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The progress of self-driving technology necessitates more stringent demands on object detection systems, 

and traditional methods are difficult to meet real-time and high-precision requirements in dynamic scenes. 

Therefore, this study proposes an improved Faster R-CNN model tailored for vehicle object detection in 

autonomous driving scenarios. Specifically, an enhanced Convolutional Block Attention Module (CBAM) 

is integrated into the backbone network to strengthen feature representation. The Region of Interest Align 

(ROI-Align) is employed to improve localization accuracy, especially for small or occluded targets. 

Moreover, Soft Non-Maximum Suppression (Soft-NMS) is adopted to reduce false negatives in dense 

object scenarios. Additionally, a multi-scale feature fusion mechanism is introduced to enhance detection 

performance across varied object sizes. The experiment outcomes indicate that the detection accuracy of 

the improved model reaches 98.13%, with a miss rate of less than 1.00%. In dense target scenes, the 

retained accuracy is 94.16%, and the standardized mean square error of target localization is 0.014.In 

complex environments, the average accuracy of the model in lighting changes, severe weather, and 

dynamic interference scenarios is 80.45%, 77.83%, and 75.11%, respectively, which is superior to the 

comparison methods and demonstrates higher robustness. This study enhances the detection performance 

of faster region-based convolution neural network in automatic driving through technical modifications, 

solves the problem of feature extraction and target location in complex scenes, and provides important 

support for the perception reliability of auto drive system. 

Povzetek: Članek predstavi izboljšano Faster R-CNN metodo za avtonomna vozila, ki združuje 

pozornostni modul, ROI-Align, Soft-NMS in večsklopno fuzijo značilk za boljše zaznavanje objektov v 

zahtevnih prometnih razmerah. 

 

1 Introduction 
In recent times, the swiftadvancement of self-driving 

technology has driven the innovation of intelligent 

transportation systems, allowing vehicles to 

autonomously perceive, plan paths, and perform driving 

operations in highly complex and dynamically changing 

road environments [1]. Among them, object detection 

(OD), as the core task of the self-driving perception 

system, directly affects the vehicle's understanding and 

decision-making of the surrounding environment, 

including accurate recognition of key targets such as 

pedestrians, vehicles, traffic signs, and road markings 

ahead, as well as real-time tracking and prediction of 

target motion status [2-3]. High precision OD not only 

improves the adaptability of the auto drive system to 

complex traffic scenarios, but also effectively reduces the 

risk of traffic accidents, enhances driving safety, and 

provides accurate perception information for advanced 

driving assistance systems [4]. Conventional approaches 

to OD depend on hand-crafted feature extraction (FE) 

techniques, which can achieve certain detection results in 

static and regularized environments, but their adaptability 

and generalization ability are limited. Under complex road 

conditions such as lighting changes, target occlusion, and  

 

dynamic interference, traditional methods significantly  

reduce detection accuracy and are difficult to meet real-

time requirements [5]. In addition, single-stage and two-

stage detection algorithms that have emerged in recent 

times have found extensive application in self-driving 

scenarios, among which the Faster Region-Based 

Convolutional Neural Network (Faster R-CNN), one of 

the two-stage detection algorithms, has emerged as one of 

the predominant approaches for self-driving OD due to its 

high detection accuracy [6]. However, traditional Faster 

R-CNN also has limitations in complex scenes, such as 

insufficient global FE, limited target localization 

accuracy, and easy missed detection of dense targets [7]. 

In view of this, the research is based on Faster R-CNN, 

combined with Convolutional Block Attention Module 

(CBAM), Region of Interest Align (ROI-Align), and Soft 

Non-Maximum Suppression (Soft-NMS) to improve it 

and propose an autonomous vehicle OD and recognition 

model. The research aims to improve the accuracy of OD 

in complex traffic environment, enhance the adaptability 

of the model to dense targets, occluded targets and light 

changing scenes, optimize the generalization ability of the 

detection framework, and improve the perception 

reliability of the auto drive system. 
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The innovation and contribution of the research focus 

on the key issues of low detection accuracy of small 

targets and insufficient robustness in complex scenarios. 

A task-driven structural integration strategy is devised, 

which modularly links key components like feature 

attention, spatial alignment, target screening, and scale 

perception. Additionally, it establishes an end-to-end 

collaborative framework between the feature response 

layer, regional location layer, and candidate screening 

layer. The directional enhancement of the Faster R-CNN 

structure in the detection path has been achieved instead 

of simply stacking the existing methods. 

2 Related works 
The development of self-driving technology relies on 

efficient and accurate OD and recognition systems to 

ensure safe driving of vehicles in complex dynamic 

environments. As the core task of the self-driving 

perception system, OD is mainly responsible for 

identifying and tracking key targets such as vehicles, 

pedestrians, and traffic signs on the road. In recent years, 

researchers have conducted extensive research on OD in 

self-driving. Yang M proposed an optimized object 

recognition algorithm that combined vehicle perception 

technology to address the issues of OD accuracy and 

safety in the process of vehicle self-driving. The 

superiority of the multi-strategy region recommendation 

network algorithm was verified, thereby optimizing the 

performance of OD and recognition and making it more 

suitable for self-driving environments [8]. Mahaur B et al. 

