https://doi.org/10.31449/inf.v49i27.9106

Informatica 49 (2025) 57-68 57

Hyperparameter Optimization for Malicious URL Detection: Leveraging
Optuna and Random Search in Machine Learning and Deep Learning Models

Miloud Khaldi, Zohra Alilat, Hana Bendoubba, and Nadir Mahammed
LabRI-SBA Lab., Ecole Supérieure en Informatique, Sidi Bel Abbés, Algeria
E-mail: m.khaldi@esi-sba.dz, z.alilat@esi-sba.dz, h.bendoubba@esi-sba.dz, n.mahammed@esi-sba.dz

Keywords: Malicious URLSs, hyperparameter optimization, Optuna, random search, BERT, LightGBM

Received: May 2, 2025

Uniform Resource Locators (URLs) are critical indicators for identifying malicious online activities such
as malware distribution, phishing attacks, and website defacement. This research presents a robust ap-
proach for detecting these threats using both deep learning (DL) and machine learning (ML) techniques.
We emphasize hyperparameter optimization, employing Optuna—a Bayesian optimization framework—
and Random Search to systematically enhance model performance. Unlike many prior studies, which often
overlook thorough hyperparameter tuning, our approach demonstrates improvements over state of the art
methods. Our Bidirectional Encoder Representations from Transformers (BERT) model achieved an ac-
curacy of 98.84%, with an F1 score of 99.02%, while the Light Gradient Boosting Machine (LightGBM)
attained an accuracy of 98.46% and an F1 score of 98.45%

Povzetek: Prispevek predstavi optimizacijo hiperparametrov za zaznavanje zlonamernih URL-jev z
uporabo Optuna in Random Search v modelih BERT in LightGBM, kar izboljsa zaznavanje nevarnosti.

1 Introduction

The Internet has experienced rapid expansion in recent
years, becoming an essential part of daily life in the digi-
tal age. It serves as a global communication platform and
a vast repository of information across sectors such as gov-
ernment, business, academia, and personal use. With the
widespread adoption of smartphones and increasing con-
nectivity, users can now access online content from any-
where. However, this accessibility also exposes them to
both reliable and malicious sources, increasing their vul-
nerability to cyberattacks and online fraud.

Malicious websites are frequently employed in cyberat-
tacks to steal sensitive user data. Attackers often create
counterfeit websites that closely resemble legitimate ones,
deceiving users into unknowingly submitting personal in-
formation []I]. According to the Anti-Phishing Working
Group (APWG), phishing attacks are escalating. In Q3
2024 alone, 932,923 phishing attempts were recorded—an
increase from the previous quarter—with social media plat-
forms being the most targeted sector, accounting for 30.5%
of all attacks [2]. Additionally, reports indicate that over
40,000 new malicious URLSs are created daily, resulting in
estimated financial losses of $17,700 per minute [3].

One notable example is the February 2025 Bybit ex-
change hack, in which attackers exploited standard wallet
transfer procedures to steal approximately $1.5 billion in
Ethereum [4]. This incident highlights the evolving sophis-
tication of cyber threats and the urgent need for robust de-
tection mechanisms.

URLSs serve as the unique identifiers of websites, deter-

mining their location and access methods. When users ac-
cess a URL, it typically connects to a server’s database and
returns the website’s content. URLs may be benign or mali-
cious. In phishing attacks, malicious URLSs closely imitate
legitimate ones, often distributed via email or deceptive ads.
Once clicked, these links may download malware or redi-
rect users to credential-stealing sites. Given the large num-
ber of new websites created daily and the growing sophis-
tication of cyberattacks, accurately distinguishing between
benign and malicious URLs has become increasingly chal-
lenging.

Due to the structural similarities between benign and ma-
licious URLs, effective classification requires extracting
and analyzing specific features. The ease with which at-
tackers can now create harmful URLs underscores the need
for automated, scalable, and accurate detection methods.
Recent research has turned to Machine Learning (ML) ap-
proaches to enhance malicious website detection. How-
ever, most existing solutions focus on individual web pages
and rely on manually extracted features (such as text or im-
ages), limiting their scalability and generalization across di-
verse domains [, 6].

In this paper, we propose an advanced approach for ma-
licious URL detection by integrating deep learning and tra-
ditional ML with automated hyperparameter optimization.
Specifically, we develop two models: (1) a BERT-based
classifier enhanced with Optuna for automated hyperpa-
rameter tuning, leveraging BERT’s powerful contextual un-
derstanding to capture subtle patterns in URL structures,
and (2) a lightweight yet effective LightGBM classifier op-
timized with Random Search to balance performance and

58 Informatica 49 (2025) 57-68

computational efficiency.
The primary contributions of this work are as follows:

— We introduce a BERT-Optuna model that combines
contextual language modeling with automated hyper-
parameter tuning to improve malicious URL detection
accuracy.

— Wedevelop a LightGBM-Random Search model to ef-
ficiently explore hyperparameter space for robust and
interpretable detection results.

— We conduct a comprehensive evaluation of the pro-
posed models on a real-world dataset of over 650,000
URLs.

— We perform a comparative analysis against state-of-
the-art classifiers to validate the effectiveness of our
approach.

The remainder of this paper is structured as follows: Sec-
tion | reviews related work. Section [l presents our pre-
processing techniques. Section | outlines the classification
methods. Section [describes the proposed models. Sec-
tion [details the experimental setup and evaluation metrics,
and Section [presents and discusses the results. Finally,
Section § concludes the paper and outlines directions for
future research.

2 Related research

In this section we are going to explain the methods used
to detect malicious URLs. Prior studies have explored
harmful URL detection and classification via diverse ML
and DL methods, yielding varying accuracy percentages.
These studies have enhanced the comprehension of effi-
cient methodologies and techniques for detecting and cat-
egorizing malicious URLs. In order to evaluate the contri-
bution of these methodologies in comparison to earlier re-
search, we have collected different contents of articles and
sources to uncover characteristics or trends that separate be-
nign from malicious url. These methodes use various algo-
rithms to classify and detect malicious URLs.

