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The increasing complexity of contemporary power networks necessitates the development of enhanced
early warning systems and intelligent monitoring to ensure stability and operational efficiency.
Traditional approaches to risk prevention and predictive maintenance often fail due to limitations in
identifying real-time abnormalities and adapting to dynamic system characteristics. To address these
issues, the present research proposes an improved fish swarm optimization with Backpropagation Neural
Network (IFSO-BPNN) for anomaly detection (AD) and fault detection (FD) early warning in power
system (PS) monitoring that integrates an IFSO algorithm with a BPNN. The major goal is to increase
the accuracy of AD and FD in smart grids by utilizing deep learning (DL) and optimization approaches.
The IFSO method integrates adaptive weighting and behavioral dynamics into classic fish swarm
optimization, improving overall search capabilities. By tweaking BPNN parameters using IFSO, the
model achieves higher convergence rates and improved classification accuracy. The assessment dataset
was compiled usinginternet of Things (loT) sensors and pan/tilt camera-based surveillance systems at
Beijing power plants, with preprocessing techniques such as min-max normalization and feature
extraction using Independent Component Analysis (ICA) to improve model performance. Resultsfrom
experiments show that the IFSO-BPNN model outperforms standard algorithms with an accuracy
0fFD99.98% and AD 0.9980. These findings illustrate the system's capacity to detect anomalies quickly
and perform preventive maintenance. The proposed method, which combines swarm intelligence with
neural networks, helps to construct smarter, more robust power grids capable of meeting future energy
demands with lower failure risks.

Povzetek: Za odkrivanje napak (FD) in nepravilnosti (AD) v nadzoru elektroenergetskega sistema je razvit
IFSO-BPNN (Izboljsana optimizacija jata rib in BPNN). Model izboljsa kvaliteto z optimizacijo
parametrov BPNN z IFSO, kar omogoca hitro zgodnje opozarjanje in prediktivno vzdrzevanje.

Introduction

difficult [4].Real-time data collection and analysis of

Artificial intelligence (Al), big data, and deep learning
(DL) revolutionize power systems (PS) by enhancing
feature modeling, control, and fault diagnosis; these are
presenting recent advances and applications in monitoring
and performance analysis [1]. The expansion ofPS is
hindered by growing power demand and environmental
objectives, which present challenges for transmission
capacity and distance. Advanced, sustainable energy
solutions are being used to achieve carbon peaking and
neutrality [2].Reconstruction errors and thresholding are
used in AD(AD) to minimize false alarms and isolate fault
areas by training a model to learn typical system
behaviorin an unsupervised manner [3].Approximately
70% of energy is produced by thermal power plants; new
large-capacity units (600-1000+ MW) improve operating
efficiency but make system coupling and integration more

electrical characteristics is part of PS monitoring, used to
ensure system stability, identify problems, improve
performance, and assist in decision-making for
dependable and effective power grid operation [5].As
demonstrated by the arctic sky tragedy, the expansion of
the cruise industry needs advanced, dependable PS to
avoid blackouts, which endanger public safety, the
environment,  financial stability, and reputation
[6].Potential false alarms, reliance on data quality,
difficulty identifying new abnormalities, computational
complexity, difficulties with real-time implementation,
and threshold setting are some drawbacks of AD and early
warning in PS [7].
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1.1 Aim and contribution of the research

The aim of the research is to develop a new method,
improved fish swarm optimization with Backpropagation
Neural Network (IFSO-BPNN), for detecting anomalies
and faultsin PS by integrating BPNN and IFSO
algorithms. The goal is to increase the accuracy and
efficiency of AD and fault detection (FD) in smart grids
while also enabling proactive maintenance. The research's
key contributions include the following:

e IFSO Algorithm: Improves the global search
capability and adaptive weighting of classic Fish
Swarm  Optimization, resulting in less
convergence time and higher classification
accuracy in anomaly and fault identification.

e BPNN Optimization: IFSO is used to optimize
BPNN parameters, which results in quicker
convergence and greater classification accuracy
for real-time AD and FD.

e Advanced-Data Preprocessing: Uses min-max
normalization and Independent Component
Analysis (ICA) for feature extraction, improving
the model's performance in power system
monitoring by efficiently preprocessing Internet
of Things (IoT) sensor and surveillance system
data.

