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A neurodegenerative disorder called Parkinson’s disease (PD) is identified at the increasing loss of
neurons that produce dopamine in the substantia nigra region of human brain. It significantly impairs
motor and non-motor functions, thereby diminishing the overall quality of life in affected individuals. A
novel framework is proposed for detecting early stage of PD, employing Deep Neuro-Fuzzy System
(DNFS) optimized with Particle Swarm Optimization (PSO) and Genetic Algorithm (GA). Data utilized
for this analysis are extracted from 16 image slices showing striatal uptake content in the striatum, named
as volume-containing DaTscan image slices (VCDIS) taken from the database called Parkinson’s
Progression Markers Initiative (PPMI). The shape and texture characteristics of segmented VCDIS are
utilized as features which are combined with Striatal biding ratio (SBR) to distinguish Healthy Individuals
(HI) from early-stage PD (EPD). The dataset includes values of 620 DaTscan images with SBR values:
430 from EPD cases and 190 from HI. The effectiveness of the framework is evaluated using 70:30 and
80:20 split ratios, based on metrics such as accuracy, loss, F1 score, precision, and recall. The DNFS-
PSO model is presented an impressive accuracy of 98.77% and an error rate of 0.0199 for the chosen
features using a 70:30 data split. The outcomes of the proposed model potentially aid clinicians in prompt
diagnosis.

Povzetek: Za zgodnje odkrivanje Parkinsonove bolezni iz SPECT (DaTSCAN) je uveden globoki sistem
(DNFS), ki zdruzi CNN-izbor znacilk in fuzzy-pravila, optimizirana s PSO in GA, na 16-slojnih VCDIS

(PPM]I). Znacilke: oblika/tekstura + SBR.

1 Introduction

Parkinson’s Disease (PD) is an advanced neurological
disorder impairing the central nervous system (CNS) at
the degeneration of dopaminergic neurons within
substantia nigra in the midbrain. It leads to a considerable
reduction or complete depletion of dopamine, a
neurotransmitter essential to regulate motor control and
coordinate communication between the brain and the
limbs. PD is generally recognized as a age-related
disorder, with an estimated global prevalence of
approximately 1% among individuals over the age of 55
[1-4].

Motor and non-motor symptoms are the clinical indicators
to identify PD. Tremors, shuffled gait, stooped posture,
Freezing of Gait (FoG), dysphonia, and bradykinesia are
categorized as the primary motor symptoms. Whereas
anosmia affecting the sense of smell, fatigue, disrupted
sleep patterns, fluctuations in body weight, alterations in
mood and cognitive function, coronary artery

complications, as well as digestive tract problems are non-
motor symptoms which become apparent only in the later
stages. As these symptoms are not found in the early stage
of individuals, detecting PD in its early stage (EPD) is
exceptionally challenging [5]. To address this, a novel and
resourceful approach is required to discriminate between
HI and EPD [6-8], and being done using Single Photon
Emission Computed Tomography (SPECT) images which
are known as DaTscan images [8].

DaTscan image slices are employed to quantitatively
measure dopamine transporter levels in putamen and
caudate regions of the brain, providing a comprehensive
assessment. Traditionally, trained radiologists have
performed standard examination for assessing DaTscan
images. These images are taken from Parkinson’s
Progression Markers Initiative (PPMI) database. The
database is an international and multicenter database that
tracks the disease, its progression and conducts regular
assessments of patients to identify new biomarkers that
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assist experts in diagnosing the disease [9]. Thus, these
images significantly help in identifying EPD.

The methods of identifying EPD with the help of SPECT
images initially rely on Visual Inspection (VI) of the
striatum’s appearance. This approach is time-consuming
and lacked reliability, with experts often differing in their
observations, leading to variability in both individual and
collective findings. VI offers around 5% of false rate in
diagnosing DaT scan Images [10]. Efforts to enhance
disease identification are accelerated by extracting
features from a 2D slice and subsequently from averaged
image slices that achieves 97% of accuracy [11]. Later,
changes in DaT content and striatum shape during the
early stages are monitored through investigation of 3D
images consist of 91 slices [12]. However, the complexity
of 3D image investigation received limited attention from
clinical practitioners, prompting the necessity of simpler
and more accurate technique for EPD identification.
Anita et al. [13] suggested a simplified model to address
the above said diagnostic challenges, utilizing 12 image
slices of a SPECT image as a single slice and records
98.23% of classification accuracy. However, this method
falls short in effectively diagnosing EPD, as it leaves
several slices that are essential for capturing the complete
shape and structure of the striatum. Hence, a novel
approach is introduced recognizing a set of sixteen slices
(slices 34 to 49) as a 2D slice (2D) that capture the entire
shape of the striatum to enhance the diagnostic accuracy
and model simplicity.