Su and Su[[]] suggested BERT-based harmful URL de-
tection. By tokenizing URL strings with BERT, the self-
attention mechanism may understand their semantic link-
ages. The model uses raw URL strings or Random Forest
feature strings, depending on the dataset. BERT is fine-
tuned against public datasets (Kaggle, GitHub, ISCX 2016)
and adaptable to multiple data formats, delivering excellent
classification accuracy 98.78%, 96.71%, and 99.98% on the
three datasets.

Nanda, Saraswat, and Sharma[§] proposed a phishing
URL detection model using Bidirectional Long Short-
Term Memory (BiLSTM), Convolutional Neural Networks
(CNN), and a Gated Highway Attention (GHA). The model
has several key steps: pre-processing URLs to a uniform
length of 255 characters; BILSTM and CNN work together

M. Khaldi et al.

to extract both global and local features; highway networks
improve information flow to deal with problems like van-
ishing gradients; attention mechanisms are used to improve
feature learning and reduce the effect of irrelevant data;
the model achieved better performance metrics, with an ac-
curacy of 99.78%, precision of 98.97%, recall of 99.35%;
beating other traditional ML and DL techniques.

Wang et al.[9] provided a DCNN malicious URL detec-
tion model. A dynamic convolution technique replaces the
pooling layer with a k-max pooling layer and adds a fold-
ing layer. The pooling settings are dynamically modified
based on the input URL length and convolutional depth to
extract deeper features. The model uses character-level and
word-level embedding to represent unusual words and spe-
cial characters while minimizing memory usage. This hy-
brid embedding achieved an accuracy of 98.7% and 98.7%
as Fl-score.

The work of Sheikhi and Kostakos[i] configures a hy-
brid approach combining the Firefly Algorithm for fea-
ture selection and Particle Swarm Optimization (PSO) for
optimizing XGBoost hyperparameter improving malicious
website detection. The hybrid model achieved an astonish-
ing 98.42% accuracy and an F1-score of 98.4% in binary
classification, while it yielded a multiclass classification ac-
curacy of over 98%.

The research of Gupta et al.[[10] shows how ML-based
URL lexical characteristics can detect phishing. The tech-
nique constructs nine lexical features—token count, URL
length, and domain delimiters—and uses Random For-
est, K-Nearest Neighbors (KNN), Logistic Regression, and
Support Vector Machine (SVM) classifiers. The approach
requires no third-party information, enabling real-time per-
formance with low computational resources. Random For-
est had the highest accuracy 0f 99.57%, a low false positive
rate of 0.53%, and a rapid run time of 51.5ms.

Ullah et al.[|L1] proposed a multi-model visual represen-
tation and transformers-based transfer learning explainable
malware detection system is presented. The malware cat-
egorization method uses network traffic text and images.
BERT extracts first-learned textual properties from HTTP
and TCP flows. After feature extraction using the FAST ex-
tractor and BRIEF descriptor, a malware-to-picture trans-
formation transforms network byte streams into images.
After class imbalance is resolved via Synthetic Minority
Over-Sampling (SMote), CNN deep feature extraction is
performed. A voting-based ensemble learning approach
leads the final categorization. Malware detection and clas-
sification rates of 98.44% and 99.16%.

Wu et al.[[I12] proposed an NLP method based on a bidi-
rectional gated recurrent unit (BiGRU).It used The dropout
mechanism in the input layer to avoid overfitting, the at-
tention mechanism in the middle layer to learn the corre-
lation between sequences, Word2 Vec for the preprocessing
to train the word vector of URLs and the BiGRU to ex-
tract all the sequence information of URLs. This proposed
method (DA-BiGRU) achieved better experimental results
in detecting malicious URLs than the MLP, Att-BiLSTM,

Hyperparameter Optimization for Malicious URL Detection...

Att-BiGRU, DA-BIiLSTM with an accuracy of 0.9792, pre-
cision of 0.9834, reacall of 0.9553 and F1 score of 0.9691.
Alshingiti et al.[13] proposed a DL technique to de-
tect phishing URLs. This methodology employs Convo-
lutional Neural Networks (CNN), Long Short-Term Mem-
ory networks (LSTM), and a hybrid LSTM—CNN model.
The three systems adhere to a four-step process: extract-
ing features, preprocessing data using SelectKBest for fea-
ture selection and MinMaxScaler for scaling, training the
models, and ultimately categorizing URLs as legitimate or
phishing. They refined hyperparameters such as number of
layers, dropout rate, learning rate, number of epochs and
batch size to improve performance. Among the models,
CNN achieved the highest accuracy at 99.2%, surpassing
LSTM—CNN at 97.6% and LSTM at 96.8%.

R, Patil, and Mohana[|l4] proposed a malicious URL
detection and classification method using machine learn-
ing. The method utilizes a dataset of 651,191 URLs, cat-
egorized into Phishing, Benign, Defacement and Malware
types. Three machine learning algorithms, Random Forest,
LightGBM and XGBoost, were implemented. The mod-
els were trained and validated on the dataset, and their per-
formance was evaluated using metrics like accuracy, pre-
cision, recall and F1 score. The Random Forest classifier
achieved the best results with an accuracy of 96.6%.

Alsaedi et al.[[1§] introduced the CTI-MURLD model for
the detection of malicious URLs, which incorporates var-
ious data sources such as URL content features, Google-
based Cyber Threat Intelligence (CTI), and Whois-based
CTI. Utilizing external threat intelligence. The model com-
prises several phases: Data preprocessing involves the ap-
plication of NLP techniques to normalize textual data. Fea-
ture extraction through N-gram and TF-IDF. Feature Selec-
tion: Mutual Information is employed to select the 5000
most informative features. Ensemble Learning for Classifi-
cation employs a two-stage ensemble approach: Three Ran-
dom Forest classifiers are trained independently on separate
feature subsets: URL features, Google-CTI, and Whois-
CTI. The probabilistic outputs from the RF classifiers are
aggregated and input into a Multi-Layer Perceptron (MLP)
neural network, which is optimized using the BFGS quasi-
Newton algorithm to enhance weight tuning and accelerate
convergence. Grid Search was employed to optimize per-
formance, as Random Forest algorithms necessitate metic-
ulous hyperparameter selection, increased accuracy and re-
duced false positive and false negative rates relative to base-
line models. The best result was that of RF + GS with
an accurcy of 97.25%,recall of 97,26% and a precision of
97.36%.