proposed a systematic comparative study to address the 

lack of multidimensional comparisons in detection speed, 

accuracy, model size, and energy efficiency of existing 

deep learning OD algorithms in self-driving. The study 

analyzed the performance of five mainstream deep 

learning algorithms on large-scale datasets, thereby 

optimizing the understanding of the advantages and 

disadvantages of different algorithms and providing 

reference for practical deployment [9]. Ashqar H I et al. 

proposed an image processing technology combining 

computer vision and artificial intelligence to meet the 

requirements of vehicles for environment perception and 

intelligent decision-making ability in self-driving, 

covering camera and sensor technology, image pre-

processing, FE and OD, thus optimizing the application of 

auto drive system in lane maintenance, obstacle detection, 

traffic signal and sign recognition [10]. Arora N et al. 

raised a region-based deep learning approach to address 

the recognition difficulties caused by insufficient data, 

low lighting, long shadows, and static frame testing in 

vehicle detection during day and night modes. The method 

utilized Faster R-CNN to optimize detection performance 

and improve target recognition ability in complex 

environments [11]. 

Faster R-CNN, as an important algorithm in the field 

of OD, has demonstrated excellent performance in 

detection accuracy and robustness, and is widely used in 

various computer vision tasks. In recent times, researchers 

have conducted various improvement studies on Faster R-

CNN. Rani S et al. raised a detection approach based on 

wireframe features combined with Faster R-CNN to tackle 

the challenges of computational efficiency and FE 

accuracy in OD. This approach employs cell logic array 

processing to extract image wireframes, which are then 

fed into the detection model. By doing so, it not only 

accelerates the detection process but also enhances the 

capability to recognize geometric features, ultimately 

leading to greater detection accuracy and optimized 

recognition of both two-dimensional and three-

dimensional objects [12]. Yusro et al. proposed an OD 

method based on Faster R-CNN to address the difficulty 

of classifying overlapping targets. By optimizing feature 

separation through dedicated layer filters, the detection 

ability of overlapping targets was improved, achieving 

effective recognition of overlapping targets in complex 

scenes [13]. Güney E et al. proposed a real-time detection 

system based on Faster R-CNN to address the impact of 

traffic sign and road OD on driving safety. By training a 

dataset containing multiple traffic signs and targets, the 

system improved the accuracy and robustness of 

detection, and achieved high recognition accuracy in 

experiments, which can be effectively used in actual 

driving environments [14]. Siripatatanadilok et al. 

proposed an OD approach based on Faster R-CNN to 

address the high-intensity operation problem of relying on 

manual detection of molting status in soft shell crab 

farming. By optimizing FE and bounding box confidence 

screening, the accuracy of crab detection was improved, 

and automatic recognition of occluded environments was 

achieved, reducing manual monitoring work and 

improving production efficiency [15]. The summaries of 

each literature are shown in Table 1. 

Table 1: Comparative analysis of OD methods in related studies. 

Study (Author & Year) Method Framework Application Scenario Advantages Limitations or Drawbacks 

[8] Yang M (2022) 
Multi-strategy 
Region Proposal 

Network 

Autonomous driving, 

vehicle sensing 

Improves detection accuracy and 
safety, suitable for dynamic 

environments 

Lacks analysis for occlusion 

handling and small object cases 

[9] Mahaur B et al. 

(2022) 

Comparative 
analysis of deep 

models 

General OD in AD 
Systematically evaluates five DL 
models, helpful for deployment 

decisions 

No new method proposed, lacks 

unified metric settings 

[10] Tan K et al. (2024) 
CV + AI image 

processing pipeline 

Environmental 

perception, planning 

Enhances lane keeping, obstacle 

and sign recognition capabilities 

Fails to address dense object or 

illumination interference 

[11] Arora N et al. 

(2022) 
Faster R-CNN 

Day/night vehicle 

detection 

Improves recognition in low-light 

and data-sparse scenarios 

Focused on dataset, lacks 

structural improvements 
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[12] Rani S et al. 

(2022) 

Faster R-CNN + 

Line Feature Logic 
General OD 

Strengthens geometry-based 
features, increases speed and 

accuracy 

Not suitable for small objects or 

occluded targets 

[13] Yusro M M et al. 

(2023) 

Faster R-CNN + 

Feature Filter 
Layers 

Overlapping OD 

Enhances feature separation, 

improves overlapping target 
identification 

Increased model complexity 

and computational cost 

[14] Güney E et al. 

(2022) 
Faster R-CNN 

Traffic sign and road 

OD 

High accuracy and robustness in 

real environments 

Limited performance under 

multi-target dense scenarios 

[15] Siripattanadilok 

W et al. (2024) 

Faster R-CNN + 

Grad-CAM 

Occlusion detection in 

aquaculture 

Accurate under occlusion, 
reduces manual labor for shell 

detection 

Limited application scope, 

generalization not yet verified 

 

Existing research has made significant progress in 

self-driving OD and Faster R-CNN optimization, covering 

optimization of object recognition algorithms, 

improvement of detection speed and accuracy, and other 

aspects. Nevertheless, current methods continue to 

grapple with issues like false alarms, missed detections, 

and inadequate real-time processing capabilities in 

intricate environments. This is particularly evident in 

scenarios involving lighting fluctuations, target 

occlusions, and dense OD situations, indicating that there 

is significant potential for improvement and optimization. 

