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The increasing complexity of contemporary power networks necessitates the development of enhanced 

early warning systems and intelligent monitoring to ensure stability and operational efficiency. 

Traditional approaches to risk prevention and predictive maintenance often fail due to limitations in 

identifying real-time abnormalities and adapting to dynamic system characteristics. To address these 

issues, the present research proposes an improved fish swarm optimization with Backpropagation Neural 

Network (IFSO-BPNN) for anomaly detection (AD) and fault detection (FD) early warning in power 

system (PS) monitoring that integrates an IFSO algorithm with a BPNN. The major goal is to increase 

the accuracy of AD and FD in smart grids by utilizing deep learning (DL) and optimization approaches. 

The IFSO method integrates adaptive weighting and behavioral dynamics into classic fish swarm 

optimization, improving overall search capabilities. By tweaking BPNN parameters using IFSO, the 

model achieves higher convergence rates and improved classification accuracy. The assessment dataset 

was compiled usingInternet of Things (IoT) sensors and pan/tilt camera-based surveillance systems at 

Beijing power plants, with preprocessing techniques such as min-max normalization and feature 

extraction using Independent Component Analysis (ICA) to improve model performance. Resultsfrom 

experiments show that the IFSO-BPNN model outperforms standard algorithms with an accuracy 

ofFD99.98% and AD 0.9980. These findings illustrate the system's capacity to detect anomalies quickly 

and perform preventive maintenance. The proposed method, which combines swarm intelligence with 

neural networks, helps to construct smarter, more robust power grids capable of meeting future energy 

demands with lower failure risks. 

Povzetek: Za odkrivanje napak (FD) in nepravilnosti (AD) v nadzoru elektroenergetskega sistema je razvit 

IFSO-BPNN (Izboljšana optimizacija jata rib in BPNN). Model izboljša kvaliteto z optimizacijo 

parametrov BPNN z IFSO, kar omogoča hitro zgodnje opozarjanje in prediktivno vzdrževanje. 

 

1 Introduction 

Artificial intelligence (AI), big data, and deep learning 

(DL) revolutionize power systems (PS) by enhancing 

feature modeling, control, and fault diagnosis; these are 

presenting recent advances and applications in monitoring 

and performance analysis [1]. The expansion ofPS is 

hindered by growing power demand and environmental 

objectives, which present challenges for transmission 

capacity and distance. Advanced, sustainable energy 

solutions are being used to achieve carbon peaking and 

neutrality [2].Reconstruction errors and thresholding are 

used in AD(AD) to minimize false alarms and isolate fault 

areas by training a model to learn typical system 

behaviorin an unsupervised manner [3].Approximately 

70% of energy is produced by thermal power plants; new 

large-capacity units (600–1000+ MW) improve operating 

efficiency but make system coupling and integration more 

difficult [4].Real-time data collection and analysis of 

electrical characteristics is part of PS monitoring, used to 

ensure system stability, identify problems, improve 

performance, and assist in decision-making for 

dependable and effective power grid operation [5].As 

demonstrated by the arctic sky tragedy, the expansion of 

the cruise industry needs advanced, dependable PS to 

avoid blackouts, which endanger public safety, the 

environment, financial stability, and reputation 

[6].Potential false alarms, reliance on data quality, 

difficulty identifying new abnormalities, computational 

complexity, difficulties with real-time implementation, 

and threshold setting are some drawbacks of AD and early 

warning in PS [7]. 
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1.1 Aim and contribution of the research 

The aim of the research is to develop a new method, 

improved fish swarm optimization with Backpropagation 

Neural Network (IFSO-BPNN), for detecting anomalies 

and faultsin PS by integrating BPNN and IFSO 

algorithms. The goal is to increase the accuracy and 

efficiency of AD and fault detection (FD) in smart grids 

while also enabling proactive maintenance. The research's 

key contributions include the following: 

• IFSO Algorithm: Improves the global search 

capability and adaptive weighting of classic Fish 

Swarm Optimization, resulting in less 

convergence time and higher classification 

accuracy in anomaly and fault identification. 

• BPNN Optimization: IFSO is used to optimize 

BPNN parameters, which results in quicker 

convergence and greater classification accuracy 

for real-time AD and FD. 

• Advanced-Data Preprocessing: Uses min-max 

normalization and Independent Component 

Analysis (ICA) for feature extraction, improving 

the model's performance in power system 

monitoring by efficiently preprocessing Internet 

of Things (IoT) sensor and surveillance system 

data. 