Yu et al.[[L6] The study proposed an improved M-BERT
model for malicious URL detection, leveraging Trans-
former encoders for feature extraction and classification. It
outperformed traditional methods, achieving 94.42% preci-
sion. Future work focuses on scalability, multimodal data
integration, and privacy protection using federated learn-
ing.

Maneriker et al.[l7] introduce URLTran, a phish-

Informatica 49 (2025) 57-68 59

ing URL detecting transformer-based model. URLTran
achieves a true positive rate (TPR) of 86.80% at a 0.01%
false positive rate (FPR), a 21.9% improvement over past
DL models such as URLNet by adjusting BERT and
RoBERTa and including domain-specific pre-training. Af-
ter adversarial fine-tuning, the model is tested against ad-
versarial attacks like homoglyph replacements and com-
pound word splitting, hence proving increased resilience.

Mankar et al.[[1§]conducted a comparative evaluation of
machine learning models for malicious URL detection. The
study utilized a dataset of over 500,000 URLs and examined
models including decision trees, random forests, KNN, and
Naive Bayes. Feature engineering was employed to trans-
form URLs into numeric features for model training. The
Random Forest and Extra Trees ensemble models achieved
the best performance, demonstrating over 91% accuracy in
distinguishing between benign and malicious URLs. The
findings indicate the potential of ensemble machine learn-
ing techniques for automated malicious URL detection.

The following table [l| summarizes those findings of sev-
eral research studies.

3 Methodology

The proposed methods are designed to develop innovative
models for accurately detecting malicious websites. The
implementation details, dataset, and summary of the pro-
posed models are all detailed in this section.

3.1 Data collection

In this research, we evaluated the proposed models using a
malicious URL dataset sourced from [[19]. The dataset con-
sists of a total of 651,191 URLs, categorized into four dis-
tinct classes: benign, defacement, phishing, and malware.
The primary goal is to use this dataset to develop ML and
DL models capable of identifying malicious URLSs to pre-
vent some of cybersecurity threats.

Distribution of URLSs

Here is the distribution of URLSs in the dataset as shown in
the table [J:

The dataset is curated from five different sources to en-
sure a comprehensive collection of URL examples. The
sources include ISCX-URL-2016, Malware Domain Black-
list, Faizan Git Repository, Phishtank, and PhishStorm
datasets [20]. The dataset is structured in a tabular format
with two main columns: URL and Label. The URL column
contains the actual web addresses, and the Type column
indicates the category of each URL (benign, defacement,
phishing, or malware) as in Figure [I.

60

Informatica 49 (2025) 57-68

Table 1: Literature review

M. Khaldi et al.

Work Dataset Methodology Feature Engineering |Hyperparams |Results (%) Limitations
optimization
[[7], 2023 |Kaggle, GitHub, BERT+self- RF + SMOTE - Accl: 98.78, Acc2:|Limited zero-day
ISCX-URL-2016 |attention mech- 96.71 , Acc3: 99.98 |attack handling
anisms+Classifier respectively
[89],2021 |GitHub, Kaggle,|DCNN Word Embedding |- Acc: 98.7, F1:|High computational
Alexa Based on Character 98.7, P: 99.3, R:|cost
Embedding 98.1
[6], 2024 [ISCX-URL-2016 |XGBoost Firefly Algorithm +|Partical Swarm|Binary Acc: 98.42,|Needs real-world
CFSSubsetEval Optimiza- Multi Acc: 98 validation
tion(PSO)
[[10], 2021 |ISCX-URL-2016 |ML (RF, KNN,|Lexical Features + Fea-|— Acc: 99.57,P:99.7,|Ignores content-
SVM, LR) ture Selection R: 99.46, F1: 99.58 |based features
[L1], 2022 |CICMalDroid BERT FAST extractor, BRIEF |— Acc: 99.16, F1:|Possible flaws in-
2020+CIC - descriptor 98.44 clude the method’s
InvesAndMal2019 computational
complexity
[12],2022 |Kaggle BiGRU Word2Vec + Dropout +|— Acc: 97.92, P:|Needs optimization
Attention 98.34, R: 95.53,
F1: 96.91
[8], 2024 |Web Phishing| BILSTM +|Word2Vec + Feature|— Acc: 99.78, P:|Struggles with
Dataset HABCNN Extraction 98.97, R: 99.35,|shortened URLs
F1: 98.99
[13],2023 |[ISCX-URL2016 CNN, LSTM, |SelectKBest + Min-|— Acc: 99.2, P: 99, R:|Ignores URL activ-
CNN-LSTM MaxScaler 99.2, F1: 99.2 ity status
[[17],2021 |Microsoft BERT, RoBERTa |WordPiece Tokeniza-|— Acc: 99.67, Fl1:|Advanced rein-
Edge+Internet tion 99.71 forcement learning-
Explorer telemetry based attacks could
weaken the model
[L4],2023 [651,191 URLs|ML (Random For-|Feature extraction| Manual tuning |[ACC: RF: 96.6%, |basic hyperparame-
(Kaggle) est, LightGBM, |(counts, lengths, lexical LGBM: 95.6%, | ter optimization
XGBoost) tokens), PCA XGBoost: 93.2%
[L5],2022 |Various sources | CTI-MURLD: URL content features,|Grid Search RF + GS: 97.25%|Complex architec-
(URL, Google CTI, | Two-stage ensem- | Google-based CTI, accuracy, 97.26% ture, requires exten-
Whois CTI) ble (RF + MLP)|Whois-based CTI, N- recall, 97.36% |sive feature engi-
with BFGS opti-|gram, TF-IDF, Mutual precision neering
mization Information for feature
selection
[16], 2024 |Dataset of URLs |Improved M-BERT [Implicit feature ex-|— Precision: 94.42% |Scalability and
model using Trans-|traction via DL multimodal data
former encoders (Transformer-based) integration not yet
addressed, future
work needed

3.2 Bidirectional encoder representations

from transformers (BERT)

It is a pre-trained language model trained on 3.3 billion En-
glish tokens using two objectives: masked language mod-

eling and next sentence prediction. It uses special tokens

like [CLS] and [SEP] to structure inputs and enable context-
aware understanding. The base version of BERT consists of

12 transformer layers with 12 attention heads each, and can
be fine-tuned to achieve high performance across various

Hyperparameter Optimization for Malicious URL Detection...

