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A neurodegenerative disorder called Parkinson’s disease (PD) is identified at the increasing loss of 

neurons that produce dopamine in the substantia nigra region of human brain. It significantly impairs 

motor and non-motor functions, thereby diminishing the overall quality of life in affected individuals. A 

novel framework is proposed for detecting early stage of PD, employing Deep Neuro-Fuzzy System 

(DNFS) optimized with Particle Swarm Optimization (PSO) and Genetic Algorithm (GA). Data utilized 

for this analysis are extracted from 16 image slices showing striatal uptake content in the striatum, named 

as volume-containing DaTscan image slices (VCDIS) taken from the database called Parkinson’s 

Progression Markers Initiative (PPMI). The shape and texture characteristics of segmented VCDIS are 

utilized as features which are combined with Striatal biding ratio (SBR) to distinguish Healthy Individuals 

(HI) from early-stage PD (EPD). The dataset includes values of 620 DaTscan images with SBR values: 

430 from EPD cases and 190 from HI. The effectiveness of the framework is evaluated using 70:30 and 

80:20 split ratios, based on metrics such as accuracy, loss, F1 score, precision, and recall. The DNFS-

PSO model is presented an impressive accuracy of 98.77% and an error rate of 0.0199 for the chosen 

features using a 70:30 data split. The outcomes of the proposed model potentially aid clinicians in prompt 

diagnosis. 

Povzetek: Za zgodnje odkrivanje Parkinsonove bolezni iz SPECT (DaTSCAN) je uveden globoki sistem 

(DNFS), ki združi CNN-izbor značilk in fuzzy-pravila, optimizirana s PSO in GA, na 16-slojnih VCDIS 

(PPMI). Značilke: oblika/tekstura + SBR. 

 

1 Introduction 
Parkinson’s Disease (PD) is an advanced neurological 

disorder impairing the central nervous system (CNS) at 

the degeneration of dopaminergic neurons within 

substantia nigra in the midbrain. It leads to a considerable 

reduction or complete depletion of dopamine, a 

neurotransmitter essential to regulate motor control and 

coordinate communication between the brain and the 

limbs. PD is generally recognized as a age-related 

disorder, with an estimated global prevalence of 

approximately 1% among individuals over the age of 55 

[1-4]. 

Motor and non-motor symptoms are the clinical indicators 

to identify PD. Tremors, shuffled gait, stooped posture, 

Freezing of Gait (FoG), dysphonia, and bradykinesia are 

categorized as the primary motor symptoms. Whereas 

anosmia affecting the sense of smell, fatigue, disrupted 

sleep patterns, fluctuations in body weight, alterations in 

mood and cognitive function, coronary artery  

 

complications, as well as digestive tract problems are non-

motor symptoms which become apparent only in the later  

stages. As these symptoms are not found in the early stage 

of individuals, detecting PD in its early stage (EPD) is 

exceptionally challenging [5]. To address this, a novel and 

resourceful approach is required to discriminate between 

HI and EPD [6-8], and being done using Single Photon 

Emission Computed Tomography (SPECT) images which 

are known as DaTscan images [8]. 

DaTscan image slices are employed to quantitatively 

measure dopamine transporter levels in putamen and 

caudate regions of the brain, providing a comprehensive 

assessment. Traditionally, trained radiologists have 

performed standard examination for assessing DaTscan 

images. These images are taken from Parkinson’s 

Progression Markers Initiative (PPMI) database. The 

database is an international and multicenter database that 

tracks the disease, its progression and conducts regular 

assessments of patients to identify new biomarkers that 
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assist experts in diagnosing the disease [9]. Thus, these 

images significantly help in identifying EPD. 

The methods of identifying EPD with the help of SPECT 

images initially rely on Visual Inspection (VI) of the 

striatum’s appearance. This approach is time-consuming 

and lacked reliability, with experts often differing in their 

observations, leading to variability in both individual and 

collective findings. VI offers around 5% of false rate in 

diagnosing DaT scan Images [10]. Efforts to enhance 

disease identification are accelerated by extracting 

features from a 2D slice and subsequently from averaged 

image slices that achieves 97% of accuracy [11]. Later, 

changes in DaT content and striatum shape during the 

early stages are monitored through investigation of 3D 

images consist of 91 slices [12]. However, the complexity 

of 3D image investigation received limited attention from 

clinical practitioners, prompting the necessity of simpler 

and more accurate technique for EPD identification. 

Anita et al. [13] suggested a simplified model to address 

the above said diagnostic challenges, utilizing 12 image 

slices of a SPECT image as a single slice and records 

98.23% of classification accuracy. However, this method 

falls short in effectively diagnosing EPD, as it leaves 

several slices that are essential for capturing the complete 

shape and structure of the striatum. Hence, a novel 

approach is introduced recognizing a set of sixteen slices 

(slices 34 to 49) as a 2D slice (2D) that capture the entire 

shape of the striatum to enhance the diagnostic accuracy 

and model simplicity. 