The next phase (phase 2) clearly explains the existing 

research about ADand early warning in PS monitoring. 

Phase 3 presents the methodology, Phase 4 provides the 

result and discussion of existing vs proposed method, and 

Phase 5 deliversthe conclusion. 

 

2 Related works 

The aim of the research [8] was to increase the 

dependability of seismic stations. For reliable power 

failure prediction, the SeismoGuard Ensemble, which 

comprises random forest (RF), support vector machine 

(SVM), k-nearest neighbors (KNN), and logistic 

regression (LR), along with IoT monitoring, was used. 

Results demonstrate that the approach attained 90% 

accuracy and increased dependability. The dataset's reach 

was restricted; however, the data contains long-term 

testing with wider generalization across various situations. 

A combination of elliptic curve cryptography (ECC)-

based token control with deep reinforcement learning 

(DRL)-based sleep scheduling was used for secure and 

adaptive power management under possible threat 

conditions in order to improve the security and energy 

efficiency of wireless sensor networks (WSNs) [9]. The 

approach achieved a 15% increase in energy efficiency 

and a 20.01% power reduction. While simulation-based 

outcomes were validated, more verification was required 

for scalability and real-world implementation under 

various attack types. 

Following data cleaning and feature extraction, 

supervisory control and data acquisition (SCADA)were 

processed using aConvolutional neural network - 

bidirectional gated recurrent unit (CNN-BiGRU) with 

attention to identify wind turbine faults [10]. Accurate FD 

in actual wind farms was accomplished; however, it was 

constrained by the generalizability of the data source and 

the possibility of overfitting to particular turbine models. 

The monitoring of wind turbine health was enhanced by 

utilizing mutual information to determine essential 

parameters, support vector regression (SVR) for 

thresholding, and long short-term memory -autoencoder 

(LSTM-AE) for AD [11]. The outcome demonstrated 

precise AD and successful identification of crucial 

parameters. Real-time monitoring settings could show a 

decline in performance due to noisy data or inadequate 

temporal information. To optimize the monitoring and 

security of smart hospitals, machine learning (ML) and 

edge-based advertising on Contiki Coojawere applied to 

identify IoT network intrusions and e-health incidents 

[12]. The system was successful in identifying 

cyberattacks and e-health events, but it was very 

dependent on the reality of the simulated data, which could 

not work effectively with complex or novel attack 

patterns. 

Abnormalities in wind turbines were discovered and 

accurately analyzedutilizing a combination of methods. 

Local outlier factor (LOF) and adaptive K-means for 

preprocessing, Extreme Gradient Boosting (XGBoost) for 

diagnosis, and long short-term memory-stacked denoising 

autoencoder (LSTM-SDAE) for feature extractionwere 

employed [13]. The technique increased wind turbine 

dependability by efficiently identifying and diagnosing 

problems in real-time utilizing SCADA data. Performance 

was dependent on the caliber of preprocessing and could 

be hampered by noisy data or hidden anomalies. The 

research created an early warning system that incorporates 

meteorological data to enhance PS dependability and 

proactively reduce atmospheric dangers [14]. The 

technology enhanced defect detection and prevented 

outages during severe weather; however, its performance 

depended on data quality and erratic weather patterns. The 

advancements in battery electric vehicle (BEV) 

technology, platforms, charging, and monitoring were 

examined to address issues regarding safety, charging, and 

range in new energy cars [15]. Although cutting-edge 

platforms and safety features dominate the BEV industry, 

however, there were issues with battery lifecycle safety, 

charging simplicity, and weather adaptation. The PS load 

margin was determined by utilizing an artificial neural 

network (ANN) trained on phasor measurement unit 

(PMU) data and model simulations to ensure voltage and 

small-signal stability [16]. An ANN's ability to anticipate 

load margin effectively cannot exceed a dependence on 

the quality of PMU data and model assumptions in actual 

systems. To increase safety in nuclear-powered marine 
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operations, developments in ship nuclear power 

machinery (SNPM) design, fault diagnostics, and risk 

assessmentwere evaluated [17]. Design enhancements and 

investigation spaces were identified, and an integrated risk 

framework was suggested; however, knowledge remains 

limited and needs to be verified. Table 1 provides the 

related works summary table. 