The next phase (phase 2) clearly explains the existing
research about ADand early warning in PS monitoring.
Phase 3 presents the methodology, Phase 4 provides the
result and discussion of existing vs proposed method, and
Phase 5 deliversthe conclusion.

2 Related works

The aim of the research [8] was to increase the
dependability of seismic stations. For reliable power
failure prediction, the SeismoGuard Ensemble, which
comprises random forest (RF), support vector machine
(SVM), k-nearest neighbors (KNN), and logistic
regression (LR), along with IoT monitoring, was used.
Results demonstrate that the approach attained 90%
accuracy and increased dependability. The dataset's reach
was restricted; however, the data contains long-term
testing with wider generalization across various situations.
A combination of elliptic curve cryptography (ECC)-
based token control with deep reinforcement learning
(DRL)-based sleep scheduling was used for secure and
adaptive power management under possible threat
conditions in order to improve the security and energy
efficiency of wireless sensor networks (WSNs) [9]. The
approach achieved a 15% increase in energy efficiency
and a 20.01% power reduction. While simulation-based
outcomes were validated, more verification was required
for scalability and real-world implementation under
various attack types.

N. Lietal.

Following data cleaning and feature extraction,
supervisory control and data acquisition (SCADA)were
processed using aConvolutional neural network -
bidirectional gated recurrent unit (CNN-BiGRU) with
attention to identify wind turbine faults [10]. Accurate FD
in actual wind farms was accomplished; however, it was
constrained by the generalizability of the data source and
the possibility of overfitting to particular turbine models.
The monitoring of wind turbine health was enhanced by
utilizing mutual information to determine essential
parameters, support vector regression (SVR) for
thresholding, and long short-term memory -autoencoder
(LSTM-AE) for AD [11]. The outcome demonstrated
precise AD and successful identification of crucial
parameters. Real-time monitoring settings could show a
decline in performance due to noisy data or inadequate
temporal information. To optimize the monitoring and
security of smart hospitals, machine learning (ML) and
edge-based advertising on Contiki Coojawere applied to
identify IoT network intrusions and e-health incidents
[12]. The system was successful in identifying
cyberattacks and e-health events, but it was very
dependent on the reality of the simulated data, which could
not work effectively with complex or novel attack
patterns.

Abnormalities in wind turbines were discovered and
accurately analyzedutilizing a combination of methods.
Local outlier factor (LOF) and adaptive K-means for
preprocessing, Extreme Gradient Boosting (XGBoost) for
diagnosis, and long short-term memory-stacked denoising
autoencoder (LSTM-SDAE) for feature extractionwere
employed [13]. The technique increased wind turbine
dependability by efficiently identifying and diagnosing
problems in real-time utilizing SCADA data. Performance
was dependent on the caliber of preprocessing and could
be hampered by noisy data or hidden anomalies. The
research created an early warning system that incorporates
meteorological data to enhance PS dependability and
proactively reduce atmospheric dangers [14]. The
technology enhanced defect detection and prevented
outages during severe weather; however, its performance
depended on data quality and erratic weather patterns. The
advancements in battery electric vehicle (BEV)
technology, platforms, charging, and monitoring were
examined to address issues regarding safety, charging, and
range in new energy cars [15]. Although cutting-edge
platforms and safety features dominate the BEV industry,
however, there were issues with battery lifecycle safety,
charging simplicity, and weather adaptation. The PS load
margin was determined by utilizing an artificial neural
network (ANN) trained on phasor measurement unit
(PMU) data and model simulations to ensure voltage and
small-signal stability [16]. An ANN's ability to anticipate
load margin effectively cannot exceed a dependence on
the quality of PMU data and model assumptions in actual
systems. To increase safety in nuclear-powered marine
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operations, developments in ship nuclear power
machinery (SNPM) design, fault diagnostics, and risk
assessmentwere evaluated [17]. Design enhancements and
investigation spaces were identified, and an integrated risk