Therefore, the research proposes an improved Faster R-

CNN-based self-driving OD method. The novelty of this 

research resides in the integration of an enhanced CBAM 

to amplify the model's capacity for representing target 

features. It further refines target localization precision by 

leveraging ROI-Align and employs Soft-NMS to boost the 

detection efficacy of densely packed targets. Collectively, 

these measures significantly enhance the detection 

robustness and accuracy of the Faster R-CNN model in the 

challenging context of autonomous driving scenarios. 

3 Methods and materials 
This section offers an in-depth overview of the proposed 

autonomous vehicle OD and recognition model based on 

improved Faster R-CNN. Firstly, an improved CBAM is 

introduced to enhance feature expression, and ROI-Align 

is used to optimize target localization. Secondly, Soft-

NMS is used to improve target screening accuracy, and 

multi-scale feature fusion is combined to optimize small 

OD. Finally, a complete model is constructed. 

3.1 FE and target localization optimization 

based on attention mechanism 

The OD and recognition of autonomous vehicles is the 

core task of perception systems, which directly affects the 

vehicle's understanding and decision-making in complex 

environments [16]. Faster R-CNN has become one of the 

mainstream detection frameworks due to its high detection 

accuracy and robustness [17]. However, in the complex 

and ever-changing self-driving environment, Faster R-

CNN still has certain limitations. Therefore, the study 

focuses on Faster R-CNN and proposes an improved 

model for OD and recognition in self-driving vehicles, 

thereby enhancing the adaptability and stability of 

detection and recognition in the field of self-driving. The 

framework of Faster R-CNN is in Figure 1. 

As presented in Figure 1, Faster R-CNN is a two-stage 

OD framework that mainly includes convolutional FE 

network, region recommendation network, and Faster R-

CNN detection network. Convolutional FE networks are 

used to extract multi-level depth features from input 

images, and then output feature maps (FMs) that preserve 

the spatial structure information of the target. The regional 

recommendation network plays a pivotal role by 

generating potential target regions, also known as 

candidate regions, on the FM. Subsequently, it 

meticulously filters out regions that are likely to contain 

the target while simultaneously eliminating irrelevant 

background information. Faster R-CNN detects the 

candidate regions generated by the network for receiving 

area suggestions, further classifies and accurately locates 

each region, and finally completes the detection. 

In the OD and recognition of autonomous vehicles, it 

is necessary to accurately extract target features and 

efficiently locate the target area to ensure detection 

stability in complex environments. However, the FE and 

target localization modules in Faster R-CNN have 

problems such as insufficient recognition ability for small 

and occluded targets, and large alignment errors in the 

target area [18]. Therefore, the study first introduces an 

improved CBAM, the goal of which is to enhance the 

detection ability and positioning accuracy of small targets 

and occluded targets in complex scenarios. The structure 

of the improved CBAM is in Figure 2. 
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Figure 1: Structure diagram of Faster R-CNN. 
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Figure 2: Schematic diagram of the structure of the improved CBAM. 

As shown in Figure 2, the specific improvement 

studied for the channel attention (CA) module in CBAM 

is the introduction of adaptive weighted pooling, which 

integrates three strategies: global average pooling, global 

maximum pooling, and adaptive pooling, to enhance the 

expression ability of channel dimension features, as 

shown in equation (1). 

( ) ( ) ( )( )( )1 2 3c MLP AvgPool F MaxPool F AdaptivePoM ol F   =  +  +   (1) 

In equation (1), 
cM represents the CA weight, F

represents the input FM, ( )AvgPool F , ( )MaxPool F , 

and ( )AdaptivePool F  respectively represents the global 

average pooling, global maximum pooling, and adaptive 

pooling operations. Among them, the adaptive pooling 

operation can dynamically adjust the size of the pooling 

window, making FE more flexible. 
1 , 

2 , and 
3

represent the learned weight parameters. In addition, the 

study uses depth-wise separable convolution instead of 

traditional fully connected layers, as shown in equation 

(2). 

( ) ( )( )( )( )1 1

dw

d dMLP x Conv ReLU BN Conv x =  (2) 

In equation (2), 
1 1Conv 

represents a 1×1 convolution 

operation, BN  is the batch normalization, ReLU  is the 

non-linear activation function, and dw

d dConv 
 represents 

the depth-wise convolution on a per-channel basis. 

Compared to the original fully connected layer, depth-

wise separable convolution can reduce the number of 

parameters, improve computational efficiency, and make 

the network more efficient in FE. For the spatial attention 

module in CBAM, a multi-scale dilated convolution is 

used to replace the original single convolutional layer, 

allowing the features of different receptive fields to be 

more fully fused. The calculation formula is in equation 

(3). 