 

 

Table 1: Comparative Summary of the related works 

 

Reference Methods Results Limitations 

Duet al. [8] SeismoGuard Ensemble (RF, 

SVM, KNN, LR) + IoT 

monitoring 

Achieved 90% accuracy, 

improved dependability 

of seismic stations 

Limited dataset 

coverage; needs 

generalization and 

broader testing 

Qinet al.[9] ECC token control + DRL-

based sleep scheduling for 

WSN 

15% energy efficiency 

gain, 20.01% power 

reduction 

Simulation-based only; 

real-world scalability 

and threat resilience not 

verified 

Xianget al.[10] SCADA data + CNN-BiGRU + 

attention mechanism 

Accurate wind turbine 

FD in real wind farms 

Data source 

generalizability is 

limited; overfitting risk 

to specific turbine 

models 

Chen et al. [11] Mutual information + SVR for 

thresholds + LSTM-AE for 

anomaly detection 

Accurate anomaly 

detection; key 

parameters identified 

Real-time performance 

could  degrade under 

noisy or incomplete data 

Said et al. [12] ML + edge-based intrusion 

detection on Contiki Cooja for 

smart hospitals 

Identified e-health events 

and IoT network 

intrusions accurately 

Simulated data could 

fail under real, complex 

attack patterns 

Zhang et al. [13] LOF + adaptive K-means 

preprocessing + XGBoost + 

LSTM-SDAE 

Real-time, accurate 

ADand diagnosis in wind 

turbines 

Sensitive to data quality; 

hidden anomaly types 

may be missed 

Božičeket 

al.[14] 

Early warning system using 

meteorological data 

Prevented outages and 

improved detection 

during extreme weather 

Dependent on weather 

unpredictability and 

data quality 

He et al. [15] BEV platform, 

charging/swapping stations, 

and monitoring platform 

Technological 

dominance and safety 

improvements in the 

BEV market 

Issues remain in battery 

safety, weather 

adaptability, and 

charging ease 

Bento et al. [16] ANN trained on PMU data + 

model-based simulation 

Accurate load margin 

prediction ensuring 

voltage and small-signal 

stability 

Performance hinges on 

PMU data and 

assumptions in 

simulation models 

Adumene et al. 

[17] 

SNPM designs + fault 

diagnosis + risk assessment 

 hybrid risk framework; 

identified design 

progress 

Incomplete knowledge 

base; needs validation 

and framework 

integration 

 

2.1   Research gap 

The method additionally solves past techniques' 

drawbacks, such as restricted data generalization, 

overfitting, simulation reliance, and data quality 

sensitivity. The proposed approach, IFSO-BPNN, 

provides a scalable, real-time solution for proactive 

maintenance and problem detection in complex, large-

scale power networks. The research fills a gap by merging 

an IFSO method with a BPNN for PS anomaly and fault 

identification. Compared to earlier techniques, this 

approach improves accuracy, convergence speed, and FD 

resilience, especially in noisy situations. 
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3 Research methodology 

This section discusses IoT sensor-based data collection in 

PS and introduces the IFSO-BPNN approach for anomaly 

and fault identification, as well as early warning in PS 

monitoring. Figure 1 shows the methodology flow, which 

includes data pretreatment, feature extraction, and model 

optimization. 

 

 
 

Figure 1: Flow of the proposed method 

 

3.1 Data collection 

The system configuration includes a pan/tilt integrated 

camera, a series of local storage DVR hosts, a 1-terabyte 

dedicated hard disk, and equipment from major domestic 

video equipment manufacturers. A wireless networking 

module is an important element that allows direct 

connection across 4G or 5G wireless networks. The 

research is centered on power stations surrounding 

Beijing, where the distribution stations lack wired 

networks and must communicate over wireless networks. 

To achieve that, on-site terminal equipment is required to 

access different network types at the distribution station, 

such as 2G/3G/4G, GSM, CDMA, and wired networks. 

Many of these stations are found in basements. In the event 

of a severed wireless connection between the station and 

the platform, short messages transmitted to the terminal 

equipment at the distribution station allow for simple 

permission and re-establishment of communication. The 

data were split into an 8:2 ratio, 80% for training, and 20% 

for testing dataset. 

 

 

 

3.2 Data preprocessing via min-max 

normalization 

Min-max normalization is a common method used for 

numerical sensor and camera data from Beijing power 

plants to scale characteristics between 0 and 1, in which 

the values of a feature are translated into a preset range, 

usually [0-1]. The method retains data connections, hence 

being suitable for a wide range of ML applications. The 

transformation is carried out using the following Equation 

(1). 