Table 1: Comparative Summary of the related works
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framework was suggested; however, knowledge remains
limited and needs to be verified. Table 1 provides the

related works summary table.

based sleep scheduling for
WSN

gain, 20.01%
reduction

power

Reference Methods Results Limitations
Duet al. [8] SeismoGuard Ensemble (RF, | Achieved 90% accuracy, | Limited dataset
SVM, KNN, LR) + 1loT | improved dependability | coverage; needs
monitoring of seismic stations generalization and
broader testing
Qinet al.[9] ECC token control + DRL- | 15% energy efficiency | Simulation-based only;

real-world  scalability
and threat resilience not
verified

Xianget al.[10] | SCADA data + CNN-BiGRU +

attention mechanism

Accurate wind turbine
FD in real wind farms

Data source
generalizability is
limited; overfitting risk
to  specific turbine
models

Chenetal. [11] | Mutual information + SVR for
thresholds + LSTM-AE for

anomaly detection

Accurate
detection;
parameters identified

anomaly
key

Real-time performance
could degrade under
noisy or incomplete data

Said et al. [12] ML + edge-based intrusion
detection on Contiki Cooja for

smart hospitals

Identified e-health events
and loT network
intrusions accurately

Simulated data could
fail under real, complex
attack patterns

Zhangetal. [13] | LOF + adaptive K-means
preprocessing + XGBoost +

LSTM-SDAE

Real-time, accurate
ADand diagnosis in wind
turbines

Sensitive to data quality;
hidden anomaly types
may be missed

voltage and small-signal
stability

Boziceket Early warning system using | Prevented outages and | Dependent on weather
al.[14] meteorological data improved detection | unpredictability and
during extreme weather | data quality
He etal. [15] BEV platform, | Technological Issues remain in battery
charging/swapping  stations, | dominance and safety | safety, weather
and monitoring platform improvements in the | adaptability, and
BEV market charging ease
Bento et al. [16] | ANN trained on PMU data + | Accurate load margin | Performance hinges on
model-based simulation prediction ensuring | PMU data and

assumptions in
simulation models

Adumene et al.
[17]

SNPM  designs +  fault
diagnosis + risk assessment

hybrid risk framework;
identified design
progress

Incomplete knowledge

base; needs validation
and framework
integration

2.1 Research gap

The method additionally solves past techniques'
drawbacks, such as restricted data generalization,
overfitting, simulation reliance, and data quality

sensitivity. The proposed approach, IFSO-BPNN,
provides a scalable, real-time solution for proactive
maintenance and problem detection in complex, large-

scale power networks. The research fills a gap by merging
an IFSO method with a BPNN for PS anomaly and fault
identification. Compared to earlier techniques, this
approach improves accuracy, convergence speed, and FD
resilience, especially in noisy situations.
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3 Research methodology

This section discusses 10T sensor-based data collection in
PS and introduces the IFSO-BPNN approach for anomaly
and fault identification, as well as early warning in PS
monitoring. Figure 1 shows the methodology flow, which
includes data pretreatment, feature extraction, and model
optimization.

Beijing power
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Data set

S

Preprocessing

Fault detection, Anomaly
detection and early
warning in power system
monitoring
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Figure 1: Flow of the proposed method

3.1 Data collection

The system configuration includes a pan/tilt integrated
camera, a series of local storage DVR hosts, a 1-terabyte
dedicated hard disk, and equipment from major domestic
video equipment manufacturers. A wireless networking
module is an important element that allows direct
connection across 4G or 5G wireless networks. The
research is centered on power stations surrounding
Beijing, where the distribution stations lack wired
networks and must communicate over wireless networks.
To achieve that, on-site terminal equipment is required to
access different network types at the distribution station,
such as 2G/3G/4G, GSM, CDMA, and wired networks.
Many of these stations are found in basements. In the event
of a severed wireless connection between the station and
the platform, short messages transmitted to the terminal
equipment at the distribution station allow for simple
permission and re-establishment of communication. The
data were split into an 8:2 ratio, 80% for training, and 20%
for testing dataset.