Furthermore, image processing techniques, including
preprocessing, segmentation, and feature extraction, have
significantly aided to the clinical experts in disease
diagnosis. The extracted features are utilized to identify
neural disorders by categorizing individuals using
Machine Learning (ML) algorithms. Though, the
performance of ML algorithms like Extreme Learning
Machine (ELM), Support Vector Machine (SVM) and
Artificial Neural Network (ANN) offers appreciable
results, it is greatly influenced by the presence of
redundant and irrelevant features in the dataset, leads to
over-fitting issues. To enhance the performance, it is
essential to eliminate these unnecessary attributes and
choose optimal subsets of features which in turn reduces
the over fitting issues. Hence, the hybrid intelligence
algorithm called Deep neural fuzzy system (DNFS) [14]
has been proposed to learn the deep relationships between
the features for the first time in diagnosing EPD.

DNFS, a part of Artificial Intelligence (Al), integrates the
adaptive learning capabilities of Deep Neural Networks
(DNNs) with the reasoning power of Fuzzy system
addressing challenges particularly in handling nonlinear,
imprecise and high dimensional data [15,16]. Its
effectiveness extends in the realm of medical image
analysis and classification [17]. Aversano developed a
deep learning model hybridization with a fuzzy layer that
process the data from various feet sensors of PD patients.
The fuzzy layer aids in managing uncertainty and
imprecision in the sensor data and offers the classification
accuracy of 85.83% due to presence of more parameters
[18]. To enhance diagnostic accuracy, a CNN is applied to
shape, texture features, and SBR for optimal feature
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selection. Additionally, the fuzzy system generates rules,
which are further optimized using PSO and GA.

Here are the key contributions of the proposed model.

1. An innovative method for the early identification
of PD with the help of SPECT images is presented.
Out of 91 slices in each SPECT image, only the 16
image slices (34 to 49) exhibit a rich striatal uptake
content. Therefore, those image slices are
specifically selected to enhance the diagnostic
accuracy [13] as they provide a comprehensive
analysis of the striatum’s shape. Consequently, the
substantial performance in recognizing EPD is
achieved utilizing biomarkers like SBR values,
shape and texture attributes of VCDIS.

2. The DNFS is applied for the first time to diagnose
early PD which utilizes shape, texture features and
SBR values as inputs for the framework. However,
the traditional frameworks encounter challenges
related to predefined rule sets in fuzzy system (FS)
and fixed model size in Convolutional neural
networks (CNN). To address these challenges, the
DNFS integrates a Convolutional Neural Network
(CNN) with a Fuzzy System (FS) in a dynamic
framework. In this architecture, the CNN selects
the most prominent features, the Fuzzy System
formulates the rule sets, depending on the nature of
the input data.

3. Particle swarm optimization (PSO) and Genetic
algorithm (GA) are used by Deep neuro fuzzy
system for optimizing dynamic fuzzy rules that
ensures effective and relevant rule alone in learning
process. These optimized rules are performing a
significant role in diagnosing EPD by reducing
redundant data and conflicting fuzzy rules. By
deriving the most effective fuzzy rule sets through
GA and PSO, the system aims to minimize
classification errors and support early, accurate
diagnosis of PD.

The following sections are systematized as: Section 2
offers operational workflow of this novel model,
accompanied by a diagrammatic representation. Also
delve into the preprocessing, segmentation, and feature
extraction algorithms employed, as well as introduce the
DNFS, PSO and GA algorithms utilized in the framework.
Section 3 discusses the results and comparative analyses.
Finally, Section 4, offers conclusions.

2 Methodology overview

The proposed system’s procedural workflow, as depicted
in Figurel, involves the extraction of features such as
shape and texture features, that include area, entropy,
mean, correlation, and sharpness estimation from VCDIS.
Additionally, Striatal Binding Ratio (SBR) values from
different brain regions-Putamen_R (Pu_R), Caudate R
(Ca_R), Putamen_L (Pu_L), and Caudate L (Ca_L)-are
combined with shape and texture features to form the
complete feature set. CNN selects the most important
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features from this set. The FS then frames rules based on
the input data, and these rules are optimized using Particle
Swarm Optimization (PSO) and Genetic Algorithm (GA)
to improve classification accuracy.