 

𝑋𝑛𝑒𝑤 =
𝑥=𝑚𝑖𝑛

𝑚𝑎𝑥(𝑥)−𝑚𝑖𝑛(𝑥)
   (1) 

 

𝑋𝑛𝑒𝑤 = The adjusted value obtained after scaling the data 

𝑋 = outdated value, 𝑚𝑎𝑥(𝑥)= dataset’s highest possible 

value.𝑚𝑖𝑛(𝑥) = dataset's lowest possible value. The 

normalizing technique improves AD and FD in PS 

monitoring by ensuring that all data points have a 

consistent scale, which increases predictive model 

accuracy. 

 

3.3 Feature extraction using independent 

component analysis (ICA) 

ICA is a current statistical technique that attempts to break 

down observable data into statistically independent 

components. The ICA was used on sensor and surveillance 

data to reduce dimensionality and extract essential 

features, which improved the IFSO-BPNN model's 

capacity to detect abnormalities in PS monitoring as a 

linear mixture of independent components, expressed as 

follows in Equation (2). 

 

𝑦 = 𝐵. 𝑇    (2) 

 

Where: 𝑦 represents the observed data vector, 𝐵denotes 

the mixing matrix, and 𝑇 denotes the separate components. 

In ICA, components are assumed to be statistically 

independent and non-Gaussian, with a square and 

unknown mixing matrix𝐵. To extract the components, 

calculate the inverse 𝑋 of matrix 𝐵 as follows in Equation 

(3). 

 

𝑇 = 𝑋. 𝑦    (3) 

 

ICA divides data into statistically independent 

components, helping in AD and FD in PS. While the 

technique does not give direct variance or ordered data, the 

enhanced sparsity-based technique improves feature 

extraction and speeds up convergence for real-time 

applications such as early warning systems. ICA has been 

widely applied in disciplines like face recognition and 

dimensionality reduction. PS monitoring, which extracts 

essential characteristics from sensor data, catches 
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complicated, non-Gaussian patterns that standard 

approaches typically overlook, resulting in improved AD, 

FD and maintenance efficiency. 

 

3.4 Detection and early warning in PS 

monitoring using improved fish swarm 

optimization with backpropagation 

neural network (IFSO-BPNN)  

The IFSO-BPNN enhances AD and FD in PSby 

optimizing BPNN parameters with the IFSO algorithm, 

increasing classification accuracy, and allowing for real-

time predictive maintenance. Figure 2 displays the 

proposed method’s flow diagram for power system 

monitoring. 

 

 
 

Figure 2: Flow diagram for the proposed method. 

 

3.4.1 Back-propagation neural network (BPNN) 

The BPNN is a multi-layer feed-forward artificial neural 

network designed to identify anomalies in PS. The 

architecture consists of an input layer, one or more hidden 

layers, and an output layer. Sensor readings, system 

performance measurements, and ambient parameters are 

all sent into the input layer. The hidden layers discover 

complicated patterns in the data, whereas the output layer 

anticipates anomalies and faults such as system 

malfunctions or failures. Each neuron's output is defined 

by applying an activation function to the weighted sum of 

inputs in Equation (4). 

 

𝑥 = ∑ 𝑧𝑗 .𝑛
𝑗=1 𝑦𝑖 + 𝑎   (4) 

 

Where 𝑦𝑖is the input, 𝑧𝑗is the weight, 𝑎is the bias, and 𝜎 (⋅

) is the exponential activation function (TanhExp) 𝑓(𝑥) =

𝑥. tanh (𝑒𝑥), generally mish activation function 𝑡𝑎𝑛ℎ.  

The Mish function is smooth and comparable to TanhExp. 

The formula is provided as follows. 

𝐹(𝑥)𝑥. 𝑡𝑎𝑛ℎ(𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝑥)). where softplus 

function𝑓(𝑥) = log (1 + 𝑒𝑥).Mish is a self-regulatory 

activation that improves accuracy and generalization 

instead of standard function. The process is smooth and 

non-monotonic, allowing for modest negative outputs 

while retaining strong positive flow, avoiding problems 

like dead neurons in ReLU.𝑥: Input to the neuron. 

𝑆𝑜𝑓𝑡 𝑝𝑙𝑢𝑠 (x): A smooth variant of ReLU.𝑡𝑎𝑛ℎ(⋅): 

Implements smooth limiting behavior for high input 

values. Data from the power system is collected, 

standardized, and sent to the network for training. 

Normalization guarantees that each input feature 

contributes evenly to model training. During forward 

propagation, input data is transferred through the layers as 

the model produces predictions. Backpropagation then 

changes the weights and biases depending on the loss 

function, which is commonly Mean Squared Error (MSE) 

and computed as follows in Equation (5). 