Furthermore, image processing techniques, including 

preprocessing, segmentation, and feature extraction, have 

significantly aided to the clinical experts in disease 

diagnosis. The extracted features are utilized to identify 

neural disorders by categorizing individuals using 

Machine Learning (ML) algorithms. Though, the 

performance of ML algorithms like Extreme Learning 

Machine (ELM), Support Vector Machine (SVM) and 

Artificial Neural Network (ANN) offers appreciable 

results, it is greatly influenced by the presence of 

redundant and irrelevant features in the dataset, leads to 

over-fitting issues. To enhance the performance, it is 

essential to eliminate these unnecessary attributes and 

choose optimal subsets of features which in turn reduces 

the over fitting issues. Hence, the hybrid intelligence 

algorithm called Deep neural fuzzy system (DNFS) [14] 

has been proposed to learn the deep relationships between 

the features for the first time in diagnosing EPD. 

DNFS, a part of Artificial Intelligence (AI), integrates the 

adaptive learning capabilities of Deep Neural Networks 

(DNNs) with the reasoning power of Fuzzy system 

addressing challenges particularly in handling nonlinear, 

imprecise and high dimensional data [15,16]. Its 

effectiveness extends in the realm of medical image 

analysis and classification [17]. Aversano developed a 

deep learning model hybridization with a fuzzy layer that 

process the data from various feet sensors of PD patients. 

The fuzzy layer aids in managing uncertainty and 

imprecision in the sensor data and offers the classification 

accuracy of 85.83% due to presence of more parameters 

[18]. To enhance diagnostic accuracy, a CNN is applied to 

shape, texture features, and SBR for optimal feature 

selection. Additionally, the fuzzy system generates rules, 

which are further optimized using PSO and GA. 

 

 

 

Here are the key contributions of the proposed model. 

1. An innovative method for the early identification 

of PD with the help of SPECT images is presented. 

Out of 91 slices in each SPECT image, only the 16 

image slices (34 to 49) exhibit a rich striatal uptake 

content. Therefore, those image slices are 

specifically selected to enhance the diagnostic 

accuracy [13] as they provide a comprehensive 

analysis of the striatum’s shape. Consequently, the 

substantial performance in recognizing EPD is 

achieved utilizing biomarkers like SBR values, 

shape and texture attributes of VCDIS. 

2. The DNFS is applied for the first time to diagnose 

early PD which utilizes shape, texture features and 

SBR values as inputs for the framework. However, 

the traditional frameworks encounter challenges 

related to predefined rule sets in fuzzy system (FS) 

and fixed model size in Convolutional neural 

networks (CNN). To address these challenges, the 

DNFS integrates a Convolutional Neural Network 

(CNN) with a Fuzzy System (FS) in a dynamic 

framework. In this architecture, the CNN selects 

the most prominent features, the Fuzzy System 

formulates the rule sets, depending on the nature of 

the input data. 

3. Particle swarm optimization (PSO) and Genetic 

algorithm (GA) are used by Deep neuro fuzzy 

system for optimizing dynamic fuzzy rules that 

ensures effective and relevant rule alone in learning 

process. These optimized rules are performing a 

significant role in diagnosing EPD by reducing 

redundant data and conflicting fuzzy rules. By 

deriving the most effective fuzzy rule sets through 

GA and PSO, the system aims to minimize 

classification errors and support early, accurate 

diagnosis of PD. 

The following sections are systematized as: Section 2 

offers operational workflow of this novel model, 

accompanied by a diagrammatic representation. Also 

delve into the preprocessing, segmentation, and feature 

extraction algorithms employed, as well as introduce the 

DNFS, PSO and GA algorithms utilized in the framework. 

Section 3 discusses the results and comparative analyses. 

Finally, Section 4, offers conclusions.  

2 Methodology overview 
The proposed system’s procedural workflow, as depicted 

in Figure1, involves the extraction of features such as 

shape and texture features, that include area, entropy, 

mean, correlation, and sharpness estimation from VCDIS. 

Additionally, Striatal Binding Ratio (SBR) values from 

different brain regions-Putamen_R (Pu_R), Caudate_R 

(Ca_R), Putamen_L (Pu_L), and Caudate_L (Ca_L)-are 

combined with shape and texture features to form the 

complete feature set. CNN selects the most important 
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features from this set. The FS then frames rules based on 

the input data, and these rules are optimized using Particle 

Swarm Optimization (PSO) and Genetic Algorithm (GA) 

to improve classification accuracy. 

 

2.1 Study cohort in detail 
Diagnosis of EPD relies on the analysis of VCDIS and the 

calculation of SBR values. The image slices and SBR 

values are obtained from PPMI database. It contains 

SPECT images categorized into two groups: Early 

Parkinson’s Disease (EPD) and Healthy Individuals (HIs), 

as determined by expert evaluation [11]. In total, 620 

images are collected for research purposes, with 190 from 

HIs and 430 from EPD patients. EPD patients are selected 

based on a mean ±standard deviation of Hohen and Yahr 

stage (H&Y) of 1.50 ± 0.50 (criteria 1 and 2 of Hoehn and 

Yahr Scale) 

The reliability and consistency of the images in the 

database are ensured as they were preprocessed. The  

preprocessing steps include iterative image reconstruction 

to enhance the robustness of the images. Subsequently, the 

images’ anatomical alignment is made standardized 

through the application of spatial normalization and 

attenuation correction [19]. As a result of these 

preprocessing steps, the processed images have 

dimensions of 91x109x91 cubic voxels, each with a width 

of 2mm, following the DICOM format. To calculate the 

SBR values, the slices with the highest uptake regions are 

averaged and following formula is used. 