Table 2: Distribution of URLSs in the dataset

Type Total Percentage
Benign URLs 428,103 65.72%
Defacement URLs | 96,457 14.81%
Phishing URLs 94,111 14.45%
Malware URLs 32,520 5.00%

url label ﬁ

0 bricloud.combr phishing

1 mp3raid.com/music/krizz_kaliko.html benign

2 bopsecrets.org/rexroth/cr/1.htm henign

3 hitp://www.garage-pirenne.be/index.php?option=... defacement

4 http://adventure-nicaragua.net/indexphp?optio... defacement

Figure 1: URL dataset

NLP tasks such as sentiment analysis and question answer-
ing [21].

3.3 Light gradient boosting machine
(LightGBM)

It is a decision tree-based boosting algorithm designed to
be fast and efficient on large datasets. It uses two main
techniques: GOSS (Gradient-based One-Side Sampling)
to reduce computational costs, and EFB (Exclusive Fea-
ture Bundling) to reduce dimensionality. These approaches
allow LightGBM to be faster than conventional methods
while maintaining high accuracy [22].

This two algorithms have been used in the proposed clas-
sification model to identify malicious websites with the
highest accuracy.

3.4 Data preprocessing

Preprocessing is a critical step in any classification task,
especially in the context of unbalanced text data such as
malicious URLs. Our preprocessing pipeline was carefully
designed to meet the specific requirements of each of the
two models (BERT and LightGBM), while ensuring over-
all consistency in data preparation.

Cleaning: URLs were first converted to lowercase to stan-
dardize case. Duplicates were then removed, resulting in a
1.56% reduction in the total data volume.

Target Encoding: The label corresponding to the URL
type (benign, phishing, malware, defacement) was pro-
cessed using LabelEncoder strategy to transform classes

Informatica 49 (2025) 57-68 61

into integers
URL Tokenization: The vector representation of URLs
was adapted to the two methods we used:

— For BERT model: Tokenization was performed using
the tokenizer bert-base-uncased, with a maximum
sequence length set to 256 tokens. This step includes
truncation, masking of special tokens [CLS], [SEP],
and padding.

— For LightGBM model: TF-IDF vectorization [23]
(Term Frequency Inverse Document Frequency:
which is a traditional text analysis method that
determines the importance of a word by calculating its
frequency in the document and its inverse document
frequency across the document set [24]) was applied,
using character n-grams of size 1 to 3 filters out
overly frequent terms (max_df = 0.85) and rare terms
(min_df = 10). The maximum number of features
(max_features) was set to 120,000, allowing
the extraction of relevant syntactic patterns while
maintaining a manageable vector space.

3.4.1 Dataset partitioning

A stratified partitioning of the dataset was performed to pre-
serve class distributions across all subsets as shown in fig-
ure P The data was initially divided into two main sets:
85% for model development and 15% as a held-out test set
used exclusively for final evaluation. To reduce compu-
tational cost during hyperparameter optimization (HPO), a
stratified 20% subset of the 85% development set was sam-
pled. HPO was performed on this subset. Once optimal
hyperparameters were identified, the final models were re-
trained on the full 85% development set and evaluated only
on the untouched 15% test set, ensuring that performance
metrics reflect true generalization ability.

Preprocessed
Dataset

Train
+
Validation
(85 %)

15 % for final
model
Testing

100 % for
final model
Training

20 % for
HPO

Figure 2: Dataset spliting

62 Informatica 49 (2025) 57-68

3.5 Optuna

A modern optimization framework that efficiently searches
for optimal hyperparameters using pruning and dynamic
trial allocation, its architecture is shown in Figure

Optuna is an emerging tool with three advantages for
model selection or hyperparameters determination. The
first advantage Optuna provides is the define-by-run style
API. The second advantage is an efficient pruning and sam-
pling mechanism. The third advantage is that it is easy to
set up.[25]

This approach uses the Tree-structured Parzen Estimator
(TPE) algorithm, which is an efficient Bayesian approach to
optimize continuous and discrete search spaces. This algo-
rithm constructs a probability distribution of hyperparame-
ters by distinguishing promising configurations from poor
performers[24].

3.6 Random search

The random search method involves testing a set num-
ber of random combinations of hyperparameters, followed
by evaluating their performance and selecting the best re-
sults. This approach is efficient and works well with high-
dimensional data. The process consists of several steps:
first, the number of iterations (n_iters) is set; then, all pa-
rameter values are initialized to zero. In each iteration, the
parameter values are randomly adjusted, and the model is
trained on the data. The classifications are tested using real
data to evaluate the performance, and the best parameter
values and classification results are saved for future use
[28].

4 Classification methods

Our work shows how hyperparameter optimization affects
DL (BERT) and ML (LightGBM) models, which are fre-
quently used but rarely fine-tuned. Our approach to opti-
mization is rigorous: for BERT, we use Optuna to tune key
hyperparameters like learning rate, batch size, number of
epochs and dropout; for LightGBM, we use random search
to adjust tree depth, learning rate, number of leaves and oth-
ers. To reduce computational cost, we performed hyper-
parameter optimization (HPO) on a stratified 20% subset
drawn from the 85% training/validation portion of the data.
This ensures both efficiency and class representativity. The
optimal hyperparameters were then applied to retrain mod-
els on the full 85% development set. Final evaluation was
conducted on the held-out 15% test set, never seen during
training or optimization.

5 Hyperparameter optimization
Hyperparameter optimization is a crucial step in the train-

ing process for ML and DL models. Careful hyperparam-
eter configuration can significantly improve a model’s per-

M. Khaldi et al.

formance, particularly in unbalanced classification contexts
such as malicious URLs. In this study, we explored two
distinct optimization strategies tailored to the nature of the
models used.