 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑥𝑝𝑟𝑒𝑑 − 𝑥𝑎𝑐𝑡𝑢𝑎𝑙)

2𝑁
𝑗=1   (5) 

 

To improve the model's capacity to detect anomalies and 

fault, increase system dependability, and provide early 

alerts for proactive PS repair. 

 

Loss function: 

In the PS anomaly and fault detection, the loss function is 

critical for reducing prediction errors and improving model 

parameters. The BPNN's output layer computes the error 

between the expected output and the actual observed 

detection using the MSE and an appropriate activation 

function. The error gradient of each neuron in the output 

layer could be computed as follows in Equation (6). 

 

𝛿𝑜𝑢𝑡 = (𝑥𝑝𝑟𝑒𝑑 − 𝑥𝑡𝑟𝑢𝑒). 𝜎′(𝑤)  (6) 

 

𝑥𝑝𝑟𝑒𝑑  : predicted output (anomaly, and fault score). 𝑥𝑡𝑟𝑢𝑒: 

True label (0 for no abnormality and 1 for anomaly). 𝜎′(𝑤) 

is the derivative of the activation function for the neuron's 

input 𝑤.The gradient of the hidden layers is affected 

primarily by the output error, but also by the gradients of 

the following layers. The gradient of a hidden layer neuron 

𝐺𝑗 could be calculated using the chain rule in Equation (7). 

 

𝛿ℎ𝑖𝑑𝑑𝑒𝑛 = ∑ 𝑧𝑗.𝑖 . 𝛿𝑖. 𝜎′(𝑤𝑗)𝑖   (7) 

 

𝛿ℎ𝑖𝑑𝑑𝑒𝑛: Error gradient for a hidden layer neuron. 𝑧𝑗.𝑖: 

Weight coupling hidden layer cell 𝐺𝑗 with output 

neurons. 𝛿𝑖: The error gradient of the output 

neuron.𝜎′(𝑤𝑗): Derivative of the activation function for 

the buried layer input 𝑤𝑗 .Gradient descent is used to 

update weights and biases during training to minimize the 

loss function. The rules for updating the weights (𝑧) and 

biases (𝑎) in each round are as follows in Equations (8-9). 
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𝑧(𝑛+1) = 𝑧(𝑛) − 𝜂.
𝜕𝑃

𝜕𝑧
 (8) 

𝑎(𝑛+1) = 𝑎(𝑛) − 𝜂.
𝜕𝑃

𝜕𝑎
 (9) 

 

The current weights and biases at iteration 𝑛 are denoted 

by 𝑧(𝑛)and𝑎(𝑛). The learning rate (𝜂) is a hyperparameter 

that controls the step size. The gradients of the loss 

function about weights and biases are ∂
𝜕𝑃

𝜕𝑧
and

𝜕𝑃

𝜕𝑎
, 

respectively. The learning rate 𝜂 adjusts the model's 

weights and biases to reduce prediction errors for ADinPS. 

 

3.4.2 Improved fish swarm optimization (IFSO) 

FSO was selected over PSO, GA, and DE because of its 

greater global search capabilities and adaptive behavior, 

which improve convergence and classification accuracy in 

AD and FD. An IFSO is proposed to increase detection 

accuracy and convergence speed. For balanced exploration 

and exploitation, the system incorporates adaptive control 

overstep size and visual field, which shrinks with 

iterations. By eliminating default search behaviors and 

crowding conditions, swarming and following techniques 

are improved. Fish retry with modified settings when an 

improved solution is discovered. To preserve the quality of 

global optimization, an extinction-regeneration system 

removes the most susceptible fish and replaces it with a 

more suitable one. This improved method efficiently 

optimizes BPNN parameters for AD and FD in PS. 

The classic Fish Swarm Algorithm (FSA) has fixed visual 

and step sizes, which can hinder convergence. To improve 

AD performance, an adaptive piecewise function is 

proposed to gradually decrease visual and step sizes with 

iterations, finding a balance between speed and accuracy. 

Step𝑆𝑆 (𝑖𝑡𝑒𝑟) and adaptive 𝑉(𝑖𝑡𝑒𝑟) are defined as follows 

in Equations (10-11). 