N. Lietal.

3.2 Data preprocessing via min-max
normalization

Min-max normalization is a common method used for
numerical sensor and camera data from Beijing power
plants to scale characteristics between 0 and 1, in which
the values of a feature are translated into a preset range,
usually [0-1]. The method retains data connections, hence
being suitable for a wide range of ML applications. The
transformation is carried out using the following Equation

Q.

Xnew = —_xomin__ 1)

max(x)—-min(x)

X,.ew = The adjusted value obtained after scaling the data
X = outdated value, max(x)= dataset’s highest possible
value.min(x) = dataset's lowest possible value. The
normalizing technique improves AD and FD in PS
monitoring by ensuring that all data points have a
consistent scale, which increases predictive model
accuracy.

3.3 Feature extraction using independent
component analysis (ICA)

ICA is a current statistical technique that attempts to break
down observable data into statistically independent
components. The ICA was used on sensor and surveillance
data to reduce dimensionality and extract essential
features, which improved the IFSO-BPNN model's
capacity to detect abnormalities in PS monitoring as a
linear mixture of independent components, expressed as
follows in Equation (2).

y=B.T 2

Where: y represents the observed data vector, Bdenotes
the mixing matrix, and T denotes the separate components.
In ICA, components are assumed to be statistically
independent and non-Gaussian, with a square and
unknown mixing matrixB. To extract the components,
calculate the inverse X of matrix B as follows in Equation

(3).
T=Xy 3)

ICA divides data into statistically independent
components, helping in AD and FD in PS. While the
technique does not give direct variance or ordered data, the
enhanced sparsity-based technique improves feature
extraction and speeds up convergence for real-time
applications such as early warning systems. ICA has been
widely applied in disciplines like face recognition and
dimensionality reduction. PS monitoring, which extracts
essential characteristics from sensor data, catches
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complicated, non-Gaussian patterns that standard
approaches typically overlook, resulting in improved AD,
FD and maintenance efficiency.

3.4 Detection and early warning in PS
monitoring using improved fish swarm
optimization with backpropagation
neural network (IFSO-BPNN)

The IFSO-BPNN enhances AD and FD in PSby
optimizing BPNN parameters with the IFSO algorithm,
increasing classification accuracy, and allowing for real-
time predictive maintenance. Figure 2 displays the
proposed method’s flow diagram for power system
monitoring.

BPNN

Input Layer
Hidden Layer
Output Layer

Mish Activation

Early Warning

IFSO
Algorithm

+Visual steps and adaptive

*Improved swarming and leading behavior
«Improved Search Behavior

*Mechanism of Extinction and Rebirth

Fault and anomaly
Detection and
Response Trigger

Figure 2: Flow diagram for the proposed method.

3.4.1 Back-propagation neural network (BPNN)

The BPNN is a multi-layer feed-forward artificial neural
network designed to identify anomalies in PS. The
architecture consists of an input layer, one or more hidden
layers, and an output layer. Sensor readings, system
performance measurements, and ambient parameters are
all sent into the input layer. The hidden layers discover
complicated patterns in the data, whereas the output layer
anticipates anomalies and faults such as system
malfunctions or failures. Each neuron's output is defined
by applying an activation function to the weighted sum of
inputs in Equation (4).

x = Z}lzl z.y;ta (@)

Where y;is the input, z;is the weight, ais the bias, and o (-
) is the exponential activation function (TanhExp) f(x) =
x.tanh (e*), generally mish activation function tanh.
The Mish function is smooth and comparable to TanhExp.
The formula is provided as follows.
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F(x)x.tanh(softplus(x)). where softplus
functionf (x) = log (1 + e*).Mish is a self-regulatory
activation that improves accuracy and generalization
instead of standard function. The process is smooth and
non-monotonic, allowing for modest negative outputs
while retaining strong positive flow, avoiding problems
like dead neurons in ReLU.x: Input to the neuron.
Soft plus (x): A smooth variant of ReLU.tanh(-):
Implements smooth limiting behavior for high input
values. Data from the power system is collected,
standardized, and sent to the network for training.
Normalization guarantees that each input feature
contributes evenly to model training. During forward
propagation, input data is transferred through the layers as
the model produces predictions. Backpropagation then
changes the weights and biases depending on the loss
function, which is commonly Mean Squared Error (MSE)
and computed as follows in Equation (5).