𝑆𝐵𝑅 =  (
Pu_L+ Ca_L+Pu_R+Ca_R

occipital region
) − 1                 (1) 

 

 

Figure 1: Operational sequence of Deep Neuro-Fuzzy system 

 

2.2 Selection procedure for rich striatal 

uptake image slices    

DaTscan or SPECT images are acquired when a drug 

(radiopharmaceutical) binds specifically to the dopamine 

transporters in the brain. Each captured DaTscan image 

contains ninety-one slices, ranging from the bottommost 

to the top of the brain as shown in Figure 2. Among these 

slices, only few are relevant for identifying PD.  Those 

most significant slices are alone selected for the 

investigation of the present work that exhibit high specific 

uptake content. The remaining slices, where striatal uptake 

content gradually diminished to nearly imperceptible 

levels are omitted. 

This approach aligns with the guidelines set forth by the 

Society of Nuclear Medicine (SNM) [20] and enhances 

the ability to identify the presence of disease. Building 

upon the recommendations of SNM, Prashanth et al. [21] 

specifically averaged slices numbered from 34 to 49 and 

identified them as having high striatal uptake. 

Subsequently, Anita et al. further refined this selection by 

selecting 12 slices as a single 2D slice from this range to 

develop an accurate diagnostic system for EPD. To 

improve upon this prior system, proposed system has 

chosen 16 slices, as showed in Figure 3. These 16 image 

slices provide valuable three-dimensional information 

derived from 2D image slices, offering a simpler yet more 

effective technique compared to the 12 VRIS [13]. Since 



604 Informatica 49 (2025) 601–614 Jothi S. et al. 

EPD has a direct impact on the size of the striatum, the 

proposed work opted for VCDIS because they maintain 

the continuity of the striatum’s shape. 
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Figure 2: Ninety-one SPECT Image Slices of HI 

 

2.3 Image Preprocessing and segmentation                  
The preprocessing method utilized here is a bilateral filter, 

which aims to enhance the striatum’s appearance while 

simultaneously improving its edge definition. The filter 

achieves this by calculating the combined weights of 

neighbouring pixels. The intensity of the pixels and their 

spatial distance from one another are used to calculate 

these weights. This filter effectively retains the image’s  

 

 

boundaries by taking into account the average noise in 

neighbouring pixels. The mathematical expression that 

characterizes this filter’s behavior at a given input pixel 

location, denoted as ‘x,’ can be described as follows 

 

𝐼(𝑥)̌ =
1

𝐶
∑ e

(
(X2−Y2)

2∗sigma_d2)
e

(
−I(X2−Y2)

2∗𝑠𝑖𝑔𝑚𝑎_𝑟2)
𝑦∈𝑁(𝑥)              (2) 

       
1 2 3 4 5 6 7 
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Figure 3: Selected slices of rich striatal uptake image 

slices 

 

The weights corresponding to the spatial and intensity 

domains are represented by the parameters ‘sigma_r’ and 

‘sigma_d’, respectively, in the equation. N(x) represents 

the spatial relationship between adjacent pixels in the 

image, and a constant "C" is also utilized for 

normalization. The formula for this normalization 

constant, ‘C’ could be 

 

𝐶 = ∑ e
(

(X2−Y2)

2∗sigma_d2)
e

(
−I (X2−Y2)

2∗𝑠𝑖𝑔𝑚𝑎_𝑟2)
𝑦∈𝑁(𝑥)                    (3) 

 

This equation has been effectively employed to achieve 

consistent and well-defined edges in the image, as it helps 

in reducing noise [22]. The goal here is to isolate regions 

of high intensity from the surrounding areas in the image, 

particularly focusing on segmenting the striatum from the 

background based on intensity. To achieve this, a 

straightforward segmentation method is applied, known as 

thresholding. This technique simplifies the process of 

extracting the region with high striatal uptake while 

minimizing the impact of noise outside this region. The 

DaT (Dopamine Transporter) content within the striatum 

exhibits a gradient from lower intensity in the putamen to 

higher intensity in the caudate within the VCDIS. 

Therefore, VCDIS are employed with a specific threshold 

value (separate value for EPD and HI) to accurately 

segment the image. The region of interest is represented 

as ‘1,’ while the remainder of the image is marked as ‘0,’ 

according to the binary representation produced by this 

segmentation [19]. 

2.4 Feature extraction 
The primary objective of feature extraction is to obtain 

quantitative information for distinguishing HI from EPD 

cases. The link between grayscale levels in an image and 

the striatum's morphology changes results change of 

dopamine levels within the striatum. The shape is changed 

from a "comma" to a "dot" by this transition. 

