operations may increase computational

overhead. Future research can adopt simpler access

structure designs, such as "lightweight LSSS", and

introduce distributed computing technology to share

computing tasks. In addition, when the number of users or

data scale increases sharply, the system may face

performance bottlenecks, and TV evaluation models and

access control mechanisms may lead to reduced efficiency

when deployed in resource constrained environments.

Future research can be improved by introducing

distributed computing technology, adopting lightweight

encryption and access control schemes, machine learning

and artificial intelligence technologies, and enhancing the

caching mechanism of the system.

References
[1] Zhang Y, Zhu T, Guo R, Xu S, Cui H, Cao J. Multi-

keyword searchable and verifiable attribute-based

encryption over cloud data. IEEE Transactions on

Cloud Computing, 2023, 11(1):971-983.

https://doi.org/10.1109/TCC.2021.3119407

[2] Zhang X, Mu D, Zhao J. Attribute-based keyword

search encryption for power data protection. High-

Confidence Computing, 2023, 3(2):32-39.

https://doi.org/10.1016/j.hcc.2023.100115

[3] Prasad S, Rao Y S. Designing secure data storage and

retrieval scheme in cloud-assisted Internet-of-Drones

environment. IEEE Internet of Things Journal, 2023,

11(8):13734-13751.

https://doi.org/10.1109/JIOT.2023.3337265

[4] Liu W, Bai X, She W, Song X, Tian Z. Searchable

encrypted data sharing scheme based on inverted

index. Computer Engineering and Applications,

2023, 59(10):270-279.

https://doi.org/10.3778/j.issn.1002-8331.2201-0159

[5] Ng Z Y, Salam I. Implementation of a blockchain-

based searchable encryption for securing contact

tracing data. Journal of Internet Technology, 2024,

25(2):241-254.

https://doi.org/10.53106/160792642024032502007

[6] Liu P, He Q, Zhao B, Guo B, Zhai Z. Efficient multi-

authority attribute-based searchable encryption

scheme with blockchain assistance for cloud-edge

coordination. Computers, Materials & Continua,

2023, 76(9):3325-3343.

https://doi.org/10.32604/cmc.2023.041167

[7] Lu H, Xue X, Zhu Y, Chen C, Han H, Meng S, Lin

H. Privacy-preserving SQL database driven by

searchable encryption. Chinese Journal of

Engineering, 2024, 46(11):2085-2098.

https://doi.org/10.13374/j.issn2095-

9389.2024.02.07.004

[8] Wang Z, Zhang Q, Meng L, Liu Y L. Secure content-

based image retrieval scheme based on deep hashing

and searchable encryption. CMC-Computers

Materials & Continua, 2023, 75(3):6161-6184.

https://doi.org/10.32604/cmc.2023.037134

[9] Souror S, Badawy M, El-Fishawy N. Secure query

processing for smart grid data using searchable

symmetric encryption. The Journal of

Supercomputing, 2024, 80(16):24173-24211.

https://doi.org/10.1007/s11227-024-06326-z

[10] Xie P, Li X, Feng T, Zhang M, Zhang P, Li P. A Trust

and Risk Adaptive Access Control Model for Internet

of Vehicles. International Journal of Network

Security, 2024, 26(3):510-520.

https://doi.org/10.6633/IJNS.202405_26(3).18

[11] Liu Y, Yang W, Wang Y, Liu Y. An access control

model for data security sharing cross‐domain in

consortium blockchain. IET Blockchain, 2023,

3(1):18-34. https://doi.org/10.1049/blc2.12022

[12] Tong Q, Miao Y, Weng J, Liu X, Choo K K R, Deng

R H. Verifiable fuzzy multi-keyword search over

encrypted data with adaptive security. IEEE

Transactions on Knowledge and Data Engineering,

2022, 35(5):5386-5399.

https://doi.org/10.1109/TKDE.2022.3152033

[13] Geem D, Hercules D, Pelia R S, Venkateswaran S,

Griffiths A, Noe J D. Progression of Pediatric

Crohn’s disease is Associated with anti-tumor

necrosis factor timing and body Mass Index Z-Score

normalization. Clinical Gastroenterology and

Hepatology, 2024, 22(2):368-376.

https://doi.org/10.1016/j.cgh.2023.08.042

[14] Chinthamu N, Karukuri M. Data science and

applications. Journal of Data Science and Intelligent

Systems, 2023, 1(1):83-91.

https://doi.org/10.47852/bonviewJDSIS3202837

[15] Tian J, Lu Y, Li J. Lightweight searchable and

equality-testable certificateless authenticated

encryption for encrypted cloud data. IEEE

Transactions on Mobile Computing, 2024,

23(8):8431-8446.

https://doi.org/10.1109/TMC.2023.3348849

[16] Lu W. Construction of a Secure Sharing Model for

Digital Educational Resources Using Blockchain and

Cipher Policy Attribute Based Encryption in Smart

Education. Informatica, 2024, 48(22):63-74.

https://doi.org/10.31449/inf.v48i22.6627

[17] Yang Y, Zhang G, Li S, Liu Z. Offline/online

attribute-based searchable encryption scheme from

ideal lattices for IoT. Frontiers of Computer Science,

2024, 18(3):239-241.

https://doi.org/10.1007/s11704-023-3128-3

[18] Xiong Y, Luo M X. Searchable encryption scheme

for large datan sets in cloud storage environment.

Radioengineering, 2024, 33(2):223-235.

https://doi.org/10.13164/re.2024.0223

[19] Song J, Shen Z, Yu H, Lai R, Li Y, Wang Q, Li J.

Secure and efficient multi-keyword fuzzy search

over encrypted data on alliance chain. Recent

Advances in Electrical & Electronic Engineering,

2024, 17(7):652-665.

16 Informatica 49 (2025) 1–16 D. Zhao et al.

https://doi.org/10.2174/01235209652518662309260

50714

[20] Alyousif A A, Yassin A A. Improving Performance

of searchable symmetric encryption through new

information retrieval scheme. Iraqi Journal for

Electrical and Electronic Engineering, 2024,

20(1):68-77. https://doi.org/10.37917/ijeee.20.1.7

[21] Hu Z, Deng L, Wu Y, Shi H, Gao Y. Secure and

efficient certificateless searchable authenticated

encryption scheme without random oracle for

industrial internet of things. IEEE Systems Journal,

2023, 17(1):1304-1315.

https://doi.org/10.1109/JSYST.2022.3197174

[22] Senthilkumar M, Murugan BS. Enhancing The

Security Of An Organization From Shadow Iot

Devices Using Blow-Fish Encryption Standard. Acta

Informatica Malaysia. 2022; 6(1): 22-24.

http//:doi.org/ 10.26480/aim.01.2022.22.24

[23] Talib E, Osipyan V. User Multi Group Key

Distribution Using Secret Sharing with Circulate

Matrices Based on Structures Pythagors Equation

and Ecdh Key Exchange Protocol. Informatica, 2023,

47(5):127-136.

https://doi.org/10.31449/inf.v47i5.4658

[24] Liu X H, Huang X Y, Wu W, Ning J T. Key-Policy

Attribute-Based Encryption Based on SM9 and Its

Fast Decryption. Journal of Computer Science and

Technology, 2024, 47(5):971-986.

https://doi.org/10.11897/SP.J.1016.2024.00971

https://doi.org/10.11897/SP.J.1016.2024.00971