1 2
MSE = Ezyzl(xpred - xactual) (5)

To improve the model's capacity to detect anomalies and
fault, increase system dependability, and provide early
alerts for proactive PS repair.

Loss function:

In the PS anomaly and fault detection, the loss function is
critical for reducing prediction errors and improving model
parameters. The BPNN's output layer computes the error
between the expected output and the actual observed
detection using the MSE and an appropriate activation
function. The error gradient of each neuron in the output
layer could be computed as follows in Equation (6).

6out = (xpred - xtrue)- UI(W) (6)

Xprea - Predicted output (anomaly, and fault score). xye:
True label (0 for no abnormality and 1 for anomaly). o’ (w)
is the derivative of the activation function for the neuron's
input w.The gradient of the hidden layers is affected
primarily by the output error, but also by the gradients of
the following layers. The gradient of a hidden layer neuron
G; could be calculated using the chain rule in Equation (7).

Sniaden = 2iZji-6i- 0" (W)) (7

Oniaaen: Error gradient for a hidden layer neuron. z;;:
Weight coupling hidden layer cell G; with output
neurons. §;: The error gradient of the output
neuron.c’(w;): Derivative of the activation function for
the buried layer inputw;.Gradient descent is used to
update weights and biases during training to minimize the
loss function. The rules for updating the weights (z) and
biases (a) in each round are as follows in Equations (8-9).
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ap
7D =z — N (8)
at) = (W — n.z—z 9)

The current weights and biases at iteration n are denoted
by z™anda™. The learning rate () is a hyperparameter
that controls the step size. The gradients of the loss

. . . ap_ 9P
function about weights and biases are 6$and£,

respectively. The learning rate n adjusts the model's
weights and biases to reduce prediction errors for ADInPS.

3.4.2 Improved fish swarm optimization (IFSO)

FSO was selected over PSO, GA, and DE because of its
greater global search capabilities and adaptive behavior,
which improve convergence and classification accuracy in
AD and FD. An IFSO is proposed to increase detection
accuracy and convergence speed. For balanced exploration
and exploitation, the system incorporates adaptive control
overstep size and visual field, which shrinks with
iterations. By eliminating default search behaviors and
crowding conditions, swarming and following techniques
are improved. Fish retry with modified settings when an
improved solution is discovered. To preserve the quality of
global optimization, an extinction-regeneration system
removes the most susceptible fish and replaces it with a
more suitable one. This improved method efficiently
optimizes BPNN parameters for AD and FD in PS.

The classic Fish Swarm Algorithm (FSA) has fixed visual
and step sizes, which can hinder convergence. To improve
AD performance, an adaptive piecewise function is
proposed to gradually decrease visual and step sizes with
iterations, finding a balance between speed and accuracy.
StepSS (iter) and adaptive V (iter) are defined as follows
in Equations (10-11).

log (maxgen)

, iter
V(iter) = int (maxv X <W> )(10)

, iter
SS(iter) = int (maxs X (W) ) (11)

log (maxgen)

V (iter): The artificial fish's field of vision at iteration iter.
SS(iter): The maximum step the fish can take during
iteration. max,: Step size and initial (maximum) visual
range. min,: The smallest step size and visual range for
efficient searching. The maximum number of iterations
ISmaxge,. iter: The number of the current iteration. For
discrete issues, int(...) rounds values to integers. Values
are rounded to integers, with a minimum step and visual
sizes set to 1 for discrete issues such as attribute reduction
in Equations (10-11); both the visual and step sizes use an
exponential decrease from maximum to minimum across
iterations, allowing for quick global search at the
beginning and accurate local search at the final stage. The
provided AD, and FD framework's convergence and

N. Lietal.

detection accuracy are enhanced by the adaptive
technique.