5.1 BERT-Optuna model

Our first model is based on the BERT architecture and is
specifically designed for malicious URL classification. We
use the bert-base-uncased variant, which contains 110 mil-
lion parameters and has proven effective for sequence clas-
sification tasks. To enhance performance, we applied a
Bayesian hyperparameter optimization approach using Op-
tuna’s Tree-structured Parzen Estimator (TPE) algorithm,
which efficiently explores the search space. The objective
of the optimization was to maximize the weighted F1-score,
a suitable metric given the class imbalance in our dataset.
The model architecture is illustrated in Figure J.

The hyperparameter search space included the follow-
ing: learning rate, batch size, dropout rate, and number of
epochs. Their respective ranges and results are presented
in Table B. In response to the structural characteristics of
URLs and the imbalance in class distribution, we also intro-
duced several adaptations. Notably, we used automatically
computed class weights, inversely proportional to class fre-
quencies, within the CrossEntropyLoss function to improve
minority class recognition. Additionally, we limited input
sequences to 256 tokens, striking a balance between infor-
mation preservation and computational efficiency.

5.2 LightGBM-RandomSearch model

Our second approach presents a comparative study of two
LightGBM-based architectures for malicious URL classi-
fication, highlighting the importance of preprocessing and
hyperparameter optimization. Initially, we evaluated a
baseline LightGBM model using default parameters, cou-
pled with carefully tuned TF-IDF vectorization settings. To
enhance performance and mitigate overfitting, we then ap-
plied systematic hyperparameter tuning via Randomized-
SearchCV, enabling efficient exploration of a large search
space with lower computational overhead compared to ex-
haustive methods. The model architecture is illustrated in
Figuref.

The optimization process focused on key parameters:
number of leaves and maximum tree depth to manage
model complexity, learning rate and number of estimators
to influence training dynamics, feature fraction and bag-
ging_fraction for subsampling and robustness. We also
tuned the number of boosting iterations to control overall
complexity. The full range of explored hyperparameters
and their optimal values is detailed in Table f. Overall, the
final model achieved a strong balance between expressive-
ness and generalization.

Hyperparameter Optimization for Malicious URL Detection...

Informatica 49 (2025) 57-68 63

Workers
Optuna API
Suggest -
1 Algo - suggest ()

So e

s eI should prune ()

= Algo

(7 0]
| reportO
I Objective
| return () Function

Figure 3: Overview of Optuna’s system design [27]
Table 3: Hyperparameters optimization for BERT model
Hyperparameter Value range Optimal value

Learning rate

Batch size
Dropout
Number of epochs

{16, 32}
[0.1, 0.5]

log-uniform between 1 X
1075 and 5 x 10~°

4 to 10 with early stopping 6

3.49312729495079 x 10~°

32
0.1479659107702988

6 Experimental setup

In this section, we look at the experimental setup.In sub-
section B.1], the performance evaluation metrics that will be
used to judge how well the suggested method works are ex-
plained. Subsection b.7 explains how the experiment was
set up and how it was done.

6.1 Evaluation metrics

In the experiments, to improve the evaluation effectiveness
ofthe proposed models, we utilized several recognized met-
rics, namely the F-measure, precision, recall, classification
accuracy (ACC) and ROC-AUC (Area under the Receiver
Operator Characteristic Curve). In confusion matrix, TP
represents entries that are appropriately categorized as ma-
licious sites. FN is the number of entries mistakenly classi-
fied as harmful websites.The FP represents the mistakenly
identified harmful sites. TN is the number of successfully
detected authentic websites.

The classification accuracy (ACC) measures the proxim-
ity among assessments of projected records and the overall
count of valid and harmful websites. The value of ACC is
measured by Eq.[]

TP+ TN

A =
ce TP+TN+FP+FN

(1

Precision: It is the proportion of webpages the suggested
model successfully identified as harmful. It shows the pro-
posed model’s correctness. The value of precision is mea-

sured using Eq.p)

TP

_— 2
TP+ FP @

Precision =

Recall: It indicates the proportion of harmful websites
that were accurately identified as harmful. It shows the
wholeness. It calculated using Eq.f

TP

Recall = m

3

F-measure: It is defined as the harmonic mean of preci-
sion and recall.It calculated using Eq.4

2 x Precision x Recall

“4)

F — measure =
Preciosion + Recall

FAR: FAR is for False Acceptance Rate. It calculated
using Eq.§
B FP 5
~ FP+TN)

AUC-ROC (Area under the Receiver Operator Char-
acteristic Curve): lets you check how well the predicted
classes match up with the real classes. If the AUC-PR score
is high, it means that the model can tell the difference be-
tween negative and positive case points better. Most of the
time, AUC values are shown on a range from 0 to 1, where:

FAR

— AUC = 0.5 shows that the model performs similarly to
random guessing.

— AUC =1 indicates that the classifier differentiates be-
tween negative and positive instances.

64 Informatica 49 (2025) 57-68

BERT Tokenizer

M. Khaldi et al.

Optuna Hyperparameter
Optimization (20% of the
dataset)

Initialization of space
search within the
Objective Function

DATASET
- Initialization
| Data Preparation —| Tokenization |—| parameters of [—-
- Bert model

n_trials=100

malicious_phish.csv

Lowercase URLs

Remove duplicates

Label Encoding
(Splitting Data:85%/15%)

Parameters

BERT-Optuna

|
Update the best mode
model if this trial is J
the best
Check

termination

creteria

Tracking
F1-score(if f1 >
best_f1)

Final training on the
full dataset to get the
final BERT-Optuna
model

Figure 4: The proposed BERT approach

Table 4: Hyperparameters optimization for LightGBM model

Hyperparameter Value range Optimal value
num_leaves [30, 80] 68

max_depth [5, 15] 10

learning rate [0.1,0.25] 0.10560222831238217
n_estimators [1800, 3000] 2443

feature fraction [0.5, 0.9] 0.6091500749817148
bagging fraction [0.5, 1] 0.959083326056901
max_bin [63, 255] 205

min_data_in_leaf [5,30] 23

num_iterations [10, 1000] 912

6.2 System setup

The optimization and training of the BERT model were car-
ried out on a server equipped with dual NVIDIA RTX 3060
GPUs, each offering 12 GB of dedicated memory, utilizing
PyTorch 1.12 and Transformers 4.24 to fully exploit CUDA
acceleration. The LightGBM model was trained and opti-
mized in a Google Colab environment with access to 334
GB of RAM. Although the runtime type supported TPU ac-
celeration, LightGBM computations were executed on the
CPU, as the library does not support TPU-based processing.
A range of Python libraries, including Scikit-learn, NumPy,
SciPy, Pandas, and Matplotlib, were employed to develop
and evaluate the proposed models.