Consequently, the texture and shape characteristics are 

proven to be effective discriminators between the 

anatomical structures of HI and EPD. To achieve this 

discrimination, various features, including mean, area, 

entropy, correlation, and sharpness estimation are 

computed from the VCDIS [19, 21, 22]. These features are 

derived from the binary images and are quantified using 

the equations provided in Table 1 

2.5 The Concept of DNFS 
 

Table 1: The detailed description of the shape and texture 

features used 

 

Deep Neuro-Fuzzy Systems (DNFS) represent a better 

version of the Adaptive Neuro-Fuzzy Inference System 

(ANFIS) and the Deep Neuro-Fuzzy Inference System 

(DNFIS). DNFS integrates the learning capabilities of 

artificial neural networks with the interpretability and 

reasoning power of fuzzy logic, forming a hybrid system 

adept at handling time-varying, dynamic, and non-

stationary data more effectively [23]. As an advanced 

hybrid Artificial Intelligence (AI) model, DNFS combines 

Fuzzy Logic (FL) with Deep Learning (DL) across 

multiple stages to address complex classification tasks in  

the diagnosis of EPD. This integration allows the system 

to extract and utilize deep, high-level features from 

various forms of medical data while preserving the 

semantic transparency and rule-based structure of fuzzy 

systems [24]. 

In the context of PD diagnosis, DNFS operates using nine 

input features like mean, entropy, correlation, sharpness 

estimation, area, and SBR values from left and right 

putamen (Pu_L, Pu_R) and caudate (Ca_L, Ca_R). The 

system yields a single binary output indicating whether the 

person is suffering from PD or not. The dynamic nature of 

DNFS enables it to adaptively frame its system structure 

in response to the characteristics of the input dataset. This 

adaptability contributes to enhanced diagnostic 

performance, particularly in identifying EPD, where 

subtle and non-linear patterns may otherwise be difficult 

to detect using conventional models. 

The key conceptual structure of DNFS is stated below.  

    
34 35 36 37 

    
38 39 40 41 

    
42 43 44 45 

    
46 47 48 49 

Features Formula 

Mean 
𝜇(𝑖, 𝑗)̅̅ ̅̅ ̅̅ =

∑(𝑖, 𝑗)

𝑁
 

Correlation ∑(𝑖, 𝑗)𝑝𝑖,𝑗
− 𝜇2

𝜎2
 

Entropy -sum (p *log2 (p)) 

Area A = ∑ 𝑃𝑖,𝑗 

Sharpness 

Estimation 
√𝑆𝑥

2 − 𝑆𝑦
2, Sx- The ratio of distinct 

(sharp) pixels to pixels found at the 

edges. 

SBR (Pu_L+ Ca_L+Pu_R+Ca_R / 

occipital region) – 1 

Where, p – Probability of the gray level, N - pixels’ 

number, σ - standard deviation, µ - mean value 
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2.5.1 Input layer:  

The input layer combines shape, texture features like 

mean, entropy, correlation, area, sharpness estimation and 

the SBR values. Hence, it is named as multimodal dataset 

which is given to Convolutional Neural Network (CNN) 

for capturing hidden relationships between the features. 

2.5.2 Feature Selection using CNN:  

CNN is incorporated here to learn and select meaningful 

temporal and spatial correlations of the features 

automatically. It also eradicates noises present in the data. 

CNN uses two stages of Convolutional layer of filter size 

32 and 64, kernel size 3 and the activation function RELU 

is chosen in such a way that it selects most prominent 

features from the dataset. A max pooling layer with a pool 

size of 2 is used to reduce spatial dimensions and eliminate 

redundant information, while a dropout layer is employed 

to prevent overfitting by randomly deactivating neurons 

during training. The sigmoidal activation function is final 

layer of DNFS that is utilized to convert the features into 

non-linear representations or classifying the features. 

2.5.3 Fuzzification or Fuzzy Layer:  

This layer plays an important role in interpreting the input 

dataset. It maps the shape, texture features and SBR values 

into fuzzy linguistic terms (e.g. low, medium and high) 

and makes human-understandable decisions for 

diagnosing EPD. The Gaussian membership function 

(GMF) is used for providing a smooth transition between 

membership degrees. The mathematical expression of 

GMF is given as 

 

𝜇(𝑥) = 𝑒
− 

(𝑥−𝑐)2

2𝜎2                                   (4) 

 

Where x, c, σ denote input value, mean value and standard 

deviation of the inputs respectively 

2.5.4      Rules sets:  

DNFS uses data to create "if-then" fuzzy rules 

with the help of FS. These rules verbally express the 

connections between certain features (mean, area, and 

SBR values of Pu_L, Pu_R, Ca_L, and Ca_R) and outputs 

(whether or not the person has PD). FS frames sample 

rules as: 

 

IF Area is x1and Mean is x2 and Ca_L is x3 and Ca_R is 

x4 and Pu_L is x5 and Pu_R is x6 THEN q = o1   

IF Area is y1 and Mean is y2 and Ca_L is y3 and Ca_R is 

y4 and Pu_L is y5 and Pu_R is y6, THEN q = o2 

where x1, x2, ... and y1, y2…. are fuzzy sets and o1, o2, ... 

are constants [25]. 