The artificial fish swarm algorithm (AFSA) uses swarming
and following behaviors to determine convergence speed.
However, narrow distances can cause local optima and
delayed convergence. Randomization ~ changes
swimming's step size to prevent premature convergence.
The algorithm focuses on determining the optimal position
of fake fish for efficient attribute reduction, and eliminates
search behavior to save execution time. The enhanced
swarming and subsequent behaviors are defined as
Equations (12-13).

Ynext = Y] + Step X (Yd - Y])lf G(Yd) > G(Y])
(12)

Y, =Yg if 6(Yp) > G(Y) (13)
Ynexe: The fake fish's next position.Y;: The fake fish's
current location.Y;: The position of the swarm's
center.step: The step size for movement is determined by
a random component. G(Y;): The fitness value at the
center position. G(Y;): The fish's fitness value at that
present location. These changes improve the algorithm's
efficiency, resulting in faster convergence and higher
performance.
Improved Search Behavior: In the AFSA, searching for
behavior entails exploring the available domain to discover
alternatives. The number of tries has a significant impact
on search efficiency, frequently resulting in premature or
inefficient searches. To solve these things, extend the
viewing field when no superior location is discovered after
a certain number of difficulties. When a suitable place is
located, the fish takes one step towards that, with a
maximum step size of step,., = 2 X step. Without
false, the fish moves randomly. IFSO's capacity was
improved to efficiently tune BPNN parameters, hence
increasing accuracy and convergence in PS anomaly and
fault detection.
Mechanism of Extinction and Rebirth: The algorithm uses
an extinction mechanism to remove the least suitable fish,
enhancing swarm adaptability but decreasing swarm size
and randomness. A regeneration mechanism is then
included to restore swarm size by regenerating highly
adaptable fish, ensuring resilience and enhancing
efficiency by shortening iteration durations while
maintaining high fitness levels. The IFSO-BPNN
approach attempts to discover and detect deviations in
PSmore efficiently by optimizing neural network
parameters, assuring faster convergence, and improving
prediction accuracy for proactive maintenance. Algorithm
1 displays IFSO-BPNN.
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Algorithm 1: IFSO-BPNN

Step 1: Initialize the BPNN parameters

Initialize BPNN with input layer, hidden layers, and output
layer

Set learning rate 1 and number of iterations max_iter

Step 2: Initialize the Fish Swarm Optimization (IFSO)
parameters

Initialize fish swarm population size, maximum visual
field (max_v), and step size (max_s)

Set the minimum values for visual field (min_v) and step
size (min_s)

Step 3: Data Preprocessing

Preprocess data:

Normalize  sensor  readings using  min-max
normalization
Perform feature extraction using Independent

Component Analysis (ICA)
Step 4: Training the BPNN with IFSO optimization
for each iteration in range(max_iter):
for each fish in the swarm:
visual = V(iter)
step = SS(iter)
if G(Y_d) > G(Y_j):
Y j=Y.d
for each fish in the swarm:
BPNN.weights = optimize_with_fish_swarm(Y_j)
BPNN.biases = optimize_with_fish_swarm(Y_j)
for epoch in range(max_epochs):
output = BPNN.forward(input_data)
error = calculate_ MSE (output, expected_output)
gradients = backpropagate(error)
BPNN.weights = BPNN.weights - n * gradients.weights
BPNN.biases = BPNN.biases - 1 * gradients.biases
Step 5: Extinction and Regeneration
remove_weakest_fish()
regenerate_strong_fish()
Step 6: Anomaly and Fault Detection
anomaly_score = BPNN.predict(test_data)
fault_score = BPNN.predict(test_data)
if anomaly_score> threshold or fault_score> threshold:
trigger_early_warning()
Step 7: Return the optimized BPNN model for PS
monitoring
Return BPNN model optimized using IFSO