 

𝑉(𝑖𝑡𝑒𝑟) = int (𝑚𝑎𝑥𝑣 × (
log (𝑚𝑖𝑛𝑣/𝑚𝑎𝑥𝑣)

log (𝑚𝑎𝑥𝑔𝑒𝑛)
)

𝑖𝑡𝑒𝑟

)(10) 

𝑆𝑆(𝑖𝑡𝑒𝑟) = int (𝑚𝑎𝑥𝑠 × (
log (𝑚𝑖𝑛𝑠/𝑚𝑎𝑥𝑠)

log (𝑚𝑎𝑥𝑔𝑒𝑛)
)

𝑖𝑡𝑒𝑟

) (11) 

 

𝑉(𝑖𝑡𝑒𝑟): The artificial fish's field of vision at iteration iter. 

𝑆𝑆(𝑖𝑡𝑒𝑟): The maximum step the fish can take during 

iteration. 𝑚𝑎𝑥𝑣: Step size and initial (maximum) visual 

range. 𝑚𝑖𝑛𝑣: The smallest step size and visual range for 

efficient searching. The maximum number of iterations 

is𝑚𝑎𝑥𝑔𝑒𝑛 . 𝑖𝑡𝑒𝑟: The number of the current iteration. For 

discrete issues, 𝑖𝑛𝑡(. . . ) rounds values to integers. Values 

are rounded to integers, with a minimum step and visual 

sizes set to 1 for discrete issues such as attribute reduction 

in Equations (10-11); both the visual and step sizes use an 

exponential decrease from maximum to minimum across 

iterations, allowing for quick global search at the 

beginning and accurate local search at the final stage. The 

provided AD, and FD framework's convergence and 

detection accuracy are enhanced by the adaptive 

technique. 

The artificial fish swarm algorithm (AFSA) uses swarming 

and following behaviors to determine convergence speed. 

However, narrow distances can cause local optima and 

delayed convergence. Randomization changes 

swimming's step size to prevent premature convergence. 

The algorithm focuses on determining the optimal position 

of fake fish for efficient attribute reduction, and eliminates 

search behavior to save execution time. The enhanced 

swarming and subsequent behaviors are defined as 

Equations (12-13). 

 

𝑌𝑛𝑒𝑥𝑡 = 𝑌𝑗 + 𝑠𝑡𝑒𝑝 × (𝑌𝑑 − 𝑌𝑗)𝑖𝑓 𝐺(𝑌𝑑) > 𝐺(𝑌𝑗) 

    (12) 

𝑌𝑗 = 𝑌𝑑  𝑖𝑓 𝐺(𝑌𝑑) > 𝐺(𝑌𝑗)  (13) 

 

𝑌𝑛𝑒𝑥𝑡: The fake fish's next position.𝑌𝑗: The fake fish's 

current location.𝑌𝑑: The position of the swarm's 

center.𝑠𝑡𝑒𝑝: The step size for movement is determined by 

a random component. 𝐺(𝑌𝑑): The fitness value at the 

center position. 𝐺(𝑌𝑗): The fish's fitness value at that 

present location. These changes improve the algorithm's 

efficiency, resulting in faster convergence and higher 

performance. 

Improved Search Behavior: In the AFSA, searching for 

behavior entails exploring the available domain to discover 

alternatives. The number of tries has a significant impact 

on search efficiency, frequently resulting in premature or 

inefficient searches. To solve these things, extend the 

viewing field when no superior location is discovered after 

a certain number of difficulties. When a suitable place is 

located, the fish takes one step towards that, with a 

maximum step size of 𝑠𝑡𝑒𝑝𝑛𝑒𝑤 =  2 ×  𝑠𝑡𝑒𝑝. Without 

false, the fish moves randomly. IFSO's capacity was 

improved to efficiently tune BPNN parameters, hence 

increasing accuracy and convergence in PS anomaly and 

fault detection. 

Mechanism of Extinction and Rebirth: The algorithm uses 

an extinction mechanism to remove the least suitable fish, 

enhancing swarm adaptability but decreasing swarm size 

and randomness. A regeneration mechanism is then 

included to restore swarm size by regenerating highly 

adaptable fish, ensuring resilience and enhancing 

efficiency by shortening iteration durations while 

maintaining high fitness levels. The IFSO-BPNN 

approach attempts to discover and detect deviations in 

PSmore efficiently by optimizing neural network 

parameters, assuring faster convergence, and improving 

prediction accuracy for proactive maintenance. Algorithm 

1 displays IFSO-BPNN. 
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Algorithm 1: IFSO-BPNN 

Step 1: Initialize the BPNN parameters 

Initialize BPNN with input layer, hidden layers, and output 

layer 

Set learning rate η and number of iterations max_iter 

Step 2: Initialize the Fish Swarm Optimization (IFSO) 

parameters 

Initialize fish swarm population size, maximum visual 

field (max_v), and step size (max_s) 