2.1 Study cohort in detail

Diagnosis of EPD relies on the analysis of VCDIS and the
calculation of SBR values. The image slices and SBR
values are obtained from PPMI database. It contains
SPECT images categorized into two groups: Early
Parkinson’s Disease (EPD) and Healthy Individuals (HIs),
as determined by expert evaluation [11]. In total, 620
images are collected for research purposes, with 190 from
HIs and 430 from EPD patients. EPD patients are selected
based on a mean tstandard deviation of Hohen and Yahr

Informatica 49 (2025) 601-614 603

stage (H&Y) of 1.50 £ 0.50 (criteria 1 and 2 of Hoehn and
Yahr Scale)

The reliability and consistency of the images in the
database are ensured as they were preprocessed. The
preprocessing steps include iterative image reconstruction
to enhance the robustness of the images. Subsequently, the
images’ anatomical alignment is made standardized
through the application of spatial normalization and
attenuation correction [19]. As a result of these
preprocessing steps, the processed images have
dimensions of 91x109x91 cubic voxels, each with a width
of 2mm, following the DICOM format. To calculate the
SBR values, the slices with the highest uptake regions are
averaged and following formula is used.

SBR = (Pu_L+ Ca_L+Pu_R+Ca_R) -1

occipital region
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Figure 1: Operational sequence of Deep Neuro-Fuzzy system

2.2  Selection procedure for rich striatal

uptake image slices

DaTscan or SPECT images are acquired when a drug
(radiopharmaceutical) binds specifically to the dopamine
transporters in the brain. Each captured DaTscan image
contains ninety-one slices, ranging from the bottommost
to the top of the brain as shown in Figure 2. Among these
slices, only few are relevant for identifying PD. Those
most significant slices are alone selected for the
investigation of the present work that exhibit high specific
uptake content. The remaining slices, where striatal uptake
content gradually diminished to nearly imperceptible
levels are omitted.

This approach aligns with the guidelines set forth by the
Society of Nuclear Medicine (SNM) [20] and enhances
the ability to identify the presence of disease. Building
upon the recommendations of SNM, Prashanth et al. [21]
specifically averaged slices numbered from 34 to 49 and
identified them as having high striatal uptake.
Subsequently, Anita et al. further refined this selection by
selecting 12 slices as a single 2D slice from this range to
develop an accurate diagnostic system for EPD. To
improve upon this prior system, proposed system has
chosen 16 slices, as showed in Figure 3. These 16 image
slices provide valuable three-dimensional information
derived from 2D image slices, offering a simpler yet more
effective technique compared to the 12 VRIS [13]. Since
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EPD has a direct impact on the size of the striatum, the
proposed work opted for VCDIS because they maintain
the continuity of the striatum’s shape.
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Figure 2: Ninety-one SPECT Image Slices of HI

2.3 Image Preprocessing and segmentation boundaries by taking into account the average noise in
The preprocessing method utilized here is a bilateral filter, ~ neighbouring pixels. The mathematical expression that
which aims to enhance the striatum’s appearance while  characterizes this filter’s behavior at a given input pixel
simultaneously improving its edge definition. The filter ~ location, denoted as ‘x,” can be described as follows
achieves this by calculating the combined weights of

neighbouring pixels. The intensity of the pixels and their — 1 (
spatial distance from one another are used to calculate () = EZYGN(")e
these weights. This filter effectively retains the image’s

(X2-Y2) ) (—I(XZ—YZ))
e

2xsigma_d?2/ p\2+sigma_r2

@)
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Figure 3: Selected slices of rich striatal uptake image
slices

The weights corresponding to the spatial and intensity
domains are represented by the parameters ‘sigma r’ and
‘sigma_d’, respectively, in the equation. N(x) represents
the spatial relationship between adjacent pixels in the
image, and a constant "C" is also utilized for
normalization. The formula for this normalization
constant, ‘C’ could be

( (x2-v2) ) ( 1(x2 Y2)>
C = ZyEN(x) e 2+sigma_d?2 e 2xsigma_r? (3)

This equation has been effectively employed to achieve
consistent and well-defined edges in the image, as it helps
in reducing noise [22]. The goal here is to isolate regions
of high intensity from the surrounding areas in the image,
particularly focusing on segmenting the striatum from the
background based on intensity. To achieve this, a
straightforward segmentation method is applied, known as
thresholding. This technique simplifies the process of
extracting the region with high striatal uptake while
minimizing the impact of noise outside this region. The
DaT (Dopamine Transporter) content within the striatum
exhibits a gradient from lower intensity in the putamen to
higher intensity in the caudate within the VCDIS.
Therefore, VCDIS are employed with a specific threshold
value (separate value for EPD and HI) to accurately
segment the image. The region of interest is represented
as ‘1,” while the remainder of the image is marked as 0,
according to the binary representation produced by this
segmentation [19].