7 Experimental results and
discussion

The experimental results and performance metrics of Bert
with Optuna optimization model, LightGBM with tunned
TF-IDF model and LightGBM with Random Search
optimization and tunned TF-IDF are shown in Table [and
Figure {.

All the results reported in this section were obtained on
the 15% hold-out test set, which was never used during
hyperparameter optimization or training. This ensures that
the metrics accurately reflect the model’s generalization
performance.

7.1 Performance analysis

Bert-Optuna achieved the highest results with 99.02% F1-
score, 98.84% accuracy, an AUC-ROC of 0.9982 and

Hyperparameter Optimization for Malicious URL Detection...

DATASET

Informatica 49 (2025) 57-68 65

Random Search
Algorithm (20% of the
dataset)

Initialization of

-‘ Data Feature | ISplittingDatal | ;gitalrﬂ:tﬁ:gf
- preparation Engineering 80%/20% LightGBM model

parameter space

N Parameters

LightGBM-RS
model

TF-IDF Vectorization

Character n-grams

Lowercase URLs

Remove duplicates

Label Encoding

i

100 iterations

Check
termination

creteria

Final training on the
full dataset to get the
final LightGBM-RS
model

Figure 5: The proposed LightGBM framework

False Rate Alarm of 0.005, outperforming all other models.
LightGBM-Tfidf-RandomSeach followed with 98.46% ac-
curacy, 98.45% Fl-score, and an AUC-ROC of 0.998,
showing clear gains from Random Search optimization.
Tfidf-LightGBM also performed well, reaching 97.63% ac-
curacy and 97.61% F1-score using only TF-IDF tuning.
These results highlight the impact of optimization and pre-
processing on model performance.

7.2 Performance comparison with existing
studies

Compared to the first part of Su and Su[7] on the Kaggle
dataset, , our Optuna-BERT model improves the F1-score
from 98.57% to 99.02% so reduces the false alarm rate.
Similarly, in comparison to the work by R, Patil, and Mo-
hana [|14], our Tfidf-LightGBM and Tfidf-RandomSearch-
LightGBM models show clear improvements, with accu-
racy rising from 95.6% to 98.46% and a higher AUC-ROC
score. These comparisons confirm that our optimized mod-
els offer significant advancements over existing approaches
in malicious URL detection.

7.3 Why did BERT outperform LightGBM

and state-of-the-art models?

BERT’s performance superiority stems from its deep con-
textual understanding of URL text sequences. Unlike
LightGBM, which relies on static vectorized features (TF-
IDF), BERT captures both token-level and sentence-level
semantics. This makes it particularly effective in recogniz-
ing subtle variations that are common in malicious URLSs.

Further, using a longer token length (256 vs. 128 in ear-
lier studies) allowed BERT to retain more contextual infor-
mation from long or obfuscated URLs. The optimized con-
figuration — a lower dropout (0.15) and larger batch size
(32) — helped enhance generalization and stability.

7.4 Role of hyperparameter optimization

Hyperparameter tuning played a pivotal role. For BERT,
Optuna selected a learning rate of 3.462 x 1075 and a
dropout of 0.147, with early stopping after 6 epochs to pre-
vent overfitting. These adjustments boosted model stability
and performance, particularly on minority classes.

For LightGBM, random search optimization increased its
capacity by selecting a larger number of leaves (68) and a
tree depth of 10. At the same time, reducing the feature
fraction to 0.61 improved generalization by encouraging di-
versity across trees. These improvements closed a signifi-
cant part of the performance gap with BERT.

7.5 Handling class imbalance: per-class
performance

The dataset exhibits class imbalance, with benign URLs
overrepresented and phishing/malware underrepresented.
This imbalance affected model sensitivity to minority
classes. Table B provides a breakdown of per-class F1-
scores:

BERT-Optuna achieved consistently high F1-scores across
all classes, outperforming other models especially on the
more challenging classes like phishing (97.11%) and mal-

66 Informatica 49 (2025) 57-68

M. Khaldi et al.

Table 5: Performance comparison of malicious URL detection approaches

Research Dataset Model Accuracy | Precision | Recall F1 score
Su and Su [f7] Malicious urls | Fine-tuning BERT + Classifier | 98.78% 99.12% 98.02% 98.57%
dataset [19]
R, Patil, and Mohana | Malicious urls | Light GBM Classifier 95.6% 95% 96% 95%
(4] dataset [[19]
This study Malicious urls | TF-IDF LightGBM 97.63% 97.61% 97.63% 97.61%
dataset [[19]
Malicious urls | TF-IDF Random-Search Light- | 98.46% 98.45% 98.46% 98.45%
dataset [[19] GBM
Malicious urls | OptunaBERT 98.84% 99.20% 98.84 % 99.02%
dataset [[19]
B OptunaBert B THd flLightGBM THidfRandomSearc hlLightGBM
oo £ F o s W oe BB
s8¢ Bx¥ 3s¥ f5% BBE
2 852 a5 % R - §88
=
W
=
o
—
|..u
2
2
=
g
= g E [41]
E 888
o oo
ECISION RECALL F1-SCORE AUC-ROC FAR

EVALUATION METRICS

Figure 6: Comparison of the proposed models’ evaluation metrics

ware (96.14%). This reflects the advantage of transformer-
based architectures in capturing contextual features. In
contrast, LightGBM-based approaches showed slightly
lower F1 performance on phishing and malware, indicat-
ing some limitations in handling complex or possibly less-
represented patterns.