( ) ( ) ( )( )1 3 5

3 3 3 3 3 3' , ' , 'd d d

sM Conv F Conv F Conv F = = =

  
 =   (3) 

In equation (3), 
sM represents the spatial attention 

weight. 
3 3

dConv 
represents the 3×3 convolution operation 

with dilation rate d . 1

3 3

dConv =


, 3

3 3

dConv =


, and 5

3 3

dConv =



represent the dilated convolutions with dilation rates of 1, 

3, and 5, respectively. 'F  indicates the enhanced features 

of the channel. In addition, to further improve the accuracy 

of FE, a hybrid pooling strategy is introduced, which 

integrates global pooling, local pooling, and adaptive 

pooling to make spatial attention calculation more 

flexible. The final calculation method is in equation (4). 
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( ) ( )( )
( ) ( ) ( )( )

3 5

3 3 3 3

1

3 3 1 2 3

, ' , '

' ' '

d d

s

d

M P Conv F Conv F

P Conv AvgPool F MaxPool F AdaptivePool F



  

= =

 

=



  =  


=  +  + 

(4) 

After improvement, CBAM enables Faster R-CNN to 

extract target features more accurately in complex 

environments. The study adopts ROI-Align to optimize 

the target positioning accuracy in Faster R-CNN. The 

primary objective is to address the quantization error issue 

stemming from traditional RoI Pooling. This aims to 

enhance the alignment precision and stability of bounding 

boxes, especially when handling small-scale targets and 

those undergoing complex deformations. Consequently, 

the goal is to bolster the detection system's robustness 

across diverse scales and within challenging 

environmental conditions. The schematic diagram of ROI-

Align process is presented in Figure 3. 

As presented in Figure 3, ROI-Align optimizes the 

feature alignment accuracy of candidate regions during the 

FE process in the target area by maintaining floating-point 

coordinate information and using bilinear interpolation 

calculation. Firstly, the input image is processed by a 

convolutional neural network to extract an FM. The red 

box represents the mapping position of the candidate 

region on the FM. Subsequently, the candidate region is 

divided into fixed sized grids, with several uniformly 

distributed sampling points selected within each grid, 

rather than aligning integer pixels like ROI pooling. At 

each sampling point position, feature 

Input Image

CNN

Image features
Max-pool within

each subregion

Region features

 

Figure 3: Schematic diagram of ROI-Align process. 
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Figure 4: Optimization process of target screening and detection accuracy. 

values are calculated through bilinear interpolation to 

avoid quantization errors caused by discretization. 

Ultimately, the features of all pooled windows are 

integrated to form a precisely aligned target feature 

representation. Through this method, ROI-Align can 

improve the localization accuracy of target bounding 

boxes while maintaining feature space continuity. In self-

driving, it can effectively reduce target box jitter and 

information loss caused by feature alignment errors when 

detecting small and dense target vehicle groups, thereby 

improving the detection performance of Faster R-CNN. 

3.2 Faster R-CNN target screening and 

detection accuracy optimization 

After optimizing the FE and target localization of Faster 

R-CNN, the model can improve the accuracy of target 

feature expression and region alignment. However, in 

complex traffic environments, traditional target screening 

methods can easily lead to missed or false detections of 

dense and occluded targets, affecting detection stability 

[19-20]. In pursuit of the objective of elevating the target 

retention rate and ensuring recognition integrity within 

dense environments, the study incorporates Soft-NMS to 



40 Informatica 49 (2025) 35–48 Y. Deng et al. 

refine the target screening strategy. Additionally, it 

integrates multi-scale feature fusion to augment the 

detection capacity for targets of varying sizes. These 

measures collectively contribute to a further enhancement 

of the target screening capability and detection accuracy 

of the Faster R-CNN model in autonomous driving 

scenarios. The optimization process is in Figure 4. 

As shown in Figure 4, the process consists of five 

stages, among which the two most critical stages are the 

Soft-NMS target screening stage and the multi-scale 

feature fusion stage. Soft-NMS first calculates the 

Intersection over Union (IoU) between candidate boxes 

and the highest confidence target box, and then uses a 

confidence adjustment strategy to weaken the influence of 

some low confidence candidate boxes, avoiding the 

problem of target deletion caused by hard suppression in 

traditional NMS. The confidence adjustment formula is in 

equation (5). 

( )
2

,

'

IoU i j

i iS S e 
−

= 
  (5) 

In equation (5), 'iS  and 
iS  represent the confidence 

levels of candidate box i  before and after the update, 

( ),IoU i j  represents the IoU ratio between candidate box 

i  and the highest confidence target box j , and   is the 

hyper-parameter that controls the degree of confidence 

decay. This method ensures that in dense OD tasks, even 

if some target boxes have a high IoU, Soft-NMS will not 

directly remove them, but dynamically reduce their 

confidence based on IoU, thereby improving the integrity 

of target screening and reducing missed detections caused 

by occlusion or dense targets. In the stage of multi-scale 

feature fusion, this study combines high-level and low-

level features to enable effective feature expression for 

targets of different scales. High level features contain rich 

semantic information and are suitable for detecting large 

targets, while low-level features retain more spatial details 

and are more sensitive to small targets. Multi-scale feature 

fusion is in equation (6). 

( ) ( )
1

N

fusion s s s s

s

F G F H F 
=

=  +   (6) 

In equation (6), 
fusionF is the fused FM, N  represents 

the number of feature layers of different scales fused, with 

a value of 3. The FMs at three different levels, C3, C4, and 

C5, in the backbone network ResNet-50 are fused 

respectively. The fusion structure is designed in reference 

to FPN. The shallow high-resolution features and deep 

semantic features are upsampled and aligned through 

horizontal connections, and integrated by convolution and 

attention weighting mechanisms. 
sF represents the FM at 

the s thlayer, ( )sG F  and ( )sH F  represent the 

transformation operations of features at different scales. 