2.4 Feature extraction

The primary objective of feature extraction is to obtain
quantitative information for distinguishing HI from EPD
cases. The link between grayscale levels in an image and
the striatum's morphology changes results change of
dopamine levels within the striatum. The shape is changed
from a "comma" to a "dot" by this transition.
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Consequently, the texture and shape characteristics are
proven to be effective discriminators between the
anatomical structures of HI and EPD. To achieve this
discrimination, various features, including mean, area,
entropy, correlation, and sharpness estimation are
computed from the VCDIS [19, 21, 22]. These features are
derived from the binary images and are quantified using
the equations provided in Table 1

2.5 The Concept of DNFS

Table 1: The detailed description of the shape and texture
features used

Features Formula
Mean — Z(l J)
uuy) =
Correlation Y (i, ])mj
o2
Entropy -sum (p *log2 (p))

Area A=Y P;;
Sh?}I’P@SS S% — S, Sx- The ratio of distinct
Estimation (sharp) pixels to pixels found at the

edges.
SBR (Pu_L+ Ca_L+Pu R+Ca R/
occipital region) — 1

Where, p — Probability of the gray level, N - pixels’
number, ¢ - standard deviation, yu - mean value

Deep Neuro-Fuzzy Systems (DNFS) represent a better
version of the Adaptive Neuro-Fuzzy Inference System
(ANFIS) and the Deep Neuro-Fuzzy Inference System
(DNFIS). DNFS integrates the learning capabilities of
artificial neural networks with the interpretability and
reasoning power of fuzzy logic, forming a hybrid system
adept at handling time-varying, dynamic, and non-
stationary data more effectively [23]. As an advanced
hybrid Artificial Intelligence (Al) model, DNFS combines
Fuzzy Logic (FL) with Deep Learning (DL) across
multiple stages to address complex classification tasks in
the diagnosis of EPD. This integration allows the system
to extract and utilize deep, high-level features from
various forms of medical data while preserving the
semantic transparency and rule-based structure of fuzzy
systems [24].

In the context of PD diagnosis, DNFS operates using nine
input features like mean, entropy, correlation, sharpness
estimation, area, and SBR values from left and right
putamen (Pu_L, Pu_R) and caudate (Ca_L, Ca_R). The
system yields a single binary output indicating whether the
person is suffering from PD or not. The dynamic nature of
DNFS enables it to adaptively frame its system structure
in response to the characteristics of the input dataset. This
adaptability  contributes to enhanced diagnostic
performance, particularly in identifying EPD, where
subtle and non-linear patterns may otherwise be difficult
to detect using conventional models.

The key conceptual structure of DNFS is stated below.
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25.1 Input layer:

The input layer combines shape, texture features like
mean, entropy, correlation, area, sharpness estimation and
the SBR values. Hence, it is named as multimodal dataset
which is given to Convolutional Neural Network (CNN)
for capturing hidden relationships between the features.

2.5.2  Feature Selection using CNN:

CNN is incorporated here to learn and select meaningful
temporal and spatial correlations of the features
automatically. It also eradicates noises present in the data.
CNN uses two stages of Convolutional layer of filter size
32 and 64, kernel size 3 and the activation function RELU
is chosen in such a way that it selects most prominent
features from the dataset. A max pooling layer with a pool
size of 2 is used to reduce spatial dimensions and eliminate
redundant information, while a dropout layer is employed
to prevent overfitting by randomly deactivating neurons
during training. The sigmoidal activation function is final
layer of DNFS that is utilized to convert the features into
non-linear representations or classifying the features.

2.5.3  Fuzzification or Fuzzy Layer:

This layer plays an important role in interpreting the input
dataset. It maps the shape, texture features and SBR values
into fuzzy linguistic terms (e.g. low, medium and high)
and makes human-understandable decisions for
diagnosing EPD. The Gaussian membership function
(GMF) is used for providing a smooth transition between
membership degrees. The mathematical expression of
GMF is given as

_ (x—c)2

p@) = e = (4)

Where X, ¢, 6 denote input value, mean value and standard
deviation of the inputs respectively

254  Rules sets:

DNFS uses data to create "if-then" fuzzy rules
with the help of FS. These rules verbally express the
connections between certain features (mean, area, and
SBRvaluesof Pu_L,Pu_R, Ca_L, and Ca_R) and outputs
(whether or not the person has PD). FS frames sample
rules as:

IF Area is x;and Mean isx2 and Ca_L isx3and Ca_R i
x4 and Pu_L is x5 and Pu_R is x6 THEN q =01

IF Area isy; and Mean isy2 and Ca_L isy3 and Ca_R is
y4 and Pu_L isy5and Pu_Risy6, THEN g =02
where X1, X, ... and y1, y2.... are fuzzy sets and 01, 0y, ...
are constants [25].