4 Result and discussion

This section compares the result of the proposed method,
an enhanced IFSO-BPNN framework, for AD and FD
early warning in PS monitoring with existing methods. The
evaluation was conducted using parameters such as
accuracy (Acc), success rate (SR), misclassification
instances (MI), error rate (ER), precision (Pre), recall
(Rec), and F1 score (F1).
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4.1 Experimental setup

The IFSO-BPNN technique is implemented on a machine
equipped with an Intel i7 CPU, 16GB RAM, and a512GB
SSD. Python 3.9 is used for implementation, including
libraries like NumPy, TensorFlow, Scikit-learn, and
Matplotlib for processing and visualization. Table 2
displays the hyperparameters of the proposed method.

Table 2: Hyperparametric for proposed method

Hyperparameter Range/Value
BPNN Learning Rate (1) 0.01t0 0.1
Max Iterations (max_iter) | 100 to 1000
Swarm Population Size 50 to 200
Max Step Size (max_s) 0.1t01.0
Min Step Size (min_s) 0.01t0 0.1
Learning Rate (1) for | 0.001to 0.01

BPNN
Fitness Function

Error of BPNN model

predictions
MSE  Threshold  for | 0.001
Convergence
Activation Function for | Mish, TanhExp, or ReLU
BPNN

4.2 Performance outcome

Figures 3 and 4 show the ROC curve and confusion matrix
for anomaly detection and fault detection, respectively.
The performance was evaluated based on the false positive
rate, the true positive rate for the ROC curve, and the
predicted and actual for the confusion matrix.

AUC ROC Curve
10 Confusion Matrix

Actual
Class 0
@
=z

True Positive Rate

Class 1

AUC=099
Class 0 Class 1

Predicted
(b)

00 02 04 06 08 10
False Positive Rate

(a)

Figure 3: Anomaly detection (a) Roc curve, and (b)
confusion matrix.
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Figure 4: fault detection (a) Roc curve, and (b) confusion
matrix.

4.3 Parameter explanation

Accuracy (Acc):Acc is defined as the ratio of accurately
predicted occurrences (including true positives and true
negatives) to total instances in a dataset, which measures
the overall performance of PS monitoring and fault
detection.Success rate (SR): The smart grid system is
calculated as the proportion of accurately discovered faults
and successful predictions to improveFD and maintenance
accuracy.Misclassification instances (MI): The events
occur when the model incorrectly identifies problems or
normal conditions to demonstrate the possible flaws in
identifying power defects.Error rate (ER):The fraction of
misclassified cases, revealing the model's errors with an
emphasis on decreasing mistakes in FD for PS.Precision
(Pre) is the fraction of successfully diagnosed errors
among all expected anomalies, demonstrating detection
accuracy. Recall (Rec) measures the model's ability to
detect all real abnormalities. F1 Score (F1) balances
precision and recall. These metrics assess the IFSO-BPNN
model's ability to accurately detect and monitor PS faults.

4.4 Comparison phase

The proposed method, IFSO-BPNN, is compared to the
existing methods like Long Short-Term Memory (LSTM)
[18] for FD, k-Nearest Neighbors (KNN), Decision tree
classifier (DTC), and Random Forest (RF) [19] for ADand
early warning in PS monitoring with evaluation metrics.
Table 3 and Figure 5 (a-b) display the comparison of
metric values for the proposed method and existing
methods to predict FD and FD in early warning of PS
monitoring. The proposed IFSO-BPNN (98.5%) method
achieves greater Acc than LSTM (91.21%).

N. Lietal.

Table 3: FD metrics values for proposed method.

Metrics LSTM [18] IFSO-BPNN
[Proposed]
Acc (%) 91.21 98.5
SR(%) 92.42 96.85
Ml 17 9
ER (%) 8.76 5.15
LSTM [18]
IFSO-BPNN [Proposed]
100
;\? 80 ! ,‘H I
@ 60
=}
§ 40 -
20 -
0 ,

Acc SR
Metrics

Figure 5(a): Acc and SR value for FD.