( )sG F  uses 1×1 convolution for dimensionality 

reduction and batch normalization to reduce scale 

differences. ( )sH F  uses CA mechanism to enhance the 

weights of important feature channels. 
s  and 

s  are 

learned weight parameters, adaptively controlling the 

contribution of different hierarchical features in fusion. 

Feature fusion enables small targets to fully utilize the 

spatial details of low-level features, while large targets can 

use high-level features for precise classification and 

localization. Ultimately, by combining Soft-NMS with 

multi-scale feature fusion, Faster R-CNN can more 

accurately detect dense targets, occluded targets, and 

small targets in self-driving environments. Therefore, the 

final Faster R-CNN structure after improvement is in 

Figure 5. 

As illustrated in Figure 5, the improved Faster R-CNN 

model is primarily composed of an enhanced backbone 

network, a Region Proposal Network (RPN), an ROI-

Align module, a Soft-NMS target filtering mechanism, 

and a multi-scale feature fusion module. Specifically, 

ResNet-50 is adopted as the backbone network, integrated 

with a modified CBAM to enhance feature expression. 

This attention mechanism re-calibrates weights along both 

channel and spatial dimensions, enabling the model to 

focus more effectively on salient features of small and 

occluded objects, while maintaining low parameter 

overhead and ensuring efficient gradient flow. The RPN is 

responsible for generating high-quality candidate object 

proposals from the FM through a sliding-window 

mechanism, performing foreground/background 

classification and bounding box regression. To further 

improve spatial alignment accuracy of object regions, the 

ROI-Align module is introduced. By eliminating the 

quantization operations of traditional ROI Pooling and 

using bilinear interpolation, it accurately extracts features 

from candidate regions, significantly reducing localization 

errors and enhancing fine-grained recognition. In the 

target selection phase, Soft-NMS replaces traditional 

NMS, adaptively adjusting the confidence decay of 

overlapping detections. This approach proves especially 

advantageous in dense and occluded situations, effectively 

curbing the occurrence of missed detections and 

enhancing the system's sensitivity. The multi-scale feature 

fusion module integrates features from different levels of 

the backbone, strengthening the model's ability to detect 

targets of varying sizes. Overall, the proposed architecture 

forms a tightly coupled system in terms of functional flow 

and information transmission. It ensures precise FE while 

optimizing bounding box regression and filtering 

strategies. This comprehensive design balances detection 

accuracy, target sensitivity, and computational efficiency, 

demonstrating superior performance in complex driving 

environments. Therefore, the process of OD and 

recognition for autonomous vehicles based on improved 

Faster R-CNN is in Figure 6. 
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Figure 5: Schematic diagram of the improved Faster R-CNN structure. 
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Figure 6: OD and recognition of autonomous vehicles based on improved Faster R-CNN. 

As shown in Figure 6, autonomous vehicles first 

collect road data through cameras or LiDAR, and perform 

preprocessing to optimize image quality. Subsequently, 

the ResNet-50 backbone network is combined with 

improved CBAM to extract key target features, and the 

region recommendation network is used to generate 

candidate target boxes for classification and regression. 

Next, Soft-NMS filters the target boxes to reduce 

accidental deletion of dense targets, while ROI-Align 

aligns the features of the target area to improve 

localization accuracy. Scale feature fusion combines high-

level and low-level features to optimize the detection 

capability of targets of different sizes. Finally, the 

Softmax classifier completes the target classification, the 

boundary box regression optimizes the target box position, 

outputs the detection results, and is used for decision-

making of the auto drive system. 

4 Results 
To confirm the effectiveness and superiority of the raised 

autonomous vehicle OD and recognition method based on 

improved Faster R-CNN, the KITTI dataset and nuScenes 

dataset were selected as experimental data sources. The 

KITTI datasetranks among the most extensively utilized 

datasets within the domain of self-driving research, which 

includes targets such as vehicles, pedestrians, and cyclists 

in real road scenes. The nuScenes dataset is a large-scale 

self-driving perception dataset that contains complete 

360° perception data, including sensor information such 

as cameras, LiDAR, and millimeter wave radar, providing 

richer environmental perception capabilities for self-

driving OD. 

For data partitioning, the KITTI dataset was split into 

training and validation sets at an 8:2 ratio, ensuring a 

balanced distribution of object categories and occlusion 

levels. For the nuScenes dataset, the official split standard 

was adopted, using 7,000 frames for training and 1,500 

frames for validation to support model training and 

evaluation. To simulate diverse environmental conditions 

and enhance model robustness, consistent data 

augmentation techniques were applied to both datasets, 

including brightness variation, rotation and cropping, 

scale transformation, and noise perturbation, thereby 

improving adaptability to varying scenes and object sizes. 

In addition, to address the low proportion of occluded and 

small objects, the training sets were supplemented by 

oversampling instances with medium to high occlusion 

levels and object sizes smaller than 50 pixels. This strategy 

improved the model's detection capability and 

generalization performance under complex conditions. 

For the nuScenes dataset specifically, multi-modal data 

synchronization and annotation consistency checks were 

conducted to ensure temporal integrity and labeling 

accuracy, further enhancing model stability and 

adaptability in dynamic traffic environments. The 
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experimental environment and basic parameter settings 

are in Table 2. 