The algorithms GA and PSO are used to optimize the
fuzzy rule sets for accurate calculation of the EPD by
minimizing  classification errors, redundant and
conflicting rules. In order to improve the rules’
interpretability, classification accuracy, and redundancy,
the fuzzy rule layer of DNFS uses PSO and GA. These
algorithms ensure that the generated rules are the most
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effective in distinguishing EPD from HI. The conceptual
procedure of both the algorithms is given below.

(a) Procedure for Genetic Algorithm

The GA follows an evolutionary approach to refine fuzzy
rules in DNFS workflow. The procedure begins with an
initial population of arbitrarily made rule sets that are
assessed using a fitness function. The selection method
picks the most optimized rule sets, which then undergo
crossover to generate combinations of new fuzzy rule,
preserving crucial forms among the features. In addition,
mutation is utilized to prevent the algorithm being stuck
with local optima. This iterative process continues until a
maximum convergence is met. By optimizing fuzzy rules
and membership functions, GA enhances decision-making
in DNFS, leading to more exact and reliable PD diagnosis.
The Conceptual procedure portrays in Figure4.

Creates set of fuzzy rules as Population

Evaluates the fitness of each rule

Selects the best fuzzy rules

Exchanges two parent rules to create a
new rule.

Changes the rules randoml

Replaces worst-performing rules with
new rules

®
o
0
o
©
Q

Repeat steps 2-5 until the rules stabilize
Figure 4: Conceptual procedure for GA

ga) (b) Rule Optimization using PSO

PSO is employed for optimizing fuzzy rules to enhance
classification accuracy of EPD diagnosis. It is a
population-based algorithm that draws inspiration from
fish and bird swarm intelligence. The work flow of PSO is
depicted in Table.2

Table 2: The overall work flow of PSO

Step 1 | Initialize the Swarm

Step 2 | Evaluate Fitness of Each Rule

Step 3 | Identify Best Rules

Step 4 | Update Velocity & Position of Rules by
adjusting rule parameters

Step S | Update Rules & Repeat

Step 6 | Select Optimized Rules [26]
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255 Aggregation and Defuzzification Layer

Each fuzzy rule generates a fuzzy set based on the selected
features. The aggregation layer combines multiple fuzzy
sets to generate a final fuzzy output. The Weighted
Average Aggregation (WAA) method is applied in
diagnosing EPD due to its capability of considering the
strength of all rules and handling the noise, uncertainty of
the dataset. WAA computes a weighted sum of all the
fuzzy rule and its mathematical equation is given as

X(0;.0;)
Tuny = E552 ®
where a; and w; denotes membership value and weightage
of the fuzzy rule.

The aggregated fuzzy output is transformed into a clear
number value by the final defuzzification layer, indicating
whether or not the patient has EPD. It provides the output
with the help of Centre of Gravity (CoG) that produces the
most stable and accurate diagnosis by handling
overlapping fuzzy sets well. The CoG is expressed as

Y o).y
= ZeO 6
2= 5w ©)

where o(y) and y; denotes membership value, and
discrete output value.

Table 3: Parameters of particle swarm optimization
(PSO)and genetic algorithm (GA)

Parameter Typical Value
range
Genetic Algorithm
Population Size 20
Mutation Rate 0.2
Crossover Rate 0.7
Selection Method Tournament
Selection, size =3
Number of Generations 1000

Particle Swarm Optimization

Swarm Size 20
Inertia Weight (w) 0.5
Cognitive Coefficient (c1) 1.5
Social Coefficient (c2) 1.5
Velocity Limits (Vmax) 0.7

Number of Iterations 1000

To determine whether the patient has the disease or not,
the threshold value (0.5) is applied to the defuzzification
output. To make generalization between the chosen
features and a single output, the DNFS classification
model’s workflow adjusts the GMF's hyperparameter. The
training and testing datasets are separated into 70:30 and
80:20 sections.
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With the stopping condition set at 1000, the
hyperparameters of optimization algorithms like GA and
PSO are selected based on refined through empirical
testing to ensure stable convergence and high
classification accuracy as shown in table 3. And the Table
4 provides the pseudo code for the DNFS classification
process.

Table 4; Training procedure for DNFS

1. Load VCDIS and extract the features like shape,
texture and SBR values.

2. Frame DNFS classification model

Select the prominent features using CNN

Define membership function to the features

Frame rules automatically using FS for features

Optimize the rules using GA/PSO.