The algorithms GA and PSO are used to optimize the 

fuzzy rule sets for accurate calculation of the EPD by 

minimizing classification errors, redundant and 

conflicting rules. In order to improve the rules’ 

interpretability, classification accuracy, and redundancy, 

the fuzzy rule layer of DNFS uses PSO and GA. These 

algorithms ensure that the generated rules are the most 

effective in distinguishing EPD from HI. The conceptual 

procedure of both the algorithms is given below. 

(a) Procedure for Genetic Algorithm 

The GA follows an evolutionary approach to refine fuzzy 

rules in DNFS workflow. The procedure begins with an 

initial population of arbitrarily made rule sets that are 

assessed using a fitness function. The selection method 

picks the most optimized rule sets, which then undergo 

crossover to generate combinations of new fuzzy rule, 

preserving crucial forms among the features. In addition, 

mutation is utilized to prevent the algorithm being stuck 

with local optima. This iterative process continues until a 

maximum convergence is met. By optimizing fuzzy rules 

and membership functions, GA enhances decision-making 

in DNFS, leading to more exact and reliable PD diagnosis. 

The Conceptual procedure portrays in Figure4. 

 

Figure 4: Conceptual procedure for GA 

 

(a) (b)  Rule Optimization using PSO  

PSO is employed for optimizing fuzzy rules to enhance 

classification accuracy of EPD diagnosis. It is a 

population-based algorithm that draws inspiration from 

fish and bird swarm intelligence. The work flow of PSO is 

depicted in Table.2 

 

Table 2:  The overall work flow of PSO 

Step 1 Initialize the Swarm 
Step 2 Evaluate Fitness of Each Rule 
Step 3 Identify Best Rules 
Step 4 Update Velocity & Position of Rules by 

adjusting rule parameters 
Step 5 Update Rules & Repeat 
Step 6 Select Optimized Rules [26] 

 
Initialization 

 Creates set of fuzzy rules as Population 

 
Evaluation 

 Evaluates the fitness of each rule 

 
Selection 

 Selects the best fuzzy rules 

 
Crossover (Rule Combination) 

 Exchanges two parent rules to create a 

new rule. 

 

Mutation (Random Adjustment of 

rules) 

 Changes the rules randomly 

 
Replacement 

 Replaces worst-performing rules with 

new rules 

 
Termination 

 Repeat steps 2-5 until the rules stabilize 
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2.5.5      Aggregation and Defuzzification Layer 

Each fuzzy rule generates a fuzzy set based on the selected 

features. The aggregation layer combines multiple fuzzy 

sets to generate a final fuzzy output. The Weighted 

Average Aggregation (WAA) method is applied in 

diagnosing EPD due to its capability of considering the 

strength of all rules and handling the noise, uncertainty of 

the dataset. WAA computes a weighted sum of all the 

fuzzy rule and its mathematical equation is given as 

 

𝜎𝑎𝑔𝑔 =
∑(𝜎𝑖.𝜔𝑖)

∑ 𝜔𝑖
                                        (5) 

 

where 𝜎ᵢ and 𝜔𝑖 denotes membership value and weightage 

of the fuzzy rule. 

 

The aggregated fuzzy output is transformed into a clear 

number value by the final defuzzification layer, indicating 

whether or not the patient has EPD. It provides the output 

with the help of Centre of Gravity (CoG) that produces the 

most stable and accurate diagnosis by handling 

overlapping fuzzy sets well. The CoG is expressed as 

 

𝑧 =
∑ 𝜎(𝑦).𝑦𝑖

∑ 𝜎(𝑦)
                                      (6) 

 

where 𝜎(𝑦) and 𝑦𝑖 denotes membership value, and 

discrete output value.  

 

Table 3: Parameters of particle swarm optimization 

(PSO)and genetic algorithm (GA) 

Parameter Typical Value 

range 

Genetic Algorithm 

Population Size 20 

Mutation Rate 0.2 

Crossover Rate 0.7 

Selection Method Tournament 

Selection, size =3 

Number of Generations 1000 

Particle Swarm Optimization 

Swarm Size 20 

Inertia Weight (w) 0.5 

Cognitive Coefficient (c1) 1.5 

Social Coefficient (c2) 1.5 

Velocity Limits (Vmax) 0.7 

Number of Iterations 1000 

 

To determine whether the patient has the disease or not, 

the threshold value (0.5) is applied to the defuzzification 

output. To make generalization between the chosen 

features and a single output, the DNFS classification 

model’s workflow adjusts the GMF's hyperparameter. The 

training and testing datasets are separated into 70:30 and 

80:20 sections.  