Set the minimum values for visual field (min_v) and step 

size (min_s) 

Step 3: Data Preprocessing 

Preprocess data:  

    Normalize sensor readings using min-max 

normalization 

    Perform feature extraction using Independent 

Component Analysis (ICA) 

Step 4: Training the BPNN with IFSO optimization 

for each iteration in range(max_iter): 

    for each fish in the swarm: 

        visual = V(iter)    

        step = SS(iter)     

        if G(Y_d) > G(Y_j):   

Y_j = Y_d 

    for each fish in the swarm: 

BPNN.weights = optimize_with_fish_swarm(Y_j) 

BPNN.biases = optimize_with_fish_swarm(Y_j) 

    for epoch in range(max_epochs): 

        output = BPNN.forward(input_data) 

        error = calculate_MSE(output, expected_output) 

        gradients = backpropagate(error) 

BPNN.weights = BPNN.weights - η * gradients.weights 

BPNN.biases = BPNN.biases - η * gradients.biases 

Step 5: Extinction and Regeneration 

remove_weakest_fish() 

regenerate_strong_fish() 

Step 6: Anomaly and Fault Detection 

anomaly_score = BPNN.predict(test_data) 

fault_score = BPNN.predict(test_data) 

    if anomaly_score> threshold or fault_score> threshold: 

trigger_early_warning() 

Step 7: Return the optimized BPNN model for PS 

monitoring 

Return BPNN model optimized using IFSO 

 

4 Result and discussion 

This section compares the result of the proposed method, 

an enhanced IFSO-BPNN framework, for AD and FD 

early warning in PS monitoring with existing methods. The 

evaluation was conducted using parameters such as 

accuracy (Acc), success rate (SR), misclassification 

instances (MI), error rate (ER), precision (Pre), recall 

(Rec), and F1 score (F1). 

 

 

4.1 Experimental setup 

The IFSO-BPNN technique is implemented on a machine 

equipped with an Intel i7 CPU, 16GB RAM, and a 512GB 

SSD. Python 3.9 is used for implementation, including 

libraries like NumPy, TensorFlow, Scikit-learn, and 

Matplotlib for processing and visualization. Table 2 

displays the hyperparameters of the proposed method. 

 

Table 2: Hyperparametric for proposed method 

 

Hyperparameter Range/Value 

BPNN Learning Rate (η) 0.01 to 0.1 

Max Iterations (max_iter) 100 to 1000 

Swarm Population Size 50 to 200 

Max Step Size (max_s) 0.1 to 1.0 

Min Step Size (min_s) 0.01 to 0.1 

Learning Rate (η) for 

BPNN 

0.001 to 0.01 

Fitness Function Error of BPNN model 

predictions 

MSE Threshold for 

Convergence 

0.001 

Activation Function for 

BPNN 

Mish, TanhExp, or ReLU 

 

4.2 Performance outcome 

Figures 3 and 4 show the ROC curve and confusion matrix 

for anomaly detection and fault detection, respectively. 

The performance was evaluated based on the false positive 

rate, the true positive rate for the ROC curve, and the 

predicted and actual for the confusion matrix.  

 

 
 

Figure 3: Anomaly detection (a) Roc curve, and (b) 

confusion matrix. 
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Figure 4: fault detection (a) Roc curve, and (b) confusion 

matrix. 

 

4.3 Parameter explanation 

Accuracy (Acc):Acc is defined as the ratio of accurately 

predicted occurrences (including true positives and true 

negatives) to total instances in a dataset, which measures 

the overall performance of PS monitoring and fault 

detection.Success rate (SR): The smart grid system is 

calculated as the proportion of accurately discovered faults 

and successful predictions to improveFD and maintenance 

accuracy.Misclassification instances (MI): The events 

occur when the model incorrectly identifies problems or 

normal conditions to demonstrate the possible flaws in 

identifying power defects.Error rate (ER):The fraction of 

misclassified cases, revealing the model's errors with an 

emphasis on decreasing mistakes in FD for PS.Precision 

(Pre) is the fraction of successfully diagnosed errors 

among all expected anomalies, demonstrating detection 

accuracy. Recall (Rec) measures the model's ability to 

detect all real abnormalities. F1 Score (F1) balances 

precision and recall. These metrics assess the IFSO-BPNN 

model's ability to accurately detect and monitor PS faults. 