Aggregate the fuzzy rules

defuzzification

Estimate the performance indicators (Loss,

Accuracy, F1-Score, Recall, Precision)

g. Classify effectively EPD from HI

Po0 o

and perform

—h

3 Results and discussions

3.1 Image processing

The bilateral filter, which preprocesses the VCDIS,
evaluates performance using sigma_d (spatial) and
sigma_r (intensity) as the two parameters. To identify the
ideal filter parameter values, an analysis [27] is carried
out. According to this research, sigma_d is between 1.5
and 2.0. In this study, image edges are preserved by using
a value of 1.5. However, a lesser number, such as 0.1, is
selected because sigma_r changes greatly with noise
levels. For the processed image to be accurate, the
parameter values are essential. The processed (filtered)
VCDIS for both HI and Early PD are shown in Figure 5(ii)
and (v), which show variations in dopamine transporters.
In EPD, the content of the dopamine appears decreased to
be like a dot or like a circular within one side of the
striatum, but in HI, it appears comma-shaped.

Initially, in EPD, the content of dopamine is notably
absent in the putamen, corresponding to regions with low
intensity values. Subsequently, the caudate also
experiences a loss of DaT content. The suggested
approach uses a thresholding technique to segregate these
high-intensity regions, starting from the left side of the
striatum and working its way to the right. To ensure
objectivity in the segmentation process, a normalizing
process is done before thresholding [28]. The average and
standard deviation (SD) of the threshold values is
determined to be 2.1e4+0.5 for EPD and 1.8e4+0.7 for HI
after careful assessment. The VCDIS histogram values are
used as the basis for selecting these threshold values. The
segmented images, shown in Figure5 (iii) and (vi), exhibit
a substantial distinction between EPD and HI when
compared to prior research [13]
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(ii) (iii)
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(vi)
Figure 5: The original, processed, and segmented VCDIS for EPD (i, ii, iii) and HI (iv, v, vi)

Table 5: Average and SD values of the features

EPD HI
Features
Average SD Average SD p level

Area 240.000 70.440 385.689 30.854 0.01
Mean 466.257 51.508 688.136 12.885 0.00
Correlation 0.542 0.082 0.682 0.055 0.03
Entropy 0.174  0.082 0.195 0.031 0.02
Sharpness Estimation 12.828 5.766 15.182 1.811 0.00
Ca_R 1.984  0.611 2.933 0.604 0.03
Ca L 1.994  0.600 2.967 0.618 0.03
Pu_R 0.856  0.397 2.119 0.582 0.01
Pu L 0.822  0.375 2.116 0.573 0.02

p denotes the significant level of EPD and HI(p<0.05).

3.2 Extraction of feature

It is clear that EPD is typified by a decrease in DaT
content, which causes the striatum—more especially, the
putamen and caudate regions—to shrink. As the DaT
content decreases, the natural shape, which resembles a
comma, changes to a smaller, dot-like or circular look in
EPD. This transformation enables quantitative
measurement of the striatal areas. The VCDIS texture
features show how the gray levels interact. Shape and
texture extracted features include mean, area, correlation,
entropy, and sharpness estimation. SBR values are also
included to improve classifier performance. Table 5 shows
the average and SD values of features for Hl and EPD. The

table highlights important deviations between HI and EPD
features, suggesting higher performance in accurate
classification and easier processing, which is confirmed
by the p-value of HI and EPD, which is less than 0.05 and
falls within a 5% acceptance level.

The striatal area (comprising putamen and caudate) is
notably smaller in EPD compared to HI, measuring
240.000 and 385.689 respectively. These measurements
underscore substantial changes in EPD. Features that
show higher values in HI but lower values in EPD include
mean, area, entropy, and correlation. This indicates
significant differences between features linked to shape
and texture, which eventually improves classification
accuracy.
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Table 6: The Linguistic terms and its values of selected features

Features Low Medium High
Area 126.38 t0 200.12 202.36 to 299.37 300.75 to 661.31
Mean 183.75 to 349.50 350.12 to 448.75 450.00 to 661.37
Ca L 0.51t02.28 2.29t0 3.42 3.43t04.61
Ca R 0.36 to 2.00 2.01 t0 3.00 3.01 to 4.96
Pu L 0.34 to 1.97 1.98 to0 2.49 2.50to 3.52
Pu R 0.29 to 1.09 1.10 to 2.06 2.07 t0 2.99
3.3 Performance of DNFS framework with score, precision, and recall values (MeantSD) of

optimized algorithms

DNFS procedure starts with selecting the most prominent
features using simple two stage CNN model. The model
learns non-linear relationships among the data and selects
the most optimized features such as Area, Mean, Ca_L,
Ca R, Pu_L and Pu_R. These selected features are
utilized further for diagnosing EPD. These features are not
varying sharply; but gradually. Hence, these gradual
transitions are captured by GMF and gives the realistic or
linguistic terms like low, medium and high as given in
Table.6

Table 7: The fuzzy rule for diagnosing early stage PD

IF Area is Low AND Pu_L is Low AND Pu_R is Low
THEN it is Early PD.