 

 

 

With the stopping condition set at 1000, the 

hyperparameters of optimization algorithms like GA and 

PSO are selected based on refined through empirical 

testing to ensure stable convergence and high 
classification accuracy as shown in table 3. And the Table 

4 provides the pseudo code for the DNFS classification 

process. 

 

Table 4: Training procedure for DNFS 

 

1. Load VCDIS and extract the features like shape, 

texture and SBR values. 

2. Frame DNFS classification model 

a. Select the prominent features using CNN 

b. Define membership function to the features 

c. Frame rules automatically using FS for features 

d. Optimize the rules using GA/PSO. 

e. Aggregate the fuzzy rules and perform 

defuzzification  

f. Estimate the performance indicators (Loss, 

Accuracy, F1-Score, Recall, Precision) 

g. Classify effectively EPD from HI 

3 Results and discussions 

3.1 Image processing  
The bilateral filter, which preprocesses the VCDIS, 

evaluates performance using sigma_d (spatial) and 

sigma_r (intensity) as the two parameters. To identify the 

ideal filter parameter values, an analysis [27] is carried 

out. According to this research, sigma_d is between 1.5 

and 2.0. In this study, image edges are preserved by using 

a value of 1.5. However, a lesser number, such as 0.1, is 

selected because sigma_r changes greatly with noise 

levels. For the processed image to be accurate, the 

parameter values are essential. The processed (filtered) 

VCDIS for both HI and Early PD are shown in Figure 5(ii) 

and (v), which show variations in dopamine transporters. 

In EPD, the content of the dopamine appears decreased to 

be like a dot or like a circular within one side of the 

striatum, but in HI, it appears comma-shaped. 

Initially, in EPD, the content of dopamine is notably 

absent in the putamen, corresponding to regions with low 

intensity values. Subsequently, the caudate also 

experiences a loss of DaT content. The suggested 

approach uses a thresholding technique to segregate these 

high-intensity regions, starting from the left side of the 

striatum and working its way to the right. To ensure 

objectivity in the segmentation process, a normalizing 

process is done before thresholding [28]. The average and 

standard deviation (SD) of the threshold values is 

determined to be 2.1e4±0.5 for EPD and 1.8e4±0.7 for HI 

after careful assessment. The VCDIS histogram values are 

used as the basis for selecting these threshold values. The 

segmented images, shown in Figure5 (iii) and (vi), exhibit 

a substantial distinction between EPD and HI when 

compared to prior research [13]
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Figure 5: The original, processed, and segmented VCDIS for EPD (i, ii, iii) and HI (iv, v, vi) 

 

Table 5: Average and SD values of the features 

Features 
EPD  HI  

p level Average SD Average SD 

Area 240.000 70.440 385.689 30.854 0.01 

Mean 466.257 51.508 688.136 12.885 0.00 

Correlation 0.542 0.082 0.682 0.055 0.03 

Entropy 0.174 0.082 0.195 0.031 0.02 

Sharpness Estimation 12.828 5.766 15.182 1.811 0.00 

Ca_R 1.984 0.611 2.933 0.604 0.03 

Ca_L 1.994 0.600 2.967 0.618 0.03 

Pu_R 0.856 0.397 2.119 0.582 0.01 

Pu_L 0.822 0.375 2.116 0.573 0.02 

p denotes the significant level of EPD and HI(p<0.05).  

  

  

3.2 Extraction of feature 
It is clear that EPD is typified by a decrease in DaT 

content, which causes the striatum—more especially, the 

putamen and caudate regions—to shrink. As the DaT 

content decreases, the natural shape, which resembles a 

comma, changes to a smaller, dot-like or circular look in 

EPD. This transformation enables quantitative 

measurement of the striatal areas. The VCDIS texture 

features show how the gray levels interact. Shape and 

texture extracted features include mean, area, correlation, 

entropy, and sharpness estimation. SBR values are also 

included to improve classifier performance. Table 5 shows 

the average and SD values of features for HI and EPD. The 

table highlights important deviations between HI and EPD 

features, suggesting higher performance in accurate 

classification and easier processing, which is confirmed 

by the p-value of HI and EPD, which is less than 0.05 and 

falls within a 5% acceptance level. 

The striatal area (comprising putamen and caudate) is 

notably smaller in EPD compared to HI, measuring 

240.000 and 385.689 respectively. These measurements 

underscore substantial changes in EPD. Features that 

show higher values in HI but lower values in EPD include 

mean, area, entropy, and correlation. This indicates 

significant differences between features linked to shape 

and texture, which eventually improves classification 

accuracy.