 

Table 2: Experiment environment and basic parameter settings. 

Configuration item Parameter Configuration item Parameter 

CPU Intel Xeon W-2295 Optimizer Adam 

GPU NVIDIA RTX 3090 Initial learning rate 0.0001 

Memory 128GB DDR4 Learning rate adjustment strategy Cosine annealing strategy 

Storage 2TB NVMe SSD Batch size 16 

Operating system Ubuntu 20.04 Training epochs 100 

Deep learning framework PyTorch 1.10.0 (Python 3.8) Anchor-box scales 32×32, 64×64, 128×128 

CUDA version CUDA 11.3 Anchor-box aspect ratios 1:1, 1:2, 2:1 

cuDNN version cuDNN 8.2 ROI-Align pooling window 7×7 

 

 

Table 3: Ablation study results. 

Model Structure mAP (%) Miss Rate (%) NMSE Inference Time (ms/img) 

Baseline Faster R-CNN 93.84 4.73 0.031 32.2 

Faster R-CNN + CBAM 95.62 3.68 0.025 33.8 

Faster R-CNN + CBAM + ROI-Align 96.97 2.54 0.017 34.7 

Faster R-CNN + CBAM + ROI-Align + Soft-NMS 98.13 0.96 0.014 34.5 

 

Based on Table 2, the ablation experiment was 

conducted first in the study. The alterations in detection 

performance were examined separately after sequentially 

integrating the CBAM attention module, ROI-Align 

region alignment module, and Soft-NMS screening 

mechanism into the benchmark Faster R-CNN 

architecture. An assessment was then carried out to 

evaluate the distinct contributions of each module towards 

enhancing target detection accuracy and robustness. The 

results are shown in Table 3 as follows. 

From Table 3, after adding CBAM, the mAP of the 

model increased by approximately 1.8%, and the missed 

detection rate decreased by approximately 1%, indicating 

that the attention mechanism enhanced the model's focus 

on the key target features. After further adding ROI-Align, 

the Normalized Mean Squared Error (NMSE) decreased 

to 0.017, indicating that the regional alignment module 

effectively reduced the bounding box offset and improved 

the target positioning accuracy. Finally, after introducing 

the Soft-NMS screening mechanism, the model further 

reduced the accidental deletion of targets in the dense 

target scenario, achieved the optimal comprehensive 

performance, with the mAP reaching 98.13% and the 

missed detection rate dropping to 0.96%. Further, You 

Only Look Once v5 (YOLOv5), Cascade Region-Based 

Convolutional Neural Network (Cascade R-CNN), and 

Deformable Detection Transformer (Deformable DETR) 

were selected as comparison methods. Among them, 

YOLOv5 has efficient and real-time detection capabilities, 

making it suitable for self-driving applications. Cascade 

R-CNN improves target localization accuracy through 

cascaded multi-level object box regression and is suitable 

for detecting dense and occluded targets. Deformable 

DETR combines deformable attention and deformable 

convolution to enhance the detection ability of complex 

environments and dynamic targets. The experimental 

results of the overall detection performance evaluation are 

in Figure 7. 

As presented in Figure 7 (a), the improved Faster R-

CNN maintained high detection accuracy in all iteration 

stages, with a detection accuracy of over 95.00% after 20 

iterations, ultimately reaching 98.13%, which was better 

than Cascade R-CNN's 96.68%, Deformable DETR's 

95.52%, and YOLOv5's 94.62%. This indicated that the 

research method had more advantages in FE and target 

localization. As shown in Figure 7 (b), the miss rates of all 

methods gradually decreased with the increase of iteration 

times. The improved Faster R-CNN reduced the miss rate 

to below 2.00% after 20 iterations, and finally stabilized 

at below 1.00%. The miss rates of Cascade R-CNN and 

Deformable DETR iterations were both between 1.50% 

and 2.00%, while YOLOv5 was above 2.50%, indicating 

that the overall detection performance of the research 

method was more excellent. On this basis, the study 

selected a self-driving image set containing dense targets 

in the dataset and tested the target screening performance 

and target area localization accuracy of various methods. 

The results are in Figure 8. 
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Figure 7: Overall test performance evaluation experimental results. 
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Figure 8: Performance comparison under dense targets. 

From Figure 8 (a), the improved Faster R-CNN 

achieved a preservation accuracy of 94.16%, which was 

7.80% higher than YOLOv5's 86.36%. This indicated that 

Soft-NMS effectively reduced the false deletion of dense 

targets, and also had advantages compared to Cascade R-

CNN's 91.52% and Deformable DETR's 89.83%. In 

Figure 8 (b), the average Normalized Mean Squared Error 

(NMSE) of the improved Faster R-CNN was 0.014, which 

was lower than YOLOv5's 0.032 and better than Cascade 

R-CNN's 0.020 and Deformable DETR's 0.023. This 

indicated that ROI-Align significantly reduced the target 

box localization error in target feature alignment and 

improved the stability and accuracy of OD. Furthermore, 

different scale OD capability tests were conducted, and the 

results are in Figure 9. 

In Figure 9 (a), the improved Faster R-CNN 

maintained high detection accuracy across all target sizes. 