LSTM [18]
IFSO-BPNN [Proposed]

20 -

A
@ 15
3
S 10 .’
: |
0_ . ‘.
M ER (%)

Metrics

Figure 5(b): Ml and ER FD value for proposed method.

Table 4 and Figure 6show the comparison of the proposed
method and existing methods to evaluate the metric
valuesused to predict ADand early warning of PS
monitoring. The proposed IFSO-BPNN (0.9980) method
achieves greater Acc than KNN (0.9729), DTC (0.9937)
and RF (0.9976).
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Table 4: Metrics values for proposed vs existing methods.

Metrics | KNN DTC RF IFSO-
[19] [19] [19] BPNN
[Proposed]
Pre 0.9732 | 0.9937 | 0.9976 | 0.9978
Rec 0.9729 | 0.9937 | 0.9976 | 0.9977
F1 0.9729 | 0.9937 | 0.9976 | 0.9979
Acc 0.9729 | 0.9937 | 0.9976 | 0.9980
KNN [19]
DTC [19]
RF [19]
IFSO-BPNN [Proposed]
1
0.8
(2]
S o6
S 0.4
0.2
0 L || || )
Pre Rec F1 Acc
Metrics

Figure 6: Evaluation metrics values for the proposed
method.

In this research, both BPNN and IFSO-BPNN techniques
were trained for FD and AD in PS. The numerical results
of the ablations study for FD and AD in PS are displayed
in Table 5, indicating that IFSO-BPNN performs better
than BPNN.

Table 5: Outcome of ablation study

Method AD Acc (%) | FD Acc (%)
BPNN 98.0 98.2
IFSO-BPNN | 99.8 98.5

4.5 Discussion

The proposed IFSO-BPNN method achieves higher Acc,
Pre, Rec, F1 and SR and significantly reduces Ml and ER
compared to existing methods like LSTM, KNN, DTCand
RF. Existing models struggle with real-time adaptation and
FD accuracy. The IFSO method overcomes these
constraints by improving global search and optimizing
BPNN parameters for improved performance. The
connection helps electricity systems identify faults and
provide early warnings. The key benefit is the substantial
dependability and precision in predictive maintenance,
which improves the robustness and efficiency of PS.
Deploying the IFSO-BPNN model in smart grids provides
real-time defect detection, such as detecting transformer
overheating early on, averting blackouts, lowering
maintenance costs, and enhancing energy distribution
reliability across locations.
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5 Conclusions

The improved early warning model, combining IFO with
a BPNN (IFSO-BPNN), was presented to improve FD and
predictive maintenance in smart power systems. The
method aims to optimize neural network parameters for
higher detection accuracy. The results demonstrated
exceptional performance with FD accuracy (98.5%) and
AD accuracy (0.9980) higher than existing methods. To
address statistical validation, the IFSO-BPNN model has
limited specificity, required more processing resources,
and relied on precise parameter adjustment, which could
leave an impact on real-time performance and
generalizability across different power systems. The
dataset's limited coverage of Beijing's local distribution
stations, as well as a lack of sample size and class
distribution information, limit its generalizability and
model performance assessment. The future scope may
extend the dataset to cover varied power systems, and
providing precise details on sample size and class
distribution ~ would  improve  model resilience,
generalization, and performance evaluation. Future
research should focus on increasing specificity, testing in
a variety of grid scenarios, and incorporating real-time
adaptive processes to widen and improve the system's FD
capabilities and use confidence intervals and standard
deviations to demonstrate dependability. Future directions
include statistical validation methods, such as confidence
intervals and standard deviations, to support the reliability
of results, providing clearer justification for performance
metrics and model robustness. Future work will
concentrate on providing thorough feature extraction,
dimensionality reduction using ICA, and using correlation
reduction methods for better analysis. Future research aims
to enhance model performance and generalization by
improving feature extraction, incorporating diverse data
sources, and reducing dimensionality.
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