   

(i) (ii) (iii) 

   

 (iv) (v) (vi) 
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Table 6: The Linguistic terms and its values of selected features 

Features Low Medium High 

Area 126.38 to 200.12 202.36 to 299.37 300.75 to 661.31 

Mean 183.75 to 349.50  350.12 to 448.75 450.00 to 661.37 

Ca_L 0.51 to 2.28 2.29 to 3.42 3.43 to 4.61 

Ca_R 0.36 to 2.00 2.01 to 3.00 3.01 to 4.96 

Pu_L 0.34 to 1.97 1.98 to 2.49 2.50 to 3.52 

Pu_R 0.29 to 1.09 1.10 to 2.06 2.07 to 2.99 

 

3.3 Performance of DNFS framework with 

optimized algorithms 
DNFS procedure starts with selecting the most prominent 

features using simple two stage CNN model. The model 

learns non-linear relationships among the data and selects 

the most optimized features such as Area, Mean, Ca_L, 

Ca_R, Pu_L and Pu_R. These selected features are 

utilized further for diagnosing EPD. These features are not 

varying sharply; but gradually. Hence, these gradual 

transitions are captured by GMF and gives the realistic or 

linguistic terms like low, medium and high as given in 

Table.6 

 

Table 7: The fuzzy rule for diagnosing early stage PD 

IF Area is Low AND Pu_L is Low AND Pu_R is Low 

THEN it is Early PD. 

IF Ca_L is High AND Ca_R is High AND Pu_L is 

Medium AND Pu_R is Medium THEN it is HI 

IF Mean is Low AND Pu_L is Low THEN it is Early PD 

IF Ca_L is Low AND Ca_R is Low AND Mean is Low 

THEN it is Early PD 

IF Area is High AND Mean is High AND Ca_L is High 

AND Ca_R is High THEN it is Normal 

 

The linguistic terms like low, medium and high values of 

the features are utilized for framing fuzzy rules using 

GMF. The average number of fuzzy rules framed are 

18.2±2.3. Some of the fuzzy rules are given in Table. 7. 

These rules are optimized using GA and PSO. 

 

The DNFS-PSO and DNFS-GA models are created and 

run separately to predict EPD. The redundant rules 

removed from the rule sets are 12.6%, 7.4% for DNFS-

PSO and DNFS-GA respectively. 70% and 80% of the 

data are utilized for training the models with 1000 

iterations, and the remaining portion is used for testing. 

Table 8 displays the average (Mean) performance metrics 

over 1000 iterations of the developed DNFS-PSO and 

DNFS-GA for various learning rates of 0.001, 0.01, and 

0.1 in terms of accuracy, loss, F1 score, precision, and 

recall. A detailed look at table 8 shows that the best model 

for EPD prediction is DNFS-PSO, with accuracy, F1- 

 

score, precision, and recall values (Mean±SD) of 

98.77±1.02%, 0.99±0.12, 1.0±0.01, and 0.99±0.10 for the 

splitting ratio of 70:30 and learning rate of 0.01 

respectively. With a splitting ratio of 70:30 and a learning 

rate of 0.01 for detecting EPD, DNFS with PSO provides 

the best results in terms of loss, accuracy, precision, recall, 

and F1-score. Figure 6 and 7 shows the performance graph 

(1000 iterations) of two optimization algorithms, DNFS-

GA and DNFS-PSO models, for learning rates 0.001, 0.01, 

and 0.1 for 70:30 and 80:20. 

With a loss of 0.0199, the DNFS-PSO model offers the 

lowest. According to the performance metrics, the 

suggested DNFS augmented with PSO is more effective 

than DNFS-GA at diagnosing PD. The model accurately 

predicts the negative (HI) and positive (EPD) cases in 

categorizing HI and EPD, as indicated by the precision and 

recall values of 1.0±0.01, and 0.99±0.10 respectively. 

When the learning rate is 0.01 the model does well. An 

excessively high learning rate (0.1) can cause uncertainty, 

whereas 0.001 is too small  causes sluggish convergence. 

Therefore, in the proposed study, the learning rate is set at 

0.01 based on empirical method. The table demonstrates 

that both DNFS-PSO and DNFS-GA achieved 

commendable diagnostic accuracy. Additionally, the 

statistical significance of both frameworks is confirmed, 

as the p-values for p1 (70:30 split) and p2 (80:20 split) are 

below 0.05. 

The system’s performance is measured by comparing it to 

machine learning and optimization techniques and it 

displays the extreme level of accurate accuracy across all 

the networks, as demonstrated in Table 9. This new 

method's diagnostic accuracy is strongly linked to the 

earlier research. To minimize bias, variation, and 

overfitting, the suggested method uses 10000 iterations 

and an optimum methodology for selecting features, 

producing reliable and consistent results. For specialists in 

differentiating between EPD and HI, this method is easy 

to use and practical, and it eventually produces better 

results than the systems discovered in the literature. In 

addition, the proposed model offers best performance due 

its dynamic nature in framing rule sets and self-adapting 

model. 
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Table 8: The Averaged performance Results of DNFS-PSO and DNFS-GA 