IF Ca_L is High AND Ca_R is High AND Pu_L is
Medium AND Pu_R is Medium THEN it is HI

IF Mean is Low AND Pu_L is Low THEN it is Early PD
IF Ca_L is Low AND Ca_R is Low AND Mean is Low
THEN itis Early PD

IF Area is High AND Mean is High AND Ca_L is High
AND Ca_R is High THEN it is Normal

The linguistic terms like low, medium and high values of
the features are utilized for framing fuzzy rules using
GMF. The average number of fuzzy rules framed are
18.2+2.3. Some of the fuzzy rules are given in Table. 7.
These rules are optimized using GA and PSO.

The DNFS-PSO and DNFS-GA models are created and
run separately to predict EPD. The redundant rules
removed from the rule sets are 12.6%, 7.4% for DNFS-
PSO and DNFS-GA respectively. 70% and 80% of the
data are utilized for training the models with 1000
iterations, and the remaining portion is used for testing.
Table 8 displays the average (Mean) performance metrics
over 1000 iterations of the developed DNFS-PSO and
DNFS-GA for various learning rates of 0.001, 0.01, and
0.1 in terms of accuracy, loss, F1 score, precision, and
recall. A detailed look at table 8 shows that the best model
for EPD prediction is DNFS-PSO, with accuracy, F1-

98.77+1.02%, 0.99+0.12, 1.040.01, and 0.99+0.10 for the
splitting ratio of 70:30 and learning rate of 0.01
respectively. With a splitting ratio of 70:30 and a learning
rate of 0.01 for detecting EPD, DNFS with PSO provides
the best results in terms of loss, accuracy, precision, recall,
and F1-score. Figure 6 and 7 shows the performance graph
(1000 iterations) of two optimization algorithms, DNFS-
GA and DNFS-PSO models, for learning rates 0.001, 0.01,
and 0.1 for 70:30 and 80:20.

With a loss of 0.0199, the DNFS-PSO model offers the
lowest. According to the performance metrics, the
suggested DNFS augmented with PSO is more effective
than DNFS-GA at diagnosing PD. The model accurately
predicts the negative (HI) and positive (EPD) cases in
categorizing Hl and EPD, as indicated by the precision and
recall values of 1.0+0.01, and 0.99£0.10 respectively.
When the learning rate is 0.01 the model does well. An
excessively high learning rate (0.1) can cause uncertainty,
whereas 0.001 is too small causes sluggish convergence.
Therefore, in the proposed study, the learning rate is set at
0.01 based on empirical method. The table demonstrates
that both DNFS-PSO and DNFS-GA achieved
commendable diagnostic accuracy. Additionally, the
statistical significance of both frameworks is confirmed,
as the p-values for p1 (70:30 split) and p2 (80:20 split) are
below 0.05.

The system’s performance is measured by comparing it to
machine learning and optimization techniques and it
displays the extreme level of accurate accuracy across all
the networks, as demonstrated in Table 9. This new
method's diagnostic accuracy is strongly linked to the
earlier research. To minimize bias, variation, and
overfitting, the suggested method uses 10000 iterations
and an optimum methodology for selecting features,
producing reliable and consistent results. For specialists in
differentiating between EPD and HlI, this method is easy
to use and practical, and it eventually produces better
results than the systems discovered in the literature. In
addition, the proposed model offers best performance due
its dynamic nature in framing rule sets and self-adapting
model.
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Table 8: The Averaged performance Results of DNFS-PSO and DNFS-GA