When the target volume interval reached 50%, the Mean 

Average Precision (mAP) reached 97.01%, while 

YOLOv5, Cascade R-CNN, and Deformable DETR only 

had 94.86%, 93.92%, and 92.64%, respectively. From 

Figure 9 (b), for IoU, the improved Faster R-CNN still 

performed the best in different target volume intervals, 

reaching a maximum of 0.93, while the IoU of the three 

comparison methods was all below 0.90.From this, 

improving the multi-scale feature fusion of Faster R-CNN 

had excellent optimization effects on OD of different 

sizes. Furthermore, the study conducted robustness testing 

on complex traffic environments, selecting three scenario 

data: changes in lighting (daytime, nighttime), severe 

weather (rainy, foggy), and dynamic interference 

(occlusion of targets, target deformation). The results are 

in Figure 10. 
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Figure 9: Detection ability test of different scales. 
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Figure 10: Robustness test in complex traffic environment. 

M1-M4 in Figure 10 represent YOLOv5, Cascade R-

CNN, Deformable DETR, and Improved Faster R-CNN, 

respectively. As shown in Figure 10 (a), the mAP of the 

improved Faster R-CNN under illumination changes was 

80.45%, which was higher than other methods. The 

Deformation Detection Rate (DDR) of the target was 

85.26%, and the False Detection Rate (FDR) was 3.94%, 

which was better than YOLOv5 and Cascade R-CNN, 

indicating stronger adaptability to changes in lighting. 

According to Figure 10 (b), in rainy and foggy 

environments, the mAP of the improved Faster R-CNN 

was 77.83%, and the DDR was 87.12%, both of which 

were superior to other methods. The FDR was only 2.81%, 

the lowest, indicating higher detection stability in low 

contrast environments. From Figure 10 (c), in occlusion 

and target deformation scenarios, the mAP of the 

improved Faster R-CNN was 75.11%, DDR was 87.28%, 

and FDR was only 3.27%, all of which were better than 

other methods, indicating its stronger robustness and 

lower false detection rate in dynamic environments. 

Finally, a comparison of computational resource 

consumption was conducted, and the outcomes are in 

Table 4. 

As shown in Table 4, the improved Faster R-CNN 

demonstrated superior performance in terms of inference 

time, memory usage, frame rate, and GPU utilization 

compared to Cascade R-CNN and Deformable DETR. 

Specifically, the improved model achieved an inference 

time of 34.5 ms/img, memory usage of 5.8 GB, frame rate 

of 29.0 FPS, and GPU utilization of 82.5%, striking a good 

balance between detection accuracy and computational 

cost. YOLOv5 had the fastest inference time of just 18.7 

ms/img and the highest FPS at 53.5, with the lowest 

memory usage at 3.2 GB. However, its parameter count 

was only 23.8M, resulting in a smaller model that 

struggles to maintain stability in complex scenarios. 

Cascade R-CNN and Deformable DETR consumed more 

resources, with inference times of 42.3 ms/img and 50.1 

ms/img, memory usage of 6.4 GB and 7.1 GB, FPS of 23.6 

and 19.9, and GPU utilization both exceeding 85%, 

making them less suitable for deployment in real-time 

systems. Overall, the improved Faster R-CNN maintained 

high detection accuracy while achieving efficient 

computational performance, making it suitable for 

autonomous driving scenarios that demand both real-time 

processing and robustness. Future work could explore 
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model pruning and lightweight optimization techniques to 

enhance deployment on edge platforms. 

Table 4: Comparison of computing resource consumption. 

Method 
Inference Time 

(ms/img) 

Memory Usage 

(GB) 

Model 

Parameters (M) 

FPS 

(Frames/sec) 

Avg. Layer 

Latency (ms) 

GPU Utilization 

(%) 

Improved Faster R-

CNN 
34.5 5.8 45.6 29.0 2.3 82.5 

YOLOv5 18.7 3.2 23.8 53.5 1.1 69.2 

Cascade R-CNN 42.3 6.4 52.1 23.6 3.1 87.4 

Deformable DETR 50.1 7.1 60.3 19.9 3.5 90.8 

 

5 Discussion 
The improved Faster R-CNN model proposed in this study 

demonstrated superior performance over YOLOv5, 

Cascade R-CNN, and Deformable DETR in terms of 

detection accuracy, object localization, dense target 

recognition, and adaptability to complex environments. 

Compared with YOLOv5, the improved model 

consistently maintained high accuracy throughout the  

 