Evaluation 

Metrics 

Splitting Ratio 70:30 Splitting Ratio 80:20 
  

DNFS-GA DNFS-PSO DNFS-GA DNFS-PSO 
P1 P2 

Training Testing Training Testing Training Testing Training Testing 

Learning Rate: 0.001 

Loss       0.1769 0.1342 0.1897 0.1654 0.1897 0.1051 0.1887 0.1754 0.04 0.05 

Accu. (%)   97.85 98.310 98.390 98.310 95.970 98.80 98.230 98.31 0.04 0.04 

F1-Score 0.9636 0.9887 0.9735 0.9888 0.9315 0.9967 0.9735 0.9812 0.03 0.04 

Precision 0.975 0.9924 0.9821 0.9851 0.9714 1.070 0.9721 0.9751 0.04 0.03 

Recall     0.9298 0.9850 0.9649 0.9825 0.8947 0.9934 0.9630 0.9825 0.05 0.05 

Learning Rate: 0.01   

Loss       0.2633 0.2444 0.0013 0.0199 0.0209 0.0536 0.0195 0.0019 0.03 0.02 

Accu. (%)   94.93 97.32 99.92 98.77 99.80 98.11 99.14 97.99 0.01 0.03 

F1-Score 0.9247 0.9524 0.9925 0.99 0.9967 0.9867 0.9825 0.9880 0.03 0.05 

Precision 0.8824 0.9259 0.9831 1.0 0.9935 1.0 0.9831 0.9985 0.02 0.04 

Recall     0.9712 0.9804 0.9825 0.99 1.0 0.9737 0.9825 1.0 0.04 0.02 

Learning Rate: 0.1   

Loss       0.0116 0.0045 0.0034 0.0677 0.0885 0.0562 0.0287 0.0016 0.04 0.05 

Accu. (%)   97.31 98.16 99.82 98.19 97.58 98.60 98.66 98.79 0.03 0.04 

F1-Score 0.96 0.9892 0.9995 1.0 0.9565 0.9765 0.9895 0.999 0.04 0.03 

Precision 1.0 0.9793 1.0 1.0 0.9706 0.9835 1.0 0.999 0.04 0.03 

Recall     0.9231 0.9792 0.9925 1.0 0.9429 0.9642 0.9775 0.999 0.03 0.04 
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Figure 6: Performance plot for DNFS PSO for the splitting ratio of 80:20 
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Figure 7: Performance plot for DNFS PSO for the splitting ratio of 70: 30 

 

Table 9: Comparative analysis of the literature 

 

4    Discussion  
The proposed DNFS framework, optimized using PSO 

and GA, demonstrates high accuracy in detecting Early 

Parkinson’s Disease (EPD) using VCDIS images. 

Bilateral filtering with σ_d= 1.5 and σ_r = 0.1 effectively 

reduces noise while preserving edge details. Thresholding 

and normalization techniques enable accurate 

segmentation of dopamine-rich regions, revealing clear 

morphological differences between EPD and HI, 

particularly in the putamen and caudate. 

Feature extraction based on shape, texture, and SBR 

values highlights significant statistical differences (p < 

0.05) between the two classes. A two-stage CNN selects 

key features, which are converted into linguistic terms 

using GMF and refined through fuzzy rule optimization 

via PSO and GA. 

Among the models, DNFS-PSO achieves superior 

performance, with 98.77±1.02% accuracy, 0.99±0.12 F1-

score, and minimal loss of 0.0199 at a learning rate of 0.01 

and 70:30 data split. Performance graphs confirm the 

model’s robustness and stability. The results validate the 

framework’s effectiveness in early-stage PD detection and 

classification. 

 

5  Conclusion  
Parkinson’s disease (PD) is a crippling neurological 

condition that significantly lowers a person's quality of 

life. The progressive loss of dopamine-producing neurons 

in the mid-region of the brain, which is the hallmark of 

PD, emphasizes the importance of early detection and 

treatment. To improve prediction accuracy and enable 

early intervention, researchers are always experimenting 

with different approaches and technology. A major 

breakthrough in the field of EPD diagnosis is represented 

by the novel prediction framework of the proposed study, 

which combines Deep Neuro-Fuzzy Systems (DNFS) 

with Particle Swarm Optimization (PSO) and Genetic 

Algorithm (GA). Using loss, accuracy, precision, recall, 

and F1-score as performance metrics, this model was 

thoroughly assessed using Volume Containing DaTscan 

Image Slices (VCDIS) from the Parkinson's Progression 

Markers Initiative (PPMI). With an impressive 98.77% 

classification accuracy and low error rates, the study's 

findings are incredibly encouraging. Crucially, this 

performance outperforms previously documented 

classification techniques in the body of current research, 

confirming the DNFS-PSO model's capacity to forecast 

Parkinson's disease in its early stages. This study 

represents a significant milestone in the quest to improve 

S. No. Details Methodology used Performance (%) 

1 Anita et al [13] VRIS with RBF-ELM 98.23 

2 El-Hasnony et al. [15] Fog-based ANFIS+PSOGWO model 87.50 

3 Balasubramanian K et al [16] Modified glow worm swarm optimization algorithm 

(M-GSO) 

95.00 

4 Prashanth et al. [21] Averaged single image slice with SVM  97.29 

6 Proposed Work DNFS -PSO 98.77 

1.0 

0.99 

0.0199 
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the early identification and management of Parkinson’s 

Disease. In the future, a range of diverse techniques and 

optimizations will be employed to achieve superior 

performance 
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