8 Conclusion and future work

Malicious websites pose significant cybersecurity threats
by targeting users to steal sensitive data and disrupt online

activity. This study proposed a novel approach combining
machine learning (ML) and deep learning (DL) techniques
to effectively detect and classify such threats. We devel-
oped and evaluated two optimized models: (1) a BERT-
based classifier enhanced with the Optuna hyperparame-
ter optimization framework, and (2) a LightGBM model
fine-tuned via RandomizedSearchCV to efficiently explore
a wide hyperparameter space.

Experiments conducted on a real-world dataset contain-
ing over 651,000 URLs demonstrated the effectiveness of
our approach. The Optuna-BERT model achieved an F1-

Hyperparameter Optimization for Malicious URL Detection...

Informatica 49 (2025) 57-68 67

Table 6: Per-class performance (F1-score) comparison

Model Benign Defacement Phishing Malware
BERT-Optuna 99.32% 99.76% 97.11% 96.14%
LightGBM-TFIDF-RandomSearch 99% 99.98% 97% 95%
TFIDF-LightGBM 99% 99% 96% 92%

score of 99.02%, while the optimized LightGBM model
reached 98.45% accuracy. These results outperformed sev-
eral existing benchmark methods in terms of F1-score, false
alarm rate, and AUC-ROC.

The study highlights the importance of combining ad-
vanced feature representations, contextual language mod-
eling, and systematic hyperparameter optimization to en-
hance detection performance. It also shows that properly
optimized classical models like LightGBM can still provide
competitive results.

Future work will focus on extending the framework to
detect evolving cyber threats in more diverse environments,
such as [oT ecosystems. We also plan to investigate ensem-
ble techniques and alternative feature extraction strategies
to further improve robustness, scalability, and generaliza-
tion across threat types and domains.

References

[1] Abdul Basit et al. “A comprehensive survey of Al-
enabled phishing attacks detection techniques”. In:
Springer Science 2020. https://doi.org/10.
1007/s11235-020-00733-2.

[2] Minal Chawla and Siddarth Singh Chouhan. “A
Survey of Phishing Attack Techniques”. In: 2014.
http://doi.org/10.5120/16197-5460.

[3] A. Saleem Raja, R. Vinodini, and A. Kavitha. “Lexi-
cal Features-Based Malicious URL Detection Using
Machine Learning Techniques”. In: Materials To-
day: Proceedings 2021. https://doi.org/10.
1016/ .matpr.2021.04.041.

[4] David L. Krause. “The $1.4 Billion Bybit Hack: Cy-
bersecurity Failures and the Risks of Cryptocurrency
Deregulation”. In: 2025. https://doi.org/10.
2139/ssrn.5150171.

[5] Saeid Sheikhi. “An effective fake news detection
method using WOA-xgbTree algorithm and content-
based features”. In: Elsevier 2021. https://doi.
org/10.1016/j.aso0c.2021.107559.

[6] Saeid Sheikhi and Panos Kostakos. “Safeguarding
cyberspace: Enhancing malicious website detection
with PSO-optimized XGBoost and firefly-based fea-
ture selection”. In: Computers & Security 2024.
https://doi.org/10.1016/j . cose.2024.
103885..

(7]

(8]

(9]

[10]

[11]

[14]

[15]

Ming-Yang Su and Kuan-Lin Su. “BERT-Based Ap-
proaches to Identifying Malicious URLs”. In: Sen-
sors 23 2023, p. 8499. https://doi.org/10.
3390/s23208499.

Manika Nanda, Mala Saraswat, and Pankaj Kumar
Sharma. “Enhancing cybersecurity: A review and
comparative analysis of convolutional neural net-
work approaches for detecting URL-based phishing
attacks”. In: Elsevier e-prime 2024. https://doi.
org/10.1016/j.prime.2024.100533.

Zhigiang Wang et al. “A Malicious URL Detection
Model Based on Convolutional Neural Network”. In:
Hindawi Secur. Commun. Networks 2021. https :
//doi.org/10.1155/2021/5518528.

Brij B. Gupta et al. “A Novel Approach for Phish-
ing URLs Detection Using Lexical-Based Machine
Learning in a Real-Time Environment”. In: Com-
puter Communications 2021. https://doi.org/
10.1016/j.comcom.2021.04.023.

Farhan Ullah et al. “Explainable Malware Detec-
tion System Using Transformers-Based Transfer
Learning and Multi-Model Visual Representation”.
In: [talian National Conference on Sensors 2022,
https://doi.org/10.3390/s22186766.

Tiefeng Wu et al. “Malicious URL Detection Model
Based on Bidirectional Gated Recurrent Unit and
Attention Mechanism”. In: applied Sciences 2022.
https://doi.org/10.3390/app122312367.

Zainab Alshingiti et al. “A Deep Learning-Based
Phishing Detection System Using CNN,LSTM, and
LSTM-CNN?”. In: electronics MDPI 2023. https :
//doi.org/10.3390/electronics12010232.

U. S.D. R, Anusha Patil, and Mohana Mohana. “Ma-
licious URL Detection and Classification Analysis
using Machine Learning Models”. In: 2023 Inter-
national Conference on Intelligent Data Commu-
nication Technologies and Internet of Things (ID-
CloT) 2023. https : / / doi . org/ 10 . 1109 /
IDCIoT56793.2023.10053422.