training process, ultimately reaching 98.13%, 

significantly higher than YOLOv5’s 94.62%. In dense 

target scenarios, the retention accuracy improved from 

86.36% to 94.16%. This improvement was mainly 

attributed to the two-stage detection architecture 

combined with the CBAM module for enhanced feature 

expression, and the Soft-NMS mechanism, which 

dynamically adjusted the confidence scores of 

overlapping boxes during target screening, effectively 

reducing missed detections in dense scenes. Compared 

with Cascade R-CNN, the proposed model also showed 

clear advantages in dense OD and bounding box 

localization, with a normalized mean squared error 

(NMSE) of 0.014, significantly better than Cascade R-

CNN’s 0.020. ROI-Align eliminated quantization errors 

inherent in traditional RoI Pooling through floating-point 

sampling during the alignment process, thus improving 

boundary fitting precision and ensuring stable 

performance under complex target distributions. In 

comparison with Deformable DETR, although the latter 

enhanced spatial adaptability through deformable 

attention mechanisms, its accuracy in dense and small OD 

was inferior. In multi-scale detection experiments, the 

improved Faster R-CNN achieved a mean average 

precision (mAP) of 97.01%, clearly surpassing 

Deformable DETR’s 92.64%, and reached a maximum 

IoU of 0.93, higher than the sub-0.90 levels of the baseline 

methods. Additionally, in robustness tests involving 

lighting variation, adverse weather, and dynamic 

occlusion, the improved model outperformed all three 

baselines in terms of mAP, deformation detection rate 

(DDR), and false detection rate (FDR), particularly under 

nighttime and foggy conditions. Error trend analysis 

revealed that YOLOv5 often misses small or occluded 

objects, Cascade R-CNN suffered from bounding box 

instability under low contrast, and Deformable DETR 

tended to generate false positives in cluttered 

backgrounds. In contrast, the proposed model, with the 

integration of Soft-NMS and ROI-Align, effectively 

mitigated suppression errors and boundary misalignment, 

thereby maintaining higher detection accuracy and object 

consistency in complex environments. Overall, the 

improved Faster R-CNN exhibited stronger FE and 

alignment capabilities across various scenarios and object 

types, showing high practical value and strong potential 

for real-world applications. 

6 Conclusion 
In response to the challenges of low OD accuracy, missed 

detections of densely packed targets, and the difficulty in 

recognizing small-sized targets within the context of 

autonomous driving, this study presents an enhanced 

Faster R-CNN model. The model incorporates and 

optimizes the CBAM to boost FE capabilities. It employs 

ROI-Align to elevate positioning precision, utilizes Soft-

NMS to refine the screening of dense targets, and 

integrates multi-scale feature fusion to enhance the 

detection of targets of varying sizes. The model 

performance was validated on the KITTI and nuScenes 

datasets through experiments. The overall detection 

accuracy reached 98.13%, higher than YOLOv5's 94.62%, 

Cascade R-CNN's 96.68%, and Deformable DETR's 

95.52%. The miss rate was less than 1.00%, which was 

better than the comparative methods' 1.50% -2.50%.In 

dense target scenes, the preservation accuracy was 

94.16%, and the NMSE was only 0.014, which was lower 

than the 0.020-0.032 of other methods, indicating more 

accurate target localization. In OD at different scales, 

when the target volume interval was 50%, the mAP 

reached 97.01% and the highest IoU was 0.93, which was 

better than the comparison method's 94.86% and IoU 

below 0.90, demonstrating excellent detection ability for 

small targets. In the robustness test of complex 

environments, the mAP of the model under lighting 

changes, severe weather, and dynamic interference 

scenarios were 80.45%, 77.83%, and 75.11%, 

respectively. The FDRs were 3.94%, 2.81%, and 3.27%, 

respectively, which were better than other methods, 

proving its stronger adaptability. In terms of 

computational performance, the inference time was 

34.5ms/img and the FPS was 29.0, balancing efficiency 

and accuracy. 

The theoretical contribution of the research lies in 

constructing a Faster R-CNN OD framework that 



46 Informatica 49 (2025) 35–48 Y. Deng et al. 

integrates the improved CBAM, ROI-Align, Soft-NMS 

and multi-scale feature fusion mechanisms, and 

systematically enhances the detection ability of the model 

in dense occlusion, small object recognition and complex 

environments. The empirical results showed that this 

method not only achieved better detection accuracy and 

robustness than the existing mainstream models on the 

KITTI and nuScenes datasets, but also took into account 

the inference speed and computing resource overhead. It 

has strong practical deployment value and is especially 

suitable for real-time perception tasks in autonomous 

driving. 

7 Limitations and future research 

directions 
However, in this study, a fixed Gaussian attenuation 

parameter σ (σ=0.5) was adopted in the Soft-NMS 

module, and no systematic sensitivity analysis was 

conducted. The influence of different σ  values on the 

performance of dense target detection might were ignored. 

Subsequent studies can further explore the influence 

mechanism of the change of σ parameters on the detection 

accuracy to enhance the adaptability of the model in 

multiple scenarios. Secondly, this study mainly focused on 

quantitative experiments and did not present the 

visualization results of detection in complex scenarios in 

the manuscript. Subsequent studies will further 

demonstrate the adaptive performance of the model by 

combining typical image examples. In addition, the 

research mainly focused on the verification of the 

improved structure in terms of overall detection 

performance and adaptability to complex environments. 

No more fine-grained performance analysis was 

conducted on the detection effects of various types of 

targets and the distribution of false detection types. 

Further supplementation can be made in the future to 

enhance the comprehensiveness of the evaluation. Finally, 

the study only selected two mainstream datasets, KITTI 

and nuScenes, for model training and testing. Although 

typical urban roads and multi-modal perception scenarios 

were covered, there are still certain generalization 

limitations. It has not yet been tested on larger-scale or 

diversified autonomous driving datasets such as Waymo 

Open Dataset and BDD100K. In the future, the 

experimental scope can be further expanded to more 

comprehensively verify the adaptability and robustness of 

the model in different traffic environments and scenarios. 
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