Splitting Ratio 70:30 Splitting Ratio 80:20
Evaluation
Metrics DNFS-GA DNFS-PSO DNFS-GA DNFS-PSO - -
Training Testing Training Testing Training Testing Training Testing
Learning Rate: 0.001
Loss 0.1769 0.1342 0.1897 0.1654 0.1897 0.1051 0.1887 0.1754 0.04 0.05
Accu. (%) 97.85 98.310 98.390 98.310 95.970 98.80 98.230 98.31 0.04 0.04
F1-Score 0.9636 0.9887 0.9735 0.9888 0.9315 0.9967 0.9735 0.9812 0.03 0.04
Precision 0.975 0.9924 0.9821 0.9851 0.9714 1.070 0.9721 0.9751 0.04 0.03
Recall 0.9298 0.9850 0.9649 0.9825 0.8947 0.9934 0.9630 0.9825 0.05 0.05
Learning Rate: 0.01
Loss 0.2633 0.2444 0.0013 0.0199 0.0209 0.0536 0.0195 0.0019 0.03 0.02
Accu. (%) 94.93 97.32 99.92 98.77 99.80 98.11 99.14 97.99 0.01 0.03
F1-Score 0.9247 0.9524 0.9925 0.99 0.9967 0.9867 0.9825 0.9880 0.03 0.05
Precision 0.8824 0.9259 0.9831 1.0 0.9935 1.0 0.9831 0.9985 0.02 0.04
Recall 0.9712 0.9804 0.9825 0.99 1.0 0.9737 0.9825 1.0 0.04 0.02
Learning Rate: 0.1
Loss 0.0116 0.0045 0.0034 0.0677 0.0885 0.0562 0.0287 0.0016 0.04 0.05
Accu. (%) 97.31 98.16 99.82 98.19 97.58 98.60 98.66 98.79 0.03 0.04
F1-Score 0.96 0.9892 0.9995 1.0 0.9565 0.9765 0.9895 0.999 0.04 0.03
Precision 1.0 0.9793 1.0 1.0 0.9706 0.9835 1.0 0.999 0.04 0.03
Recall 0.9231 0.9792 0.9925 1.0 0.9429 0.9642 0.9775 0.999 0.03 0.04
Learning_Rate : 0.001 Learning Rate: 0.01 Learning_Rate : 0.1
Accuracy over Epochs Accuracy over Epochs Accuracy over Epochs
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Figure 7: Performance plot for DNFS PSO for the splitting ratio of 70: 30
Table 9: Comparative analysis of the literature
S. No. Details Methodology used Performance (%)
1 Anita et al [13] VRIS with RBF-ELM 98.23
2 El-Hasnony et al. [15] Fog-based ANFIS+PSOGWO model 87.50
3 Balasubramanian K et al [16] | Modified glow worm swarm optimization algorithm 95.00
(M-GSO)
4 Prashanth et al. [21] Averaged single image slice with SVM 97.29
6 Proposed Work DNFS -PSO 98.77

4 Discussion

The proposed DNFS framework, optimized using PSO
and GA, demonstrates high accuracy in detecting Early
Parkinson’s Disease (EPD) using VCDIS images.
Bilateral filtering with 6_d= 1.5 and 6_r = 0.1 effectively
reduces noise while preserving edge details. Thresholding
and normalization  techniques enable accurate
segmentation of dopamine-rich regions, revealing clear
morphological differences between EPD and HI,
particularly in the putamen and caudate.

Feature extraction based on shape, texture, and SBR
values highlights significant statistical differences (p <
0.05) between the two classes. A two-stage CNN selects
key features, which are converted into linguistic terms
using GMF and refined through fuzzy rule optimization
via PSO and GA.

Among the models, DNFS-PSO achieves superior
performance, with 98.77+£1.02% accuracy, 0.99+0.12 F1-
score, and minimal loss of 0.0199 at a learning rate of 0.01
and 70:30 data split. Performance graphs confirm the
model’s robustness and stability. The results validate the
framework’s effectiveness in early-stage PD detection and
classification.

5 Conclusion

Parkinson’s disease (PD) is a crippling neurological
condition that significantly lowers a person's quality of
life. The progressive loss of dopamine-producing neurons
in the mid-region of the brain, which is the hallmark of
PD, emphasizes the importance of early detection and
treatment. To improve prediction accuracy and enable
early intervention, researchers are always experimenting
with different approaches and technology. A major
breakthrough in the field of EPD diagnosis is represented
by the novel prediction framework of the proposed study,
which combines Deep Neuro-Fuzzy Systems (DNFS)
with Particle Swarm Optimization (PSO) and Genetic
Algorithm (GA). Using loss, accuracy, precision, recall,
and Fl-score as performance metrics, this model was
thoroughly assessed using Volume Containing DaTscan
Image Slices (VCDIS) from the Parkinson's Progression
Markers Initiative (PPMI). With an impressive 98.77%
classification accuracy and low error rates, the study's
findings are incredibly encouraging. Crucially, this
performance  outperforms previously — documented
classification techniques in the body of current research,
confirming the DNFS-PSO model's capacity to forecast
Parkinson's disease in its early stages. This study
represents a significant milestone in the quest to improve
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the early identification and management of Parkinson’s
Disease. In the future, a range of diverse techniques and
optimizations will be employed to achieve superior
performance
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