Mohammed Alsaedi et al. “Cyber Threat
Intelligence-Based Malicious URL Detection
Model Using Ensemble Learning”. In: Sensors
2022. https://doi.org/10.3390/522093373.

https://doi.org/10.1007/s11235-020-00733-2
https://doi.org/10.1007/s11235-020-00733-2
http://doi.org/10.5120/16197-5460
https://doi.org/10.1016/j.matpr.2021.04.041
https://doi.org/10.1016/j.matpr.2021.04.041
https://doi.org/10.2139/ssrn.5150171
https://doi.org/10.2139/ssrn.5150171
https://doi.org/10.1016/j.asoc.2021.107559
https://doi.org/10.1016/j.asoc.2021.107559
https://doi.org/10.1016/j.cose.2024.103885.
https://doi.org/10.1016/j.cose.2024.103885.
https://doi.org/10.3390/s23208499
https://doi.org/10.3390/s23208499
https://doi.org/10.1016/j.prime.2024.100533
https://doi.org/10.1016/j.prime.2024.100533
https://doi.org/10.1155/2021/5518528
https://doi.org/10.1155/2021/5518528
https://doi.org/10.1016/j.comcom.2021.04.023
https://doi.org/10.1016/j.comcom.2021.04.023
https://doi.org/10.3390/s22186766
https://doi.org/10.3390/app122312367
https://doi.org/10.3390/electronics12010232
https://doi.org/10.3390/electronics12010232
https://doi.org/10.1109/IDCIoT56793.2023.10053422
https://doi.org/10.1109/IDCIoT56793.2023.10053422
https://doi.org/10.3390/s22093373

68

[16]

[17]

(18]

[19]

[20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

Informatica 49 (2025) 57-68

Boyang Yu et al. “Efficient Classification of Mali-
cious URLs: M-BERT—A Modified BERT Variant
for Enhanced Semantic Understanding”. In: /EEE
Access 2024. https : //doi . org/ 10 . 1109/
ACCESS.2024.3357095.

Pranav Maneriker et al. “URLTran: Improving
Phishing URL Detection Using Transformers”. In:
arXiv 2021. https: //arxiv. org/abs /2106 .
05256.

Nikhilesh P Mankar et al. “Comparative Evaluation
of Machine Learning Models for Malicious URL De-
tection”. In: 2024 MIT Art, Design and Technology
School of Computing International Conference (MI-
TADTSoCiCon) 2024. https : //doi . org/ 10.
1109/MITADTS0CiCon60330.2024.10575452.

Malicious URLs Dataset. https://www.kaggle.
com/datasets/sid32laxn/malicious-urls-—
dataset. Accessed: 26 August 2023.

Hafiz Muhammad Junaid Khan. “A MACHINE
LEARNING BASED WEB SERVICE FOR MALI-
CIOUS URL DETECTION IN A BROWSER”. MA
thesis. Electrical and Computer Engineering Depart-
ment Hammond, Indiana, 2019.

Kevin Clark et al. “What Does BERT Look At? An
Analysis of BERT’s Attention”. In: arXiv preprint
arXiv:1906.04341 2019. https://doi.org/10.
18653/v1/W19-4828.

Guolin Ke et al. “LightGBM: A Highly Efficient
Gradient Boosting Decision Tree”. In: Advances in
Neural Information Processing Systems 30 2017.
https://dl.acm.org/doi/10.5555/3294996.
3295074.

Shahzad Qaiser and R. Ali. “Text Mining: Use of TF-
IDF to Examine the Relevance of Words to Docu-
ments”. In: International Journal of Computer Ap-
plications 2018. https://doi.org/10.5120/
1jca2018917395.

Bing Wen et al. “File Compliance Detection Using a
Word2Vec-Based Semantic Similarity Framework”.
In: Informatica 49.18 2025, pp. 51-66. https://
doi.org/10.31449/inf .v49i118.7421.

Jung-Pin Lai et al. “Tree-Based Machine Learning
Models with Optuna in Predicting Impedance Values
for Circuit Analysis”. In: Micromachines 14 2023.
https://doi.org/10.3390/mi14020265.

Saeid Hanifi et al. “Advanced hyperparameter
optimization of deep learning models for wind
power prediction”. In: Renewable Energy 221 2024,
p. 119700. https : //doi . org/10.1016/j .
renene.2023.119700.

Takuya Akiba et al. “Optuna: A Next-generation Hy-
perparameter Optimization Framework”. In: CoRR
abs/1907.10902 2019. https : //doi.org/10.
48550/arXiv.1907.10902.

(28]

M. Khaldi et al.

Dimas Aryo Anggoro and Salsa Sasmita Mukti.
“Performance Comparison of Grid Search and Ran-
dom Search Methods for Hyperparameter Tuning
in Extreme Gradient Boosting Algorithm to Pre-
dict Chronic Kidney Failure.” In: International Jour-
nal of Intelligent Engineering & Systems 14.6 2021.
https : //doi . org/ 10 . 22266 /ijies2021 .
1231.19.

https://doi.org/10.1109/ACCESS.2024.3357095
https://doi.org/10.1109/ACCESS.2024.3357095
https://arxiv.org/abs/2106.05256
https://arxiv.org/abs/2106.05256
https://doi.org/10.1109/MITADTSoCiCon60330.2024.10575452
https://doi.org/10.1109/MITADTSoCiCon60330.2024.10575452
https://www.kaggle.com/datasets/sid321axn/malicious-urls-dataset
https://www.kaggle.com/datasets/sid321axn/malicious-urls-dataset
https://www.kaggle.com/datasets/sid321axn/malicious-urls-dataset
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/W19-4828
https://dl.acm.org/doi/10.5555/3294996.3295074
https://dl.acm.org/doi/10.5555/3294996.3295074
https://doi.org/10.5120/ijca2018917395
https://doi.org/10.5120/ijca2018917395
https://doi.org/10.31449/inf.v49i18.7421
https://doi.org/10.31449/inf.v49i18.7421
https://doi.org/10.3390/mi14020265
https://doi.org/10.1016/j.renene.2023.119700
https://doi.org/10.1016/j.renene.2023.119700
https://doi.org/10.48550/arXiv.1907.10902
https://doi.org/10.48550/arXiv.1907.10902
https://doi.org/10.22266/ijies2021.1231.19
https://doi.org/10.22266/ijies2021.1231.19

	Introduction
	Related research
	Methodology
	Data collection
	Bidirectional encoder representations from transformers (BERT)
	Light gradient boosting machine (LightGBM)
	Data preprocessing
	Dataset partitioning

	Optuna
	Random search

	Classification methods
	Hyperparameter optimization
	BERT-Optuna model
	LightGBM-RandomSearch model

	Experimental setup
	Evaluation metrics
	System setup

	Experimental results and discussion
	Performance analysis
	Performance comparison with existing studies
	Why did BERT outperform LightGBM and state-of-the-art models?
	Role of hyperparameter optimization
	Handling class imbalance: per-class performance

	Conclusion and future work