 

4.4 Comparison phase 

The proposed method, IFSO-BPNN, is compared to the 

existing methods like Long Short-Term Memory (LSTM) 

[18] for FD, k-Nearest Neighbors (KNN), Decision tree 

classifier (DTC), and Random Forest (RF) [19] for ADand 

early warning in PS monitoring with evaluation metrics. 

Table 3 and Figure 5 (a-b) display the comparison of 

metric values for the proposed method and existing 

methods to predict FD and FD in early warning of PS 

monitoring. The proposed IFSO-BPNN (98.5%) method 

achieves greater Acc than LSTM (91.21%). 

 

 

 

 

Table 3: FD metrics values for proposed method. 

 

Metrics  LSTM [18] IFSO-BPNN 

[Proposed] 

Acc (%) 91.21 98.5 

SR(%) 92.42 96.85 

MI 17 9 

ER (%) 8.76 5.15 

 

 
Figure 5(a): Acc and SR value for FD. 

 

 
 

Figure 5(b): MI and ER FD value for proposed method. 

 

Table 4 and Figure 6show the comparison of the proposed 

method and existing methods to evaluate the metric 

valuesused to predict ADand early warning of PS 

monitoring. The proposed IFSO-BPNN (0.9980) method 

achieves greater Acc than KNN (0.9729), DTC (0.9937) 

and RF (0.9976). 
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Table 4: Metrics values for proposed vs existing methods. 

Metrics KNN 

[19] 

DTC 

[19] 

RF 

[19] 

IFSO-

BPNN 

[Proposed] 

Pre 0.9732 0.9937 0.9976 0.9978 

Rec 0.9729 0.9937 0.9976 0.9977 

F1 0.9729 0.9937 0.9976 0.9979 

Acc 0.9729 0.9937 0.9976 0.9980 

 

 
 

Figure 6: Evaluation metrics values for the proposed 

method. 

 

In this research, both BPNN and IFSO-BPNN techniques 

were trained for FD and AD in PS. The numerical results 

of the ablations study for FD and AD in PS are displayed 

in Table 5, indicating that IFSO-BPNN performs better 

than BPNN.   

 

Table 5: Outcome of ablation study 

Method AD Acc (%) FD Acc (%) 

BPNN 98.0 98.2 

IFSO-BPNN 99.8 98.5 

 

4.5 Discussion 

The proposed IFSO-BPNN method achieves higher Acc, 

Pre, Rec, F1 and SR and significantly reduces MI and ER 

compared to existing methods like LSTM, KNN, DTCand 

RF. Existing models struggle with real-time adaptation and 

FD accuracy. The IFSO method overcomes these 

constraints by improving global search and optimizing 

BPNN parameters for improved performance. The 

connection helps electricity systems identify faults and 

provide early warnings. The key benefit is the substantial 

dependability and precision in predictive maintenance, 

which improves the robustness and efficiency of PS. 

Deploying the IFSO-BPNN model in smart grids provides 

real-time defect detection, such as detecting transformer 

overheating early on, averting blackouts, lowering 

maintenance costs, and enhancing energy distribution 

reliability across locations. 

 

5 Conclusions  
 

The improved early warning model, combining IFO with 

a BPNN (IFSO-BPNN), was presented to improve FD and 

predictive maintenance in smart power systems. The 

method aims to optimize neural network parameters for 

higher detection accuracy. The results demonstrated 

exceptional performance with FD accuracy (98.5%) and 

AD accuracy (0.9980) higher than existing methods. To 

address statistical validation, the IFSO-BPNN model has 

limited specificity, required more processing resources, 

and relied on precise parameter adjustment, which could 

leave an impact on real-time performance and 

generalizability across different power systems. The 

dataset's limited coverage of Beijing's local distribution 

stations, as well as a lack of sample size and class 

distribution information, limit its generalizability and 

model performance assessment. The future scope may 

extend the dataset to cover varied power systems, and 

providing precise details on sample size and class 

distribution would improve model resilience, 

generalization, and performance evaluation. Future 

research should focus on increasing specificity, testing in 

a variety of grid scenarios, and incorporating real-time 

adaptive processes to widen and improve the system's FD 

capabilities and use confidence intervals and standard 

deviations to demonstrate dependability. Future directions 

include statistical validation methods, such as confidence 

intervals and standard deviations, to support the reliability 

of results, providing clearer justification for performance 

metrics and model robustness. Future work will 

concentrate on providing thorough feature extraction, 

dimensionality reduction using ICA, and using correlation 

reduction methods for better analysis. Future research aims 

to enhance model performance and generalization by 

improving feature extraction, incorporating diverse data 

sources, and reducing dimensionality. 
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